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We study self-interacting massive scalar field theory in static spacetimes with a bifurcate Killing horizon
and a wedge reflection. In this theory the Hartle-Hawking state is defined to have the N-point correlation
functions obtained by analytically continuing those in the Euclidean theory, whereas the double Kubo-
Martin-Schwinger (KMS) state is the pure state invariant under the Killing flow and the wedge reflection
which is regular on the bifurcate Killing horizon and reduces to the thermal state at the Hawking
temperature in each of the two static regions. We demonstrate in the Schwinger-Keldysh operator
formalism of perturbation theory the equivalence between the Hartle-Hawking state and the double KMS
state with the Hawking temperature, which was shown before by Jacobson in the path-integral framework.
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I. INTRODUCTION

In static spacetimes with a bifurcate Killing horizon and a
wedge reflection, the natural state for quantum fields in the
static region is a thermal equilibrium state at the Hawking
temperature. Important examples of these spacetimes are
Schwarzschild (i.e., eternal black hole), de Sitter, and
Minkowski spacetimes. This state was first described by
Hartle and Hawking [1] by computing the Feynman propa-
gator of a free scalar field in the Euclidean section of
Schwarzschild spacetime, and then analytically continuing
the result to the black-hole exterior region. The thermal
property of the Hartle-Hawking (HH) state follows from the
assumption that in the Euclidean section the imaginary
Killing time is periodic. The periodicity corresponding to
the Hawking temperature prevents the appearance of a
conical singularity on the Euclideanized bifurcate horizon.
In Minkowski spacetime, the HH state corresponds to the
Minkowski vacuum [2], and its thermal propertywith respect
to a boost Killing vector is directly related to the Unruh effect
[3]. The HH state in de Sitter spacetime is known as the
Euclidean (or Bunch-Davies) vacuum [4–6], and its thermal
property with respect to a de Sitter boost is manifested in the
Gibbons-Hawking effect [7]. The HH state in this spacetime
was shown to be the same as the vacuum state in the Poincaré
patch [8,9] for interacting scalar field theories, and its
infrared behavior was investigated in Refs. [10–13].
In the free-field case, Kay [14] proved that this state

exists on a certain algebra of observables localized on the
double-wedged region of the Kruskal-Szekeres extension
[15,16] of Schwarzschild spacetime. As noted earlier by
Israel [17], when seen as a state on that region, the HH state

is actually a pure state due to correlations between the two
wedges. Moreover, as shown by Kay and Wald [18], this
state can be extended across the horizon and defines a pure
state on the entire spacetime. More precisely, they proved
that the HH state, if it exists, is the unique state to be both
invariant under the action of the Killing field generating the
horizon and regular (i.e., to have the Hadamard form) on
and across the horizon.
For interacting fields, Gibbons and Perry [19] have

employed perturbation theory to extend the original argu-
ment of Hartle and Hawking, and pointed out that the
interacting Euclidean theory also defines a thermal field
theory on the black-hole exterior. Concrete realizations of
this claim were later provided via the path-integral for-
malism by Unruh and Weiss [20] in Minkowski spacetime
and by Barvinsky, Frolov and Zelnikov [21] in the case of a
black hole. Motivated by these discussions, and the
regularity results of Kay and Wald, Jacobson [22] proposed
that the HH state should define a good state even across the
bifurcate horizon, notwithstanding the Killing time coor-
dinate being not well defined there. He then showed that the
HH state is the double KMS state using the path-integral
formalism. Jacobson’s proposal has been proved to work in
a more rigorous framework by Sanders [23] in the case of
free fields only recently.
Perturbative analysis of the double KMS state leads

naturally to the Schwinger-Keldysh formalism [24,25],
often used in more general spacetimes [26]. In this paper
we demonstrate that theN-point correlation functions in the
double KMS state in static spacetime with a bifurcate
Killing horizon agrees with those in the HH state, i.e., that
they agree with those obtained by analytic continuation
from the Euclidean theory. We note that the double KMS
state in this spacetime has also been studied in axiomatic
field theory [27–29].
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The remainder of the paper is organized as follows.
In Sec. II we briefly discuss the geometry of the class of
spacetimes with a static bifurcate Killing horizon and a
wedge reflection considered in this paper. We also discuss
their complexification. We then discuss the properties of
double KMS states in general. In Sec. III we consider a
massive, self-interacting scalar field theory in these space-
times and show that the double (i.e., purified) KMS state at
the Hawking temperature with respect to the Killing vector
field generating the horizon is the HH state. We first review
the equivalence between the double KMS state and HH
state for the noninteracting case. Then, we demonstrate this
equivalence for the interacting scalar field with nonderiva-
tive self-interaction. To do so, we first explain how the
N-point correlation functions are obtained in the HH state
by analytic continuation of the Euclidean theory. Then we
show that the N-point correlation functions for the double
KMS state in the Schwinger-Keldysh operator formalism
are the same as those in the HH state. In Sec. IV we briefly
explain how the N-point functions are given perturbatively
in the HH state for Minkowski and de Sitter spacetimes.
We conclude in Sec. V with a summary and a discussion
of our results. We present some technical details in the
Appendixes. In Appendix A we discuss the free-theory
two-point function in the region in the future of the
bifurcate Killing horizon. In Appendix B we present some
details of the analytic continuation for the HH state. In
Appendix C we discuss the interaction picture with a time-
dependent Hamiltonian. Throughout this paper we employ
units such that kB ¼ ℏ ¼ c ¼ G ¼ 1 and adopt the sig-
nature −þþ � � � þ for the metric.

