
Background-field method and initial-time singularity for coherent states

Lasha Berezhiani , Giordano Cintia , and Michael Zantedeschi
Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

and Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37,
80333 München, Germany

(Received 16 September 2021; accepted 3 January 2022; published 8 February 2022)

The background-field method is adopted for studying the dynamics of coherent states within an
interacting scalar field theory. Focusing on a coherent state that corresponds to the homogeneous
condensate, the quantum depletion of the expectation value of the field operator is demonstrated to be due
to the annihilation of the condensate constituents into relativistic quanta. Moreover, due to the fact that the
initial field acceleration and energy for the nonsqueezed coherent states are determined in terms of a bare
coupling constant, instead of the renormalized one, the appearance of perturbative singularities is shown to
be inevitable. In other words, consistency of these states requires the finiteness of the bare coupling
constant, through the resummation.
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I. INTRODUCTION

Coherent states, parametrized by macroscopic continu-
ous parameters, are generally deemed to be the adequate
quantum counterparts to classical configurations [1,2]; see
also [3,4]. For clarity, let us kick start the discussion by
explicitly constructing the coherent state for the scalar field
theory which will be the focus of the present work:

jCi ¼ e−ði=ℏÞ
R

d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞjΩi: ð1:1Þ

The expectation value of the canonical field and its
conjugate momentum, at the moment of construction of
the state and in the absence of the tadpoles in the vacuum of
the theory jΩi, can be readily obtained from canonical
commutation relations:

hCjϕ̂jCiðt ¼ 0Þ ¼ ϕclðxÞ; ð1:2Þ

hCjπ̂jCiðt ¼ 0Þ ¼ πclðxÞ: ð1:3Þ

Therefore, as long as the functions ϕclðxÞ and πclðxÞ are
finite in the ℏ → 0 limit, the state (1.1) corresponds
to a quantum description of the classical configuration.
Equivalently, one could parametrize the coherent state
by the average occupation number Nk at a momentum
level k.

Conventional methods for tackling the question of quan-
tum corrections to the classical dynamics consist of quantiz-
ing fluctuations around the fixed classical background
followed by the assessment of the semiclassical backreaction
on the background; cf. Ref. [5] for the overview of different
methods. In this work, we will discuss the advantage of
constructing the state explicitly in its entirety, which gives a
unique perspective on the so-called “initial-time singularity,”
encountered in the literature within semiclassical methods
for certain initial conditions for quantum fluctuations [6–10],
in the context of coherent states.
This work has been motivated by a quantum corpu-

scular approach to classical backgrounds developed in
Refs. [11–16], where the coherent state description of
dynamical systems was shown to give rise to novel
quantum effects. These were demonstrated to lead to a
complete departure from the classical dynamics in some
cases and to be of utmost importance for systems such as
black holes, de Sitter, and cosmic inflation. The discussion
for inflation has been revisited in Ref. [17], and the
potential ramifications for the beginning of inflation were
discussed in Ref. [18]. The question of quantum depletion
of the axion condensate has been investigated in Ref. [19].
In Refs. [20,21], quantum dynamics of condensates with a
conserved charge was analyzed within the two-particle-
irreducible formalism (cf. Ref. [22]) in the context of
(1þ 1)-dimensional self-interacting scalar field theory, and
conclusions analogous to Refs. [16,19] were drawn. The
explicit dynamics of coherent states of the form (1.1) were
studied in Ref. [23] up to a certain order. The dynamics of
coherent states as a quantum counterpart to classical
dynamics was analyzed within quantum mechanical setting
in Ref. [24].
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We extend the work done in Ref. [23] in analyzing
the dynamics of Eq. (1.1) to higher orders. Moreover, by
adopting the well-known background-field method for
coherent states, we avoid spurious contributions to the
dynamics that were encountered in Ref. [23]. Our goal, in
this article, is to capture the results of the S-matrix analysis
of Ref. [16] within our direct computation of the real-time
dynamics of coherent states. Following Ref. [16], in a
weakly interacting theory, the homogeneously oscillating
background with frequency ω corresponds to a quantum
state with large occupation number N of quanta with
the same frequency. Although the classical description is
expected to hold for a large period of time for such
configurations, the scattering among quantum constituents
could lead to the gradual breakdown of the semiclassical
approximation. The timescale after which the quantum
dynamics is expected to deviate from its classical counter-
part significantly was coined as quantum break time [16]
and was found to be given by1

tqb ∼
1

λαðλNÞβω ; ð1:4Þ

where λ is a dimensionless coupling constant and α, β ≥ 1
are determined by the scattering channel dominating the
depletion. We will show that for a massive scalar field with
quartic self-interaction the depletion of the one-point
expectation value of the field in a coherent state (1.1),
with ϕclðxÞ ¼ const and πclðxÞ ¼ 0, is dominated by 4 → 2
annihilation of the constituents for λN ≲ 1, which is the
lowest-order kinematically allowed depletion channel for
the theory at hand. The corresponding timescale is given by
Eq. (1.4) with α ¼ 1 and β ¼ 3, reproducing the S-matrix
result of Ref. [19].
The article is organized as follows. In Sec. II, relevant

aspects of the background-field method are reviewed. In
Sec. III, this technique is applied to coherent states and the
one-loop quantum dynamics of the expectation value of the
field is analyzed both analytically and numerically, in a
coherent state corresponding to the homogeneous conden-
sate. In Sec. IV, the depletion of the coherent state due to
particle production is discussed and the connection with the
S-matrix processes for the annihilation of the condensate

constituents is made. In Sec. V, certain aspects of two-loop
corrections and their implications for the construction of
the coherent state are discussed. In Sec. VI, the appearance
and implications of the initial-time singularity in the
dynamics of coherent states are discussed. Section VII is
devoted to the summary and outlook.

II. BACKGROUND-FIELD METHOD

We begin by overviewing the background-field method
for studying quantum dynamics; see, e.g., Ref. [7]. This is
an important step necessary to compare standard results
found in the literature to what we will derive using a
coherent state description. In particular, even though the
two descriptions are in one-to-one correspondence and both
could describe exactly the quantum dynamics of a given
system, in the latter we have full control over the state of the
system itself.
In order to underline the differences between various

approximations we will refer to throughout the paper, we
begin from the discussion of the classical dynamics and
then progress toward the fully fledged quantum dynamics
described by the background-field method that is, in
principle, exact but requires an ℏ expansion, for practical
purposes. For definiteness, we will focus on a massive
scalar field with quartic self-interaction with Lagrangian

L ¼ −
1

2
ð∂μϕ̂Þ2 −

1

2
m2ϕ̂2 −

λ

4!
ϕ̂4: ð2:1Þ

A. Classical and semiclassical dynamics

The classical analog of Lagrangian (2.1) is easily
obtained by replacing the field operator ϕ̂ with a c-number
field ϕ. The classical dynamics follows from the equation
of motion

ð−□þm2Þϕþ λ

3!
ϕ3 ¼ 0: ð2:2Þ

Being classical, this equation describes the dynamics in
ℏ → 0 limit.
Now, in order to capture some of the quantum effects, it

suffices to go beyond the classical approximation by
quantizing fluctuations around the classical configura-
tion. This is done by quantizing the linear equations for
fluctuations:

�
−□þm2 þ λ

2
Φ2

cl

�
ψ̂ ¼ 0; ð2:3Þ

whereΦcl is the solution of classical equations (2.2) and the
fluctuation operator has been defined by means of the
following decomposition of the field operator ϕ̂ ¼ Φcl þ ψ̂.

