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It is well known that extremal black holes do not Hawking radiate, which is usually realized by taking an
extremal limit from the nonextremal case. However, one cannot perceive the same phenomenon using the
Bogoliubov transformation method starting from an extremal black hole itself, i.e., without the limiting
case consideration. In that case, the Bogoliubov coefficients do not satisfy the required normalization
condition. In canonical formulation, which closely mimics the Bogoliubov transformation method, one can
consistently reproduce the vanishing number density of Hawking quanta for an extremal Kerr black hole. In
this method, the relation between the spatial near-null coordinates, imperative in understanding the
Hawking effect, was approximated into a sum of linear and inverse terms only. In the present work, we first
show that one can reach the same conclusion in canonical formulation even with the complete relationship
between the near-null coordinates, which contains an additional logarithmic term. It is worth mentioning
that in the nonextremal case, a similar logarithmic term alone leads to the thermal Hawking radiation.
Secondly, we study the case with only the inverse term in the relation (i.e., when the spatial near-null
coordinates associated to the past and future observers are inversely related to each other) to understand
whether it is the main contributing term in vanishing number density. Third, for a qualitative realization, we
consider a simple thought experiment to understand the corresponding Hawking temperature and conclude
that the inverse term indeed plays a crucial role in the vanishing number density.
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I. INTRODUCTION

The Hawking effect remains to be one of the most
pioneering results perceived through the use of quantum
field theory in a black hole spacetime. In [1] Hawking
showed that an asymptotic future observer in a black
hole spacetime observes a thermal distribution of particles
which mathematically was realized through the Bogoliubov
transformation between the ingoing and outgoing field
modes. These field modes are again described in terms of
the null coordinates that must satisfy a logarithmic relation
among themselves to discern the Planckian distribution of
the Hawking quanta [1]. While this Bogoliubov trans-
formation method is one of the most straightforward
methods to realizing the Hawking effect, it is unable to
provide satisfactory results in a few areas. One encounters
one of such case while dealing with an extremal black hole.
In this regard, it is known that the extremal black holes do
not Hawking radiate [2–4], which is noticed by taking the
extremal limit from the nonextremal case and also using
procedures like the tunneling formulation, Euclidean path
integral formalism [3–11]. However, in the Bogoliubov

transformation method, starting from an extremal black
hole, the coefficients do not satisfy the necessary consis-
tency condition emerging from the commutator of the
ladder operators of the field modes [12]. It debars one to
obtain the number density of the Hawking quanta reliably.
The authors in [13] provided a Hamiltonian-based deri-

vation of the Hawking effect in a static Schwarzschild black
hole background. One of the primary difficulties imple-
menting a Hamiltonian-based framework to realize the
Hawking effect was the null coordinates that describe the
field modes related to the Bogoliubov transformation.
These null coordinates do not lead to a true matter field
Hamiltonian that can provide the evolution of the field
modes. In [13], a set of near-null coordinates with spacelike
and timelike signatures was introduced to circumvent this
issue and construct the field Hamiltonians. The canonical
formulation [13–15] closely mimics the Bogoliubov trans-
formation method and utilizing it one can consistently
reproduce the vanishing number density of the Hawking
quanta in an extremal Kerr black hole spacetime [15].
Using this Hamiltonian formulation, the Hawking effect in
a Schwarzschild and nonextremal Kerr black hole space-
time was realized in [13–15]. In these works the relation
between the spatial near-null coordinates of two asymptotic
observers plays a crucial role in the realization of Hawking
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effect. In [15] the authors established an exact relation
between the spatial near-null coordinates but they used an
approximated part of the complete relation to arrive at the
vanishing number density of the Hawking quanta in a
consistent fashion. This approximated relation contains one
linear and one inverse term. However, in the literature using
Bogoliubov transformation method only a similar inverse
term in the relation between the null coordinates were taken
into account for the estimations [12,16]. This led to an
inconsistency in satisfying the normalization condition
between the Bogoliubov coefficients. Therefore, it inspires
us to perform a study with the complete relation between
the spatial near-null coordinates in the context of canonical
formulation. It is important to reconfirm and solidify the
claims of previous results, also to find out which part of the
relation is truly responsible for the vanishing number
density of the Hawking quanta.
In this work, we consider the exact and complete relation

between the near-null coordinates in an extremal Kerr black
hole spacetime. A detailed study with the complete relation
is important in its own right. This relation is a sum of linear,
logarithmic, and inverse functions. The logarithmic term is
important since such a similar term leads to the thermal
spectrum of Hawking radiation in case of nonextremal Kerr
black holes. We use the canonical formulation to obtain the
number density of the Hawking quanta. We arrive at the
conclusion that this entire general relation is also capable of
providing the same conclusion of vanishing number density
consistently. Furthermore, we also consider only the
inverse relation between the spatial near-null coordinates,
as this brings a close relevance to most of the works in the
literature, and observe that even in this case mathemati-
cally, one can consistently get the vanishing number
density. We also point out the subtleties and conceptual
barriers to describe Hawking effect with this inverse
relation approximation. Finally, we present a proper under-
standing of the primary contributing term in the vanishing
number density by a simple thought experiment. Here
outgoing particles nearly escaping being trapped by the
event horizon in a nonextremal Kerr black hole spacetime
reach an asymptotic future observer with a wavelength
inversely proportional to the temperature of the Hawking
effect, which is the Wien’s displacement law for thermal
distribution. On the other hand, for an extremal Kerr black
hole, this wavelength tends to infinity, thus suggesting that
the temperature corresponding to Hawking effect is zero.
Moreover, we notice that the inverse term in the relation
between the near-null coordinates is the main contributing
term in this vanishing temperature of the Hawking effect in
an extremal Kerr black hole spacetime.
In Sec. II, we provide a brief introduction about the Kerr

black hole spacetime. In particular, in this section we talk
about the horizon structure and the condition for extrem-
ality and set up the background for studying a massless,
minimally coupled, free scalar field in this spacetime. In the

succeeding Sec. III we present an overview of the canonical
formulation with the near-null coordinates. In Sec. IV we
specifically consider the extremal situation in the Kerr
black hole spacetime and, using the canonical formulation,
estimate the consistency condition and the number density
of the Hawking quanta. We mention that in different
subsections of this particular section, we shall be estimating
the consistency and the number density using dispa-
rate relevant relations among the near-null coordinates.
Subsequently, in Sec. V we prepare a physically under-
standable setup to shed further light on the dominating term
in the relation between the near-null coordinates, which
contributes to the vanishing number density. We conclude
with a discussion of our findings in Sec. VI.
In this work we consider the natural units, i.e., the speed of

light in vacuum c and Planck constantℏwill have unit values.

II. HORIZONS, EXTREMALITY, AND SCALAR
FIELD IN A KERR BLACK HOLE SPACETIME

In this section, first, we are going to give a brief over-
view of the Kerr black hole spacetime. In particular, we
will represent its metric in terms of the Boyer-Lindquist
coordinates, elucidate the position of the two horizons, and
the condition of extremality when the two horizons merge
to a single one. Second, we will discuss the characteristics
of a massless minimally coupled scalar field in this
spacetime. Specifically, we shall talk about the action of
this scalar field in regions near the horizon and radial
infinity. The purpose is to show that one can utilize the
understandings of quantum field theory from the flat
spacetime in these regions and realize the Hawking effect.