II. PRELIMINARIES

A. Static spacetime with a bifurcate Killing horizon

Let us recall that the Kruskal-Szekeres extension of
4-dimensional Schwarzschild spacetime has the following
metric (see, e.g., Ref. [30]):

gSchab ¼ 32M3

r
e−r=ð2MÞ½−ðdTÞaðdTÞb þ ðdXÞaðdXÞb�

þ r2ωab; ð2:1Þ

whereM is the black-hole mass and ωab is the metric on the
unit 2-sphere, S2. The variable r is implicitly defined in
terms of X and T as

r − 2M
2M

er=ð2MÞ ¼ X2 − T2: ð2:2Þ

Note that the function of r on the left-hand side is
monotonically increasing, which makes r a well-defined
function of X2 − T2. It is more common to use the variables
U ¼ T − X and V ¼ T þ X instead of T and X.

Motivated by this metric, we consider in this paper the
n-dimensional, globally hyperbolic spacetime ðM; gabÞ,
with the metric tensor

gab ¼ fðρ2; θÞ½−ðdTÞaðdTÞb þ ðdXÞaðdXÞb� þ sabðρ2; θÞ;
ð2:3Þ

where ρ2 ¼ X2 − T2 takes values in a real interval con-
taining an open neighborhood of 0 and fðρ2; θÞ is a positive
function. We assume that the hypersurfaces with constant T
are Cauchy surfaces. [For Schwarzschild spacetime, we
have ρ2 ∈ ð−1;∞Þ.] Here, θ represents all coordinate
variables other than T and X, and sab is a linear combi-
nation of ðdθiÞaðdθjÞb.
The vector

ξa ¼ κ½Xð∂TÞa þ Tð∂XÞa�; ð2:4Þ

with κ > 0, is a Killing vector because T and X appear in
the metric only through ρ2 ¼ X2 − T2 and because
ξa∇aρ

2 ¼ 0. The constant κ is chosen suitably for each
spacetime.1 An orbit of ξa has θ and X2 − T2 constant. The
hypersurfaces X − T ¼ 0 (denoted by hA in Fig. 1) and
X þ T ¼ 0 (denoted byhB in Fig. 1) are null hypersurfaces
with ξa as the normal vector. (Recall that a vector normal to
a null hypersurface is also tangent to it.) Thus, these
hypersurfaces are Killing horizons for ξa. These two
Killing horizons constitute a bifurcate Killing horizon [31].
The Killing vector ξa vanishes on the (n − 2)-

dimensional surface given by X ¼ T ¼ 0. This surface is
called the bifurcation surface and denoted by B in Fig. 1.
The bifurcate Killing horizon divides the spacetimeM into
four regions as follows (see Fig. 1):

FIG. 1. Spacetime with a bifurcate Killing horizon.

1For Schwarzschild spacetime it is chosen so that ξaξa → −1
at spacelike infinity. For de Sitter spacetime we choose
ξaξa ¼ −1 for a particular timelike geodesic.
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the right wedgeðRÞ∶ X > 0;−X < T < X;

the left wedgeðLÞ∶ X < 0; X < T < −X;

the future wedgeðF Þ∶ T > 0;−T < X < T;

the past wedgeðPÞ∶T < 0; T < X < −T: ð2:5Þ

The right and left wedges,R andL, are globally hyperbolic
on their own right, and the hypersurfaces at T ¼ 0 with
X > 0 and X < 0 are the Cauchy surfaces for R and L,
respectively, and denoted here by ΣR and ΣL.
The constant of proportionality κ in Eq. (2.4) can be

shown to be the surface gravity, which is defined on a
Killing horizon h as follows:

ξb∇bξ
ajh ¼ �κξajh; ð2:6Þ

with κ > 0. This equation can also be written as

∓ 1

2
∇aðξbξbÞjh ¼ κξajh; ð2:7Þ

by using the Killing equation. This equation can be used to
verify that the constant κ in Eq. (2.4) is indeed the surface
gravity of the bifurcate Killing horizon.
A form of the metric useful for the right and left wedges,

R ∪ L, can be given after the coordinate change

ðT;XÞ ¼
�ðρ sinhðκtÞ;ρ coshðκtÞÞ;ρ> 0; if ðT;XÞ∈R;

ð−ρ sinhðκtÞ;ρ coshðκtÞÞ;ρ< 0; if ðT;XÞ∈L:

ð2:8Þ

Thus, we find

gabjR∪L ¼ fðρ2; θÞ½−κ2ρ2ðdtÞaðdtÞb þ ðdρÞaðdρÞb�
þ sabðρ2; θÞ: ð2:9Þ

In these coordinates the Killing vector ξa becomes simply

ξa ¼
� ð∂tÞa in R;

−ð∂tÞa in L:
ð2:10Þ

The time variable t increases toward the future both in
the right and left wedges, and the Killing vector is time-
like in either wedge, future-directed in the right wedge
and past-directed in the left wedge. For 4-dimensional
Schwarzschild spacetime, this coordinate transformation
with κ ¼ 1=ð4MÞ and Eq. (2.2) gives the standard
Schwarzschild metric:

gSchab jR∪L ¼ −
�
1 −

2M
r

�
ðdtÞaðdtÞb þ

ðdrÞaðdrÞb
1 − 2M=r

þ r2ωab:

ð2:11Þ

The wedge reflection I, which is an isometry of
ðM; gabÞ, is defined by

I∶ ðT; XÞ ↦ ð−T;−XÞ; ð2:12Þ

or equivalently,

I∶ ðt; ρÞjR ↦ ð−t;−ρÞjL: ð2:13Þ

[We recall that T is given differently in terms of ρ and t on
the right and left wedges in Eq. (2.8).] It maps a point inR
to a point in L and vice versa. Note that the time ordering is
reversed under the map I.
The Euclidean section ME of the manifold M is

obtained by letting T ¼ iTE with TE ∈ R. The metric of
ME can be found from Eq. (2.3) as

gEab ¼ fðρ2; θÞ½ðdTEÞaðdTEÞb þ ðdXÞaðdXÞb� þ sabðρ2; θÞ;
ð2:14Þ

where ρ2 ≥ 0. This metric can also be given in terms of tE,
where t ¼ itE, and ρ ≥ 0 as

gEab ¼ fðρ2;θÞ½κ2ρ2ðdtEÞaðdtEÞbþðdρÞaðdρÞb�þ sabðρ2;θÞ:
ð2:15Þ

The coordinates ðTE; XÞ and ðtE; ρÞ cover the whole ofME,
and are related by

ðTE; XÞ ¼ ðρ sinðκtEÞ; ρ cosðκtEÞÞ: ð2:16Þ

Thus, we identify tE with period 2π=κ:

tE ∼ tE þ 2nπ=κ; n ∈ Z: ð2:17Þ

Note that the hypersurface TE ¼ 0 ofME can be identified
with ΣR ∪ B ∪ ΣL, which is the Cauchy surface T ¼ 0 of
the Lorentzian manifold M. Moreover, in this identifica-
tion the hypersurface with tE ¼ 0 is identified with the
Cauchy surface ΣR of the right wedge R whereas that with
tE ¼ −π=κ is identified with the Cauchy surface ΣL of the
left wedge L.

B. Double KMS states

In quantum statistical mechanics there is a standard
procedure to reproduce the expectation values computed in
a mixed state in terms of those of a pure state [32]. The idea
is to double the original system and, in the doubled system,
construct an entangled pure state such that the expectation
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values of operators restricted to the original system repro-
duce the statistical predictions in the original mixed state.
For example, consider the standard density matrix of a
thermal state for the Hamiltonian H with inverse temper-
ature β. This state is given by

ϱðβÞ ¼ e−βH

ZðβÞ ð2:18Þ

in a finite dimensional space of states H, where ZðβÞ≡
tre−βH is the partition function. Suppose that ψ i form a
complete set of eigenstates of the Hamiltonian H, with
Hψ i ¼ Eiψ i. Then, the thermal average of an operator A
given by hAiβ ≡ tr½ϱðβÞA� is reproduced in the doubled
space of states H ⊗ H by taking the expectation value of
the operator 1 ⊗ A in the pure state

Ωβ ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

i

e −1
2
βEiψ i ⊗ ψ i: ð2:19Þ

In this doubled system one also defines the Hamiltonian
operator

H̃ ≡ 1 ⊗ H −H ⊗ 1 ð2:20Þ

and an antiunitary operator2 J such that Jðψ i ⊗ ψ jÞ≡
ψ j ⊗ ψ i. Note that from this definition it follows that

J2 ¼ 1: ð2:21Þ

It can readily be verified that

½e−iH̃t; J� ¼ 0; ð2:22Þ

by letting the left-hand side act on the basis of the doubled
space of states.
It is easy to see that the state Ωβ defined by Eq. (2.19) is

annihilated by the Hamiltonian H̃ and is left invariant by J,
i.e.,

e−iH̃tΩβ ¼ Ωβ ð2:23Þ

and

JΩβ ¼ Ωβ: ð2:24Þ

One can also show that the state OΩβ obtained by letting
any operator of the form O ¼ 1 ⊗ A act on Ωβ satisfies

e−
1
2
βH̃OΩβ ¼ JO†Ωβ: ð2:25Þ

This relation is called the KMS condition [33–35]. Since
the state Ωβ is the extension of the thermal state ϱðβÞ to the
enlarged system, we shall refer to it as the double KMS
state, following Kay [36]. The converse is also true: a state
Ωβ ∈ H ⊗ H satisfying the KMS condition (2.25) is given
by Eq. (2.19). The advantage of defining double KMS
states by Eqs. (2.23)–(2.25) is that they can be used to
characterize thermal equilibrium states for systems with an
infinite number of degrees of freedom as well [35].
Although this doubling of the space of states may appear

artificial in the case of ordinary thermal systems such
as the quantum-mechanical example above, double
KMS states appear quite naturally in quantum field theory
in spacetimes with a bifurcate Killing horizon and a wedge-
reflection symmetry, as first noticed by Israel [17]. Thus,
let us consider a double KMS state over the left and
right wedges, R ∪ L, for a massive real scalar field
ΦðxÞ in a spacetime described in the previous section.
The Hamiltonian operator H then corresponds to the
t-translation generator in either wedge. Since these wedges
are static with respect to the t-translation, this Hamiltonian
is conserved. We assume that there is a unique state with the
lowest energy, i.e., the lowest eigenvalue of H, in either
wedge, which we call the vacuum state.
The Hilbert space H of (pure) states in the right or left

wedge is constructed by applying the (smeared) field
operators on the vacuum state with support in the respective
wedge. Then the Hilbert space of states in L ∪ R is the
tensor productH ⊗ H. We define the operator H̃ acting on
H ⊗ H as in Eq. (2.20). Moreover, the wedge reflection I
is an isometry of M ⊃ L ∪ R, and defines in the quantum
theory an antiunitary operator J according to

JΦðxÞJ ≡ΦðIðxÞÞ; ð2:26Þ
for all x ∈ M. The operator J is antiunitary because it
reverses the direction of time. The double KMS stateΩβ for
the scalar field Φ is then defined by requiring that it satisfy
Eqs. (2.23)–(2.25).