1For systems exhibiting semiclassical instability, the quantum
break time has been shown to scale as tqb ∼ γ−1 logN in Ref. [14],
where γ is the Lyapunov exponent of the associated instability;
see also Ref. [21] for the derivation within the two-particle-
irreducible formalism. Clearly, a system undergoing quantum
breaking is also necessarily scrambling information [14]. Black
holes, for example, are believed to be fast scramblers [25]; i.e.,
they thermalize in the above-mentioned logarithmically depen-
dent timescale (γ−1 ∼ Rg, N ¼ S, S being its entropy). This is due
to the excitation of their quasinormal modes (Lyapunov expo-
nents) under external perturbations. In this optic, the scrambling
time corresponds to the time needed by the black hole to adjust to
the received information.
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Although this approximation corresponds to keeping
ℏ ≪ 1 but finite, by ignoring quantum backreaction on the
background, it assumes Φcl ≫

ffiffiffiffiffiffiffiffiffiffiffiffihψ̂ ψ̂ip
.

The important, usually overlooked, point stressed in a
series of papers [11–16] is that the results obtained in this
way are exact only in Φcl → ∞ limit. Consequently, one
should be extremely cautious when attributing a physical
meaning to the semiclassical backreaction from quantum
fluctuations on the background itself.

B. Full-quantum dynamics

The background-field method adopted in Ref. [7] for
computing the quantum corrections to the classical dynam-
ics consists of analyzing the coupled system of equations
of the one-point expectation value in a quantum state and
the equation for the correlation functions for fluctuations,
with the latter quantized as the deviation from the one-
point function. The starting point for the derivation is
Heisenberg’s operator equation

ð−□þm2Þϕ̂þ λ

3!
ϕ̂3 ¼ 0: ð2:4Þ

For the system in a quantum state jΨi, one performs the
following decomposition of the Heisenberg picture oper-
ator:

ϕ̂ ¼ Φþ ψ̂ ; with Φ≡ hΨjϕ̂jΨi: ð2:5Þ

Notice that hΨjψ̂ jΨi ¼ 0 by definition. As a result, the
expectation value of Eq. (2.4) reduces to

�
−□þm2 þ λ

2
hΨjψ̂2ðx; tÞjΨi

�
Φðx; tÞ

þ λ

3!
Φ3ðx; tÞ þ λ

3!
hΨjψ̂3ðx; tÞjΨi ¼ 0: ð2:6Þ

The substitution of the above decomposition into Eq. (2.4)
and subtracting Eq. (2.6) from it yields

�
−□þm2 þ λ

2
Φ2ðx; tÞ

�
ψ̂ðx; tÞ

þ λ

2
Φðx; tÞðψ̂2ðx; tÞ − hΨjψ̂2ðx; tÞjΨiÞ

þ λ

3!
ðψ̂3ðx; tÞ − hΨjψ̂3ðx; tÞjΨiÞ ¼ 0: ð2:7Þ

The latter equation can be straightforwardly converted into
the set of equations for n-point correlation functions if one
multiplies it by the corresponding number of operators and
evaluates everything over jΨi. For example, the two-point
function satisfies

�
−□ðx;tÞ þm2 þ λ

2
Φ2ðx; tÞ

�
hΨjψ̂ðx; tÞψ̂ðx0; t0ÞjΨi

þ λ

2
Φðx; tÞhΨjψ̂2ðx; tÞψ̂ðx0; t0ÞjΨi

þ λ

3!
hΨjψ̂3ðx; tÞψ̂ðx0; t0ÞjΨi ¼ 0: ð2:8Þ

We would like to stress that Eqs. (2.6)–(2.8) are exact
and, if solved consistently, would provide a consistent
evolution of the one-point as well as higher-order corre-
lation functions. This is a direct consequence of the fact that
the decomposition (2.5) is exact, differently from the one
adopted in the semiclassical approximation. Obviously,
one needs to perform some kind of perturbative expansion
in order to proceed, the most natural one being the ℏ
expansion, i.e., a loop expansion.
Up to this point, the discussion has been very general;

we have not even specified the quantum state. The
analysis simplifies if the state in question has a macro-
scopic one-point function, i.e., limℏ→0Φ ≠ 0. In this
case, if one is interested in leading-order ℏ corrections
to the evolution of Φ, it suffices to solve Eq. (2.6)
without the last term. For this task, one would need
to solve the two-point function equation (2.8) at tree
level, that is, without the last two terms. Even at this
level, the actual procedure is nontrivial, as the solution
is a complicated function of the classical coupling λ.
However, it can be solved numerically for homogeneous
ΦðtÞ (with suitable initial conditions) to a desirable
order in coupling, as was done in Ref. [7]. More
generally, if we would like to know the evolution of
higher-order correlators, we need to know initial con-
ditions for all of them. The specification of state jΨi
corresponds precisely to this: the notion of the initial
conditions. We will see below how all this comes about
within the coherent state description of the system.
Let us conclude this section by pointing out that, when

one tackles the question of quantum evolution of a classical
field configuration of interest, it is usually attempted to
guess the initial conditions for the correlators. This is
equivalent to writing down the quantum state of the system
based on a one-point expectation value, which could lead to
misleading conclusions. It goes without saying that this
comment applies only to the case when the only input for
the quantum computation is taken to be the classical
properties of the system. There are cases when relevant
initial conditions are known for mode functions (i.e., for the
correlation functions) as well. The examples are the
systems initially prepared in thermal equilibrium with an
external medium; for instance, if one is interested in the
quantum evolution of a Bose-Einstein condensate which
was brought to zero temperature at some initial time, then
the initial state can be justifiably taken to be the vacuum of
the Bogoliubov modes.
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III. COHERENT STATE DESCRIPTION

The background-field method outlined in the previous
section, as powerful as it can be, requires an input in the
form of initial conditions for all the correlation functions in
order to find the evolution of the system fully. Moreover,
the choice of these conditions corresponding to a consistent
quantum state may be challenging. Not to mention that it
may be impractical for calculating certain quantum infor-
mation, i.e., the quantum entanglement generated as a result
of the evolution. These, in general, would require the
computation of high-order correlators or, alternatively, the
evolution of the state itself. The importance of under-
standing the latter has been underlined for various systems
in Refs. [11–16].
Therefore, it is important to take a step back and discuss

the procedure for constructing a state itself. The systems
possessing an approximate classical description are proven
to be adequately described in terms of coherent states.
Following Ref. [23], we construct the coherent state at
initial time t ¼ 0 out of the vacuum state of the interacting
quantum field theory at hand and the canonical degrees of
freedom as

jCi ¼ e−i
R

d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞjΩi; ð3:1Þ

with jΩi denoting the Hamiltonian eigenstate with the
lowest possible energy eigenvalue, ðϕ̂; π̂Þ satisfying canoni-
cal commutation relations, and ðϕcl; πclÞ being c-number
functions. The convenient property of this state is that it has
unit norm and satisfies the following to all orders in λ at the
initial moment of time t ¼ 0:

hCjϕ̂jCiðt ¼ 0Þ ¼ ϕclðxÞ; ð3:2Þ

hCjπ̂jCiðt ¼ 0Þ ¼ πclðxÞ: ð3:3Þ

These relations determine the initial conditions for the one-
point expectation values. Since the state has been formu-
lated in its entirety, we can fish out the initial conditions for
other correlators as well. For instance, we have the
following for the two-point functions:

hCjϕ̂ðx;0Þϕ̂ðy;0ÞjCi¼ϕclðxÞϕclðyÞþhΩjϕ̂ðx;0Þϕ̂ðy;0ÞjΩi;
ð3:4Þ

hCjπ̂ðx;0Þπ̂ðy;0ÞjCi ¼ πclðxÞπclðyÞþ hΩjπ̂ðx;0Þπ̂ðy;0ÞjΩi:
ð3:5Þ

In other words, if we were to define the fluctuation operator
as ψ̂ ≡ ϕ̂ − hCjϕ̂jCi, similar to the previous section, we
would find its initial two-point function to be given by the
vacuum correlator.

