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For theories that exhibit second-order phase transition, we conjecture that the large-order asymptotic
behavior of the strong-coupling (high-temperature) series expansion takes the form σnnb where b is a
universal parameter. The associated critical exponent is then given by bþ 1. The series itself can be
approximated by the hypergeometric approximants pFp−1 which can mimic the same large-order behavior

of the given series. Near the tip of the branch cut, the hypergeometric function pFp−1 has a power-law

behavior from which the critical exponent and critical coupling can be extracted. We test the conjecture in
this work for the perturbation series of the ground state energy of the Yang-Lee model as a strong-coupling
form of the PT -symmetric iϕ3 theory and the high-temperature expansion within the Ising model. From
the known b parameter for the Yang-Lee model, we obtain the exact critical exponents, which reflects the
universality of b. Very accurate prediction for b has been obtained from the many orders available for the
high-temperature series expansion of the Ising model, which in turn predicts accurate critical exponents.
Apart from critical exponents, the hypergeometric approximants for the Yang-Lee model show almost
exact predictions for the ground state energy from low orders of perturbation series as input.

DOI: 10.1103/PhysRevD.105.045004

I. INTRODUCTION

Quantum field theory represents one of the most
successful tools to study critical phenomena in physics.
The point is that one can have different models behave
similarly near the critical point. In this case we say that
these models are in the same class of university, where
critical exponents (for instance) are the same for the whole
class. The Ising model from magnetism and the ϕ4 scalar
field theory reflect that belief, as both are well known to
lie in the same class of universality. Near the critical point,
however, perturbations (weak coupling) always fail to
give reliable results. The reason behind this is that the
effective coupling blows up and turns the theory highly
nonperturbative for which one has to employ rigorous
nonperturbative techniques to be able to extract reliable
results. From a mathematical point of view, the weak-
coupling expansion diverges because one expands around
a point that represents an essential singularity of the
theory [1–3]. Accordingly, one can expect that the
expansion around another point in the coupling space
might lead to a different behavior of the perturbation
series. This is what strong-coupling expansion in field
theory [3–5] and the equivalent high-temperature (HT)
expansion in statistical systems [6,7] are expected to do. A
note to be mentioned is that the mathematical structure of

the strong-coupling expansion in lattice field theory is
equivalent to the HT expansion in condensed matter
physics [8–11]. Also, lattice spacing serves as a suitable
regularization of the theory under consideration. Being
expanded around a point of no essential singularity, the
strong-coupling expansion is known to have a finite radius
of convergence [12] similar to the pFp−1 hypergeometric

approximants, while the weak-coupling expansion for the
ϕ4 or iϕ3 (for instance) field theories has a zero radius of
convergence manifested by the n! growth factor in the
large-order asymptotic behavior of the series.
Near second-order phase transition, a physical quantity

QðTÞ, where T is the temperature, has a power-law
behavior of the form QðTÞ ∝ 1F0ðψ ; ; T

Tc
Þ ¼ ð1 − T

Tc
Þ−ψ ,

where ψ is called a critical exponent, while Tc is the
critical temperature. In fact, all the hypergeometric func-
tions kþ1Fkða1; a2;…akþ1; b1; b2;…bk; T

Tc
Þ have such

power-law behavior near the tip of the branch cut which
mimics the critical point. The hypergeometric series

kþ1Fkða1; a2;…akþ1; b1; b2;…bk; T
Tc
Þ has a finite radius

of convergence as its large-order asymptotic behavior looks
like ð− 1

Tc
Þnnb where [13]

b ¼ ψ − 1 ¼
Xkþ1

i¼1

ai −
Xk
j¼1

bj: ð1Þ
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So it is clear that the large-order parameter b of a series with
finite radius of convergence totally defines the critical
exponent and thus is expected to be universal, the sameway
critical exponents do.
The power-law behavior characterizing the second-

order phase transition is itself the member 1F0 of the set
of hypergeometric approximants kþ1Fkða1; a2;…akþ1;

b1; b2;…bk;
T
Tc
Þ. Accordingly, the critical exponent can

be shown easily to be related to the large-order asymptotic
behavior of the expansion of the power-law formula. Let us
rewrite the critical behavior in a another but equivalent
form,

QðTÞ ∝ ðT − TcÞ−ψ

¼ T−ψ
�
1 −

Tc

T

�
−ψ
:

For nontrivial transition ðTc ≠ 0Þ, we can have a high-
temperature expansion of QðTÞ, which again has a finite
radius of convergence, with the parameter b again given by
b ¼ ψ − 1. The relation b ¼ ψ − 1, although proved by
considering hypergeometric approximants, is in fact gen-
eral and is a manifestation of the theorem of Darboux,
which implies that late terms of the expansion of a power-
law form and that of a Taylor series of the given quantity are
of the same form [14] provided that the series has a finite
radius of convergence.
Our conjecture for the existence of an expansion with a

universal b parameter motivates for the study of second-
order phase transition within the strong-coupling expansion
in quantum field theory. The fact that the strong-coupling
(HT) expansion has a finite radius of convergence will be
stressed in Sec. II. Our idea for the preference to study
critical phenomena within strong-coupling expansion is
very important as there are quasiclassical techniques that
are supposed to obtain the exact large-order asymptotic
behavior of that expansion. Thus, for the sake of getting the
first exact critical exponent in three dimensions, it is worth
it to make the needed effort to study the strong-coupling
expansion in field theory. Such kinds of studies can relate
critical exponents to the asymptotic large-order parameter
b, which we expect to be universal.
In this paper, we shall stress the Yang-Lee model as a

strong-coupling expansion of a field theory in 0þ 1
dimensions. For that model, the asymptotic large-order
behavior is known and thus can be used to show that the
parameter b is universal. Taking into account that the HT
expansion in condensed matter and strong coupling from
lattice field theory are two sides of the same coin [9–11,15–
19] and that the high-temperature (strong-coupling) expan-
sion is known up to a relatively high order, we shall stress
that expansion for both sq and simple cubic (Sc) lattices for
the Ising model and show again that the parameter b is
universal.

The rest of this paper is organized as follows. In Sec. II,
we highlight the fact that the strong-coupling (HT)
expansion has a finite radius of convergence. In
Sec. III, the weak-coupling, strong-coupling, and large-
order parametrization of the hypergeometric approxim-
ants is stressed. In Sec. IV, we apply the hypergeometric
approximation for the series of the ground state energy of
the Yang-Lee model. In this section, all critical exponents
are obtained exactly from knowing the b parameter in the
large-order behavior. In Sec. V, the HT expansion of the
susceptibility within the Sc lattice of the Ising model is
investigated, while the sq case is investigated in Sec. VI.
Using the last highest orders (large n) of the known 25
orders of the associated perturbation series, we were able
to obtain very accurate approximation for the parameter
b, which in turn shows its universality via comparison
with the well-known results for the γ exponent. Summary
and conclusions will follow in Sec. VII.