III. HARTLE-HAWKING STATE
AS A DOUBLE KMS STATE

In this section we consider a massive real scalar field
theory with nonderivative self-interaction in a spacetime
with metric given by Eq. (2.3). The HH state for this theory
is defined as a state such that its N-point functions are the
analytic continuation from that state in the corresponding
Euclidean field theory defined on the Euclidean section
with metric (2.14). The HH state in the noninteracting case
is known to be a double KMS state [18], which is a pure
state with correlations between the left and right wedges.
These correlations give rise to a thermal state at the
temperature

2We recall that J is said to be antilinear if for any two
state vectors Ψ1 and Ψ2 and constants a; b ∈ C we have
JðaΨ1 þ bΨ2Þ ¼ a�JΨ1 þ b�JΨ2, while J is said to be anti-
unitary if it is antilinear and satisfies hJΨ1jJΨ2i ¼ hΨ2jΨ1i.
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β−1H ≡ κ

2π
; ð3:1Þ

the Hawking temperature, when the HH state is restricted to
the right or left wedge. A formal path-integral argument
[22] shows that this is also the case for the interacting case.
In this section we show this fact in perturbation theory
using the Schwinger-Keldysh operator formalism.

A. The noninteracting case

Before presenting the interacting case, we review the
equivalence of the HH and a double KMS state at the
Hawking temperature for free massive scalar fields. Most
results in this subsection can be found, e.g., in Ref. [37].
Thus, we let the quantum scalar field ΦIðxÞ satisfy the
Klein-Gordon equation,

½−∇a∇a þm2�ΦIðxÞ ¼ 0; ð3:2Þ

in the spacetime ðM; gabÞ. We put the subscript “I” on the
field Φ in anticipation of the application of the results of
this subsection to the field in the interaction picture, which

is a noninteracting field. First we describe the HH stateΩð0Þ
HH

for this theory. Let xE ¼ ðitE;xÞ, x ¼ ðρ; θÞ, ρ ≥ 0, with tE
periodically identified as in Eq. (2.17). Thus, xE can be
identified with a point in the Euclidean sectionME defined
in the previous section. Define the Green’s function
Gð0ÞðxE; x0EÞ as the function satisfying

½−∇ðEÞ
a ∇ðEÞa þm2�Gð0ÞðxE; x0EÞ ¼

1ffiffiffiffiffi
gE

p δðxE; x0EÞ; ð3:3Þ

where ∇ðEÞ
a is the covariant derivative compatible with the

metric gEab.
3 Dirac’s delta-function δðxE; x0EÞ is defined byZ
ME

dt0Ed
n−1x0Fðx0EÞδðxE; x0EÞ ¼ FðxEÞ; ð3:4Þ

for any smooth and compactly supported function F on
ME. The function Gð0ÞðxE; x0EÞ is known to be symmetric
under the interchange of the two arguments, xE and x0E. We
define the function Gð0Þðx; x0Þ for x ¼ ðt;xÞ and x0 ¼
ðt0;x0Þ with t and t0 not purely imaginary by analytic
continuation in t and t0, where the time variable is
periodically identified in the imaginary direction as

t ∼ tþ 2nπi=κ; n ∈ Z: ð3:5Þ

This is possible in general if Imðt − t0Þ ≠ 0 because
singularities occur only for Imðt − t0Þ ¼ 0 [37]. Thus, we
analytically continue Gð0Þðx; x0Þ from ðt; t0Þ ¼ ðitE; it0EÞ to

ðtR þ itE; t0R þ it0EÞ, with tR and t0R nonzero while keeping
tE and t0E fixed.
We introduce the notation

ΦIðxÞ ¼
(
ΦðRÞ

I ðxÞ; if x ∈ R;

ΦðLÞ
I ðxÞ; if x ∈ L:

ð3:6Þ

The Wightman two-point function in the right wedge for

the HH state Ωð0Þ
HH is defined by

hΩð0Þ
HHjΦðRÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

HHi
≡ lim

ϵ→0þ
Gð0Þðt − iϵ;x; t0;x0Þ; ð3:7Þ

with t; t0 ∈ R. A point ðt; yÞ ∈ L with y ¼ ðρ; θÞ, ρ < 0,
can be identified with ð−t − iβH

2
; ιðyÞÞ, where

ιðyÞ≡ ðjρj; θÞ; ð3:8Þ
since�
jρj sinh

�
κ

�
−t −

iβH
2

��
; jρj cosh

�
κ

�
−t −

iβH
2

���
¼ ð−ρ sinhðκtÞ; ρ coshðκtÞÞ ð3:9Þ

[see Eq. (2.8) for the definition of t and ρ in the left wedge].
Thus, in the case one of the points is in the left wedge, we
can define

hΩð0Þ
HHjΦðLÞ

I ðt; yÞΦðRÞ
I ðt0;x0ÞΩð0Þ

HHi

≡Gð0Þ
�
−t −

iβH
2

; ιðyÞ; t0;x0
�
; ð3:10Þ

where ιðyÞ is defined by Eq. (3.8). If both points are in the
left wedge, then by the symmetry of the spacetime we have

hΩð0Þ
HHjΦðLÞ

I ðt; yÞΦðLÞ
I ðt0; y0ÞΩð0Þ

HHi
≡ lim

ϵ→0þ
Gð0Þðt − iϵ; ιðyÞ; t0; ιðy0ÞÞ: ð3:11Þ

Since the two-point function depends on t and t0 only
through t − t0, we can write

hΩð0Þ
HHjΦðLÞ

I ðt; yÞΦðLÞ
I ðt0; y0ÞΩð0Þ

HHi

≡ lim
ϵ→0þ

Gð0Þ
 
−t0 −

iβH
2

− iϵ; ιðy0Þ;−t − iβH
2

; ιðyÞ
!
;

ð3:12Þ
which is more suggestive because of Eq. (3.9). The function

hΩð0Þ
HHjΦIðxÞΦIðx0ÞΩð0Þ

HHi for x or x0 in the future region F or
past region P can be determined by the Cauchy evolution
from Gð0Þðx; x0Þ with x; x0 ∈ R ∪ L.