Instead of solving the coupled system of equations
outlined in the previous section as a consistent implemen-
tation of the background-field method, we stick with the
explicit representation of the quantum contribution to the
equation of the one-point function in terms of the coherent
state. We begin from Eq. (2.6) and take into account that the
last term starts to contribute only at ℏ2 order (i.e., at two
loops). We further rewrite the third term in parentheses in
terms of the undecomposed operator

ð−□þm2ÞΦðx; tÞ þ λ

3!
Φ3ðx; tÞ

þ λ

2
Φðx; tÞ½hCjϕ̂2ðx; tÞjCi − hCjϕ̂ðx; tÞjCi2�

þOðℏ2Þ ¼ 0; ð3:6Þ

with Φðx; tÞ≡ hCjϕ̂ðx; tÞjCi as before. Here, we have
borrowed a trick from the background-field method in
order to drop the manifestly two-loop order contribution.
The second term in square brackets is obviously Φ2;
however, we keep it in the given form to underline that
we will be evaluating the bracketed expression explicitly up
to a desired order in coupling constant. We would like to
stress that the only approximation made at this level is the
loop expansion, and Eq. (3.6) is exact at OðℏÞ. It is
important to keep in mind that when evaluating the
bracketed term we will encounter higher loop contributions
that would need to be dropped for consistency of the
computation.
Throughout this work, we will be focusing on the

idealized coherent state with ϕclðxÞ ¼ ϕ0 ¼ const and
πclðxÞ ¼ 0. The direct consequence of this homogeneity
and the translation invariance of the Hamiltonian is the
homogeneity of the one-point expectation values, which
will serve as a simplifying factor; e.g., ΦðtÞ≡ hCjϕ̂jCi
remains homogeneous at all times for homogeneous
coherent states.
The direct evaluation of the one-point expectation value

ΦðtÞ involves two types of contributions: one-particle
irreducible (1PI) and reducible ones. The first are encoded
in the diagrams in Fig. 1, while the latter may be understood
as an irreducible diagram where some wiggled lines are
replaced by propagators connecting irreducible subdia-
grams. One of the important points we would like to
emphasize is that the utilization of Eq. (3.6) resums the
reducible contributions intoΦ. This is a direct consequence
of the fact that the reducible contributions cancel within the
bracketed expression. Therefore, if one reads the wiggled
lines in Fig. 1 as ΦðtÞ up to a certain necessary order in
coupling [and not as the free solutionΦ0ðtÞ ¼ ϕ0 cosðmtÞ],
reducible diagrams are automatically taken into account
and may be dropped in the calculation. This is carefully
shown in Appendix A, and we redirect the reader there for
more technical details on this point. Finally, it appears as if
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1PI terms could be resummed, too, into a loop of the
propagator with a shifted mass (although a time-dependent
one). The caveat impeding such a simplification will be
discussed at the end of this section.
Now, by direct evaluation of the expectation values up to

the order of λ4, Eq. (3.6) can be brought to the following
form:

ð∂2
t þm2

phÞΦðtÞ þ λ

3!
Φ3ðtÞ ¼ λ2

2
ΦðtÞ

Z
t

0

dt1Φ2ðt1ÞS1ðt; t1Þ

−
λ3

2
ΦðtÞ

Z
t

0

dt1

Z
t1

0

dt2Φ2ðt1ÞΦ2ðt2ÞS2ðt; t1; t2Þ

þ λ4

8
ΦðtÞ

Z
t

0

dt1

Z
t1

0

dt2

Z
t2

0

dt3Φ2ðt1ÞΦ2ðt2ÞΦ2ðt3Þ

× S3ðt; t1; t2; t3Þ; ð3:7Þ
where

S1ðt; t1Þ ¼
Z

d3p
ð2πÞ3ð2EpÞ2

sinð2Epðt − t1ÞÞ; ð3:8Þ

S2ðt; t1; t2Þ ¼
Z

d3p
ð2πÞ3ð2EpÞ3

ðcos ð2Epðt1 − t2ÞÞ

− cos ð2Epðt − t1ÞÞÞ; ð3:9Þ

S3ðt; t1; t2; t3Þ ¼
Z

d3p
ð2πÞ3ð2EpÞ4

ðsin ð2Epðt − t3ÞÞ

− sin ð2Epðt1 − t3ÞÞ
þ ðsin ð2Epðt − t1ÞÞ cos ð2Epðt2 − t3ÞÞÞ:

ð3:10Þ
The procedure to evaluate hCjϕjCi and hCjϕ2jCi is shown
in Appendix A. Here, we dropped the gradient due to the
homogeneity of the one-point function. We have also
performed the mass renormalization, removing one of
the manifest divergencies, by

m2
ph ≡m2 þ λ

2
hϕ̂2i: ð3:11Þ

The remaining divergence resides in the first term on
the right-hand side in Eq. (3.7), which can be taken care
of by the coupling renormalization in analogy with

Ref. [23]. Namely, the UV divergence can be isolated
by performing time integration by parts which can be
subsequently absorbed by the third term on the left-hand
side via coupling renormalization:

λph ≡ λ − 3λ2
Z

d3p
ð2πÞ3ð2EpÞ3

: ð3:12Þ

As one should have expected, the adopted renormaliza-
tion prescription is identical to its S-matrix counterpart.
However, once condition (3.12) is imposed in Eq. (3.7), a
time-dependent divergence is generated. This is known in
the literature as an “initial-time singularity” [9], because it
diverges only for t ¼ 0. Although it is singular at the level
of the equation of motion, it gives a regular contribution to
the one-point function upon integration. The issue of
initial-time singularities based on the choice of the initial
state is discussed in Sec. VI.
Notice that we can simply substitute the classical

counterpart of Φ in terms appearing on the right-hand
side in Eq. (3.7), as they are manifestly quantum due to
loop integrals. Working at the level of the equation of
motion, rather than computing the one-point expectation
value, leads to a much more straightforward calculation:
Evaluating the difference in Eq. (3.6) requires studying the
one-point and two-point functions to a lower order in λ than
the one required for a direct computation of the one-point
expectation value, as shown in Appendix A. In other words,
we trade an explicit calculation of the one-point function up
to λ4 with an analogous calculation of the one-point and
two-point functions up to λ3. Therefore, one less time
integral is involved in the terms appearing in the equation of
motion as compared to the one-point expectation value.
The perturbative solution to Eq. (3.7) can be obtained

iteratively in λ, resulting in a generalization of the result of
Ref. [23] to include up to the order of λ4 corrections. The
result can be found in Appendix A, together with a
complementary and direct derivation. As is well known,
a blatant perturbative analysis leads to (spurious) secular
instabilities in nonlinear systems [22], and subtle hand-
ling is required to extract physical trends. This can be
achieved by mixing different orders in a way that removes
unphysical behavior. Namely, instead of approximatingΦ’s
appearing in the interaction terms of Eq. (3.7) by its
perturbative counterpart evaluated to a minimal required
order, we will treat them fully as an unknown function and

FIG. 1. The irreducible diagrams that contribute to the one-point expectation value of ϕ (indicated on the lhs as the full circle), up to λ4.
Here, the box stands for action variation δS=δϕjϕ¼ΦðtÞ and the wiggled lines correspond to ΦðtÞ insertions. The vertices are clockwise
time ordered. The second (third) term on the rhs is divergent and is responsible for mass (coupling) renormalization.
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solve the equation for it numerically. The outcome of this
computation will be presented in the next section, followed
by a physical discussion.
We would like to conclude this section by touching

upon the fact that the structure of the diagrams in Fig. 1
resembles a geometric series that resums into a time-
dependent mass shift. For clarity, let us recall the one-loop
equation of motion for ΦðtÞ in the compact form of the
previous section:

ð∂2
t þm2ÞΦðtÞ þ λ

3!
Φ3 ¼ −

λ

2
hCjψ̂2ðx; tÞjCiΦclðtÞ:

ð3:13Þ
Here, Φcl stands for the solution to classical equations of
motion. Notice that the right-hand side in Eq. (3.13) is
manifestly quantum and vanishes in the classical limit. Its
evaluation at one loop requires the knowledge of the tree-
level dynamics of ψ̂ ≡ hCjϕ̂jCi −ΦðtÞ, which is readily
given by

�
−□þm2 þ λ

2
Φ2

clðtÞ
�
ψ̂ðx; tÞ ¼ 0: ð3:14Þ

Let us reiterate that we have assumed the homogeneity of
the one-point function, which is a direct consequence of the
translation invariance of the initial coherent state in ques-
tion and of the Hamiltonian. We solve Eq. (3.14) following
the standard procedure; see, e.g., Ref. [7]. One begins with
the mode decomposition

ψ̂ðxÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ω0

k

q ½akUkðtÞ þ a†−kU
�
−kðtÞ�eik⃗·x⃗;

ð3:15Þ

with initial conditions Ukð0Þ ¼ 0 and _Ukð0Þ ¼ −iω0
k. The

choice of ω0
k is dictated by the quantum state of interest,

which sets initial conditions for correlation functions.
Namely, for unsqueezed coherent states (3.1), the initial
condition for two-point function (3.4) corresponds to ω0

k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
at the tree level.

As a result of this decomposition, the relevant set of
equations governing the one-loop dynamics of Φ takes the
following form:

ð∂2
t þm2ÞΦðtÞ þ λ

3!
Φ3ðtÞ

¼ −
λ

2
ΦclðtÞ

Z
d3k
ð2πÞ3

1

2ω0
k

jUkðtÞj2; ð3:16Þ

ð∂2
t þ ω2

kÞUkðtÞ ¼ 0; ð3:17Þ

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 þ λ=2ΦclðtÞ2

p
. It is rather straightfor-

ward to show how the terms in Eq. (3.7) are recovered from

Eq. (3.16). Indeed, it is sufficient to expand Eq. (3.17)
perturbatively with respect to the coupling constant. Such a
formulation makes the diagrammatic structure of Fig. 1
transparent. Furthermore, in this form, the one-loop dynam-
ics of the one-point function can be obtained numerically
without even resorting to the expansion in λ, which is
precisely what was done in Ref. [26].

A. Analysis

In this subsection, Eq. (3.7) is evaluated numerically. Let
us stress that the one-loop dynamics encoded by the system
of Eqs. (3.16) and (3.17) has already been simulated in
Ref. [26] for λ=ð8π2Þ ¼ 0.1 and an initial value of the field
(in mass units) of Φð0Þ ¼ 5. Even though this choice of
parameters is still within the validity of the one-loop
expansion, in the aforementioned numerical analysis, an
initial strong damping takes place as the field, within five
oscillations, is halved in amplitude. In fact, we also checked
that, for their choice of initial conditions, the system is
within a parametrically resonating instability band.
Therefore, the exponentially fast growing modes lead to
an initial strong damping of the mean field dynamics, after
which the system starts depleting according to the well-
known scaling t−1=3 [27].
Since we would like to verify whether the perturbatively

expanded Eq. (3.7) and the full one-loop dynamics of
Eq. (3.16) have a similar leading behavior (at least for small
time), we focus on a region away from the parametrically
unstable modes, with collective coupling λΦ2ð0Þ close to
unity.2 We therefore focus on the case Φð0Þ ¼ 5 and
λ ¼ 0.1. Moreover, being on the lattice, we simulate all
the equations of motion in terms of unrenormalized
quantities, as a natural renormalization prescription is given
by the lattice finiteness. The UVand IR cutoffs were chosen
so that the former (latter) is much higher (lower) than the
physical frequencies of the system. Numerical simulation
of Eq. (3.7) is shown in Fig. 2.3 As can be seen, no
qualitative deviations are seen between the classical non-
linear dynamics and the perturbed quantum one up toOðλ3Þ
(small deviations are not visible due to the plot resolution).
The situation is dramatically different at the order of λ4,
which is precisely the order at which 4 → 2 (four con-
stituent quanta into two fluctuations; cf. Fig. 3) annihilation
channel opens up. The mean field dissipates as t−1=3 as seen
in Fig. 2. Such a scaling is well known given the full

2The coupling chosen by Ref. [26] invalidates the perturbative
λ expansion in Eq. (3.7).

3Each higher λ order in Eq. (3.7) involves a new time
integration, therefore undermining both the speed of the simu-
lation as well as its rate of convergence. To obviate the problem
we evaluated the integrals of (3.7) via Monte Carlo with Sobol
quasirandom sequences. Indeed, more advanced algorithms such
as VEGAS [28] could easily improve the convergence of the
simulation, but for our current purpose, and result, the above-
mentioned method proved sufficient.
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one-loop equation (3.16) [27]. Interestingly, we showed here
that it is recovered by simply including terms of high enough
order in coupling λ. Indeed, we verified that the dynamics
obtained perturbatively in coupling and the one obtained
from the full one-loop analysis overlap for the timescale
shown in Fig. 2.4 By no means is the overlap between two
expansions trivial. In fact, for the parameters at hand, one
should have naively expected the significance of semi-
classical nonlinear corrections not accounted for by our
Oðλ4;ℏÞ computation. However, it seems that higher-order
channels describing the annihilation of more than four
constituents are dynamically negligible. Such contributions
are, in fact, accounted for within full one-loop treatment.

IV. QUANTUM DEPLETION

In this section, we would like to analogize the semi-
classical dynamics of the coherent state, laid out above, to
the S-matrix description of quantum depletion of classical
systems [11–16,19]. The coherent state we have focused on
corresponds to the homogeneous initial field displacement

ϕ0. Classically, such a field configuration would result in
anharmonic oscillations, with characteristic frequency
depending on ϕ0. For small amplitudes, i.e., λϕ2

0 ≪ m2,
the classical oscillation takes place with frequency m and
nonlinearities play an insignificant role in the dynamics for
an extended period of time. However, the small correction
to the oscillation frequency δω ∼ λϕ2

0=m leads to the
cumulative offset of the phase relative to the noninteracting
case, which becomes significant over the classical time-
scale tcl ∼ δω−1. When necessary, one can correct this
offset by shifting the phase of the free solution, extending
the consistency for another tcl. Moreover, due to periodic-
ity, the departure in question is obviously a transient effect.
For large amplitudes, on the other hand, the characteristic
frequency becomes of the order of

ffiffiffi
λ

p
ϕ0. In the latter case,

the S-matrix analysis is complicated by the fact that the
coherent state at hand cannot be viewed as a condensate of
on-shell particles; instead, one should revisit the notion of
particle and consider them to be significantly off shell with
effective mass set by the characteristic classical frequency.
In the former case, on the other hand, one can proceed to
analyze the quantum dynamics as the S-matrix process for
the condensate of on-shell particles, due to the fact that [16]

lim
ℏ→0

ΦðtÞ ¼ hCjϕ̂jCiðtÞ ≃ ϕ0 cosðmtÞ; for λϕ2
0 ≪ m2

ð4:1Þ

0 20 40 60 80

–4

–2

0

2

4

FIG. 2. Simulations of Eq. (3.7) including differentOðλÞ terms. The green line corresponds to the classical solution of the equation of
motion while the black line to the one-point function up to λ3 and ℏ corrections. No qualitative deviations are seen between those two
lines. A completely different behavior is obtained including the λ4 terms in the one-point function (red line). At this order, the 4 → 2

annihilation channel of constituent quanta opens up and the condensate starts depleting. The blue line represents the scaling t−1=3 usually
obtained in the literature from the loop analysis: As we may see, this matches the scaling of depletion obtained from the λ4 perturbative
analysis.

