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We study dynamics of SUðN − 4Þ gauge theories with fermions in rank-2 symmetric tensor and N
antifundamental representations, by perturbing supersymmetric theories with anomaly-mediated super-
symmetry breaking. We find the SUðNÞ × Uð1Þ global symmetry is dynamically broken to SOðNÞ for
N ≥ 17, a different result from conjectures in the literature. For N < 17, the theory initially flows to a
superconformal fixed point, but is diverted by the soft masses, which act as a relevant perturbation.
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I. INTRODUCTION

Understanding the dynamics of strongly coupled chiral
gauge theories remains a difficult challenge, as we are
lacking effective tools to study them. Even progress on
lattice simulations has been slow, since they are hampered
by the notorious doubling problem. So far the best we can
do is to resort to educated guesses, based on some general
guiding principles. The most well-known such framework
is “tumbling” [1,2], where one tries to find the most
attractive channel (MAC) among the various fermions,
and postulate condensates that will successively break the
gauge symmetry till one arrives at a nonchiral QCD-like
theory. Tumbling has indeed been used to propose a
plausible vacuum structure for the simplest chiral gauge
theories: SUðNÞ with a Weyl fermion in the antisymmetric
(or in the symmetric) representation of the gauge group, as
well as antifundamentals to cancel the gauge anomalies.
For both examples the proposal contains a symmetry
breaking pattern that satisfies nontrivial ’t Hooft anomaly
matching conditions, hence appears to be passing some
very nontrivial checks. Recently, these proposals have
undergone further scrutiny in [3,4], by applying new
discrete anomaly matching conditions [5] involving the

center symmetry Zn of the gauge group, in the spirit of [6–
8]. We do not elaborate more on these generalized con-
sistency conditions, since they seem to automatically hold
for our proposal of the IR dynamics, due to its continuous
connection to the supersymmetric theory.
The study of the supersymmetric (SUSY) versions of

these theories opens up a new method for finding candidate
vacua for chiral gauge theories. SUSY—thanks in most
part due to holomorphy—allows for a much greater control
of the IR dynamics, and together with anomaly matching
often enables us to fully pin down the vacuum structure of
the theory. The obvious challenge then is to be able to
deduce results for the non-SUSY theory by perturbing
the SUSY results in a controlled manner. While several
attempts along these lines were initiated in the 1990s [9–
22], recently a UV-insensitive method for perturbing SUSY
dualities based on anomaly mediation [23,24] has been
proposed in [25] (see also [26,27] for earlier work con-
taining some important aspects of AMSB). In [25] the
method of AMSB was applied to the SUSY QCD sequence
of SUðNÞ gauge theories with F massless flavors. The
resulting phase structure is in qualitative agreement with
our expectations from lattice studies of those of non-SUSY
QCD-like theories. The SUðFÞ × SUðFÞ flavor symmetry
was indeed broken to SUðFÞV as long as F < 3

2
N yielding

the phenomenon of “confinement with chiral symmetry
breaking” (though due to the presence of fundamental
matter fields one does not have true confinement in these
theories). Obtaining the qualitatively correct phase struc-
ture of QCD-like theories is very promising, making it
plausible that the low energy phases of non-SUSY QCD
and SUSY QCD with AMSB are in the same universality
class. Another possibility would be that a phase transition
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happens when the scale of SUSY breaking is raised above
the dynamical scale m > Λ. While no proof exists so far
that such a phase transition does not occur, the fact that the
two phase structures seems to match, and also that AMSB
is governed by a single (holomorphic) parameter within a
UV insensitive framework makes this scenario sufficiently
intriguing to warrant further examination.
To explore the predictions of the AMSB method the next