3We may need to impose boundary conditions at the upper end
of the interval for ρ in order to make this Green’s function unique.
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The state Ωð0Þ
HH is defined to be quasi-free with vanishing

one-point function: hΩð0Þ
HHjΦIðxÞΩð0Þ

HHi ¼ 0. That is, the
N-point function for N odd vanishes and that for N even
is defined as if it obeyed Wick’s theorem. Thus, if N is
even, it is defined as a sum of products of the two-point
functions as follows. Let S be the set of permutations σ
of f1; 2;…; Ng such that σð2i − 1Þ < σð2iÞ and that
σð2i − 1Þ < σð2j − 1Þ if i < j for i; j ∈ N. Then we define

hΩð0Þ
HHjΦIðx1ÞΦIðx2Þ � � �ΦIðxNÞΩð0Þ

HHi
¼
X
σ∈S

Gð0Þðxσð1Þ; xσð2ÞÞ

× Gð0Þðxσð3Þ; xσð4ÞÞ � � �Gð0ÞðxσðN−1Þ; xσðNÞÞ; ð3:13Þ
where we have written

hΩð0Þ
HHjΦIðxÞΦIðx0ÞΩð0Þ

HHi≡Gð0Þðx; x0Þ; ð3:14Þ

for simplicity, with the understanding that the time coor-
dinates t and t0 of x and x0, respectively, have infinitesimal
imaginary parts satisfying Imðt − t0Þ < 0. For example, the
four-point function reads

hΩð0Þ
HHjΦIðx1ÞΦIðx2ÞΦIðx3ÞΦIðx4ÞΩð0Þ

HHi
¼ Gð0Þðx1; x2ÞGð0Þðx3; x4Þ þGð0Þðx1; x3ÞGð0Þðx2; x4Þ
þ Gð0Þðx1; x4ÞGð0Þðx2; x3Þ: ð3:15Þ

Now we discuss the double KMS state Ωð0Þ
β , which later

will be compared to the HH state Ωð0Þ
HH. Thus, consider a

complete set of positive-frequency solutions to the Klein-
Gordon equation (3.2), given by ϕωσðxÞe−iωt, ω > 0, and
choose ϕωσðxÞ to be real. Here σ represents all the labels of
the solutions other than ω. The differential equation
satisfied by ϕωσðxÞ can be found from the Klein-Gordon
equation (3.2) as

½ρfDaρfDa −m2ðρfÞ2�ϕωσðxÞ ¼ −
ω2

κ2
ϕωσðxÞ; ð3:16Þ

where Da is the covariant derivative compatible with the
spatial metric hab ≡ f2ðdρÞaðdρÞb þ sab. One can show
that these functions with different values of ω are orthogo-
nal to each other with respect the measure

ffiffiffi
s

p
=ρ, noting

that the determinant of the spatial metric is
ffiffiffi
s

p
f,

where s ¼ detðsabÞ.
We normalize the functions ϕωσðxÞ by requiring

1

κ

Z
dρ dn−2θ

ffiffiffi
s

p
ρ

ϕωσðxÞϕω0σ0 ðxÞ ¼ δσσ0δðω − ω0Þ: ð3:17Þ

Here we assume that the labels σ are discrete, but the
generalization to the continuous case is straightforward.
The completeness of ϕωσðxÞ reads

Z
∞

0

dω
X
σ

ϕωσðxÞϕωσðx0Þ ¼ κρffiffiffi
s

p δðx;x0Þ; ð3:18Þ

where Dirac’s delta-function δðx;x0Þ is defined in the same

way as δðxE; x0EÞ in Eq. (3.4). The field operator ΦðRÞ
I ðxÞ

can be expanded as

ΦðRÞ
I ðt;xÞ ¼

Z
∞

0

dωffiffiffiffiffiffi
2ω

p
X
σ

fϕωσðxÞe−iωtaðRÞσ ðωÞ

þ ϕωσðxÞeiωtaðRÞ†σ ðωÞg: ð3:19Þ

We have chosen the normalization of the functions ϕωσðxÞ
in Eq. (3.17) so that

½aðRÞσ ðωÞ; aðRÞ†σ0 ðω0Þ� ¼ δσσ0δðω − ω0Þ; ð3:20Þ

with all other commutators vanishing. The vacuum state in

the right wedge Ψð0Þ
R is defined by aðRÞωσ Ψð0Þ

R ¼ 0 for all
ω and σ.
For x ¼ ðt;xÞ ∈ L the field can be expanded as

ΦðLÞ
I ðt;xÞ ¼

Z
∞

0

dωffiffiffiffiffiffi
2ω

p
X
σ

n
ϕωσ

�
ιðxÞ

	
e−iωtaðLÞσ ðωÞ

þ ϕωσ

�
ιðxÞ

	
eiωtaðLÞ†σ ðωÞ

o
; ð3:21Þ

where the annihilation and creation operators, aðLÞσ ðωÞ and
aðLÞ†σ ðωÞ, satisfy

½aðLÞσ ðωÞ; aðLÞ†σ0 ðω0Þ� ¼ δσσ0δðω − ω0Þ; ð3:22Þ

with all other commutators vanishing. ThevacuumstateΨð0Þ
L

in the left wedge is defined by requiring aðLÞσ ðωÞΨð0Þ
L ¼ 0

for all ω and σ. We define the static vacuum state Ψð0Þ ∈
H ⊗ H by

Ψð0Þ ≡Ψð0Þ
L ⊗ Ψð0Þ

R : ð3:23Þ

From the definition of the antiunitary operator J, Eq. (2.26),
we conclude that its action on annihilation and creation
operators yields

JaðRÞσ ðωÞJ ¼ aðLÞσ ðωÞ;
JaðRÞ†σ ðωÞJ ¼ aðLÞ†σ ðωÞ; ð3:24Þ

respectively.