4For longer timescales, the memory integrals appearing in
Eq. (3.7) are no longer numerically reliable, and, therefore, no
statement can be made regarding the late time behavior. After a
certain time, new diagrams become relevant for the dynamics
(e.g., the ones responsible for rescattering of excitations and
thermalization [22]).
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(keeping in mind the above-mentioned cumulative phase
shift).
Notice that, since we have been working with infinite

homogeneity, the regulating volume must be taken to be
larger than any other length scale in the problem. Therefore,
we are dealing with a state of a macroscopic number of
particles, populated by zero-momentum particles with
number density n ∼mϕ2

0. Denoting the total particle
number by N, one can study the S matrix with a coherent
in-state jNi which has N particles on average.
Obviously, there are various quantum channels for the

evolution of the system. The most evident ones are the
particle number changing processes that lead to the gradual
depletion of the condensate, due to the absence of the
symmetry protecting against it. Within the theory at hand,
the simplest process that leads to the deterioration of the
condensate corresponds to 4 → 2 annihilation of the
constituents and is depicted in Fig. 3. The rate of depletion
through this channel in unit volume is given by [16]

Γ
V
∼
�
λ
n
m3

�
4

m4; ð4:2Þ

which is a leading-order estimate in the limit of large
occupation number. The quantity appearing in parentheses
is the collective coupling, determined as the multiple of the
quantum coupling and the occupation number within the
volume of the order of m−3. It is intrinsically a classical
quantity that sets the strength of classical nonlinearities.
In other words, it would be independent of ℏ if we were to
reintroduce it explicitly [16]. Using Eq. (4.2), one can
readily obtain the timescale after which an order one
fraction of the condensate is expected to be depleted
[16] (purely through 4 → 2):

t−1dep ∼ λ

�
λ
n
m3

�
3

m: ð4:3Þ

This is precisely the effect captured by the gradual decline
in the amplitude of oscillation for the one-point function,
depicted in Fig. 2. To convince oneself in this equivalence,

it suffices to notice that the λ4 term of Eq. (3.7), which is
responsible for the decay, contains the required number of
ϕ0’s for reproducing Eq. (4.2).
Let us reiterate that the semiclassical approximation

adopted throughout this work thus far is reliable as long
as the depletion is negligible, i.e., for t ≪ tdep. The extra-
polation of the dynamics beyond this timescale requires
inclusion of higher-order loop effects. As long as we are
dealing with leading-order quantum corrections to the
dynamics, our analysis demonstrates that the elementary
S-matrix process responsible for the decline of the one-
point function is the 4 → 2 annihilation. As far as the
evolution of the state is concerned, on the other hand, one
might expect that 2 → 2 rescattering of constituents might
also lead to the nontrivial dynamics [16]. There, it was
argued that, even though such a channel is kinematically
prohibited for on-shell particles, it may still proceed due to
inevitable off-shellness of interacting degrees of freedom.
What we have demonstrated in this work is that this effect
does not show up in the dynamics of hCjϕ̂jCi.
There are, obviously, multiparticle annihilation proc-

esses contributing to the depletion as well; e.g., one could
have δN > 4 particles out of total N annihilating into few
quanta. It is straightforward to show that the rate of such
processes involves higher powers of ½λn=m3� compared to
Eq. (4.2). Consequently, even though for small collective
couplings the main contributor to the depletion is naturally
expected to be the 4 → 2 process, for order one collective
couplings (and greater) one might naively expect other
multiparticle channels to become equally efficient if not
dominant. However, as is demonstrated by our numerical
analysis from the previous section, which was carried out
for ½λn=m3� ∼ 1, the full one-loop dynamics is successfully
captured by Eq. (3.7), which terminates at λ4 order and,
thus, can account only for the 4 → 2 channel. It was
pointed out to us by Dvali and Eisemann that there is an
S-matrix argument behind this suppression of multiparticle
channels [29,30].

V. BEYOND ONE LOOP

An important point we would like to discuss further
concerns the choice of the vacuum, around which the
coherent state is constructed. The observation was made in
Ref. [23] that, for the purposes of one-loop computation
and to λ2 order in semiclassical nonlinearities [i.e., to
Oðℏ; λ2Þ], the vacuum could have been taken to be of the
free theory without altering results. In other words, the
results were insensitive to the replacement jΩi → j0i in
Eq. (3.1). Although it is expected to be legitimate for
asymptotic coherent states, the equivalence was counter-
intuitive for a physical coherent state constructed at a finite
time and was believed to be an artifact of the analyzed
perturbative order.
In this work, we have extended the analysis to

include higher-order semiclassical nonlinearities and found

FIG. 3. Here, the tree-level Feynman diagram associated to the
4 → 2 channel is represented. This is the main S-matrix process
that leads to the depletion of the condensate. For largeN, the final
state is well approximated by its label (neglecting entanglement).
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jΩi → j0i to be inconsequential at one loop. We have
further compared the two cases including the leading
two-loop corrections that are Oðℏ2; λ3Þ. As a result of
the tedious but straightforward computation, we found the
results to be identical as long as the construction around the
free vacuum is handled in analogy with asymptotic states of
the S-matrix formalism. Namely, the one-point function
hC0jϕ̂jC0iðtÞ for

jC0i ¼ e−i
R

d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞj0phi ð5:1Þ

matches the outcome for Eq. (3.1), with j0phi being the
vacuum of the free Hamiltonian albeit with renormalized
mass. The two-loop mass renormalization that renders the
results finite for Eq. (3.1) as well as Eq. (5.1) is given by

m2
ph ¼ m2 þ

�
λ

2
−
λ2

2

Z
d3p

ð2πÞ3ð2EpÞ3
�
hϕ̂2i

þ λ2

3

Z
d3pd3q

ð2πÞ6ð8EpEqEpþqÞ
1

ðEp þ Eq þ EpþqÞ
:

ð5:2Þ

It is straightforward to see that this expression represent a
standard subtraction (cf. Ref. [31]).
Similar to what happens for coupling renormalization at

one loop, the two-loop mass renormalization leaves a
residual term which, at the level of the equation of motion,
is divergent for t ¼ 0, although the solution for the
one-point expectation value remains finite. The issues
concerning the initial-time singularity are discussed in
the following section.

VI. INITIAL-TIME SINGULARITY

The appearance of initial-time singularities is usually
perceived as a pathology of initial conditions for the
fluctuation field. In the literature, these types of singular-
ities have been attributed to the absence of the appropriate
counterterms at the initial-time boundary and which can be
introduced by the adjustment of the state [9,10]. As long as
we do not think of the state of the system in its entirety, this
indeed seems to be a perfectly reasonable guiding principle
for choosing initial vacua for which no singularities are
encountered at any order in perturbation theory. It was
demonstrated in Ref. [23] that this requirement would
indicate the inconsistency of unsqueezed coherent states
(3.1) within interacting quantum field theories, unless
another resolution of this puzzling behavior is found. In
this work, we would like to take a stance aligned with
Ref. [23] and discuss what could possibly provide such an
alternative outcome. Namely, considering the elegance of
the construction of these states and the success in capturing
expected aspects of the dynamics, we would like to
entertain the idea that the initial-time singularity is simply

an artifact of the perturbative expansion. The obvious
motivation for such reasoning is to avoid the premature
dismissal of coherent states as members of the physical
Hilbert space. This section is devoted to outlining the
essential properties of this initial-time singularity.
As shown in Ref. [23], the one-point function in the

coherent state has the following undesirable one-loop
behavior at the initial time:

lim
t→0

ΦðtÞ ⊃ λ2ϕ3
0

64π2
t2 · lnðmtÞ: ð6:1Þ

Although by itself it has a well-defined t → 0 limit, its
second time derivative (i.e., field acceleration) has a
logarithmic divergence. We have extended the one-loop
analysis to higher orders in λ and have established that
there are no additional one-loop contributions with similar
peculiar initial-time behavior. We have also computed the
leading-order two-loop contribution to this singularity. The
results can be conveniently summarized in the form of
the equation of motion for the one-point function:

ð∂2
t þm2

phÞΦðtÞ þ λph
3!