II. LARGE-ORDER ASYMPTOTIC BEHAVIOR
FROM THE STRONG-COUPLING EXPANSION IN

QUANTUM FIELD THEORY

There is a one-to-one correspondence between the n!
growth factor in the large-order asymptotic behavior of
the week-coupling expansion and the essential singularity
existing at zero coupling [2,3]. For the ϕ4 scalar field
theory, for instance, the large-order asymptotic behavior
for the weak-coupling expansion takes the form n!σnnb.
In Refs. [13,20,21], we showed that a series of such
behavior (it has a zero radius of convergence) can
be fitted by the hypergeometric approximants

pþ1Fp−1ða1;…apþ1; b1…:bp−1; σzÞ. These hypergeomet-

ric approximants can be analytically continued to nonzero
z values via their representation in terms of the Meijer-G
function. On the other hand, the strong-coupling (high-
temperature) expansion is well known to have a finite
radius of convergence [3,12] and thus the asymptotic
large-order behavior is taking the form σnnb without an n!
growth factor found in the week-coupling expansion. In
Ref. [13], we showed that such type of series (with
finite radius of convergence) can be approximated by
a different type of hypergeometric approximants
[pþ1Fp

ða1;…apþ1; b1…:bp; σzÞ]. These approximants

can produce the same large-order asymptotic behavior
with their parameters constrained as

bþ 1 ¼
Xpþ1

i¼1

ai −
Xp
j¼1

bj: ð2Þ

Near the branch cut, the approximants pþ1Fp
ða1;…apþ1;

b1…:bp; σzÞ have a power-law behavior of the form
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pþ1Fp
ða1;…apþ1; b1…:bp; σzÞ ∼ ð1 − σzÞ−ψ ;

where ψ ¼ bþ 1. Accordingly, knowing the large-order
parameter b of the strong-coupling expansion will lead to
the exact determination of the critical exponent, while
knowing the parameter σ will determine the critical
coupling.
In literature, there exist quasiclassical techniques (out of

the scope of this work) for the exact determination of the
large-order parameters b and σ [3,22]. However, up to the
best of our knowledge this issue has not been stressed
rigorously for the strong-coupling expansion in field theory
in other than one-dimensional cases (quantum mechanics).
Fortunately, strong-coupling (high-temperature) expan-
sions for many models are listed in literature up to high
orders [6,7,15,23,24], which means that one can extract
approximate values of the parameters b and σ. So at least
approximately, one can test the validity of our conjecture
about the universality of b by extracting this parameter
from the relatively high number of terms available in
literature. Confirming the universality of b might open
the door for the first determination of exact critical
exponents from the exact determination of b for the
strong-coupling (HT) expansion.
Before we try to test our conjecture, let us first highlight

the fact that the strong-coupling (high-temperature) expan-
sion possesses a finite radius of convergence and thus at
large n, the nth coefficient behaves like σnnb. To do that, in
the following, we list different Hamiltonian models for
which the strong-coupling expansions can be shown to
have a finite radius of convergence.

A. Large-order asymptotic behavior of the strong-
coupling expansion for anharmonic oscillators

TheHamiltonian of the anharmonic oscillators is given by

Hs ¼ p2 þ x2 þ βx2m: ð3Þ

Here β is the coupling constant (should not be confusedwith
inverse temperature β). The strong coupling of this
Hamiltonian has been stressed in Ref. [25] and the ground
state energy has been shown to have an expansion of the
form

E0 ¼ β
1

mþ1

X∞
n¼0

hnβ
−2n
mþ1; ð4Þ

where for the limit n → ∞ we have the asymptotic form

hn ∼ cn−
3
2σn

�
1þO

�
1

n

��
:

The ratio test can tell us clearly that the strong-coupling
series above has a finite radius of convergence with the
parameter b having its exact value of −3=2. One can realize
that b ¼ −3

2
for the different Hamiltonians (different m

values) in the set. It is well known that, at the Ising limit
(β → ∞), physical quantities behave similarly for different
interaction Hamiltonian [16]. As long as b is the same for
differentm, onemight conclude that it is a universal quantity.
Also one can conclude that b ¼ −3

2
for the PT -symmetric

ix3 Hamiltonian as well. In the next section we shall see that
this value determines the known exact critical exponent for
that model.
Since b defines the associated critical exponent and

so far is not known exactly for field theories in higher
dimensions, we shall try to obtain an approximation for b
from the strong-coupling expansion of the PT -symmetric
ix3 model and compare it with the exact result. After that
we can extend the same strategy for the strong-coupling
expansion in field theory to get an approximate value for b
and thus test its universality.
For large n, the ratio Rn ¼ hn=hn−1 can be approximated

as

Rn ¼
cnbσn

cðn − 1Þbσn−1 ¼ σ

�
1 −

1

n

�
b

≃ σ − bσ
�
1

n

�
:

Accordingly, Rn for series with finite radius of convergence
can be fitted with a straight line when plotted versus 1

n (for
large n). The first 20 coefficients of the series in Eq. (13) in
Sec. IV have been obtained in Ref. [26] [Eq. (92) there]. In
Fig. 1, we plotted Rn versus 1

n where the data can be fitted
by the equation

0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064

-0.684

-0.681

-0.678

-0.675

-0.672

-0.669

R
n

1/n

FIG. 1. In this figure, we plot the coefficients ratio Rn for the
strong-coupling expansion of the vacuum energy of the PT -
symmetric ix3 model (obtained in Ref. [26]) at large orders. The
data (stars) have a straight line fit (dashed) of the form
Rn ¼ 1.1937ð1nÞ − 0.7429, which predicts the values σ ¼
−0.7429 and b ¼ −1.6068.
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Rn ¼ 1.1937

�
1

n

�
− 0.7429:

From this equation one can conclude approximate values
for the large-order parameters as b ¼ −1.6068 compared to
its exact value b ¼ −3

2
and σ ¼ 0.7429. In Sec. IV, we shall

see that fitting the series using the hypergeometric approx-
imants pþ1Fp

ða1;…apþ1; b1…:bp; σzÞ can give better

values for σ, which determines the critical coupling. The
plot in Fig. 1 thus shows that one can get approximate
values for the parameters b and σ from the last few orders in
the strong-coupling expansion.