A. The Kerr black hole spacetime

The Kerr black hole spacetime represents an exact solu-
tion of the vacuum Einstein field equations outside of a
rotating mass. Unlike the hypothetical charged (Reissner-
Nordström) and charged rotating (Kerr-Newman) black
holes, the Kerr black holes have gained immense astro-
physical significance, especially after the detection of the
gravitational waves [17–20] from the perceived merger of
these rotating black holes. In particular, the mass M and
angular momentum per unit mass a are the sole delineating
parameters which describe a Kerr black hole. One can
express the line element in this spacetime using the Boyer-
Lindquist coordinates [21] as

ds2 ¼ −
1

ρ2
ðΔ − a2 sin2 θÞdt2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ Σ
ρ2

sin2 θdϕ2 −
2a
ρ2

ðr2 þ a2 − ΔÞ sin2 θdtdϕ; ð1Þ

where ρ2 ¼ r2 þ a2 cos2 θ, Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ,
Δ ¼ r2 þ a2 − rsr, and rs ¼ 2GM with G representing
the Newton’s gravitational constant [22–33]. It should be
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mentioned that in this spacetime one obtains the coordinate
singularity for Δ ¼ 0 and the curvature singularity for
ρ2 ¼ 0. In the latter case the Kretschmann scalar is singular
and mere coordinate transformations cannot remove this
type of singularity. On the other hand, from the condition of
the coordinate singularity Δ ¼ 0 one can find out the
positions of the apparent horizons r ¼ rh and r ¼ rc as

rh¼
1

2

�
rsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s −4a2

q �
; rc¼

1

2

�
rs−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s−4a2

q �
: ð2Þ

Here rh and rc represent the outer event horizon and the
Cauchy horizon, with ϰh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4a2

p
=ð2rsrhÞ and ϰc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s − 4a2
p

=ð2rsrcÞ being their respective surface gravities.
An interesting phenomenon in a Kerr black hole spacetime
is an inertial observer is not static due to the frame-dragging
effect (for example see Chapter 5, page 188 of [24], and
Chapter 11, page 310 of [26]) and experiences an angular
velocity

Ω≡Ωðr; θÞ ¼ gtϕ

gtt
¼ arrs

Σ
: ð3Þ

The effect of this frame dragging results in a nonzero
_ϕ ¼ a=Δ in the null geodesics’ governing equations [24],
which is unlike the case in the Schwarzschild spacetime.
The other governing equations for null geodesics here are
_t ¼ ðr2 þ a2Þ=Δ, _r ¼ �1, _θ ¼ 0, where the overhead dot
denotes derivatives with respect to some affine parameter.
Using these equations one can perceive that along the
ingoing null trajectories, the coordinates v ¼ tþ r⋆ and
ψ ¼ ϕþ r♯ are constants, while along the outgoing null
trajectories the coordinates u ¼ t − r⋆ and χ ¼ ϕ − r♯ are
constants. The expressions of r⋆ (the tortoise coordinate)
and r♯ are obtained from

dr⋆ ¼ r2 þ a2

Δ
dr; dr♯ ¼

a
Δ
dr: ð4Þ

As we will study the Hawking effect in an extremal Kerr
black hole spacetime, it is imperative to talk about the r⋆ in
this case. In the extremal case, both the horizons from
Eq. (2) merge together which corresponds to a → rs=2. In
this case, from the definition (4) one can find out the
expressions of the coordinates r⋆ and r♯ for an extremal
Kerr black hole as

r⋆¼ rþrs ln

�
2r−rs
rs

�
−

r2s
2r−rs

; r♯¼−
2a

2r−rs
: ð5Þ

These expressions of r⋆ and r♯ in terms of radial coordinate
r differ depending on the extremal or nonextremal case.
One also finds the tortoise coordinate to be singular

[3,12,16,34] if one takes the limit a → rs=2 from the
nonextremal case to get this expression.

B. Scalar field action in a Kerr black hole spacetime

To understand the consequences of semiclassical gravity
in an extremal Kerr black hole spacetime we first consider a
massless, minimally coupled free scalar field ΦðxÞ in a
general spacetime background. The action of scalar field
ΦðxÞ is given by

SΦ ¼
Z

d4x

�
−
1

2

ffiffiffiffiffiffi
−g

p
gμ̄ν∇μ̄ΦðxÞ∇νΦðxÞ

�
: ð6Þ

From [15] it is seen that this (1þ 3) dimensional general
action (6) can be transformed into a simple (1þ 1) dimen-
sional form in Kerr black hole spacetime in the regions near
the event horizon and near scriplus and scriminus. For this
purpose one can consider that due to the axial symmetry of
the Kerr spacetime the scalar field can be decomposed as

Φðt; r; θ;ϕÞ ¼
X
lm

eimϕΦlmðt; r; θÞ: ð7Þ

Putting this decomposition back into action (6) and
integrating out the action over the azimuth angle ϕ one
can further consider a redefinition of the field as

Φlmðt; r; θÞ≡ e−imΩtΦ̃lmðt; r; θÞ: ð8Þ

This will remove all the quantities with a single term of
derivative with respect to time, i.e., terms with single
∂tΦlm. Then considering Φ̃lmðt; r; θÞ ¼ S lmðθÞφlmðr⋆; tÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, and using the spheroidal harmonics orthogon-

ality condition
R
dðcos θÞS lmðθÞS �

l0mðθÞ ¼ δl;l0 one can
reduce action SΦ near horizon as well as near past and
future null infinities as SΦ ¼ P

lm Slm. Here Slm is given by

Slm ≃
Z

dtdr⋆
�
1

2
∂tφ

�
lm∂tφlm −

1

2
∂r⋆φ

�
lm∂r⋆φlm

�
; ð9Þ

which represents a scalar field action in (1þ 1) dimen-
sional flat Minkowski spacetime. We mention that with
partial field decomposition for the angular coordinates, the
scalar field action in a Kerr black hole spacetime is realized
as an infinite collection of (1þ 1) dimensional fields. This
fact is well understood in the literature (for example, see the
derivation of Eq. (6) in [35] and the discussions therein). As
we have done in our work, one can further simplify the
action by redefining the field, with relation like Eq. (8) and
introducing a factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
; see also [15]. Then in

asymptotically large r and near the event horizon, the field
imitates the (1þ 1) dimensional flat spacetime like shown
in Eq. (9) with coordinates t and r⋆. It should be mentioned
that for the Hawking effect the modes essential are
constructed near the horizon. In this region if one assigns
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a frequency ω̃ to the redefined field Φ̃lmðt; r; θÞ, i.e.,
Φ̃lmðt; r; θÞ ∼ e−iω̃t, then the physical field Φlm will have
the frequencyω ¼ ω̃þmΩh. This fact can be realized from
Eq. (8), with the identification of Ω ¼ Ωh at the horizon,
see [35–41]. Then for our subsequent discussions regarding
the Hawking effect in an extremal Kerr black hole
spacetime we shall consider the particular action (9) with
the perceived transformation to the frequency ω of the
physical field as

ω̃ ¼ ω −mΩh: ð10Þ

To briefly outline the issues, we mention that the number
density of the Hawking quanta in a nonextremal Kerr black
hole spacetime and as seen by an asymptotic future
observer (for a detailed analysis, see [15]) is given by

Nω̃ ¼ 1

e2πω̃=ϰh − 1
¼ 1

e2πðω−mΩhÞ=ϰh − 1
; ð11Þ

where, as mentioned earlier, ϰh denotes the surface gravity
at the event horizon. From this spectrum of particles, one
may realize the characteristic temperature of the Hawking
effect to be

TH ¼ ϰh=ð2πkBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4a2

q
=ð4πkBrsrhÞ; ð12Þ

where kB denotes the Boltzmann constant. Now, one can
observe that in the extremal limit a → rs=2, the surface
gravity and thus the temperature vanishes. Then in this
limit, the expression (11) confirms a vanishing number
density. Thus taking the extremal limit from the nonex-
tremal case, one can see that the Hawking effect ceases to
exist. However, there remains a persisting debate whether
one can compare the extremal black holes to the extremal
limit of nonextremal ones (see [16] and the references
therein and the discussions in [42,43]). Moreover, starting
with an extremal black hole, it is observed in the literature
[12,16] that the Bogoliubov transformation coefficients do
not satisfy the consistency condition arising from the
commutator brackets between the ladder operators related
to the ingoing and outgoing field modes. Thus, the standard
Bogoliubov transformation method remains inconclusive to
providing any decisive outcome in this matter. On the other
hand, using the canonical formulation [15], which closely
mimics the Bogoliubov transformation method, one is able
to perceive a vanishing number density of Hawking quanta
in an extremal Kerr black hole spacetime, considering some
simplifications in the analysis. Current work aims to
understand this vanishing number density without these
underlying simplifications and precisely point out the
deciding factors behind this phenomenon.