Φ3ðtÞ þ � � �

−
λ2ph
2

ΦðtÞϕ2
0

Z
d3p

ð2πÞ3ð2EpÞ3
cosð2EptÞ

−
λ2

3
ϕ0

Z
d3pd3q

ð2πÞ6ð8EpEqEpþqÞ
cos ½ðEp þ Eq þ EpþqÞt�

Ep þ Eq þ Epþq

þOðℏ2; λ3Þ ¼ 0; ð6:2Þ

where the ellipsis stands for manifestly finite terms (includ-
ing at the initial time) and we have renormalized the
parameters where relevant. The last two terms are finite
everywhere except at t ¼ 0, at which moment they diverge,
implying the divergence of ∂2

tΦðt ¼ 0Þ. An interesting
point, however, is that ΦðtÞ itself is regular everywhere
including t ¼ 0.
For further clarity, let us evaluate Eq. (6.2) at the initial

time (since finite quantum corrections depicted by the
ellipsis vanish)

∂2
tΦðt ¼ 0Þ þm2

phϕ0 þ
λph
3!

ϕ3
0ðtÞ −

λ2ph
2

ϕ3
0

Z
d3p

ð2πÞ3ð2EpÞ3

−
λ2

3
ϕ0

Z
d3pd3q

ð2πÞ68EpEqEpþqðEp þ Eq þ EpþqÞ
þOðℏ2; λ3Þ ¼ 0: ð6:3Þ

It is straightforward to notice that the last two terms are
undoing the coupling renormalization and the sunrise
contribution to the two-loop mass renormalization. This
implies, for instance, that if the bare coupling is truly
infinite, then the initial field acceleration is also infinite.
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Since we know for a fact that the bare coupling constant is
infinite at any given order in perturbation theory, the only
possibility for the coherent state in question to avoid
∂2
tΦðt ¼ 0Þ ¼ ∞ would be if the bare coupling comes

out finite after resumming all infinite contributions. A
similar argument should apply to some of the divergent
contributions to the mass as well.
Interestingly, evaluation of the expectation value of

Heisenberg’s equation, even for a generic coherent state
(3.1), directly at the initial time yields

∂2
tΦðt ¼ 0Þ − Δϕcl þ ϕcl

�
m2 þ λZ

2
hΩjϕ̂2jΩi

�

þ λZ
3!

ϕ3
cl ¼ 0; ð6:4Þ

keeping in mind that ϕclðxÞ is simply a configuration that
determines the coherent state and sets the initial one-point
function Φðt ¼ 0Þ ¼ ϕcl. Here, we have introduced the
wave-function normalization Z, as it is nontrivial at two
loops. It is straightforward to fish out all the counter-
terms the coherent state is missing at the initial time
from Eq. (6.4).
Taking into account the comment we have made above

about the initial-time singularities being absent from the Φ
itself while present in its second time derivative, one could
wonder whether it poses a puzzle at all. Even if one were to
prefer its avoidance, one could simply start counting time
not from the moment when the state is (3.1) but its evolved
version by an infinitesimal time interval ϵ:

jCiniti ¼ e−iHϵe−i
R

d3xðϕclðxÞπ̂ðxÞ−πclðxÞϕ̂ðxÞÞjΩi: ð6:5Þ

However, the important point we would like to make is
that if certain perturbative infinities are not resummed into
finite results, then the problem with Eq. (3.1) cannot
possibly be localized at the initial time. To elucidate the
shortcomings, let us go back to the Schrödinger picture for
a moment. As a result of the time evolution, the coherent
state (3.1) begins to lose coherence5 gradually. Moreover,
the resulting state should have a similar (not precisely the
same) lack of coherence as the state resulting from evolving
Eq. (3.1) backward in time. The latter, on the other hand,
should possess pathologies way before reaching t ¼ 0,
since a well-defined state in renormalizable theory should
not be able to evolve into a pathological one. Because of
this, one might wonder if there is indeed a pathology that is
present in Eq. (3.1) at all times, irrespective of whether it is
rewinded forward or backward, that does not show up in the
late time dynamics of correlation functions. Indeed, the
expectation value of the Hamiltonian reduces to

hCjĤjCi¼
Z

d3xZ

�
1

2
_ϕ2
clþ

1

2
ð∇⃗ϕclÞ2

þ1

2

�
m2þλZ

2
hΩjϕ̂2jΩi

�
ϕ2
clþ

λZ
4!

ϕ4
cl

�
; ð6:6Þ

where we have rewritten πcl in terms of the initial field

velocity via πcl=Z ¼ hCj _̂ϕjCiðt ¼ 0Þ≡ _ϕcl; see Ref. [23]
for the derivation. Being a conserved quantity, the pathol-
ogies exhibited by Eq. (6.6) are possessed by Eq. (6.5) as
well. Hence, certain perturbative divergencies must resum
into finite results6; otherwise, one would have to accept that
the state (6.5) is not a member of the physical Hilbert space,
for any ϵ. Examination of Eqs. (6.4) and (6.6) lets us
conclude that the consistency of the coherent state (3.1)
requires the finiteness of λ, Z, and fm2 þ λZ=2hΩjϕ̂2jΩig.
Notice that the latter contains only bubbly divergencies and
is missing some contributions that appear in a standard
perturbative mass renormalization; e.g., at two loops, it is
missing the sunrise contribution.

VII. OUTLOOK

We have analyzed certain dynamical aspects of coherent
states for a massive scalar field with quartic self-interaction.
It has been long known that, within the theory at hand, the
semiclassical backreaction from quantum fluctuations on
the background field itself leads to the gradual deteriora-
tion of the amplitude of anharmonic oscillations [26]. We
have reexamined the process within the coherent state
description of the homogeneous condensate and have
demonstrated that its depletion is due to annihilation of
constituents into relativistic quanta, by linking our findings
with the results of the S-matrix analysis of Refs. [16,19].
In particular, the effect has been established to be domi-
nated by the 4 → 2 channel at least for moderate collective
couplings. The background-field method has proven
extremely useful in capturing physical effects. It provides
a way of analyzing perturbative dynamics that avoids
spurious secular instabilities that come hand in hand
with a direct perturbative evaluation of correlation func-
tions [23].
The advantage of knowing a complete form of a quantum

state is in the possibility of evaluating any correlation
function to any given order in loop expansion. However,
certain questions require dynamics of only a limited
number of correlation functions. The lack of necessity of
the entire quantum state is one of the main virtues of this
approach; however, such a piecewise treatment of the state
may obscure certain important aspects. For instance, when
one is interested in the leading-order quantum corrections
to the dynamics of the field configuration, it suffices to

5Here, we mean coherence in a physical sense that is connected
to the classicality of the state. It, of course, remains to be the
coherent state in terms of the general mathematical definition.