B. Strong-coupling expansion for the
gϕ4

1 + 1 vacuum energy

In Ref. [23], strong-coupling series (lattice) for the
vacuum energy of the gϕ4

1þ1 scalar field theory has been
obtained up to 11th order in y ¼ g−

2
3 as

E ¼ g
1
3eg;

eg ≃ 0.66798625915577710827096201688

þ 0.43100635014259473006095738275λ

þ…………… − 0.0087493465269972λ8

þ 0.007096747591805λ9 − 0.005871428λ10

þ 0.0049362λ11:

The ratio test can confirm the convergence of the series for
eg. We plot Rn versus 1

n in Fig. 2 where the fitting gives
σ ¼ 0.9726 and b ¼ −1.4933. These results can be

checked by the radius of convergence 1
σ ¼ 1.0282,

which is very close to the findings in Ref. [23]. Of course
the hypergeometric approximants pþ1Fp

ða1;…apþ1;

b1…:bp; σλÞ can be parametrized to fit the given series
with better approximation for the values of σ and b.

C. High-temperature (strong-coupling) expansion for
the Oð2Þ-symmetric ϕ4

2 + 1 model

In Ref. [24], the high-temperature (strong-coupling)
expansion for the second moment of the two-point function
for the Oð2Þ-symmetric ϕ4

2þ1 scalar field theory is listed up
to β20, where β is the inverse temperature (column 2 in
Table XVII there). In Fig. 3, we generated the plot for Rn
versus 1=n and extracted the values b ¼ 1.7485, while
σ ¼ 1.9575. The critical inverse temperature βc ¼ 1

σ ¼
0.51086 compared to the result βc ¼ 0.5099049 in
Ref. [24]. Again, the hypergeometric approximants are
expected to give better predictions, but we will not stress it
here as our aim from this section is to highlight the fact
known from literature that the strong-coupling expansion
has a finite radius of convergence and thus has a large-order
asymptotic behavior similar to that of the hypergeometric
series pþ1Fp

ða1;…apþ1; b1…:bp; σβÞ.

III. WEAK-COUPLING, STRONG-COUPLING, AND
LARGE-ORDER PARAMETRIZATION OF THE

HYPERGEOMETRIC RESUMMATION

Famous nonperturbative tools that are always used in
literature to study critical phenomena in physics are
Borel, Borel-Padé, and Borel with conformal mappings
resummation algorithms [22,27–33]. In applying these

0.09 0.10 0.11 0.12 0.13 0.14 0.15

-0.84

-0.82

-0.80

-0.78

-0.76
R

n

1/n

FIG. 2. In this figure, we plot the ratio Rn for the strong-
coupling expansion (lattice) of the vacuum energy for the ϕ4

1þ1

scalar field theory at large n. The data have a straight line fit of the
form Rn ¼ 1.4524ð1nÞ − 0.97261, which predicts the values σ ¼
0.9726 and b ¼ −1.4933.

0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064

2.13

2.14

2.15

2.16

2.17

R
n

1/n

FIG. 3. The plot of Rn for the high-temperature (strong-
coupling) expansion (lattice) of the second moment correlation
function of the three-dimensional ϕ4 field theory with Oð2Þ
symmetry. The data can be fitted as Rn ¼ 3.4227ð1nÞ þ 1.9575,
which predicts the values σ ¼ 1.9575 and b ¼ −3.4227.
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algorithms, one may face slow convergence and most of the
calculations are achieved using numerical steps. Recently,
the simple but accurate hypergeometric resummation algo-
rithm has been introduced, which is of closed form [34]. In
Ref. [35], we showed that one can employ the strong-
coupling data to determine all the numerator parameters in
the hypergeometric pFp−1 approximants. In another work
[13,20], we showed that the relation between p (number of
numerator parameters) and q (number of denominator
parameters) is constrained by the large-order behavior of
the given perturbation series. Once the difference p − q
from the large-order behavior is determined, one can
employ the large-order parameters to accelerate the con-
vergence of the hypergeometric resummation.
Based on the large-order-behavior of a given perturba-

tion series, one can categorize the divergent series into
different classes, where each class can be resummed by a
hypergeometric function with expansion that reflects the
needed growth factor [13,20]. To clarify this point more,
consider a divergent series for a physical quantity QðzÞ ¼P

n
n¼0 cnz

n that has the following large-order behavior:

cn∼αððp−q−1ÞnÞ!ð−σÞnnb
�
1þO

�
1

n

��
; n→∞: ð5Þ

Such types of asymptotic large-order behavior suggest the
following approximants:
(1) For a series with finite radius of convergence, we

have ðp − q − 1Þ ¼ 0. The suitable hypergeometric
approximant is then

QðzÞ≈c0pFp−1ða1;…ap;b1…:bp−1;−σzÞ; where

b¼
Xp
i¼1

ai−
Xp−1
i¼1

bi−1:

(2) For a divergent series with zero radius of conver-
gence and n! growth factor (p − q − 1 ¼ 1), the
suitable approximant is then

QðzÞ ≈ c0pFp−2ða1;…ap; b1…:bp−2;−σzÞ;

b ¼
Xp
i¼1

ai −
Xp−2
i¼1

bi − 2:

(3) For a divergent series with zero radius of conver-
gence but ð2nÞ! growth factor (p − q − 1 ¼ 2) (the
ground state energy of the sextic oscillator, for
instance) then the suitable approximant is

QðzÞ ≈ c0pFp−3ða1;…ap; b1…:bp−3;−σzÞ

and so on. Of course for p ≥ qþ 2, the series pFq is
divergent and has a zero radius of convergence but
analytic continuation to nonzero z values can be

offered by a Mellin-Barnes integral representation of
pFq or, equivalently, in terms of the Meijer-G
function [13,20].
We call the above algorithm the hypergeometric-

Meijer resummation [13,20]. Note that, in this
algorithm, once you select the suitable hypergeo-
metric approximant based on the growth factor in the
large-order behavior, it can accommodate all weak-
coupling, strong-coupling, and large-order data as-
sociated with the given perturbation series. In fact, in
Ref. [36], Mera et al. used the Borel-hypergeometric
algorithm with Borel functions of the form
c0pFp−1ða1;…ap; b1…:bp−1; :σzÞ. That algorithm
results in a Meijer-G function resummation approx-
imant that employs low-order perturbation data as
input. In our technique, we do not use any Borel or
Padé methods, but instead we start from large-order
behavior and select the appropriate hypergeometric
approximant. In case p − q is greater than 1, we use
the Meijer-G function representation of the hyper-
geometric function [37] where

pFqða1;…ap;b1…:bq; zÞ

¼
Qq

k¼1 ΓðbkÞQp
k¼1 ΓðakÞ

G1;p
p;qþ1

�
1 − a1;…; 1 − ap
0; 1 − b1;…; 1 − bq

����z
�
:

ð6Þ

The Meijer-G function on the right-hand side of this
equation has the integral representation of the form [37]

Gm;n
p;q

�
c1;…;cp
d1;…;dq

����z
�

¼ 1

2πi

Z
C

Q
n
k¼1Γðs−ckþ1ÞQm

k¼1Γðdk− sÞQp
k¼nþ1Γð−sþckÞ

Qq
k¼mþ1Γðs−dkþ1Þz

sds:

ð7Þ

By selecting the contour C to run from −i∞ to þi∞ [37],
the integral above converges for pþ q < 2ðmþ nÞ. It is
then clear that for p ¼ qþ 1, where the hypergeometric
series has a finite radius of convergence, the condition for
the convergence of the above integral is satisfied.
The algorithm has been shown to give accurate results

for different divergent series like the ground state energy of
an anharmonic oscillator [20,35] and the critical exponents
of the OðNÞ-symmetric model [13,21]. In this work,
however, we will concentrate on resummation of strong-
coupling (high-temperature) series expansion for systems
that show up second-order phase transition. Such types of
series have a finite radius of convergence and thus hyper-
geometric approximants pFq with p − q − 1 ¼ 0 are the
relevant ones. Near the tip of the branch cut, the approx-
imants possess a power-law behavior where the critical
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exponents are solely determined by the large-order param-
eter b, while σ determines the critical coupling (or
temperature).