step is to apply it to chiral gauge theories. For such theories
AMSB will always produce (whenever exact results for the
supersymmetric limit is known) a candidate vacuum
structure for the non-SUSY theory that will automatically
satisfy all consistency conditions, since it will be contin-
uously connected to the vacuum of the SUSY theory
without the AMSB perturbations, yielding a well-defined
procedure for generating a candidate vacuum solution to
the non-SUSY chiral gauge theories. Of course this does
not automatically imply that we have found the correct
ground state of the theory, since one can again not rule out
the possibility of a phase transition as the SUSY breaking
mass terms are raised above the strong coupling scale.
Nevertheless we find it significant that at least a plausible
conjecture can be formulated this way, which eventually
will be compared to the results from the lattice simulations.
It may even be the case that holomorphy prohibits a phase
transition [28].
Recently we have used this method to examine the

simplest chiral gauge theories based on SUðNÞwith a rank-
2 antisymmetric representation for N ≥ 5 and have iden-
tified the vacuum structure of the resulting non-SUSY
chiral theory [28]. We have found that the global symmetry
breaking pattern is in fact different than initially conjec-
tured based on tumbling: for odd N we found that the glo-
bal SUðN − 4Þ ×Uð1Þ symmetry is broken to SpðN − 5Þ×
Uð1Þ, while for the even case to SpðN − 4Þ. While this
symmetry breaking pattern did not agree with the original
predictions from tumbling, we have explained that assum-
ing additional condensates in the second most attractive
channel will fully resolve the discrepancy.
In this paper we extend our previous work to examine the

other examples of non-SUSY chiral gauge theories for
which a simple prediction for the vacuum structure based
on tumbling exists: the case of SUðN − 4Þ with a fermion S
in the rank-2 symmetric representation and N antifunda-
mentals F̄ to cancel the gauge anomalies. There exist two
proposals for the symmetry breaking pattern of this model.
The tumbling prediction for this case would be a MAC
leading to a condensate of the symmetric and N − 4
antifundamentals, leading to color-flavor locking with an
unbroken SUðN − 4Þ × SUð4Þ ×Uð1Þ global symmetry.
The anomalies are matched by a composite fermion SF̄iF̄j

antisymmetric in the i, j flavor indices. Another interesting
option is that the entire group confines without breaking
any of the global symmetries via condensates, since the
same fermion composite actually matches the ’t Hooft
anomalies of the entire SUðNÞ ×Uð1Þ global symmetry.

Similar to the case of the antisymmetric tensor, we will
show that the AMSB method results in a prediction
different from either of these two scenarios. The details
of the analysis for the symmetric case turn out to be quite
different from that of the antisymmetric, since here we have
to make use of the Seiberg dual found by Pouliot and
Strassler [29] in terms of a magnetic Spin(8) group. We find
that for N ≥ 17 the remaining global symmetry is only
SOðN − 4Þ, and no massless composite fermion is needed
in the absence of ’t Hooft anomalies. On the other hand for
N < 17 the theory initially flows to a superconformal fixed
point in the IR, but is eventually perturbed away from it by
the soft masses. At the fixed point the supersymmetry
breaking terms all vanish, and one is left with a genuine
superconformal theory.
The paper is organized as follows. We first briefly

review the anomaly mediation of supersymmetry breaking
(AMSB), and the SUSY limit of the SUðN − 4Þ gauge
theories with a symmetric tensor and N antifundamentals.
Then we combine them to find consistent vacua of the non-
SUSY theories that can be extrapolated to decouple
supersymmetry. We show that we can understand the
symmetry breaking pattern à la tumbling, even though
we need to rely on fermion bilinear condensates that are not
in the MAC. Finally, we briefly discuss the case of N ≤ 16,
where the supersymmetric theory has an IR fixed point.