The double KMS state Ωð0Þ
β for the field ΦIðxÞ with

inverse temperature β is a thermal state if restricted to the
right wedge. That is,
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hΩð0Þ
β jaðRÞ†σ ðωÞaðRÞσ0 ðω0ÞΩð0Þ

β i ¼ 1

eωβ − 1
δσσ0δðω − ω0Þ;

hΩð0Þ
β jaðRÞσ ðωÞaðRÞ†σ0 ðω0ÞΩð0Þ

β i ¼ 1

1 − e−ωβ
δσσ0δðω − ω0Þ;

ð3:25Þ

with

hΩð0Þ
β jaðRÞσ ðωÞaðRÞσ0 ðω0ÞΩð0Þ

β i ¼ 0: ð3:26Þ

Using these formulas one finds

hΩð0Þ
β jΦðRÞ

I ðxÞΦðRÞ
I ðx0ÞΩð0Þ

β i

¼
Z

∞

0

dω
2ω

X
σ

ϕωσðxÞϕωσðx0Þ
�
e−iωðt−t0Þ

1 − e−ωβ
þ eiωðt−t0Þ

eωβ − 1

�
;

ð3:27Þ

where x ¼ ðt;xÞ and x0 ¼ ðt0;x0Þ. This two-point function
can be extended to complex values of t and t0 with −β <
Imðt − t0Þ < 0 since the ω-integral here is convergent if this
condition is satisfied. For these values of t and t0 one finds
the KMS condition for the free field:

hΩð0Þ
β jΦðRÞ

I ðt0 − iβ;x0ÞΦðRÞ
I ðt;xÞΩð0Þ

β i
¼ hΩð0Þ

β jΦðRÞ
I ðt;xÞΦðRÞ

I ðt0;x0ÞΩð0Þ
β i: ð3:28Þ

Now, define for −β < Imðt − t0Þ < β

Δð0Þ
β ðt;x; t0;x0Þ

≡
8<
:

hΩð0Þ
β jΦðRÞ

I ðxÞΦðRÞ
I ðx0ÞΩð0Þ

β i if Imðt − t0Þ < 0;

hΩð0Þ
β jΦðRÞ

I ðx0ÞΦðRÞ
I ðxÞΩð0Þ

β i if Imðt0 − tÞ < 0:

ð3:29Þ

If x ≠ x0, this function is in fact an analytic function in the
strip −β < Imðt − t0Þ < β with branch cuts on the real line
Imðt − t0Þ ¼ 0 [37]. [It is analytic for Imðt − t0Þ ¼ 0 as
well, if ðtR;xÞ and ðt0R;x0Þ, where tR and t0R are the real
parts of t and t0, respectively, are spacelike separated.] On
these branch cuts, we have from Eq. (3.29) that

lim
ϵ→0þ

Δð0Þ
β ðt − iϵ;x; t0;x0Þ ¼ hΩð0Þ

β jΦðRÞ
I ðxÞΦðRÞ

I ðx0ÞΩð0Þ
β i
ð3:30Þ

and

lim
ϵ→0þ

Δð0Þ
β ðtþ iϵ;x; t0;x0Þ ¼ hΩð0Þ

β jΦðRÞ
I ðx0ÞΦðRÞ

I ðxÞΩð0Þ
β i:
ð3:31Þ

Equation (3.28) implies that

Δð0Þ
β ðt;x; t0 − iβ;x0Þ ¼ Δð0Þ

β ðt;x; t0;x0Þ; ð3:32Þ

for −β < Imðt − t0Þ < 0 since −β < Im½ðt0 − iβÞ − t� < 0.
Therefore, this two-point function is periodic in t − t0, with
period iβ in the strip −β < Imðt − t0Þ < β. Hence, it is an
analytic function of t − t0 on the whole complex plane with
period iβ, with branch cuts on the lines Imðt − t0Þ ¼ nβ,
where n ∈ Z. For this reason, we shall regard the two-point

function Δð0Þ
β ðx; x0Þ as a function on Cβ × Cβ, where Cβ is

the complex plane quotiented by the equivalence relation ∼
defined by

t ∼ tþ iβ: ð3:33Þ

That is,

Cβ ≡ C= ∼ : ð3:34Þ

Now, let us assume that our double KMS state is at the
Hawking temperature, i.e., let us take β ¼ βH. Assuming
the Euclidean times tE and t0E to satisfy 0 < jtE − t0Ej < β,
we use Eq. (3.27) to show that

Δð0Þ
βH
ðitE;x; it0E;x0Þ

¼
Z

∞

0

dω
2ω

X
σ

ϕωσðxÞϕωσðx0Þ
�
e−ωjtE−t0Ej

1 − e−ωβH
þ eωjtE−t0Ej

eωβH − 1

�
:

ð3:35Þ

This two-point function is defined on the Euclidean section
ME with the metric (2.15). One can readily verify that this
function satisfies the equation for the Green’s function on
ME, Eq. (3.3), by directly differentiating Eq. (3.35) and

using Eq. (3.18). Since Δð0Þ
βH

and Gð0Þ both satisfy the field
equation (3.3) with the same boundary conditions in the
Euclidean section, it follows that