III. CANONICAL FRAMEWORK

In the original work, [1] Hawking considered the
Bogoliubov transformation between ingoing and outgoing
field modes, which are delineated in terms of the respective
null coordinates, to perceive the particle creation in a black
hole spacetime. However, these null coordinates cannot be
used as dynamical variables to describe a true field
Hamiltonian, debarring one to get a canonical description
of the phenomena. In this regard, in [13,15] the authors
considered a set of near-null coordinates, obtained by
slightly deforming the null coordinates, and constructed
the necessary field Hamiltonians to realize the Hawking
effect in the black hole spacetime. This procedure closely
mimics the original formulation provided by Hawking. In
particular, in [15] it was shown that using this canonical
formulation, one can consistently reproduce the vanishing
number density of Hawking quanta in an extremal Kerr
black hole spacetime. In this work, we will consider this
Hamiltonian formulation and first talk about the near-null
coordinates necessary for its understanding.

A. The near-null coordinates

For an observer near the past null infinity I −, say
observer O−, one defines the near-null coordinates as

τ− ¼ t − ð1 − ϵÞr⋆; ξ− ¼ −t − ð1þ ϵÞr⋆; ð13Þ

where ϵ is a very small valued dimensionless real positive
parameter such that ϵ ≫ ϵ2. The near-null coordinates for
an observer near the future null infinity Iþ, for observer
Oþ, are defined as

τþ ¼ tþ ð1 − ϵÞr⋆; ξþ ¼ −tþ ð1þ ϵÞr⋆: ð14Þ

We mention that for the past observer O− one has
dr⋆ ¼ dr, as in that case, the black hole is not yet formed.

B. Field Hamiltonian and Fourier modes

From Eq. (9), one observes that in a Kerr black hole
spacetime, the reduced scalar field action near the event
horizon and the spatial infinities imitate the one from
(1þ 1) dimensional flat spacetime, described by the
Minkowski metric ds2 ¼ −dt2 þ dr2⋆. Then in terms of
the near-null coordinates from Eqs. (13) and (14) one can
obtain the line elements corresponding to O− and Oþ,
related to the conformally transformed flat metric g0μν, as

ds2�¼ ϵ

2

�
−dτ2�þdξ2�þ

2

ϵ
dτ�dξ�

�
≡ ϵ

2
g0μνdx

μ
�dx

ν
�: ð15Þ

The subscript þ and − denote the cases related to observer
Oþ and O−, respectively. The reduced scalar field action
from (9) for both observers can now be expressed as
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Sφ ¼
Z

dτ�dξ�

�
−
1

2

ffiffiffiffiffiffiffiffi
−g0

q
g0μν∂μφ∂νφ

�
: ð16Þ

Here we have omitted the subscripts from the redefined
field φlm for brevity of notation. From Eq. (15), one sees
that corresponding lapse function, shift vector, and the
determinant of the spatial metric are respectively given by
N ¼ 1=ϵ, N1 ¼ 1=ϵ, and q ¼ 1. Then considering spatial
slicing of the reduced spacetime with respect to τ�, the
scalar field Hamiltonian for the two observers can be
expressed as

H�
φ ¼

Z
dξ�

1

ϵ

��
1

2
Π2 þ 1

2
ð∂ξ�φÞ2

�
þ Π∂ξ�φ

�
; ð17Þ

with Π being the conjugate momentum to the field φ. The
momentum Π can be obtained from the Hamilton’s
equation, given by

Πðτ�; ξ�Þ ¼ ϵ∂τ�φ − ∂ξ�φ: ð18Þ

The field φ and the momentum Π satisfy the Poisson
bracket

fφðτ�; ξ�Þ; Πðτ�; ξ0�Þg ¼ δðξ� − ξ0�Þ: ð19Þ

From Eq. (17) one can observe that the Hamiltonian
becomes ill-defined at ϵ ¼ 0, representing the necessity
of near-null coordinates for the realization of the Hawking
effect using a Hamiltonian formulation. Now, as

ffiffiffi
q

p ¼ 1

and V� ¼ R
dξ�

ffiffiffi
q

p
we consider finite fiducial box during

the intermediate steps of computations to avoid dealing
with diverging spatial volumes, with

V� ¼
Z

ξR�

ξL�

dξ�
ffiffiffi
q

p ¼ ξR� − ξL�; ð20Þ

and the Fourier transformations of the scalar field for the
observers Oþ and O− are defined as

φðτ�; ξ�Þ ¼
1ffiffiffiffiffiffiffi
V�

p
X
k

ϕ̃�
k e

ikξ� ;

Πðτ�; ξ�Þ ¼
1ffiffiffiffiffiffiffi
V�

p
X
k

ffiffiffi
q

p
π̃�k e

ikξ� ; ð21Þ

where the complex-valued mode functions ϕ̃�
k , π̃�k

depend on τ�. Here the Kronecker and Dirac delta are
defined as

R
dξ�

ffiffiffi
q

p
eiðk−k0Þξ� ¼V�δk;k0 and

P
k e

ikðξ�−ξ0�Þ ¼
V�δðξ� − ξ0�Þ=

ffiffiffi
q

p
, and they imply k ∈ fksg where

ks ¼ 2πs=V� with s being nonzero integers. With the
help of these definitions one can express the field
Hamiltonians (17) in terms of the Fourier modes as H�

φ ¼P
k
1
ϵ ðH�

k þD�
k Þ where

H�
k ¼ 1

2
π̃�k π̃

�
−k þ

1

2
k2ϕ̃�

k ϕ̃
�
−k; ð22Þ

and

D�
k ¼ −

ik
2
ðπ̃�k ϕ̃�

−k − π̃�−kϕ̃
�
k Þ; ð23Þ

respectively, denote the Hamiltonian densities and diffeo-
morphism generators and the corresponding Poisson brack-
ets are now discretized as

fϕ̃�
k ; π̃

�
−k0 g ¼ δk;k0 : ð24Þ

C. Relation between Fourier modes

Since we are dealing with scalar field, the fact that
φðτ−; ξ−Þ ¼ φðτþ; ξþÞ makes it possible to express a
particular field mode near Iþ in terms of all the modes
near I −. Similarly one can show that the field momentum
at those regions obeys Πðτþ; ξþÞ ¼ ð∂ξ−=∂ξþÞΠðτ−; ξ−Þ
[13]. This follows from Eq. (18) along with the fact that
ingoing and outgoing modes travel keeping the null
coordinates v and u constant, respectively. Using these
the relations between the Fourier modes and their conjugate
momenta follows the relations

ϕ̃þ
κ ¼

X
k

ϕ̃−
k F0ðk;−κÞ; π̃þκ ¼

X
k

π̃−k F1ðk;−κÞ; ð25Þ

where the coefficient functions Fnðk; κÞ are given by

Fnðk; κÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
dξþ

�∂ξ−
∂ξþ

�
n
eikξ−þiκξþ ; ð26Þ

where n ¼ 0; 1 and these coefficient functions mimic the
Bogoliubov coefficients [1]. Using the general definition
of the Dirac delta distribution δðμÞ ¼ 1

2π

R
dxeiμx and by

choosing μ ¼ 1, x ¼ ð�kξ− þ κξþÞ one gets

F1ð�k; κÞ ¼ ∓
�
κ

k

�
F0ð�k; κÞ: ð27Þ

So the evaluation of only one type of coefficient function,
corresponding to n ¼ 0 or n ¼ 1, will be sufficient for our
purpose. Also it is evident that the coefficient functions
Fnð�k;�κÞ are complex conjugate to Fnð∓k;∓κÞ. Later
onwewill use this fact to avoidmathematical complications.