II. ANOMALY MEDIATION

In scenarios with anomaly-mediated supersymmetry
breaking (AMSB), supersymmetry is broken in a seques-
tered sector, and is mediated to the visible sector via the
superconformal anomaly. The magnitude of the breaking is
given by a single numberm, which enters both at tree and at
loop level. The tree-level contribution to the scalar potential
is derived from the superpotential,

Ltree ¼ m

�
ϕi

∂W
∂ϕi

− 3W

�
þ c:c: ð1Þ

In addition, there is loop-level supersymmetry breaking,
which generates in trilinear couplings, scalar masses, and
gaugino masses [30],

AijkðμÞ ¼ −
1

2
ðγi þ γj þ γkÞðμÞm; ð2Þ

m2
i ðμÞ ¼ −

1

4
_γiðμÞm2; ð3Þ

mλðμÞ ¼ −
βðg2Þ
2g2

ðμÞm: ð4Þ

Here, γi ¼ μ d
dμ lnZiðμÞ, _γ ¼ μ d

dμ γi, and βðg2Þ ¼ μ d
dμ g

2.

III. SUðN − 4Þ WITH S AND ðNÞF̄i

First we present a summary of the duality explored
in [29], which will be the basis of our explorations.
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We consider a supersymmetric SUðN − 4Þ gauge theory
with a rank-2 symmetric tensor S and antifundamentals F̄i
(i ¼ 1;…; N). For N ≤ 16, it has an interacting IR fixed
point, while for N ≥ 17, it is in a free magnetic phase. The
theory has a global SUðNÞ ×Uð1Þ ×Uð1ÞR symmetry,
under which the charges of the matter fields are shown
in Table I.
The SUðN − 4Þ theory (henceforth the “electric” theory)

has a magnetic dual, which is a non-chiral Spin(8) gauge
theory (the double cover of SOð8Þ) with N vectors qi, a
spinor p and the Spin(8) singlets Mij ¼ SF̄iF̄j and U ¼
det S. See Table II for a summary of the particle content of
this theory. The magnetic theory has a tree-level super-
potential:

W̃tree ¼
1

μ21
Mijqiqj þ

1

μN−5
2

Upp; ð5Þ

where the scales μ1;2 are related to the electric (magnetic)
strong scales ΛðΛ̃Þ by

ðΛ2N−11Þ2Λ̃17−N ¼ μ2N1 μN−5
2 : ð6Þ

The ’t Hooft anomaly matching conditions are satisfied and
imply that the fieldsM and U have regular Kähler potential
at the origin. For later convenience, we switch to canonically
normalized fields M̃ and Ũ and introduce the Yukawa
couplings yM;U,

W̃tree ¼ yMM̃qqþ yUŨpp: ð7Þ

The duality between the SUðN − 4Þ and Spin(8) also
maps the composite operators of the theory: SF̄iF̄j ↔ Mij

and det S ↔ U. There are also gauge invariant baryonic
operators on both the electric and the magnetic side, but
they do not play a role in the dynamics below and so we do
not discuss them further in this paper.

IV. ADDING AMSB

Perturbing the duality via the AMSB mechanism
will result on the electric side in positive scalar masses
as well as gaugino masses, leaving in the IR the

nonsupersymmetric chiral gauge theory of interest. We
will then have to identify the effect of the AMSB on the
magnetic Spin(8) theory and find the global minimum of its
supersymmetry breaking potential. We first focus on the
case N ≥ 17, in which the theory is in the free magnetic
phase. A naive local minimum is obtained by directly
adding the AMSB to the tree level potential (7). In this case
the tree-level AMSB contribution from (1) vanishes, and so
the supersymmetry breaking is generated by the loop level
A-terms (2) and soft masses (3), (4), leading to a local
minimum at

V ≈ −
�

λ2

16π2

�
4

m4; ð8Þ

where λ is some Oð1Þ combination the gauge and super-
potential couplings g, yM, and yU. While this is indeed a
local minimum of the potential, we will now show, this is
not the global minimum of the theory.
To find the global minimum, we first consider the

magnetic theory on the moduli space by turning on hMi
of rank N, as well as hUi. As we shall see, the global
minimum end up being at small values of these VEVs,
justifying our weakly coupled analysis in the (initially) IR
free magnetic theory. Once qi, p are integrated out, the
magnetic theory becomes asymptotically free again: indeed
the IR theory is a pure Spin(8) SYM, with a scale