6We thank Otari Sakhelashvili for valuable discussions around
this point, through ongoing work on a related subject [32].
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isolate the dynamics of the one- and two-point functions,
yielding a one-loop corrected background field and the
tree-level dynamics of the two-point function, which, in
turn, is equivalent to finding the dynamics of the fluctua-
tions around the classical background. It has been long
known that certain initial conditions for the semiclassical
fluctuations lead to the perturbative backreaction on the
equation of the background field itself that is singular at
the initial time. Initial states exhibiting such behavior are
immediately dismissed within the common lore. Building
on the work of Ref. [23], we have demonstrated here that
the simplest coherent states constructed at a finite instance
of time out of well-defined ingredients possess such an
unpleasant singularity. Consequently, either these are
artifacts of the perturbation theory or the nonsqueezed
coherent states of the form (3.1) must be deemed unphys-
ical. Our computation illustrates the advantage of thinking
about the state of the system in its entirety as we are able to
derive certain quantities, such as the energy of the system
and the initial field acceleration, exactly. The correspond-
ing results are given in the closed form without invoking
loop expansion. For example, we have demonstrated that
the energy of the coherent state, that corresponds to the
localized field configuration, depends on the bare coupling
constant λ and the field normalization constant Z. This
dependence is such that the finiteness of the energy requires
the finiteness of these constants. However, as is well known
from the analysis of the scattering amplitudes, e.g., the bare
coupling constant has infinite contributions at each pertur-
bative order. Unless these perturbative divergencies resum
to a finite value, the nonsqueezed coherent states consid-
ered in this work must be discarded as unphysical. On the
other hand, if such a resummation does take place, then it
would ameliorate the initial-time singularity for the field
acceleration, along with ensuring finiteness of the energy.
One may wonder what the depletion of the background

field, defined as the expectation value of the field in the
coherent state, implies about the classicality of the system.
The significant deviation from the coherence, as an
increasing number of energetic particles is being produced,
definitely indicates that its dynamics is no longer semi-
classical. The particle production can be treated as the
squeezing of the coherent state to some extent. However, it
becomes more nontrivial than that the moment significant
energy budget is outsourced from the one-point function to
higher-order correlators. We have analyzed the dynamics of
only one- and two-point functions, providing information
about the state merely at the Gaussian level. In order to
capture effects that go beyond the squeezing of the coherent
state, one should analyze higher-order correlators. The

impact of the corresponding dynamics on the one-point
function would be captured by incorporating higher-order
loop corrections. One may wonder if the state itself may
maintain classicality despite such a loss of coherence.
Indeed, if a coherent state were to evolve into, say, a
number eigenstate with most of the quanta on a level with
macroscopic occupancy, then the state itself would be
regarded as being close to classical, even though the
trajectory that led us there would have been fully quantum.
In other words, even if coherence is completely gone, it
does not necessarily mean that the state cannot have
classical features.
Let us conclude by pointing out that the considered

coherent states are parametrized by classical information,
i.e., by the initial field configuration ϕclðxÞ and πclðxÞ. In
reality, the state of a system depends on the formation
history and may include additional quantum imprints. An
example could be the squeezed coherent state, which has
the same initial one-point functions as the simplest states
considered here but has different initial conditions for two-
point functions. Obviously, such modifications would alter
the dynamics of not only the two-point correlation function
but the background field as well. In other words, the
depletion process we have discussed through particle
production would depend on the origin of the system to
some extent. These kind of considerations have been shown
to be of utmost importance for black holes [33–36].
Another important aspect that has been stressed upon in
a series of papers [11–15] concerns the nonthermal quan-
tum corrections to the black hole spectrum. The point is that
the quantum depletion of the background Φ in Eq. (2.8)
affects the spectrum of fluctuations in a nontrivial way, not
to mention the contribution from the last two terms which
may affect the dynamics at the same order in ℏ as the
background depletion. The rigorous application of this
point to gravitational systems is technically challenging and
will be attempted elsewhere.
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APPENDIX A: ONE-POINT FUNCTION UP TO λ4

We begin this Appendix by highlighting the steps needed
for evaluating the expectation value of a general operator
O½ϕ̂� over a coherent state jCi, using the tools adopted in
Ref. [23]. In particular, the quantity hCjO½ϕ̂�jCi can be
converted into an out-of-time-ordered vacuum expectation
value in the interaction picture:

hCjO½ϕ̂�jCi ¼ lim
T→∞

h0jUIðT; 0Þeiϕ0

R
d3x0π̂Ið0;x0ÞUIð0; tÞO½ϕ̂Iðt; xÞ�UIðt; 0Þe−iϕ0

R
d3x00π̂Ið0;x00ÞUIð0;−TÞj0i

h0jUIðT;−TÞj0i
: ðA1Þ
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The field operator ϕ̂Iðt; xÞ satisfies the usual ladder
expansion

ϕ̂Iðt; xÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p ðâpeixμpμ þ â†pe−ixμp
μÞjt0¼x−x0 ;

ðA2Þ
where t0 is a fiducial moment in time where the expansion
has been defined with p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. Moreover, since

all operators on the right-hand side in Eq. (A1) are in the
interaction picture, we introduce the following compact
notation:

ϕ̂Iðt; xÞ≡ ϕx; ϕ̂Iðti; ziÞ≡ ϕi: ðA3Þ
It follows from the Baker-Campbell-Hausdorff identity

that the operators enclosed by the two exponentials
introduced by the presence of a coherent state reduce to

eiϕ0

R
d3x0π̂Ið0;x0ÞO½ϕx�e−iϕ0

R
d3x00π̂Ið0;x00Þ ¼ O½Φ0ðtÞ þ ϕx�;

ðA4Þ

whereΦ0ðtÞ ¼ ϕ0 cosmt is the classical solution to the free
equation of motion; see Ref. [23]. Therefore, the inner part
of Eq. (A1) may be calculated dropping the exponents and
shifting the fields of the inner operators by the solution of
the free equation of motion.
As an explicit example, we apply Eq. (A1) to cal-

culate the one-point function up to λ3 corrections. The
generalization to other correlators is straightforward.
Concerning the theory at hand, operators UIðT; 0Þ and
UIð0;−TÞ that connect the noninteracting vacuum to the
true vacuum may be dropped, since they will not
contribute to the one-point function at one loop. This
simplifies Eq. (A5) to

hCjϕ̂jCi ¼ h0jeiϕ0

R
d3x0π̂Ið0;x0ÞUIð0; tÞϕxUIðt; 0Þe−iϕ0

R
d3x0π̂Ið0;x0Þj0i þOðℏ2Þ: ðA5Þ

In other words, at one loop, the interacting vacuum of the theory may be identified with its asymptotic vacuum. Now, we
expand the evolution operators in fUIð0; tÞϕxUIðt; 0Þg up to the third order in λ and apply the identity (A4) that removes the
exponentials and shifts all ϕ̂ fields by Φ0ðtÞ. Once the contractions are performed and the propagators are evaluated in
momentum space, the final expression for the one-loop contributions to hCjϕ̂jCi up to λ3 is found. We redirect the reader to
Ref. [23] for a detailed evaluation of those steps we just described, up to λ2. The generalization to λ3 corrections is
straightforward (even though more tedious).
The λ and λ2 contributions are

hCjϕ̂jCiλþλ2 ¼ Φcl
λ2
ðtÞ þ λ2

2

Z
d3p

ð2πÞ3ð2EpÞ2
Φ0ðt1ÞΦ2

0ðt2Þ sin 2Epðt1 − t2Þ
sinðmðt − t1ÞÞ

m
; ðA6Þ

where Φcl
λ2
ðtÞ ¼ Φ0ðtÞ þΦ1ðtÞ þΦ2ðtÞ is the classical solution to the equation of motion up to λ2, with ΦnðtÞ denoting

OðλnÞ classical contributions, while the integral represents the first nontrivial quantum correction to the one-point function.
Even though it is manifestly divergent, that contribution can be made finite, imposing coupling renormalization.
Then we have λ3 terms, with the classical part

hCjϕjCicl
λ3
¼ λ3ϕ7

0

4!329m6
ðð1080m2t2 − 547Þ cosðmtÞ þ ð594 − 648m2t2Þ cosð3mtÞ

þ 24mt sinðmtÞð12m2t2 þ 88 cosð2mtÞ − 5 cosð4mtÞ − 25Þ − 48 cosð5mtÞ þ cosð7mtÞÞ; ðA7Þ

which matches the λ3 correction to the classical solution of the equation of motion for a scalar oscillator endowed by a
quartic potential, as expected. Finally, order ℏ quantum contributions at λ3 order are