Δð0Þ
βH
ðitE;x; it0E;x0Þ ¼ Gð0ÞðitE;x; it0E;x0Þ: ð3:36Þ

Finally, we can show that the double KMS state at the

Hawking temperature Ωð0Þ
βH

is nothing but the HH state Ωð0Þ
HH

by checking that these states have the same two-point
functions. Indeed, if −β < Imðt − t0Þ < 0, then Eq. (3.36)
yields

hΩð0Þ
βH
jΦðRÞ

I ðxÞΦðRÞ
I ðx0ÞΩð0Þ

βH
i ¼ Gð0Þðx; x0Þ: ð3:37Þ
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This in turn implies

hΩð0Þ
βH
jΦðRÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

βH
i

¼ lim
ϵ→0þ

Gð0Þðt − iϵ;x; t0;x0Þ

¼ hΩð0Þ
HHjΦðRÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

HHi; ð3:38Þ

where the last equality follows from Eq. (3.7).
Next, we note that if x ∈ L and x0 ∈ R, then

hΩð0Þ
βH
jΦðLÞ

I ðxÞΦðRÞ
I ðx0ÞΩð0Þ

βH
i

¼ hJΦðRÞ
I ðIðxÞÞΩð0Þ

βH
jΦðRÞ

I ðx0ÞΩð0Þ
βH
i; ð3:39Þ

where we have used the definition of the operator J,
Eq. (2.26). Furthermore, the KMS condition (2.25) yields

JΦðRÞ
I ðIðxÞÞΩð0Þ

β ¼ e−
1
2
βH̃0ΦðRÞ

I ð−t; ιðxÞÞΩð0Þ
β ; ð3:40Þ

where H̃0 ≡ 1 ⊗ H0 −H0 ⊗ 1, with H0 denoting the free
Hamiltonian operator that generates the time translation in
the right or left wedge. Going back to Eq. (3.39), and

recalling that Ωð0Þ
β is annihilated by H̃0, we use the above

result to show that

hΩð0Þ
βH
jΦðLÞ

I ðxÞΦðRÞ
I ðx0ÞΩð0Þ

βH
i

¼ hΩð0Þ
βH
jeβH

2
H̃0ΦðRÞ

I ð−t; ιðxÞÞe−βH
2
H̃0ΦðRÞ

I ðx0ÞΩð0Þ
βH
i

¼ hΩð0Þ
βH
jΦðRÞ

I

�
−t −

iβH
2

; ιðxÞ
�
ΦðRÞ

I ðt0;x0ÞΩð0Þ
βH
i: ð3:41Þ

Together with Eq. (3.37), this last result implies that

hΩð0Þ
βH
jΦðLÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

βH
i

¼ Gð0Þ
�
−t −

iβH
2

; ιðxÞ; t0;x0
�

¼ hΩð0Þ
HHjΦðLÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

HHi; ð3:42Þ

where the last equality follows from Eq. (3.10). By using
Eq. (3.27), we can write this two-point function explicitly
as a mode sum, i.e.,

hΩð0Þ
βH
jΦðLÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

βH
i

¼
Z

∞

0

dω
2ω

X
σ

ϕωσðιðxÞÞϕωσðx0Þ

×
1

2 sinh ωβH
2

½e−iωðtþt0Þ þ eiωðtþt0Þ�: ð3:43Þ

Finally, if x; x0 ∈ L, it immediately follows from the

symmetry of Ωð0Þ
β that

hΩð0Þ
βH
jΦðLÞ

I ðt;xÞΦðLÞ
I ðt0;x0ÞΩð0Þ

βH
i

¼ hΩð0Þ
βH
jΦðRÞ

I ðt; ιðxÞÞΦðRÞ
I ðt0; ιðx0ÞÞΩð0Þ

βH
i

¼ lim
ϵ→0þ

Gð0Þðt − iϵ; ιðxÞ; t0; ιðxÞÞ

¼ hΩð0Þ
HHjΦðLÞ

I ðt;xÞΦðLÞ
I ðt0;x0ÞΩð0Þ

HHi; ð3:44Þ

where the last equality follows from Eq. (3.11).
Equations (3.38), (3.42), and (3.44) show that, if

x; x0 ∈ R ∪ L, then

hΩð0Þ
βH
jΦIðxÞΦIðx0ÞΩð0Þ

βH
i ¼ hΩð0Þ

HHjΦIðxÞΦIðx0ÞΩð0Þ
HHi: ð3:45Þ

The two-point function for any points in the spacetime
ðM; gabÞ outside the double-wedged region R ∪ L can be
uniquely determined from this case by the Cauchy evolu-

tion. Since the double KMS stateΩð0Þ
β is quasifree for any β

[14,38], all its N-point functions are determined by its two-
point function. Hence, we conclude that

Ωð0Þ
βH

¼ Ωð0Þ
HH ð3:46Þ

for the free-field theory.
If the mode functions ϕωσðxÞ are analytic in ρ, then one

should be able to find the mode expansion for the field
ΦIðxÞ and its two-point function also for x ∈ F ∪ P by
analytic continuation of the corresponding expressions in
R ∪ L. Assuming that this analytic continuation is analo-
gous to the special cases of Minkowski and de Sitter
spacetimes [39,40], we can write down the two-point
function with one or two points in F ∪ P. As an example,
let us consider the case when the two-point function has
points in R ∪ F . Note that

ðT; XÞ ¼ ðρ coshðκtÞ; ρ sinhðκtÞÞ for ðT; XÞ ∈ F ;

ð3:47Þ
with ρ > 0. Define ϕ̃ωσðxÞ to be the function obtained from
ϕωσðxÞ by making the substitution ρ → e

iπ
2ρ. Then, by

defining ΦðFÞ
I ðxÞ ¼ ΦIðxÞ for x ∈ F , we find

hΩð0Þ
βH
jΦðFÞ

I ðt;xÞΦðFÞ
I ðt0;x0ÞΩð0Þ

βH
i ¼Z

dω
2ω

X
σ

ϕ̃ωσðxÞϕ̃ωσðx0Þ e
−iwðt−t0Þ þ eiωðt−t0Þ

2 sinh wβH
2

; ð3:48Þ

and

hΩð0Þ
βH
jΦðFÞ

I ðt;xÞΦðRÞ
I ðt0;x0ÞΩð0Þ

βH
i

¼
Z

dω
2ω

X
σ

ϕ̃ωσðxÞϕωσðx0Þ e
ωβ
4 e−iωðt−t0Þ þ e−

ωβ
4 eiωðt−t0Þ

2 sinh ωβH
2

:

ð3:49Þ
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A derivation of these formulas, together with the assump-
tions we made, can be found in Appendix A.