IV. HYPERGEOMETRIC APPROXIMATION FOR
THE STRONG-COUPLING EXPANSION OF THE

YANG-LEE MODEL

In 1952, Lee and Yang introduced a theory of phase
transitions that is based on the zeros of the partition
function in the complex plane of an external parameter
like the external magnetic field [38,39]. At the continuum
limit, the zeros of the partition function can touch the real
axis, which then represents a critical point called Yang-Lee
edge singularity. For many years the zeros of the partition
function have been considered as a theoretical issue, but
recently it has been exposed to experimental investigations
(see Ref. [40] and references therein). In fact the zeros of
the partition function are always existing for nonreal
external parameters and thus the theory near the zeros
can turn out to be non-Hermitian but PT symmetric [41].
The link between critical behavior of the Ising model near
edge singularity and PT -symmetric iϕ3 theory was first
introduced by Fisher, who identified an effective action of
the magnetization of the Ising model as a Landau-Ginzburg
theory given by a PT -symmetric iϕ3 theory [42]. We will
study this model in 0þ 1 space-time dimension and tackle
the critical behavior associated with the edge singularity
from the point of view of the dependance of the order
parameter on the external magnetic field, rather than
investigating the zeros of the partition function.
Near the edge singularity, perturbative calculation within

the Yang-Lee quantum field model cannot account for the
expected phase transition. In this model the Lagrangian
density is given by

L½ϕ� ¼ 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2ðxÞ − ig

3
ϕ3ðxÞ þ iJϕðxÞ: ð8Þ

We studied this model in Ref. [43] and showed that, in
d ¼ 6 − ϵ dimensions, there exists a Gaussian fixed point
where exact critical exponents are extracted from the one-
loop effective potential. In the same reference we showed
that, for dimensions d < 6, the effective coupling ( g

M3−1
2
d
)

blows up and the theory has a nonperturbative fixed point.
In these cases, the one-loop effective potential would not be
able to produce reliable results near the critical point. The
worst case exists for d ¼ 1, where at the critical point
(M → 0) the effective coupling blows up very fast. We used
the effective potential to study this case but far away from
the critical region in Ref. [44]. This theory is PT
symmetric [45,46] and the PT symmetry is broken at
the fixed point [47,48]. At this point there exists a phase
transition at which we showed (for d ¼ 6 − ϵ) [43] that the
fixed point is really representing a Yang-Lee edge singu-
larity [38,39,42,49–57].

The effective action of the magnetization of the Ising
model has a Landau-Ginzburg representation at the con-
tinuum limit of the form [42]

S ¼
Z

dxd
�
1

2
ð∂μϕÞ2 þ iðh − hcÞϕþ igϕ3

�
; ð9Þ

which is equivalent to the Yang-Lee model above. The
critical exponents associated with the Yang-Lee edge
singularity have been listed in Ref. [42]. The study of that
reference relied on considering the density of zeros of the
partition function, which has been shown to follow a
power-law behavior near the edge singularity exactly the
same manner the magnetization follows with respect to the
external magnetic field.
ThePT -symmetric Yang-Lee model in 0þ 1 space-time

dimension (quantum mechanics) has been studied in
Ref. [26]. The Hamiltonian of that model in one dimension
is given by

Hg ¼
π2

2
þ 1

2
m2ϕ2 þ i

ffiffiffi
g

p
6

ϕ3: ð10Þ

The weak-coupling series expansion of the ground state
energy of that model is divergent and thus resummation
techniques are to be followed to get reliable results [26]. A
strong-coupling representation can be obtained using a
scale and shift transformations [26,35] that lead to the form

Hg ¼
ffiffiffi
g5

p �
π2

2
þ iϕ3

6
þ 1

2

im4

g
4
5

ϕ

�
−
m6

3g
: ð11Þ

This Hamiltonian can be rewritten as Hg ¼ g
1
5HJ − m6

3g

where

HJ ¼
π2

2
þ iϕ3

6
þ 1

2
iJϕ; ð12Þ

with J ¼ im4

g
4
5

. The Hamiltonian HJ has been studied also in

Ref. [26] where the order-dependent mapping (ODM)
method is used to resum the divergent series representing
the ground state energy EJ

0 where

EJ
0 ¼

X∞
n¼0

dnJn ¼ :3725457904522070982506011

þ 0.3675358055441936035304J

þ 0.1437877004150665158339J2 þOðJ3Þ: ð13Þ

As we explained in the Introduction, near critical point
physical quantities follow a power-law behavior. The
power-law behavior of the form ðJ − JcÞδ has a series
expansion with finite radius of convergence and a large-
order asymptotic behavior like σnnb, where b ¼ −δ − 1
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and Jc ¼ 1=σ. According to the theorem of Darboux, the
large-order terms in an expansion originate from the
singularity (closest to origin) of the expanded function
[14]. Accordingly, one can expect that the large-order form
σnnb of the singular part (power law) and the large-order
asymptotic behavior of the whole series (assumed to have a
finite radius of convergence like the power-law form) have
the same form. Accordingly, one concludes the direct
relation between the parameter b and the critical exponent.
Note that the weak-coupling expansion has an essential
singularity and thus the Darboux theorem is not applicable
for that case.
The most suitable hypergeometric approximant for a

perturbation series is determined from the large-order
behavior of that series. In fact, for a class of interaction
Hamiltonian βxm, the large-order behavior has been
obtained in Ref. [25]. In fact, the large-order behavior
for the Hamiltonian HJ can be concluded from that
reference if we set m ¼ 3

2
in the Hamiltonian there, where

Hm ¼ p2 þ x2 þ βx2m:

The ground state energy of the rescaled Hamiltonian β
2
5Hm

has the expansion

Em
0 ¼

X∞
n¼0

hnβ
−2n
mþ1;

where for the limit n → ∞ we have the asymptotic form

hn ∼ cn−
3
2σn

�
1þO

�
1

n

��
: ð14Þ

Note that the parameter b ¼ − 3
2
in the large order above

does not depend on m, which reflects a kind of universality
of the whole class and thus we can extend it to the case of
the Yang-Lee model represented by the perturbation series
in Eq. (13). As we expected, this large-order behavior tells
us that the strong-coupling series expansion has a finite
radius of convergence. What is important in the above
large-order behavior is that the hypergeometric function
pFp−1ða1;…ap; b1…:bp−1;−σzÞ has the same form of
large-order behavior of its expansion. This can be shown
by noting that

pFp−1ða1;……ap; b1;……::bq;−σzÞ

¼
X∞
n¼0

Γða1þnÞ
Γða1Þ …: ΓðapþnÞ

ΓðapÞ

n! Γðb1þnÞ
Γðb1Þ …: Γðbp−1þnÞ

Γðbp−1Þ
ð−σzÞn;

and thus has a large-order behavior of the form in Eq. (14)
but with

Γða1þnÞ
Γða1Þ …: ΓðapþnÞ

ΓðapÞ

n! Γðb1þnÞ
Γðb1Þ …: Γðbp−1þnÞ

Γðbp−1Þ
ð−σÞn

∼ γð−σÞnnb
�
1þO

�
1

n

��
; n → ∞; ð15Þ

where

Xp
i¼1

ai −
Xp−1
i¼1

bi − 1 ¼ b; ð16Þ

and

γ ¼
Qp−1

i¼1 ΓðbiÞQp
i¼1 ΓðaiÞ

:

We can obtain the above relations easily using the asymp-
totic form of a ratio of two Γ functions [58],

Γðnþ αÞ
Γðnþ βÞ ¼ nα−β

�
1þ ðα − βÞð−1þ αþ βÞ

n
þO

�
1

n2

��
:

ð17Þ

Since the hypergeometric function pFp−1ða1;……ap;
b1;……::bp−1; σzÞ can reproduce the same form of
large-order behavior of the perturbation series under con-
sideration, it is then recommended as an approximant for
the perturbation series of EJ

0 above. Near the tip of the
branch cut, the hypergeometric function has a power-law
behavior of the form

pFp−1ða1;……ap;b1;……::bp−1;σzÞ∝ ð1−σzÞ−ψ ; ð18Þ

where ψ ¼ Pp
i¼1 ai −

Pp−1
i¼1 bi ¼ bþ 1 or, in other words,

the critical exponent ψ is solely determined by the large-
order parameter b, which means that this parameter is
universal.
Based on the above clarifications, the hypergeometric

resummation algorithm can be simplified into two sim-
ple steps:
(1) Match the available orders from the perturbation

series with the corresponding number of terms from
the expansion of pFp−1ða1;……ap; b1;……::bp−1;
σJÞ.

(2) Employ the large-order relation

Xp
i¼1

ai −
Xp−1
i¼1

bi − 1 ¼ −
3

2
; ð19Þ

in the set of coupled equations to obtain the bi
parameters. Note that the ai parameters for the
model under consideration are known [26].
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Let us give an example for a certain order of the hyper-
geometric approximant. Assume that we have the second-
order perturbation series of the form

QðzÞ ¼ c0 þ c1zþ c2z2 þOðz3Þ; ð20Þ

with the large-order behavior in Eq. (5) but with p ¼ qþ 1,
then the suggested hypergeometric approximant is

QðzÞ ∼ c0 3F2ða1; a2; a3; b1; b2; σzÞ:

c0 3F2ða1; a2; a3; b1; b2; σzÞ has the expansion

c0 3F2ða1;a2;a3;b1;b2;σzÞ
¼ c0þc0

a1a2a3σ
b1b2

z

þc0
a1ð1þa1Þa2ð1þa2Þa3ð1þa3Þσ2

b1ð1þb1Þb2ð1þb2Þ
z2þOðz3Þ:

ð21Þ

Matching this expansion with the series in Eq. (20), we get
the following set of equations:

c0
a1a2a3σ
b1b2

¼ c1;

c0
a1ð1þ a1Þa2ð1þ a2Þa3ð1þ a3Þσ2

b1ð1þ b1Þb2ð1þ b2Þ
¼ c2;

also the numerator and the denominator parameters are
constrained by the large-order relation

a1 þ a2 þ a3 − ðb1 þ b2Þ − 1 ¼ b:

This set of three coupled equations is to be solved for the
unknown parameters b1, b2, and σ. Note that the parameter
σ can be obtained from quasiclassical methods, but it is out
of the scope of this work.
For the model with the ground state perturbation

series in Eq. (13), we have a1 ¼ −3
2
, a2 ¼ −1

4
, and a3 ¼ 1

[26], while the large-order parameter b ¼ − 3
2

[25].
Thus the solution of the above set of equations for that
model yields the results b1 ¼ −0.60310956052580091716,
b2 ¼ 0.35310956052580091716, and σ ¼
−0.560266190804551029423. Accordingly, we have the
second-order approximant

EJ
0 ≃ 0.37 3F2

�
−3
2

;
−1
4
; 1;−0.60; 0.35;−0.56J

�
: ð22Þ

One can involve more perturbative terms as input by going
to 4F3; 5F4;… and so on. To test the accuracy of the
algorithm, we compare its prediction with exact (numerical
results) from Refs. [45,46] in Table I. Note that the vacuum
energy for the Hamiltonian in Eq. (10) and that in Eq. (11)
are related as Eg

0 ¼ J
−1
4 ðEJ

0 −
1
3
m6J

3
2Þ and J ¼ im4

g
4
5

, while the

coupling λ in Refs. [45,46] is related to g by the relation
g ¼ 288λ2. From Table I, one can realize that the accuracy
of the algorithm is improved from order to order.
One can obtain the edge critical exponent and the critical

coupling of the theory by noting that the hypergeometric
functions pFp−1ða1;……ap; b1;……::bq; σzÞ have a
power-law behavior around the tip of the branch cut
(starting from σz ¼ 1 to σz → ∞) in the form [37,59,60]

pFp−1ða1;…ap; b1;…bp−1; σzÞ
− pFp−1ða1;…ap; b1;…bp−1; 1Þ ∝ ð1 − σzÞy; ð23Þ

where

y ¼
Xp−1
i¼1

bi −
Xp
i¼1

ai ¼ −ðbþ 1Þ: ð24Þ

This means that as J → Jc ¼ 1
σ we have

EJ
0ðJÞ − EJc

0 ¼ ∝ ð1 − σJÞ12:

The critical coupling Jc from the second-order approximant
in Eq. (22) is thus Jc ¼ −1.7849 compared to Jc ¼
−1.3510 from ODM resummation at the 150th order from

TABLE I. Comparison of our prediction for Eg
0 and numerical results Eexact from Refs. [45,46]. We get first the hypergeometric

approximations 3F2, 4F3, 5F4, and 6F5 for the perturbation series of EJ
0 and then transform it to Eg

0. Note that J ¼ im4

g
4
5

and g ¼ 288λ2,

while we set m ¼ 1.