D. Consistency condition and number
density of Hawking quanta

Using Eq. (27) and demanding that the two different
Poisson brackets fϕ̃−

k ; π̃
−
−k0 g ¼ δk;k0 and fϕ̃þ

κ ; π̃
þ
−κ0 g ¼ δκ;κ0

be simultaneously satisfied, we may express a consistency
requirement among the coefficient functions as
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S−ðκÞ − SþðκÞ ¼ 1; ð28Þ

where S�ðκÞ ¼
P

k>0ðκ=kÞjF0ð�k; κÞj2. One may find a
similarity between this condition and the one from the
Bogoliubov transformation method [12] with the latter one
arising from the commutation relation of the ladder
operators of the field modes. Using relations (25) and
(27) one can express Hþ

κ and Dþ
κ as

Hþ
κ ¼h1κþ

X
k>0

�
κ

k

�
2

½jF0ð−k;κÞj2þjF0ðk;κÞj2�H−
k ; ð29Þ

Dþ
κ ¼d1κþ

X
k>0

�
κ

k

�
2

½jF0ð−k;κÞj2þjF0ðk;κÞj2�D−
k ; ð30Þ

where h1κ and d1κ are linear in ϕ−
k and its conjugate

momentum, i.e., the vacuum expectation values of their
quantum counterpart vanish.
Now for real-valued scalar field the Fourier modes

satisfy ϕ̃�
k ¼ ϕ̃−k, implying the real and imaginary parts

of these Fourier modes not being independent. One may
suitably select one of these real or imaginary parts in
different domains of the Fourier modes [13,44] so that the
previous reality condition is implemented. It is seen [13,44]
that this makes D−

k ¼ 0 and the Hamiltonian density to
represent a simple harmonic oscillator

H�
k ¼ 1

2
π2k þ

1

2
k2ϕ2

k; fϕ2
k; π

2
k0 g ¼ δk;k0 ; ð31Þ

where ϕk and πk are the redefined Fourier field modes
which are real-valued. Now a mode with wave vector k has
frequency jkj and the energy spectrum for each of these

oscillator modes is given by Ĥ−
k jnki ¼

	
N̂−

k þ 1
2



jkjjnki ¼	

nk þ 1
2



kjnki where N̂−

k is the corresponding number

operator, jnki are its eigenstates with integer eigenvalues
nk ≥ 0. It is also understood that for realizing the Hawking
effect one has to evaluate the expectation value of the
Hamiltonian density operator Ĥþ

κ ≡ ðN̂þ
κ þ 1

2
Þ for observer

Oþ in the vacuum state j0−i ¼ Πkj0ki of the observer O−.
Then using Eqs. (28) with (29) the expectation value of the
number density operator corresponding to the Hawking
quanta of frequency ω̃ ¼ κ is obtained as [13,15]

Nω̃ ¼ Nκ ≡ h0−jN̂þ
κ j0−i ¼ SþðκÞ: ð32Þ

IV. EXTREMAL KERR BLACK HOLE

To understand the particle creation in an extremal Kerr
black hole spacetime, we have to first determine the relation
between the spatial near-null coordinates ξþ and ξ−,
which requires the expression of the tortoise coordinate
from Eq. (5). To derive this relation, we consider a spatial

τ− ¼ constant hypersurface, with a pivotal point ξ0− on it,
corresponding to observer O−. Then any spacelike interval
can be expressed as

ðξ− − ξ0−Þjτ− ¼ 2ðr0⋆ − r⋆Þjτ− ¼ 2ðr0 − rÞjτ− ≡ Δ; ð33Þ

where r0 relates to ξ0−. On the other hand, corresponding to
observer Oþ a spacelike interval on a τþ ¼ constant
hypersurface can be expressed using Eq. (5), as

ðξþ−ξ0þÞjτþ ¼Δþ2rs ln

�
1þ Δ

Δ0

�
−

2r2s
ΔþΔ0

þ2r2s
Δ0

; ð34Þ

where using geometric optics approximation one can
identify the interval 2ðr − r0Þjτþ as Δ and we have Δ0≡
2ðr0 − rs=2Þjτþ . Furthermore, choosing the pivotal value

ξ0− ¼ Δ0 and ξ0þ ¼ ξ0− þ 2rs lnðξ0−=
ffiffiffi
2

p
rsÞ − 2r2s=ξ0−, one

can express the above relation as

ξþ ¼ ξ− þ 2rs ln

�
ξ−ffiffiffi
2

p
rs

�
−
2r2s
ξ−

: ð35Þ

The presence of the inverse term makes the relation
qualitatively different from nonextremal case [15].
Furthermore, to keep track of contribution of the individual
term in the right-hand side of Eq. (35) we introduce the
parameters αj, with j ¼ 1; 2; 3, and express the relation as

ξþ ¼ α1ξ− þ α22rs ln

�
ξ−ffiffiffi
2

p
rs

�
− α3

2r2s
ξ−

; ð36Þ

where αj can only take values 0 or 1. In our subsequent
analysis we shall be using this relation to evaluate the
consistency condition and the number density of Hawking
quanta in an extremal Kerr black hole spacetime. Later we
shall also consider only the inverse term in the relation (36)
to understand the consequences.

A. Understanding the Hawking effect using the
complete relation among the
spatial near-null coordinates

Here we shall be evaluating the coefficient functions of
Eq. (26) with the complete relation between the spatial
near-null coordinates ξþ and ξ− from Eq. (36). Then we
shall give a detailed understanding on the consistency
condition from Eq. (28) and subsequently the number
density (32) corresponding to the Hawking effect. It should
be noted that in the general relation (36) by keeping only a
certain αj nonvanishing one can ascertain the role of
individual terms contributing in the satisfaction of the
consistency condition and also in the vanishing number
density of the Hawking quanta. In our following study we
shall also discuss few approximations on the relation (36)
and their outcomes.
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1. Evaluation of the coefficient functions

As already discussed one can either estimate F0ð�k; κÞ
or F1ð�k; κÞ and get the expression of the other coefficient
function from (27). In particular, here for the lucidity of
calculation we estimate only F1ð�k; κÞ. F0ð�k; κÞ will
follow from relation (27). Putting the expression of ξþ from
Eq. (36) in Eq. (26) with n ¼ 1 we get

F1ð�k; κÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

ξR−

ξL−

dξ−

�
ξ−ffiffiffi
2

p
rs

�
iα22κrs

× eið�kþα1κÞξ−−iα32κr
2
s

ξ− : ð37Þ

We mention that this integrand is oscillatory in nature and
for the limit ξL− → 0, ξR− → ∞ it is essentially divergent.
Therefore, in this case we shall be introducing regulators
with parameter “δ” to properly evaluate the integrals

Fδ
1ð�k; κÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
xR

xL
dxx

ffiffi
2

p
α2b0 exp

�
−b�x −

α3b0
x

�
;

ð38Þ

where b ¼ ffiffiffi
2

p
rs, b� ¼ b½δj � kþ α1κj − ið�kþ α1κÞ�

and b0 ¼ b½δjκj þ iκ�. Here we have represented the
original integral in terms of the dimensionless variable
x ¼ ξ−=b. It should be noted that in the limit δ → 0
Eq. (38) goes back to Eq. (37).
One can notice from Eq. (37) that there is a possibility of

b− ¼ 0 when α1κ ¼ k. In that scenario the characteristic
form of the integral will be different. So wewill explore this
particular situation separately. Also, we remind that k,
κ > 0. So this particular situation will not arise if α1 ¼ 0. It
is worth mentioning that the fact Fnð�k; κÞ is complex
conjugate to Fnð∓ k;−κÞ does not get violated due to the
inclusion of the regularization parameter δ.

a. Evaluation of F1ð−α1κ; κÞ:
In this particular situation α1κ ¼ k and b− ¼ 0. Then the

integral form Eq. (37) becomes

Fδ
1ð−α1κ; κÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

ξR−

ξL−

dξ−

�
ξ−ffiffiffi
2

p
rs

�
iα22κrs

e−
iα32κr

2
s

ξ− :

ð39Þ

In terms of the dimensionless variable along with the δ
regulator, i.e., the expression from Eq. (38) in this scenario
becomes

Fδ
1ð−α1κ;κÞ¼

bffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

xR

xL
dxx

ffiffi
2

p
α2b0e−

α3b0
x : ð40Þ

The explicit form of the above integral can be given in
terms of incomplete gamma functions as

Fδ
1ð−α1κ; κÞ ¼

bðα3b0Þ
ffiffi
2

p
α2b0þ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

�
Γ
�
−1 −

ffiffiffi
2

p
α2b0;

α3b0
xR

�

− Γ
�
−1 −

ffiffiffi
2

p
α2b0;