Λ̃18
L ¼ det M̃ Ũ

Λ̃N−17 : ð9Þ

It develops a gaugino condensate with a dynamically
generated superpotential [31,32]

Wdyn ¼ ei
πk
3 ðΛ̃18

L Þ1=6 ¼ ei
πk
3

�
det M̃ Ũ

Λ̃N−17

�
1=6

; ð10Þ

where k ¼ 0;…; 5 denoting six different vacua, originating
from taking the sixth root in the gaugino condensate.
Taking this dynamical superpotential into account, and
using (1), we find the tree-level AMSB contribution

Ltree ¼ m
N − 17

6
Wdyn þ c:c: ð11Þ

TABLE I. Particle content of the electric SUðN − 4Þ theory. We
omit the baryons B;Bn since they are not dynamical and don’t
play a role in our analysis.

SUðN − 4Þ SUðNÞ Uð1Þ Uð1ÞR
S 1 −2N 12

ðNþ1ÞðN−4Þ
F̄i 2N − 4 6ðN−5Þ

ðNþ1ÞðN−4Þ
Mij ¼ SF̄iF̄j 1 2N − 8 12

Nþ1

U ¼ det S 1 1 2Nð4 − NÞ 12
Nþ1

TABLE II. Particle content of the magnetic Spin(8) theory. We
omit the baryons b, bn since they are not dynamical do not play a
role in our analysis. Note that we use the same name forMij,U as
in the electric theory, due to their identical representations.

Spin(8) SUðNÞ Uð1Þ Uð1ÞR SOðNÞ
qi 8v 4 − N N−5

Nþ1

p 8s 1 NðN − 4Þ N−5
Nþ1

1
Mij 1 2N − 8 12

Nþ1

U 1 1 2Nð4 − NÞ 12
Nþ1

1
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The loop-level AMSB terms (2), (3), (4) are negligible
with respect to this tree-level contribution. The scalar
potential from the superpotential (10) and the tree-level
AMSB contribution (11) has a supersymmetry breaking
minimum at

M̃ij ≈ δijm

�
Λ̃
m

�N−17
N−11

; Ũ ≈m

�
Λ̃
m

�N−17
N−11

;

V ≈ −m4

�
Λ̃
m

�2ðN−17Þ
N−11

: ð12Þ

Indeed, for N > 17 this minimum is deeper than the one in
(8). We will come back to the marginal case N ¼ 17

shortly. On the complex plane of z ¼ ðdet M̃ ŨÞ, six
branches are connected through branch cuts from one
Riemann sheet to another. The minimum of the potential
finds itself on the sheet wheremWdyn in Eq. (11) can be real
and negative. We recall that the magnetic theory is IR free
for N ≥ 17 and in this case the VEVs are both much
smaller than the Landau pole and much larger than the scale
ΛL of the gaugino condensate. For this reason the minimum
Eq. (12) is at weak coupling.
At the minimum the global SUðNÞ × Uð1Þ symmetry is

broken to SOðNÞ, (the Uð1ÞR is explicitly broken by the
AMSB) and all fermions become massive. There are
1
2
NðN þ 1Þ Nambu-Goldstone bosons corresponding to

the breaking, and none of them are eaten since the Spin
(8) gauge symmetry remains unbroken. Since SOðNÞ is
anomaly free, there are no nontrivial ’t Hooft anomaly
matching conditions. In the IR theory, the Mij and U all
play the role of Goldstone superfields, each one containing
exactly one of the 1