λ 3F2 4F3 5F4 6F5 Exact

0.015625 0.682387 0.504794 0.501965 0.502697 0.502621
0.03125 0.534941 0.510201 0.509934 0.509978 0.50998
0.0625 0.536264 0.533944 0.533931 0.533932 0.53393
0.125 0.595069 0.594916 0.594915 0.594915 0.59492
0.25 0.712944 0.712936 0.712936 0.712936 0.71294
0.5 0.900258 0.900258 0.900258 0.900258 0.90026
1 1.16745 1.16745 1.16745 1.16745 1.16746
2 1.53077 1.53077 1.53077 1.53077 1.53078
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Ref. [26]. In fact, at the fifth-order approximant (6F5) we
obtained a precise value for the critical coupling Jc as
shown in Table II.
What is really impressive is that, according to our

prediction, the critical exponent νc ¼ 1
2
which is extracted

from the relation ðEJ
0ðJÞ − EJc

0 Þ ∝ ð1 − σJÞdνc [61]. This
result is exact [42] (d ¼ 1) and does not depend on the
order of approximation but, on the other hand, depends
solely on the large-order parameter b ¼ − 3

2
. This is clear

from Eq. (19) where we find y ¼ −1 − ð− 3
2
Þ ¼ 1

2
. It has

been shown in Ref. [42] that the edge critical exponent νc
for the one-dimensional Ising model is νc ¼ 1

2
exactly the

same value we obtained. Note that here we used the scaling
relation ðEJ

0ðJÞ − EJc
0 Þ ∝ ζ−dgap ∝ ðJ − JcÞ−dνc [61], where

ζ−dgap is the correlation length. Up to the best of our
knowledge this is the first time to get exact critical
exponents from only the knowledge of the large-order
parameters. Note also that the square root singularity of the
ground state energy near the critical coupling Jc has been
suggested based on the analysis of the calculations in
Ref. [26], but here we get it exactly.
The ground state energy or, equivalently, the effective

potential is well known to be the generating functional of
the one-particle irreducible amplitudes [62]. Accordingly,
one can obtain other amplitudes like magnetization (vac-
uum expectation value) and magnetic susceptibility, for
instance, from successive differentiation with respect to
ð1
2
iJÞ. Thus the vacuum condensate v is given by

v ¼ ∂EJ
0

∂ð1
2
iJÞ ;

where the hypergeometric approximant for EJ
0 is given by

EJ
0 ≈ c0pFp−1ða1;……ap; b1;……::bq; σJÞ:

Note also that

∂
∂zpFqða1;……::ap;b1……;bq;zÞ

¼
Qp

j¼1ajQq
j¼1bj

pFqða1þ1;……apþ1;b1þ1;…:bqþ1;zÞ:

We found that the vacuum expectation value is negative
imaginary as it is well known for such PT -symmetric
model [63]. The derivative of the hypergeometric function
is thus another hypergeometric function, but with every
numerator and denominator parameter increased by 1. The
exponent of the power-law behavior of the derivative will
thus decrease by 1. Thus, near the critical point, the vacuum
condensate v has a power-law behavior of the form

vðJÞ − vðJcÞ ∝ ðJ − JcÞ1δ;

where 1
δ ¼ y − 1 and y is defined in Eq. (24). Since we

obtained y ¼ 1
2
for the model under consideration, we get

δ ¼ −2. This is again the exact exponent reported
in Ref. [42].
The magnetic susceptibility χ is given by

χ ¼ ∂2EJ
0

∂ð1
2
iJÞ2 :

Accordingly, χ has the power-law behavior

χ ∝ ðJ − JcÞ−γ; −γ ¼ y − 2 ¼ −3
2
:

This result is in accordance with scaling relations that relate
γ to δ as [64]

−γ ¼ 1 − δ

δ
¼ −3

2
:

So again our result is exact. Since all critical exponents here
are obtained from the large-order parameter b, the results
suggest the universality of such parameter.

V. HYPERGEOMETRIC APPROXIMATION FOR
THE HT EXPANSION OF THE SUSCEPTIBILITY

WITHIN THE SC LATTICE

In the previous section, we considered a 0þ 1-dimen-
sional quantum field example for which the parameter b is
known exactly and showed that the critical exponent is
solely determined by b. To test the validity of our
conjecture for a higher-dimensional example, one should
first note that the mathematical structure of the strong-
coupling expansion of the ϕ4 lattice field theory is
equivalent to the HT expansion of the Ising model [11].
With no loss of generality, for a field theory in higher
dimensions, one can consider the high-temperature expan-
sion within the Ising model to test the universality of the

TABLE II. The hypergeometric 3F2, 4F3, 5F4, and 6F5

predictions for the critical coupling Jc compared to the 150th
order of the ODM method in Ref. [26]. All approximants predict
the same exact critical exponents as shown because they depend
solely on the large-order parameter b ¼ −3=2. The fifth-order
approximant (6F5) gives a very precise critical coupling as shown
in the table.

Approximant Jc νc δ γ

3F2 −1.78487 1=2 −2 3=2

4F3 −1.30267 1=2 −2 3=2

5F4 −1.32908 1=2 −2 3=2

6F5 −1.35062 1=2 −2 3=2
ODM −1.351 0 � � � � � � � � �
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large-order parameter b. Up to the best of our knowledge,
the large-order asymptotic behavior is not known exactly
for such expansion. However, we choose such a case
because the expansion is known up to high order and thus
an accurate prediction of b can be obtained using the
hypergeometric approximants. Since the high-temperature
expansion within the Ising model has a finite radius of
convergence, the expanded quantity can be approximated

by the hypergeometric approximant pFp−1ða1;……ap;
b1;……::bq; σzÞ, which has the large-order asymptotic
behavior of the form σnnbð1þOð1nÞÞ. A very good
approximation of the parameters b and σ can be extracted
from the available many terms of the perturbation series.
The HT expansion up to Oðβ25Þ for the susceptibility of the
Sc lattice (S ¼ 1

2
) is given by [6]