α3b0
xL

��
: ð41Þ

The second gamma function within the square bracket will
vanish as xL → 0. Following the properties of incomplete
gamma functions [45] in the limit xR → ∞, we get the
above expression to become

jFδ
1ð−α1κ; κÞj2 ≈

γ

1þ 2α22b
2κ2

; ð42Þ

where γ ≡ V−=Vþ. In deriving the above result we have
used the fact that in the limit xL → 0; xR → ∞, V− ∼ xR.

b. Evaluation of F1ð�k; κÞ, for k ≠ α1κ:
When k ≠ α1κ one has b− ≠ 0, and the expression of the

integral (38) can be obtained in terms of modified Bessel
functions of second kind Kðμ; zÞ as

Fδ
1ð�k; κÞ ¼ 2bffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

�
α3b0
b�

�1þ ffiffi
2

p
α2b0
2

×Kð−1 −
ffiffiffi
2

p
α2b0; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3b�b0

p
Þ: ð43Þ

Here we have considered the limits of the integral (38) from
0 to ∞ instead of xL to xR, which can be done by adding
two boundary terms which tends to zero as xL → 0 and
xR → ∞ [15]. We mention that these modified Bessel
functions have the following approximate expressions
[45] for different limits of their arguments:

Kðμ; zÞ ∼ 1

2

�
2

z

�
μ

ΓðμÞ; as z → 0;

Kðμ; zÞ ∼
ffiffiffiffiffi
π

2z

r
e−z; as z → ∞: ð44Þ

Here μ and z can be both real as well as complex valued.
Another relation satisfied by these modified Bessel func-
tions is Kðμ; zÞ ¼ Kð−μ; zÞ, which will also be relevant in
our study.

2. Consistency condition

So far we have determined the coefficient functions.
Now we proceed to check for the consistency condition and
the number density of the Hawking quanta. In this regard,
first we need to estimate the left-hand side of Eq. (28)
which reads

HAWKING EFFECT IN AN EXTREMAL KERR BLACK HOLE … PHYS. REV. D 105, 045005 (2022)

045005-7



Sδ
−ðκÞ − SδþðκÞ ¼ jFδ

1ð−α1κ; κÞj2 þ
X
k>0

k≠α1κ

�
k
κ

�
jFδ

1ð−k; κÞj2

−
X
k>0

�
k
κ

�
jFδ

1ðk; κÞj2: ð45Þ

An explicit calculation using the functional form of the
coefficient function Fδ

1, as derived in Eq. (43), leads to the
following:

jFδ
1ðk;κÞj2≈

e−π
ffiffi
2

p
bκα2

V−Vþ

1

ðα1κþkÞ2 jzþKðμ̄;zþÞj2

jFδ
1ð−k;κÞj2≈

e−π
ffiffi
2

p
bκα2

V−Vþ

1

ðα1κ−kÞ2 jz−Kðμ̄;z−Þj2; α1κ>k

¼ 1

V−Vþ

1

ðk−α1κÞ2
jz−Kðμ̄;z−Þj2; α1κ<k;

ð46Þ

where μ̄ ¼ −1 −
ffiffiffi
2

p
α2b0. Also, z− for κ > k is not same as

z− for κ < k and z� are given by

z�¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3b0b�

p
¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3jb0j2ðiþδÞ½δjα1m⋆�sj− iðα1m⋆�sÞ�

m⋆

s
: ð47Þ

Here we have used k ¼ 2πs=V− and m⋆ ¼ V−κ=ð2πÞ. The
first term in the right-hand side of Eq. (45) has already been
calculated previously in Eq. (42). Now we shall concentrate
in calculating the other two summations. Using Eqs. (46)
and (47) the last two terms of the right-hand side of (45)
become

X
k>0

k≠α1κ

�
k
κ

�
jFδ

1ð−k;κÞj2−
X
k>0

�
k
κ

�
jFδ

1ðk;κÞj2¼
γ

4π2m⋆

�
e−π

ffiffi
2

p
bκα2

Xα1m⋆−1

s¼1
s<α1m⋆

s
ðα1m⋆−sÞ2 jz−Kðμ̄;z−Þj2

þ
X∞

s¼α1m⋆þ1
s>α1m⋆

s
ðs−α1m⋆Þ2

jz−Kðμ̄;z−Þj2−e−π
ffiffi
2

p
bκα2

X∞
s¼1

s
ðα1m⋆þsÞ2 jzþKðμ̄;zþÞj2

�
:

ð48Þ

It is worth mentioning that z− in the first and second summation is not exactly the same but it has to be calculated for
s < α1m⋆ and s > α1m⋆, respectively. Performing a change in variables as s − α1m⋆ ¼ p; α1m⋆ − s ¼ q and
sþ α1m⋆ ¼ r, the above summation can be recast in the following way:

γ

4π2m⋆

"
e−π

ffiffi
2

p
bκα2

Xα1m⋆−1

q¼1

α1m⋆ − q
q2

jz̃ðqÞKðμ̄; jz̃ðqÞjÞj2 þ
X∞
p¼1

α1m⋆ þ p
p2

jz̃ðpÞKðμ̄; z̃ðpÞÞj2

− e−π
ffiffi
2

p
bκα2

X∞
r¼α1m⋆þ1

r − α1m⋆
r2

jz̃ðrÞKðμ̄; jz̃ðrÞjÞj2
#
: ð49Þ

Here z−ðsÞ has been changed to jz̃ðqÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α3jb0j2q=m⋆

p
for α1m⋆ > s. Similarly for α1m⋆ < s, z−ðsÞ takes the form

z̃ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α3jb0j2p=m⋆

p
ðiþ δÞ. Also, zþðsÞ goes to jz̃ðrÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α3jb0j2r=m⋆

p
. Rearranging the above summations leads to

γ

4π2
X∞
s¼1

α1
s2
½jz̃ðsÞKðμ̄; z̃ðsÞÞj2þe−π

ffiffi
2

p
bκα2 jz̃ðsÞKðμ̄;jz̃ðsÞjÞj2�þ γ

4π2m⋆

X∞
s¼1

1

s
½jz̃ðsÞKðμ̄; z̃ðsÞÞj2−e−π

ffiffi
2

p
bκα2 jz̃ðsÞKðμ̄; jz̃ðsÞjÞj2�;

ð50Þ
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where z̃ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α3jb0j2s=m⋆

p
ðiþ δÞ, and we also note

that π
ffiffiffi
2

p
bκα2 ¼ 2πrsκα2. So far we have not used any

asymptotic expressions (44) of the Bessel function. From
the above expression it is clear that in the infinite volume
limit i.e., V− → ∞ which implies m⋆ → ∞, the second
summation vanishes. Now using the approximations for
modified Bessel functions, as mentioned in Eq. (44), when
z̃ → 0, and Kð−μ̄; zÞ ¼ Kðμ̄; zÞ we get

jz̃ðsÞKðμ̄; z̃ðsÞÞj2 ≈ 2πrsκα2e2πrsκα2

sinhð2πrsκα2Þ
jz̃ðsÞKðμ̄; jz̃ðsÞjÞj2 ≈ 2πrsκα2

sinhð2πrsκα2Þ
: ð51Þ

Then from these expressions also one can observe that
the second term in Eq. (50) vanishes when z̃ → 0 and one

takes m⋆ → ∞. On the other hand, when z̃ → ∞ one can
get the limiting expressions as

jz̃ðsÞKðμ̄; z̃ðsÞÞj2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3π

2jb0j2s
m⋆

s
e
−2δ

ffiffiffiffiffiffiffiffiffiffiffi
4α3 jb0 j2s

m⋆

q

jz̃ðsÞKðμ̄; jz̃ðsÞjÞj2 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3π

2jb0j2s
m⋆

s
e
−2

ffiffiffiffiffiffiffiffiffiffiffi
4α3 jb0 j2s

m⋆

q
: ð52Þ

These expressions also confirm that the second term in
Eq. (50) vanishes when z̃ → ∞ as one takesm⋆ → ∞. Here
in the first equation one can easily see that in the case δ ¼ 0
the right-hand side term diverges out as s → ∞. Finally, the
left-hand side of the consistency relation Eq. (28) reads