2
NðN þ 1Þ Nambu-Goldstone boson for

the SUðNÞ ×Uð1Þ=SOðNÞ breaking, except for one com-
bination of U and TrM which is the direction of the
potential and is not a NGB.
Note that the VEV Mij has the full rank N in the

magnetic theory, while in the electric theory their maximal
rank is N − 4. This is completely consistent with the
duality: in the supersymmetric limit, the rank condition
is enforced on Mij dynamically [34], because the super-
potential Eq. (10) requires M̃−1 det M̃ Ũ ¼ det M̃ ¼ 0.
Therefore, along F-flat directions corresponding to poten-
tial SUSY preserving minima rankM̃ij < N. Directions
with maximal rank satisfying det M̃ Ũ ≠ 0 [as we assumed
in deriving Eq. (10)] necessarily correspond to SUSY
breaking vacua. In our case AMSB indeed stabilizes the
minimum (12) along the direction where hM̃iji has maxi-
mal rank, and away from the classically expected rank
condition. This situation is similar to the way the full-rank
meson field is found in the ISS model whenNc < Nf in the
electric theory [35], with the mass perturbation stabilizing
the minimum away from the classical rank condition.

The marginal case N ¼ 17 is a little subtle. In this case
the one-loop beta function of the magnetic gauge coupling
vanishes, though the two-loop beta function does not and is
IR free. Consequently, the theory is still in the free
magnetic phase. While in this case the minima (12) and
(8) have the same dependence on m, the minimum (8) is
much shallower, since it depends on the slow 2-loop
running of the gauge coupling, and quasi-IR-fixed point
behavior of the Yukawa couplings that tracks the gauge
coupling. Then (12) remains the global minimum for
N ¼ 17. We also verified that the two-loop mass-squared
for M̃ and Ũ is smaller than the square of the one-loop
A-term, and the origin is unstable. Therefore we find
M̃ ∼ Ũ ∼ λ2

16π2
m ≠ 0, and the symmetry breaking pattern

is the same as the rest of N ≥ 17 cases.
So far the results obtained are exact. As in previous

analyses with the AMSB [25,28], we now take the limit
m → ∞ to extrapolate to the nonsupersymmetric theory.
Though there might be a phase transition on the way, our
analysis yields a plausible conjecture for the IR behavior of
nonsupersymmetric SUðN − 4Þ with a symmetric S and N
antifundamentals. As a continuous limit of a self consistent
supersymmetric analysis, our method is guaranteed to
fulfill all ’t Hooft matching conditions, including general-
ized ones [3,4,6–8]. Note also that in a complete AMSB
model our SUSY breaking spurion m (the F-component of
the compensator) would originate from the constant term in
the superpotential leading to a relation m ¼ 1

M2
Pl
W0, where

W0 is the superpotential in the SUSY breaking sector. If
there is a phase transition while increasing the amount of
SUSY breaking it would happen for jmj ≈ jΛj, correspond-
ing to the condition jΛM2

Plj2 ≈ jW0j2. Since both Λ andW0

are chiral superfields (or products thereof), any relation
among them defining the phase boundaries should be given
by a holomorphic expression. Consequently, the phase
boundary should be even dimensional: either isolated
points or the entire complex plane. Since the latter is
implausible it would have to be isolated points. However,
those cannot correspond to the relation jΛM2

Plj2 ≈ jW0j2
which would imply the phase boundary to be a circle on the
complex W0 plane. This suggests that such a phase
boundary should not exist. It would be interesting to see
if this argument can be made more rigorous.

V. TUMBLING INTERPRETATION

Here we would like to interpret our SUSYþ AMSB
analysis of SUðN − 4Þ with a symmetric S and N F̄ in the
heuristic tumbling approach [1,2]. The unbroken global
SOðNÞ symmetry in the IR hints at a symmetric F̄fi;F̄jg
condensate which breaks the gauge group SUðN − 4Þ →
SOðN − 4Þ and the global symmetry SUðNÞ → SOðNÞ.
However, a symmetric condensate is not an attractive
channel for the SUðN − 4Þ gauge symmetry. The solution
to this conundrum is the simultaneous condensation of two
channels. The first is
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ð13Þ

This condensate is attractive in SUðN − 4Þ. It breaks
the Uð1Þ global symmetry, and Higgses the gauge sym-
metry down to SOðN − 4Þ. Under the reduced gauge
symmetry, the theory is now vectorlike and confines.
The symmetric F̄fi;F̄jg is now a color singlet. It is attrac-
tive, and condenses as