χðβÞ ¼
X∞
i¼0

ciβi ¼ 1þ 6β þ 30β2 þ 148β3 þ 706β4 þ………

þ 93592219478518291774477772

3093594879375
β20 þ 8972803527064109944099241768

=64965492466875
β21

þ 5296430224856866468505272024

8407299025125
β22 þ 47221618622049399307213422740992

16436269594119375
β23

þ 37975296352037116774213386661036

2900518163668125
β24 þ 73538934029908819825899053186296808

1232720219558953125
β25 þ……… ð25Þ

One can go and parametrize the approximant pFp−1ða1;……ap; b1;……::bq; σzÞ starting from the lowest orders
and watch the convergence as more orders are employed. However, according to our conjecture the critical
indices are encoded in the large orders. Accordingly, to obtain fast accurate predictions for the large-order parameters
b and σ, it would be better to parametrize the approximant pFp−1ða1;……ap;b1;……::bq; σzÞ starting from highest to

lower orders. Also, as explained in Ref. [7], the oscillation in the sign of the termOð1nÞ in the large-order form demands us to
treat odd (or even) terms separately. Accordingly, the parametrization of the approximant can go through matching the
relations (for odd terms)

Rodd
n ¼ ci

ci−2
; i ¼ 25; 23; 21;……

R25 ¼
c25
c23

; R23 ¼
c23
c21

; R21 ¼
c21
c19

;…:

For instance, the four parameters approximant χ ≃ 2F1ða1; a2; b1; σzÞ can be parametrized as

ða1 þ 23Þða1 þ 24Þða2 þ 23Þða2 þ 24Þ
ðb1 þ 23Þðb1 þ 24Þ σ2 ¼ 9192366753738602478237381648287101

737837790969521864175209730328
;

ða1 þ 21Þða1 þ 22Þða2 þ 21Þða2 þ 22Þ
ðb1 þ 21Þðb1 þ 22Þ σ2 ¼ 11805404655512349826803355685248

1121600440883013743012405221
;

ða1 þ 19Þða1 þ 20Þða2 þ 19Þða2 þ 20Þ
ðb1 þ 19Þðb1 þ 20Þ σ2 ¼ 4486401763532054972049620884

512422018420605679707007
;

ða1 þ 17Þða1 þ 18Þða2 þ 17Þða2 þ 18Þ
ðb1 þ 17Þðb1 þ 18Þ σ2 ¼ 2049688073682422718828028

286754736324335778241
: ð26Þ

Solving these equations for the parameters a1, a2, b1, and σ gives the result

σ ¼ 4.5108; a1 ¼ −23.2765 − 1.20827 × 10−8i;

a2 ¼ 1.24944; b1 ¼ −23.2765 − 1.20826 × 10−8i:

The large-order parameter b is related to the numerator parameters ai and the denominator parameter bi as

b ¼
Xp
i¼1

ai −
Xp−1
i¼1

bi − 1 ¼ 0.2494 − 1.0 × 10−13i ≃ 0.2494:

ABOUZEID M. SHALABY PHYS. REV. D 105, 045004 (2022)

045004-10



Thus the γ exponent is given by γ ¼ bþ 1 ¼ 1.2494 compared to 1.237 in Ref. [7]. Also, the critical inverse temperature
βc ¼ 1

σ ¼ 0.22161 compared to 0.22165 from Ref. [7]. So again the large-order parameter b determines the critical
exponent. Note that, very close results are obtained by treating the even terms, but we prefer the odd ones as the last term is
odd and it is assumed to be more effective in determining the large-order parameter b. The six parameters approximant
χ ≃ 3F2ða1; a2; a3; b1; b2; σzÞ can also be parametrized through the following relations:

ða1 þ 23Þða1 þ 24Þða2 þ 23Þða2 þ 24Þða3 þ 23Þða3 þ 24Þ
ðb1 þ 23Þðb1 þ 24Þðb2 þ 23Þðb2 þ 24Þ σ2 ¼ 20.7642;

ða1 þ 21Þða1 þ 22Þða2 þ 21Þða2 þ 22Þða3 þ 21Þða3 þ 22Þ
ðb1 þ 21Þðb1 þ 22Þðb2 þ 21Þðb2 þ 22Þ σ2 ¼ 20.801382;

ða1 þ 19Þða1 þ 20Þða2 þ 19Þða2 þ 20Þða3 þ 19Þða3 þ 20Þ
ðb1 þ 19Þðb1 þ 20Þðb2 þ 19Þðb2 þ 20Þ σ2 ¼ 20.845921;

ða1 þ 17Þða1 þ 18Þða2 þ 17Þða2 þ 18Þða3 þ 17Þða3 þ 18Þ
ðb1 þ 17Þðb1 þ 18Þðb2 þ 17Þðb2 þ 18Þ σ2 ¼ 20.900230;

ða1 þ 15Þða1 þ 16Þða2 þ 15Þða2 þ 16Þða3 þ 15Þða3 þ 16Þ
ðb1 þ 15Þðb1 þ 16Þðb2 þ 15Þðb2 þ 16Þ σ2 ¼ 20.967904;

ða1 þ 13Þða1 þ 14Þða2 þ 13Þða2 þ 14Þða3 þ 13Þða3 þ 14Þ
ðb1 þ 13Þðb1 þ 14Þðb2 þ 13Þðb2 þ 14Þ σ2 ¼ 21.054549: ð27Þ

The solution of this set of equations gives the values

σ ¼ 4.51093; a1 ¼ −15.4176 − 2.76717 × 10−9i;

a2 ¼ 1.24892; a3 ¼ −17.7923 − 2.96486 × 10−9i;

b1 ¼ −15.4176 − 2.76719 × 10−9i;

b2 ¼ −17.7923 − 2.9648 × 10−9i:

This gives b¼0.2489–3.76237×10−14i and βc ¼ 0.221 68.
So again the large-order parameter b determines the critical
exponent. Also, for the eight parameters hypergeometric
approximants 4F3ða1; a2; a3; a4; b1; b2; b3; σβÞ, we ob-
tained the following parameters values:

σ ¼ 4.51101; a1 ¼ −15.8686 − 5.10971 × 10−7i;

a2 ¼ 1.2483819þ 2.37927 × 10−10i; a3 ¼ −11.3347 − 4.45387 × 10−8i;

a4 ¼ −13.6312 − 2.11442 × 10−7i; b1 ¼ −11.3345 − 4.46736 × 10−8i;

b2 ¼ −13.6314 − 2.11099 × 10−7i; b3 ¼ −15.8686 − 5.11116 × 10−7i:

This leads to the result b ¼ 0.24838þ 1.74976 × 10−10i
and βc ¼ 1

4.51101 ¼ 0.221 68. In Table III, we listed the
hypergeometric predictions for b, γ, and βc.
Note that the series in Eq. (25) is not alternating

in sign and thus the hypergeometric approximant is
suffering from a problem like non-Borel summability.
In fact the hypergeometric approximant has a branch cut
starting from β ¼ 1=σ to infinity. This means that it can
(accurately) describe the high-temperature phase only. For
the low-temperature phase, the hypergeometric approx-
imants suffer from the existence of Stokes phenomena,
which can be cured [65] but is out of the scope of
this work.