Sδ
−ðκÞ − SδþðκÞ ¼

γ

1þ 2α22b
2κ2

þ γ

4π2
X∞
s¼1

α1
s2

½jz̃ðsÞKðμ̄; z̃ðsÞÞj2 þ e−2πrsκα2 jz̃ðsÞKðμ̄; jz̃ðsÞjÞj2�

≈
γ

1þ 2α22b
2κ2

þ α1γ

4π2
y cothðyÞ

Z
λ1m⋆

1

ds
s2

þ α1γ

4π2
πa

Z
∞

λ2m⋆

ds
s2

ffiffiffi
s

p ½e−4δa ffiffi
s

p þ e−4a
ffiffi
s

p �; ð53Þ

where y ¼ 4πrsκα2 and a ¼
ffiffiffiffiffiffiffiffiffiffi
α3jb0j2
m⋆

q
. In order to arrive

at the above expression we have considered z̃ ≪ 1 when
s ∈ ½1; λ1m⋆� and z̃ ≫ 1 when s ∈ ½λ2m⋆;∞Þ. After carry-
ing out these integrals and then taking the infinite volume
limit, m⋆ → ∞, the consistency relation becomes

γ

�
1

1þ 4α22r
2
sκ

2
þ α1
4π2

y cothðyÞ
�
¼ 1: ð54Þ

One can notice that this consistency condition does not
contain the integral regulator δ, but it depends on the
volume regulators Vþ and V− through the expression of γ.
Then this consistency condition basically says that these
two volume regulators corresponding two different observ-
ers, namely observer Oþ and O−, are not independent of
each other and are related among themselves for a proper
consistency of the estimations. In particular, it specifically
ascertains that for a fixed frequency of the outgoing field

mode κ, the volume V− must be proportional to Vþ, i.e.,
V− ∝ Vþ. From Eq. (54) we also observe that if one takes
the case α1 ¼ 1 with the limit α2 → 0, i.e., in the case
limy→0½y cothðyÞ� ¼ 1, the consistency condition exactly
reduces to γ ¼ 1þ 1=12 ¼ 13=12 stating the same require-
ment for consistency. This latter case signifies making the
contribution of the logarithmic term to vanish in the relation
between the spatial near-null coordinates of Eq. (36), which
was obtained in [15]. Therefore, from our present calcu-
lations one can get back the results of [15] in a straightfor-
ward manner.

3. Number density of Hawking quanta

As already observed in Eq. (32) the expectation value of
the number density operator corresponding to the Hawking
quanta is give by Nω̃ ¼ SþðκÞ, which in the present
scenario can be expressed in the form

Nω̃ ¼
X
k>0

�
k
κ

�
jFδ

1ðk; κÞj2

¼ γe−π
ffiffi
2

p
bκα2

4π2m⋆

X∞
s¼1

s
ðsþ α1m⋆Þ2

jzþðsÞKð−1 −
ffiffiffi
2

p
α2b0; zþðsÞÞj2

¼ γe−π
ffiffi
2

p
bκα2

4π2m⋆

X∞
s¼1þα1m⋆

s − α1m⋆
s2

jz̃ðsÞKð−1 −
ffiffiffi
2

p
α2b0; jz̃ðsÞjÞj2; ð55Þ
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where jz̃ðsÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α3jb0j2s=m⋆

p
. This expression of number density from Eq. (55) can be expressed in terms of the sum of

two quantities. First, a sum over a quantity with a factor of 1=s in it. Second, the sum over a quantity with a multiplicative
factor of 1=s2 in it. It should be mentioned that there is a term 1=m⋆ multiplied with the first term, which makes the term
vanish in the limit of m⋆ → ∞, i.e., in the infinite volume limit. On the other hand, when α1 ¼ 0 the second term vanishes.
Let us evaluate the second sum when α1 ≠ 0. One can express this sum as

α1γe−π
ffiffi
2

p
bκα2

4π2
X∞

s¼1þα1m⋆

1

s2
jz̃Kð−1−α2b1; jz̃jÞj2¼

α1γe−π
ffiffi
2

p
bκα2

4π2

� Xλm⋆−1

s¼1þα1m⋆

1

s2
jz̃Kð−1−α2b1; jz̃jÞj2

X∞
s¼λm⋆

1

s2
jz̃Kð−1−α2b1; jz̃jÞj2

�

≈
α1γe−π

ffiffi
2

p
bκα2

4π2

�
d1

Z
λm⋆−1

1þα1m⋆

ds
s2

þ
Z

∞

λm⋆

ds
s2

�
πjz̃j
2

�
e−2jz̃j

�
; ð56Þ

which after carrying out the integration and in the limit
of m⋆ → ∞ becomes 0. This implies that Nω̃ ¼
limm⋆→∞ SþðκÞ ¼ 0. Therefore, it can be shown that the
number density of the Hawking quanta in an extremal Kerr
black hole spacetime vanishes is the number density of the
Hawking quanta in is zero.
We mention that in Eq. (36) if one puts α2 ¼ 1, and

α1 ¼ 0 ¼ α3 then the relation becomes the same as the ones
considered in [13] for Schwarzschild and in [15] for
nonextremal Kerr black holes. This relation is bound to
give a Planckian distribution of particles. Therefore, only
the logarithmic term in the relation (36) is incapable of
providing vanishing number density of Hawking quanta in
an extremal Kerr black hole spacetime. In the subsequent
study we shall specifically choose the inverse term in the
relation (36) to understand the consequences.

B. Inverse relation approximation ξ + ≈ − 2r2s
ξ −

In the preceding studies we have performed the calcu-
lations with a complete relation (36) between ξþ and ξ− and
we have seen that the expectation value of the number
density operator corresponding to the Hawking effect
comes out to be zero in a consistent manner. However,
this analysis along with the one in [15] do not explicitly
present the situation when the relation between the spatial
near-null coordinates contains only the inverse term. On the
other hand, from our current calculation of previous
subsections we have already observed that this inverse
term in the full relation dominates over the other two terms
in providing the vanishing number density. Moreover, in
literature also it is widely believed that similar inverse terms
are responsible for vanishing number density of Hawking
quanta for extremal black holes. But there are certain
ambiguities regarding the semiclassical approach [12]. This
motivates us to perform a precise investigation keeping
only the inverse term in the relation (36), i.e., by setting
α1 ¼ α2 ¼ 0 and α3 ¼ 1. It is to be noted that using the
entire relation of Eq. (36) with α1, α2, and α3 all set to 1, as
one takes the limits ξ− → 0 and ξ− → ∞ the spatial near-
null coordinate ξþ respectively gives −∞ and ∞. This
remains true even if one sets α2 ¼ 0. On the other hand,

with only the inverse relation between the near null
coordinates, i.e., when only α3 ¼ 1, one gets the corre-
sponding limits of ξþ as −∞ and 0. It signifies the
difference of this particular case. Here one may expect
that the relation (27) will not hold true as ξþ does not have a
full range ð−∞;∞Þ for the considered range of ξ−.
Therefore, we shall proceed with caution in this case
and evaluate both F0ð�k; κÞ and F1ð�k; κÞ for our study.
Using the general expression from Eq. (26) the explicit

forms of the coefficient functions using this inverse relation
reads

Fnð�k; κÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

ξR−

ξL−

dξ−

�
2r2s
ξ2−

�
1−n

e�ikξ−−
i2κr2s
ξ− : ð57Þ

Here n can only take values 0 or 1. In terms of the
dimensionless variable x ¼ ξ−=b ¼ ξ−=

ffiffiffi
2

p
rs, this integral

can be represented as

Fδ
nð�k; κÞ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
xR

xL
dx

�
1

x2

�
1−n

e−b�x−
b0
x : ð58Þ

The above integral of Eq. (57) is formally divergent for
both of the n values. We remove that divergence by
introducing a δ regulator in b� ¼ b½δj�kj − ið�kÞ� and
b0 ¼ b½δjκj þ iκ�. Performing the above integration one
gets

Fδ
0ð�k; κÞ ¼ 2bffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

ffiffiffiffiffiffi
b�
b0

s
Kð1; 2

ffiffiffiffiffiffiffiffiffiffi
b�b0

p
Þ

Fδ
1ð�k; κÞ ¼ 2bffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

ffiffiffiffiffiffi
b0
b�

s
Kð1; 2

ffiffiffiffiffiffiffiffiffiffi
b�b0

p
Þ: ð59Þ

However, from the above expressions one can easily find a
relation between the coefficient functions and this reads

Fδ
0ð�k; κÞ ¼ k

κ

�∓iþ δ

iþ δ

�
Fδ
1ð�k; κÞ: ð60Þ
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In the limit δ → 0 the above relation takes the form
of Eq. (27).