δabF̄a
i F̄

b
j ∝ δij ð14Þ

breaking the global SUðNÞ symmetry down to SOðNÞ. The
candidate Nambu-Goldstone bosons for the SUðNÞ=SOðNÞ

coset are F̄fi;F̄jg, while the Goldstones for the two broken
Uð1Þs can be taken to be ðF̄a

i Þ2 and S2ab. By examining
Tables III–VI, we see that the condensates described above
are attractive, but they are certainly not the most attractive
channel (MAC). Our suggestion for the IR dynamics of the
theory is then different from the one suggested by tumbling,
or the other proposed phase with fully unbroken global
symmetries and no condensates.

VI. NON-ABELIAN COULOMB PHASE

For N ≤ 16, the supersymmetric theory has an IR fixed
point [29], in which both the electric and magnetic
descriptions of the theory are equally useful. In the super-
symmetric limit the anomalous dimensions γi are scale
independent and so _γi ¼ 0 and the AMSB soft masses
vanish at the IR fixed point. More specifically γi ¼ 3Ri − 2
where Ri is the R-charge. However, in the presence of
nonanomalous Uð1Þ symmetries, the definition of the
R-symmetry is ambiguous. The combination that appears
in the superconformal algebra is fixed by a-maximalization
[36], and the resultant a is the Euler trace anomaly
coefficient that always decreases with the renormalization-
group flow [37] analogous to the Zamolodchikov’s
c-theorem [38]. The Euler trace anomaly coefficient a is
defined by [39]

a ¼ 3

32
ð3TrR3 − TrRÞ; ð15Þ

where the trace sums over all fermions in the theory.
Obviously the definition is common between the electric
and magnetic theories as long as the ’t Hooft anomaly
matching conditions are satisfied. Using the Uð1Þ chargeQ
in Table I, we maximize a using the combination
R0 ¼ Rþ tQ, and find the (local) maximum at

TABLE IV. SUðnÞ Channels, ordered by most to least attrac-
tive. Note that in our case n ¼ N − 4.

Constituents Channel C2ðchannelÞ − C2ð1Þ − C2ð2Þ
S; F̄ − ðn−1Þðnþ2Þ

n

S, S − 2ðnþ2Þ
n

F̄; F̄ − nþ1
n

S, S − 4
n

F̄; F̄ n−1
n

S, S 4ðn−1Þ
n

S; F̄ n2−9n2−9nþ85
2n

TABLE V. Quadratic Casimirs for SOðnÞ.
Irrep 1

C2 0 ðn−1Þ
2

n − 2 n 2n − 2

Irrep

C2
3ðnþ1Þ

2
2nþ 4 3ðn−1Þ

2
2n

TABLE VI. SOðnÞ Channels, ordered by most to least attrac-
tive. Note that in our case n ¼ N − 4.

Constituents Channel C2ðchannelÞ − C2ð1Þ − C2ð2Þ
S, S 1 −2n
S, S −n − 2

S; F̄ −n
S, S −n

F̄; F̄ 1 1 − n

S, S −2

F̄; F̄ −1

S; F̄ −1

S, S 0

F̄; F̄ 1
S; F̄ 2
S, S 4

TABLE III. Quadratic Casimirs for SUðnÞ. The Casimirs are
the same for irreps and their conjugates. For the last one, there are
n − 1 boxes vertically for the first column.