TABLE III. The hypergeometric approximants 2F1, 3F2, and

4F3 predictions for the large-order parameters b and βc ¼ 1
σ of the

HT series expansion of the susceptibility of the Sc lattice. These
approximants are parametrized using the last odd orders of the
series. Also, the critical exponent γ ¼ bþ 1 is listed where it can
be compared to γ ¼ 1.237 in Ref. [7], while the critical inverse
temperature βc can be compared with βc ¼ 0.22165 from the
same reference.

Approximant b γ βc

2F1 0.2494 1.2494 0.22169

3F2 0.2489 1.2489 0.22168

4F3 0.24838 1.24838 0.22168
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VI. HYPERGEOMETRIC APPROXIMATION FOR THE HT EXPANSION OF THE SUSCEPTIBILITY OF
THE SQ ISING MODEL

The HT expansion for the susceptibility of the spin-half square lattice is given by [6]

χðβÞ ¼ 1þ 4β þ 12β2 þ 104

3
β3 þ 92β4 þ………

þ 415782048556042942544

3093594879375
β20 þ 4735391065845611373232

14992036723125
β21 þ 529562920319138348552816

714620417135625
β22

þ 85616154520095267692857616

49308808782358125
β23 þ 66773068948180944546678128

16436269594119375
β24

þ 3192145249472459217984684656

336196423516078125
β25 þ………: ð28Þ

As long as we are interested only in large-order parameters,
one can fit the ratio Rn ¼ Cn

Cn−1
of the above series with the

corresponding ratio of expansion coefficients of the hyper-
geometric approximant but for large orders. In fact, if this
series is to have a finite radius of convergence, then for
large n it has to fit the corresponding ratio from the
expansion of the hypergeometric approximant as

Rn ≃
ðσÞnnb

ðσÞn−1ðn − 1Þb

¼ σ
1

ð1 − 1
nÞb

≃ σ

�
1þ b

�
1

n

��
:

In Fig. 4, we plot the ratio Rn versus 1
n, from which we

obtained the large-order parameter values b ¼ 0.75033 and
σ ¼ 2.269. These values lead to the critical exponent γ ¼
bþ 1 ¼ 1.75033 and critical β as βc ¼ 1

σ ¼ 0.44072. The
exact values are well known to be γ ¼ νð2 − ηÞ ¼ 1.75 [66]
and βc ¼ 0.4407 [67]. Again, this example assures the
universality of the large-order parameter b for the HT series
expansion.

VII. SUMMARY AND CONCLUSIONS

Near the tip of the branch cut, the hypergeometric
functions kþ1Fk have a power-law behavior similar to a
physical quantity (magnetization for instance) near second-
order phase transition where it follows the form
QðβÞ ∝ ð1 − β

βc
Þψ . The exponent ψ has been proven to

follow the relation ψ ¼ −ðbþ 1Þ, where b is the large-
order parameter of the series. This link between b and ψ is
in complete agreement with the theorem of Darboux.
Accordingly, one can determine the exact critical exponent
provided that we know the large-order parameter b of a
series expansion with finite radius of convergence. For the
weak-coupling expansion which is generated around an
essential singularity, the Darboux theorem is not applicable
and thus a direct link between ψ and b is missing. On the
other hand, the strong-coupling (HT) expansion is well
known to have a finite radius of convergence. Accordingly,
one can expect that the large-order parameter b of the
strong-coupling (HT) expansion is universal. In fact there
are techniques in quantum field theory that might enable us
to get exact values for the parameter b and in this case exact
critical exponents can be extracted.
We tested our conjecture about the universality of b

using the Yang-Lee model in 0þ 1 space-time dimensions
as well as the HT series expansion for the Ising model. The
strong-coupling expansion of the Bose-Hubbard model
agrees with our thoughts too [60,68].
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FIG. 4. In this figure, we plot the ratio Rn for the HT series
expansion of the susceptibility of the spin-half square lattice at
large orders. The data have a straight line fit of the form
Rn ¼ 1.7025ð1=nÞ þ 2.269, which predicts the values σ ¼
2.269 and b ¼ 0.75033.
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We started from the large-order behavior of the perturba-
tion series of the ground state energy of the Yang-Lee model
to select the suitable hypergeometric approximant. We
realized that the large-order behavior does not have a growth
factor n! and found that the hypergeometric functions pFp−1
do have the same form of the given large-order behavior.
This recommends them to be the most suitable hyper-
geometric approximants for the given series. We set a
constraint on the numerator and denominator parameters
based on matching both large-order behaviors. The large-
order constraint on the parameters has accelerated the
convergence which has been tested by calculating up to
fifth-order approximants (6F5) and found that they yield
very precise predictions of theground state energy compared
to exact (numerical) results from literature.
PT -symmetry breaking has been investigated by noting

that the hypergeometric functions pFp−1ða1; a2;…:ap;
b1; b − 2;…bp−1;−σzÞ have a branch cut starting at −σz ¼
1 and extends to −σz ¼ ∞. Near the branch point −σz ¼ 1,
the hypergeometric function has a power-law behavior
from which we were able to get the exact νc critical
exponent and a very precise value for the critical coupling.
We found that the exact critical exponent can be extracted
from the large-order parameter b, which up to the best of
our knowledge is the first time to extract exact critical
exponents directly from large-order parameters. This pre-
diction might open the door to directly extract exact critical
exponents from obtaining the large-order behavior of a
given perturbation series [strong-coupling (HT)].
Since the ground state energy serves as the effective

potential, it enables us to obtain all the critical exponents
(exact) by successive differentiation of the ground state

energy (effective potential) with respect to the external
magnetic field.
The critical exponents of the Yang-Lee model are always

stressed within the investigation of the zeros of the partition
function, which very recently has been exposed to exper-
imental investigations [40]. In this work we extracted the
edge exponent δ from the dependance of the order
parameter on the external magnetic field. In Ref. [43],
we have shown that the critical point of PT -symmetry
breaking is in fact a Yang-Lee edge singularity. So our
results here might lead to experimental investigation of
Yang-Lee edge singularity via testingPT -symmetry break-
ing as well as watching the behavior of the order parameter
near the point of symmetry breaking.
Our conjecture has been tested also by considering the HT

series expansion of the Sc and sq lattices of the spin-half Ising
model. From the many orders known for susceptibility
expansion, we were able to get accurate values for the
large-order parameter b. The universality of b has been also
assured for these examples by comparing the extracted
critical exponentwith thewell-known one of the Isingmodel.
We also obtained avery accurate critical temperature from the
approximate large-order behavior of the given series.
The main message of this work is to draw the attention to

the importance of determining the large-order asymptotic
behavior of the strong-coupling (HT) expansion in field
theory. There exists well-known methods to do that for a
series expansion and thus if we were able to get exact
values for b, it will lead to the first determination of an
exact critical exponent in three dimensions. For the Oð2Þ-
symmetric ϕ4 theory this will resolve the current λ-point
dispute between theory and experiment [69–71].
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