1. Consistency condition

Here using the expressions of these coefficient functions
we shall look into the consistency condition of Eq. (28). In
particular, the left-hand side of Eq. (28) can be expressed as

S−ðκÞ−SþðκÞ¼
X
k>0

�
k
κ

�
½jFδ

1ð−k;κÞj2− jFδ
1ðk;κÞj2�: ð61Þ

Wemention that unlike the previous situation, here we shall
not get any special term for k ¼ −κ. Now using Eq. (59),
one can easily show that�

k
κ

�
jFδ

1ð�k; κÞj2 ¼ γ

4π2m⋆
1

s
jz�Kð1; z̄�Þj2; ð62Þ

where z̄− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0j2s=m⋆

p
ðδþ iÞ, z̄þ ¼ jz̄−j ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0j2s=m⋆

p
, k ¼ 2πs=V−, m⋆ ¼ κV−=ð2πÞ, and

γ ¼ V−=Vþ. Then Eq. (61) simplifies to the form

S−ðκÞ − SþðκÞ ¼
γ

4π2m⋆

X∞
s¼1

1

s
½jz̄−ðsÞKð1; z̄−ðsÞÞj2

− jz̄þKð1; z̄þðsÞÞj2�: ð63Þ

It is important to notice that Eq. (63) is exactly similar to the
second summation term in Eq. (50) (with α2 ¼ 0 and
α3 ¼ 1), where we had neglected its contribution in the
infinite volume limit, m⋆ → ∞. Here we shall analyze its
behavior for small as well as large values of s a bit
more carefully. For small values of s i.e., when z̄� → 0,
jz̄�K1ðz̄�Þj2 ∼ 1 and the terms inside the square bracket
cancels out exactly. Then only for large values of
Bessel function’s argument we get nonzero contributions
and that is

S−ðκÞ − SþðκÞ ¼
γā

8πm⋆

Z
∞

s⋆

1ffiffiffi
s

p ½e−2δā ffiffi
s

p
− e−2ā

ffiffi
s

p �ds

¼ γ

8πm⋆

�
1

δ
e−2δā

ffiffiffiffi
s⋆

p
− e−2ā

ffiffiffiffi
s⋆

p
�
; ð64Þ

where ā ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb0j2=m⋆

p
. Here we have considered that in

the range s ∈ ½s⋆;∞Þ, z̄� ≫ 1. Then from Eq. (64) the only
dominating quantity, for small δ, contributing in the
consistency condition is

S−ðκÞ − SþðκÞ ¼
1

δ

γ

8πm⋆
¼ 1; ð65Þ

which was previously neglected in the m⋆ → ∞ limit
considering a nonzero positive regularizing parameter δ.
However, in this case we cannot neglect it, otherwise the

left-hand side of (65) vanishes thus failing the consistency
condition. One can further simplify this consistency con-
dition to get, 4κδVþ ¼ 1, which says that for a fixed
frequency κ of the outgoing wave mode the integral
regulator δ and the volume regulator Vþ are not indepen-
dent and one is inversely proportional to the other. Then as
Vþ → ∞ one should make the integral regulator δ → 0,
which is in agreement with our initial assumptions on the
regulators. We shall then keep this particular phenomena in
mind in the estimation of the number density of the
Hawking quanta in this case. Then we shall not make
the quantities vanish when there is a γ=ðδm⋆Þ factor
multiplied in any quantity.

2. Number density

Using the expression of Eq. (62) in Eq. (32) one can
get the number density of Hawking quanta, now can be
written as

Nω̃ ¼ SþðκÞ ¼
X
k>0

�
k
κ

�
jFδ

1ðk; κÞj2

¼ γ

4π2m⋆

X∞
s¼1

1

s
jz̄þKð1; z̄þðsÞÞj2

≈
γ

4π2m⋆

�XsL
s¼1

1

s
þ
X∞
s�

πā
2

ffiffiffi
s

p e−2ā
ffiffi
s

p �
; ð66Þ

where we have considered z̄þ ≪ 1 when s ∈ ½1; sL� and
z̄þ ≫ 1 for s ∈ ½s⋆;∞Þ. Here we observe that there is no δ
in the denominator in the factor outside and the function
inside the sum also do not contain δ. Then we do not have
any problem in taking the limit m⋆ → ∞ which makes this
quantity to vanish. Another way to realize this is to use the
consistency relation (65) into (66) which follows

Nω̃ ¼ 2

π
δ

�XsL
s¼1

1

s
þ
X∞
s�

πā
2

ffiffiffi
s

p e−2ā
ffiffi
s

p �
: ð67Þ

In the limit δ → 0 the number density vanishes.
This implies that in this situation also one can get a
vanishing number density of Hawking quanta, i.e., Nω̃ ¼
limm⋆→∞ SþðκÞ ¼ 0.

V. WIEN’S DISPLACEMENT LAW AND THE
UNDERSTANDING FOR A VANISHING NUMBER

DENSITY

In this part we intend to provide a description of a
particle as it travels from I − to Iþ escaping getting
trapped by the formation of the horizon. Through this
description we expect to get an idea about the changes in a
particle’s characteristics due to the presence of the horizon
as observed at the asymptotic future infinity. With this
analysis we intend to provide a physical reasoning and
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identify the main contributing term behind the vanishing
number density of the Hawking quanta in an extremal
Kerr black hole spacetime. For the convenience of under-
standing we shall first consider the case of a nonextremal
Kerr black hole and shall get into the extremal
case subsequently. In a nonextremal Kerr black hole
spacetime the relation among the spacelike near-null
coordinates [15] is

ξþ ¼ ξ− þ 1

κh
ln ½κhξ−� −

1

κc
ln

�
1þ κhξ−

σ

�
; ð68Þ

where, κh and κc are respectively the surface gravities at the
event horizon and at the inner Cauchy horizon. Here,
σ ¼ κhðΔc − ΔhÞ, and Δc ≡ 2ðr0 − rcÞ, Δh ≡ 2ðr0 − rhÞ
with rc, rh respectively denoting the radius of the inner
Cauchy horizon and the event horizon, and r0 is a radial
pivotal value considering which the geometric ray tracing is
done to obtain the above relation among the spatial near-
null coordinates. It should be mentioned that to obtain this
relation the expression of the tortoise coordinate
r⋆ ¼ rþ ð1=2κhÞ ln ½ðr − rhÞκh� − ð1=2κcÞ ln ½ðr − rcÞκc�,
in a nonextremal Kerr black hole spacetime is utilized. On a
constant time hypersurface using Eq. (68) one can obtain
the expression

Δξþ ¼ Δξ−
�
1þ 1

κhξ−
−

κh
κcσ

1þ κhξ−
σ

�
; ð69Þ

where, Δξþ can be identified to the de Broglie wavelength
λo of the particle at future null infinity, and Δξ− to the de
Broglie wavelength λe of the particle at past null infinity.
Then for a particle starting its journey from a spatial point
ξe− the relation relating the wavelengths is