Irrep

C2
n2−1
2n

ðnþ1Þðn−2Þ
n

ðn−1Þðnþ2Þ
n

2ðn2−4Þ
n

2ðn2þn−4Þ
n

Irrep

C2
2ðnþ4Þðn−1Þ

n
n2−6n2−7nþ80

2n
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t ¼ 9N2 − 24N þ 39 − ðN þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73N2 − 362N þ 433

p

6ðN − 4ÞðN − 1ÞðN þ 1Þ :

ð16Þ

t is very small, t ≈ 0.0245 for N ¼ 6 and even smaller for
larger N. We can see that t ¼ 0 for N ¼ 17, implying that
the dimension ofM andU become 1 at that point, signaling
the beginning of the free magnetic phase, where M and U
are indeed free fields. With the anomalous dimensions
γi ¼ 3R0

i − 2, the anomaly-free condition for Uð1Þ0R guar-
antees that the NSVZ beta function vanishes [39,40].
Formally, the supersymmetry breaking from AMSB

vanishes at the interacting IR fixed point of the theory.
However, as we will see below, with AMSB the theory
never actually flows to this superconformal fixed point.
Instead, it gets diverted by the AMSB soft masses, which
act as a relevant perturbation to the IR superconformal fixed
point. For completeness, we first show that the super-
conformal IR fixed point of the SUSY theory remains
supersymmetric even in the presence of AMSB. Later,
however we will show that this superconformal fixed point
is never actually reached when flowing from the UV. To
illustrate that the IR fixed point remains superconformal,
we can work out the gaugino mass by expanding the beta
function to the first order around the coupling g� at the fixed
point,

βðg2Þ ¼ β0�ðg2 − g2�Þ þOðg2 − g2�Þ2; ð17Þ

and so in the vicinity of the IR fixed point (β0� > 0),

g2ðμÞ ¼ g2� þ ½g2ðμ0Þ − g2��
�
μ

μ0

�
β0�
; ð18Þ

for energy scales μ ≪ μ0 and for a low enough reference
scale μ0 such that g2ðμ0Þ − g2� ≪ 1. Equation (4) then gives
the gaugino mass

mλðμÞ ¼ −m
β0�
2

g2ðμ0Þ − g2�
g2� þ ðg2ðμ0Þ − g2�Þðμμ0Þβ

0�

�
μ

μ0

�
β0�

≈m
β0�
2

�
1 −

g2ðμ0Þ
g2�

��
μ

μ0

�
β0�
; ð19Þ

where in the last step we assumed μ ≪ μ0 and neglected the
power-suppressed second term in the denominator. The
gaugino mass as expected is power-law suppressed, and
tends to zero as we approach the IR. However, to see if the
theory actually flows to this superconformal fixed point, we

should compare the gaugino mass to the RGE scale μ in the
limit μ → 0. However, the expression (19) always gives
limμ→0ðmλ=μÞ ¼ ∞, and so the soft masses are always
relevant in the IR. The theory then flows in the deep IR to a
nonsupersymmetric vacuum, whose nature depends on the
details of the non-supersymmetric RGE flow.

VII. CONCLUSIONS

We have identified the IR phase of the non-SUSY chiral
SUðN − 4Þ gauge theory with a fermion in the symmetric
representation, as well as N ≥ 17 antifundamentals,
obtained via perturbing the relevant SUSY duality with
the AMSB. For N ≥ 17, the theory is confining with the
SUðNÞ global symmetry broken to SOðNÞ and no massless
composite fermions are needed to match anomalies. For
N < 17 the theory initially flows to a (super)conformal
fixed point, but is then perturbed by the loop level AMSB
soft masses, which act as a relevant perturbation. The IR
phase of the theory in this case depends on the details of the
RGE flow away from the superconformal fixed point.
While the results are obtained in the limit of small SUSY

breaking m ≪ Λ, they do provide a plausible candidate
vacuum structure for these theories even when m ≫ Λ,
satisfying all possible consistency conditions by construc-
tion. The resulting vacuum structure obtained with this
method differs significantly from either of the two con-
jectured phases of the non-SUSY theory, and can be given
an interesting interpretation in the tumbling framework via
two condensates, neither of which would correspond to the
MAC (and one of them becomes attractive only in the
presence of the first condensate). Whether this is indeed the
correct phase of the non-SUSY theory, or if a phase
transition occurs at m ∼ Λ will have to be eventually
verified by dedicated lattice simulations.
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