−
λ3

2

Z
d3p

ð2πÞ3ð2EpÞ3
Z

t

0

dt1

Z
t1

0

dt2

Z
t2

0

dt3Φ0ðt1ÞΦ2
0ðt2ÞΦ2

0ðt3Þ
sinmðt − t1Þ

m

× ðcosð2Epðt2 − t3ÞÞ − cosð2Epðt1 − t3ÞÞÞ

þ λ2

2

Z
d3p

ð2EpÞ2ð2πÞ3
Z

t

0

dt1

Z
t1

0

dt2

�
ðΦ1ðt1ÞΦ2

0ðt2Þ þ 2Φ0ðt1ÞΦ0ðt2ÞΦ1ðt2ÞÞ sinð2Epðt1 − t2Þ

þ λ

2

Z
t2

0

dt3Φ2
0ðt1ÞΦ0ðt2ÞΦ2

0ðt3Þ sinð2Epðt2 − t3ÞÞ
sinmðt1 − t2Þ

m

�
sinmðt − t1Þ

m
: ðA8Þ
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It is interesting to see that the third line may be combined with the λ2 one-loop term of Eq. (A6), resulting in

λ2

2

Z
d3p

ð2EpÞ2ð2πÞ3
Z

t

0

dt1

Z
t1

0

dt2Φλðt1ÞΦ2
λðt2Þ sinð2Epðt1 − t2ÞÞ

sinmðt − t1Þ
m

; ðA9Þ

while the fourth line combines with all the classical terms
up to λ2 into

λ

3!

Z
t

0

dt1Φ3
λ2
ðt1Þ

sinðmðt − t1ÞÞ
m

: ðA10Þ

Here, Φλ and Φλ2 are the one-point expectation value
truncated at, respectively, the λ and λ2 order.
Therefore, Eq. (A9) could have been obtained from the

λ2 contribution replacing Φ0ðtÞ with the full classical
solution to the equation of motion. This behavior is a
consequence of the fact that two classes of one-loop
quantum corrections arise from the perturbative expansion
(A5). The first class, the irreducible terms, are contribu-
tions that cannot be resummed with previous order terms.
For example, the irreducible λ2 term is given by the integral
in Eq. (A6), while for λ3 we have the first two lines in
Eq. (A8). The second class of terms is given by reducible
contributions, which are terms which may be resummed
with the irreducible contributions appearing at the previous
orders, as shown for Eqs. (A9) and (A10). It is straightfor-
ward to see that the solution of Eq. (3.16) up to λ3 contains
both the reducible and irreducible λ3 contributions we have

found in this section. In particular, Eq. (A10) is the part of
the solution of Eq. (3.16) sourced by the cubic term of the
equation of motion, while Eq. (A9) is sourced by the
classical nonlinearities of the background insertions in
the λ2 and one-loop term.
Finally, let us comment on λ4 terms. According to the

statement given above, we may obtain the reducible λ4

contributions by correcting the condensate insertions in
Eq. (A10) from Φλ2ðt1Þ to Φλ3ðt1Þ [and in a similar way
in Eq. (A9)] and then expanding up to λ4 and ℏ. What we
are missing are the λ4 irreducible terms, which are
responsible for the depletion of the one-point function.
Diagrammatically, those contributions look like an on-shell
propagator entering a loop with four vertices. Therefore, we
may find them expanding Eq. (A5) up to λ4 and fishing out
contractions that look like

λ4

27
Φ0ðt1ÞΦ2

0ðt2ÞΦ2
0ðt3ÞΦ2

0ðt4Þhϕ2
z1ϕ

2
z2ϕ

2
z3ϕ

2
z4iþ �� � : ðA11Þ

If one collects those terms and expresses propagators in
momentum space, the λ4 irreducible contribution will
reduce to

λ4

8

Z
d3p

ð2πÞ3ð2EpÞ4
Z

t

0

dt1

Z
t1

0

dt2

Z
t2

0

dt3

Z
t3

0

dt4Φ0ðt1ÞΦ2
0ðt2ÞΦ2

0ðt3ÞΦ2
0ðt4Þð2 sin 2Epðt1 − t4Þ

− 2 sin 2Epðt2 − t4Þ þ sinð2Epðt1 − t2 þ t3 − t4Þ þ sinð2Epðt1 − t2 − t3 þ t4ÞÞÞ
sinðmðt − t1ÞÞ

m
; ðA12Þ

which matches the λ4 term obtained from solving the equation of motion (3.7).

APPENDIX B: TWO-LOOP MASS RENORMALIZATION

In Ref. [23], it was verified how the one-loop mass and coupling prescriptions commonly adopted in the S-matrix
formalism are the same ones regularizing the coherent state time evolution. In this Appendix, we check if this statement
holds at the two-loop order and, in particular, how the initial-time singularity arises at higher order in ℏ. In order to verify
these two points, let us study again the equation of motion for the one-point function. However, because we are not limiting
our analysis only to one-loop contributions, the full equation of motion must be considered, namely,

ð−□þm2ÞΦðx; tÞ þ λ

3!
hCjϕ̂3ðx; tÞjCi ¼ 0: ðB1Þ

After a straightforward calculation of hCjϕ̂3ðx; tÞjCi up to OðλÞ and two-loop terms, Eq. (B1) reduces to

ð−□þm2ÞΦðtÞ þ λ

3!
Φ3ðtÞ þ λ

2
hϕ2iΦðtÞ − λ2

2
hϕ2iΦðtÞ

Z
d3p

ð2πÞ3ð2EpÞ3

−
λϕ0

8m2
hϕ2i2mt sinm −

λ2

2
ΦðtÞ

Z
d3p

ð2πÞ3ð2EpÞ2
Z

t

0

dt1Φ2ðt1Þ sin 2Epðt1 − tÞ

þ λ2

3

Z
d3pd3q

ð2πÞ6ð8EpEqEpþqÞ
Z

t

0

Φðt1Þ sin½ðEp þ Eq þ EpþqÞðt − t1Þ� ¼ 0: ðB2Þ
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Using the result of the previous appendix, we replaced the free solution Φ0ðtÞ by the full solution ΦðtÞ.
Again, solving the two-loop equation of motion gives the same result obtained perturbatively in Ref. [23]. The divergent

parts of the sixth term could be reabsorbed by imposing the one-loop coupling renormalization, since the first two-loop
contribution to the coupling enters at the order of λ3.
Concerning the mass, the condition

m2
ph ¼ m2 þ

�
λ

2
−
λ2

2

Z
d3p

ð2πÞ3ð2EpÞ3
�
hϕ̂2i þ λ2

3

Z
d3pd3q

ð2πÞ6ð8EpEqEpþqÞ
1

ðEp þ Eq þ EpþqÞ
ðB3Þ

absorbs all the divergences. Inverted this relation, the expression for the bare mass in terms of physical quantities readily
follows:

m2 ¼ m2
ph −

�
λph
2

þ 3λ2ph
2

Z
d3p

ð2πÞ3ð2EpÞ3
�
hϕ̂2iph −

λ2

3

Z
d3pd3q

ð2πÞ6ð8EpEqEpþqÞ
1

ðEp þ Eq þ EpþqÞ
; ðB4Þ

where all the Ep factors have to be intended in terms of physical masses. It is straightforward to verify that these expressions
contain standard divergencies encountered in S-matrix computations (cf. Ref. [31]).
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