λo ¼ λe

�
1þ 1

κhξ
e
−
−

κh
κcσ

1þ κhξ
e
−=σ

�
: ð70Þ

It is to be noted from (68) that the modes responsible for the
Planckian distribution of the Hawking effect are emitted
from the region ξ− ≪ 1=κh which results in the relation
(69) to be ξþ ≈ ð1=κhÞ ln ½κhξ−�. This phenomena can
also be realized from Eq. (70) where it is noticed that
for ξ− ≫ 1=κh one has λo ≈ λe, i.e., there is not much
change in the characteristics of a particle that have passed
long before the horizon formation. Then the particles that
narrowly escape the formation of the event horizon can
only contribute to the Planckian distribution of the
Hawking effect. On the other hand, the point of emission
ξe− cannot be made more accurate than the ingoing particle’s
de Broglie wavelength λe, i.e., ξe− ≈ λe. Here again λe can be
expressed in terms of the ingoing mode’s frequency
λe ¼ hc=E0

k ¼ 2hc=jkj. Therefore, for the smallest possible
wavelength of the particle one must consider the largest
possible jkj, i.e., jkj → ∞. Then in this limit it is seen that

the wavelength of the particle observed at future null
infinite is

λo ≈
1

κh
¼ 2π

TH
; ð71Þ

which, signifies the Wien’s displacement law for blackbody
radiation, i.e., the characteristic temperature corresponding
to a blackbody distribution is inversely proportional to the
wavelength.
On the other hand, in an extremal Kerr black hole

spacetime the relation among the spatial near-null coor-
dinates is

ξþ ¼ ξ− þ 2rs ln

�
ξ−ffiffiffi
2

p
rs

�
−
2r2s
ξ−

; ð72Þ

where the expression of the tortoise coordinate r⋆ ¼ rþ
rs ln ½ξ−=ð

ffiffiffi
2

p
rsÞ� − 2r2s=ð2r − rsÞ is used to obtain this

relation. From this expression one can obtain the relation
among the observed and emitted wavelength of a particle,
similar to Eq. (70), as

λo ¼ λe

�
1þ 2rs

ξe−
þ 2r2s

ξe
2

−

�
: ð73Þ

In this case if one adheres to the same concepts that the
contribution significant to the Hawking effect comes from
the high frequency modes nearly escaping the horizon
formation, then it is convenient to choose ξe− ≈ λe and then
to take the limit λe → 0. Unlike Eq. (71) in this case we
observe that

λo → ∞; ð74Þ

which corresponds to a characteristic temperature TH ¼ 0
of the Hawking effect. It should be noted that the result of
(74) is due to the third quantity of the right-hand side of
Eq. (73). Then it is evident that the inverse term in the
relation between the spatial near-null coordinates in
Eq. (72) is the dictating quantity. Presence of this inverse
term in that relation results in a vanishing number density
of the Hawking quanta for extremal Kerr black hole
spacetime.

VI. DISCUSSION

In this work, we have provided a detailed derivation of
the vanishing number density of Hawking quanta in an
extremal Kerr black hole spacetime using the canonical
formulation [13–15]. In [15] the authors used the canonical
derivation to study the Hawking effect for both nonextre-
mal and extremal Kerr black holes. However, the extremal
case needed further studies to understand its origin of zero
temperature better. In the derivation of the Hawking effect,
the relation (35) between the near-null coordinates near
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past and future null infinities plays a crucial role. In [15] an
approximation was made on that relation for mathematical
simplification. In the present work, we started with the full
relation and consistently arrived at the zero temperature
conclusion, solidifying the results of [15]. We also dis-
cussed the effects of different approximations of the
relation on the final result and the consistency condition.
Furthermore, we presented an argument to visualize the
zero temperature from a physically understandable point of
view, pinpointing the particular term in the relation men-
tioned above responsible for the phenomenon.
It is to be noted that the concept of the spacelike and

timelike near-null coordinates, obtained by slightly
deforming the null coordinates, is of vital importance to
describe the dynamics of a matter field Hamiltonian in
canonical formulation. Here we aimed to identify the term
which contributes to the vanishing number density of the
Hawking quanta in the relation between the spatial near-null
coordinates. In this regard, we have first considered the
entire relationship between the spatial near-null coordinates
(36)without any approximations and consistently obtained a
vanishing number density of Hawking quanta. In the
Bogoliubov transformation method [34,46,47] one can
obtain a similar relation like the inverse term from
Eq. (36) between the null coordinates. However, to the best
of our knowledge, there is no detailed study with the
complete relation. And this makes our study important
and unique to a great extent. In this Hamiltonian formulation
we first established the consistency condition which results
from the simultaneous satisfaction of the Poisson brackets of
the fieldmodes and their conjugatemomenta for the past and
future observer. Using the relation (36) to understand the
Hawking effect, we have introduced a few parameters αj
(with j ¼ 1, 2, 3) which can have values 0 or 1 to keep track
of the contributions of each term in the complete relation.
However, we noticed from the final form of the consistency
condition that one can not make α1 ¼ 0 because we have
already utilized a substitution containing α1 to arrive at the
result and making it zero afterward will render the math-
ematics incorrect. We also observed that when α2 ¼ 0 in
Eq. (36), i.e., the contribution of the logarithmic term is
neglected, the consistency condition arrives to be the same as
that was obtained in [15] and also the number density
vanishes. Therefore from this first analysis, we conclude that
the final result regarding the Hawking effect in an extremal
Kerr black hole spacetime remains impervious to additional
generalizations to the relation between spatial near-null
coordinates as considered in [15].
Furthermore, we have also considered only the inverse

term in the relation (36) for the study of the Hawking effect.
In that case, we observed that for the domain ½0;∞Þ of ξ−
(which corresponds to the situation after the formation of the
black hole event horizon), the other spatial near null
coordinate ξþ does not cover the entire ð−∞;∞Þ instead
covers a reduced domain ð−∞; 0�. This observation has its

physical shortcomings as it proclaims that not all future
observers are eligible to comment about the Hawking effect
(not even an observer at future timelike infinity).
Nevertheless, mathematically one can pursue this case to
obtain a vanishing number density of the Hawking quanta in
a consistent manner. Our study solidifies the claims of a
semiclassical approach in an extremal black hole spacetime.
This Hamiltonian-based formulation closely mimics the

Bogoliubov transformation method of Hawking’s original
derivation [1]. It opens the avenue to study the effects of
other quantization techniques, like Polymer quantization
[44], into the picture. Furthermore, from our current work,
one can observe that it has a robust mathematical structure
that can consistently answer some longstanding questions
related to particle creation in extremal black hole
backgrounds.
Finally, to provide a firm physical reasoning to recognize

the main contributing term in the number density, we
presented a thought experiment to realize the Hawking
effect in a Kerr black hole spacetime. First, in a nonex-
tremal Kerr black hole spacetime, we observed that the
particles nearly escaping the formation of the event horizon
and arriving at the scri-plus to be detected as the Hawking
quanta must possess the final wavelength inversely propor-
tional to the temperature of the Hawking effect. It estab-
lishes the Wien’s displacement law for thermal distribution
of particles corresponding to the Hawking effect in a
nonextremal Kerr black hole spacetime. Second, with the
same setup in the extremal Kerr black hole spacetime, we
found that the final wavelength of the particles approaches
infinity. Compared to the nonextremal case, one can then
associate the corresponding Hawking temperature to zero
in the extremal scenario. We observed that this result is
completely dictated by the inverse term in the relation (36),
thus providing us with a definitive understanding of the
vanishing number density of the Hawking quanta.
Our analysis has presented many intricate findings

regarding the Hawking effect in an extremal Kerr black
hole spacetime. We believe that these results will further
improve the understanding of particle creation in extremal
black hole spacetimes. It is to be noted that both
Schwarzschild and the Kerr black hole spacetimes describe
asymptotically flat geometry in regions far from the event
horizon. A massless minimally coupled scalar field in
these regions and near the horizon behaves like an infinite
collection of fields from the flat spacetime, allowing one to
construct the near-null coordinates and realize the Hawking
effect using the Hamiltonian formulation [13,15]. In flat
spacetime, one can realize the scalar field as an infinite sum
of simple harmonic oscillators in the Fourier domain,
which enables one to express the number density of
Hawking quanta in terms of the Hamiltonian corresponding
to each Fourier field mode. While one can successfully
pursue this Hamiltonian-based formulation in flat
spacetime [48], Schwarzschild, and Kerr black hole
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backgrounds, one cannot demand that the same will be true
in other nontrivial black hole backgrounds. For example, in
a de Sitter black hole background, the regions of radial
infinity are not essentially flat, then one cannot readily
apply the machinery of quantum field theory from flat
spacetime in this background. But that remains an open
direction to study further with the current approach.
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