B. The interacting case

We will now consider a massive, real scalar field theory
with nonderivative self-interaction in spacetimes with a
bifurcate Killing horizon considered in Sec. II. Our aim is
to show that a double KMS state at the Hawking temper-
ature (3.1) is the HH state for this interacting theory.
The interacting HH state will be defined here via the

Euclidean perturbation theory [19]. We assume that the
Hamiltonian H in either right or left wedge can be written
as a free part H0 plus an interaction perturbation term,

H ¼ H0 þHI; ð3:50Þ

where

HI ≡
Z
ΣR

dρdn−2θ κρfðρ2; θÞ
ffiffiffiffiffiffiffiffiffi
sðθÞ

p
HIðΦÞ ð3:51Þ

is the interaction Hamiltonian, with HIðΦÞ as a poly-
nomial in Φ. The Φ4-theory, for example, is given by
HIðΦÞ ¼ ðλ=4!ÞΦ4, where λ is a real constant. Then, the
Euclidean N-point function for the Heisenberg operator
ΦðxÞ is given by

GðxE;1; xE;2;…; xE;NÞ

¼


ΦIðxE;1ÞΦIðxE;2Þ � � �ΦIðxE;NÞ exp

�Z
ME

dn xE
ffiffiffiffiffi
gE

p
HIðΦIÞ

��
E
=



exp

�Z
ME

dn xE
ffiffiffiffiffi
gE

p
HIðΦIÞ

��
E

¼


ΦIðxE;1ÞΦIðxE;2Þ � � �ΦIðxE;NÞ exp

�Z
ME

dnxE
ffiffiffiffiffi
gE

p
HIðΦIÞ

��
E;connected

; ð3:52Þ

and we recall that xE ¼ ðitE;xÞ. In the notation of Eq. (3.52), h…iE denotes the expectation value of the interaction field
operator ΦIðxEÞ such that

hΦIðxEÞiE ¼ 0;

hΦIðxE;1ÞΦIðxE;2ÞiE ¼ Gð0ÞðxE;1; xE;2Þ ð3:53Þ

and the expectation value of a higher number of field is obtained with Wick’s theorem, while “connected” indicates the sum
of diagrams with all parts connected to some of the external points xE;1; xE;2;…; xE;N in the diagrammatic expansion. The
integral is parametrized as Z

ME

dnxE ¼
Z

−βH

0

dtE

Z
ΣR

dn−1x ¼ −
Z

0

−βH
dtE

Z
ΣR

dn−1x: ð3:54Þ

For the HH stateΩHH, the N-point functions are given by the analytic continuation of Eq. (3.52) to the Lorentzian section
of the spacetime. Let us now describe how this analytic continuation is carried out. For this purpose it is useful to write
Eq. (3.52) as follows:

GðxE;1; xE;2;…; xE;NÞ ¼


ΦIðxE;1ÞΦIðxE;2Þ � � �ΦIðxE;NÞ exp

�
−i
Z
C
dt
Z
ΣR

dn−1x
ffiffiffiffiffiffi
−g

p
HIðΦIÞ

��
E;connected

; ð3:55Þ

where the directed contour C is the straight line segment
from 0 to −iβH, and corresponds to a circle in CβH , see
Eq. (3.34). We also have used the fact that gE ¼ −g. Note
that xE;i ∈ C × ΣR, with i ¼ 1; 2;…; N.
These N-point functions are ultraviolet divergent in

general because the two-point function Gð0Þðx; x0Þ diverges
in the coincidence limit x → x0. They need to be regularized
and renormalized. We assume that the regularization is
done in such a way that one may first restrict the integration
over ΣR by requiring that for any two internal points kyi −
yjk > ϵ and for any external point kxi − yjk > ϵ for all i

and j for some ϵ > 0, and then take the limit ϵ → 0 after the
counterterms are included to cancel the ultraviolet diver-
gences. We also assume that the (multiple) vertex integrals
over ΣR can be performed by first cutting them off in the
infrared with kxk < Λ and then removing the cutoff. With
these assumptions we can show that theN-point function in
Eq. (3.55) is analytically continued in t1; t2;…; tN , by
changing the real part of each ti while keeping its imaginary
part the same.
The analytic continuation of the Euclidean N-point

function G is defined by extending the external points to
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xi ¼ ðti;xiÞ with ti ∈ Cβ and satisfying Imðti − tjÞ ≠ 0

for all i and j. Hence, in the diagrammatic expansion of
the right-hand side of Eq. (3.55), this analytic continu-
ation amounts to employing the analytically continued
Euclidean Green’s function Gð0Þðx; x0Þ for the free field
discussed in the previous subsection. In moving the
complex times t1; t2;…; tN we have to avoid hitting the
branch cuts of the Green’s functions Gð0Þðx; x0Þ, with x
and x0 being various external and internal points forming
a given diagram, while performing the vertex integra-
tions, so that the result is the same analytic function

of the external points. This entails that we also need
to deform the integration contour C appearing in
Eq. (3.55). This contour is deformed in such a way
that it contains the external complex-time coordinates
t1; t2;…; tN and its imaginary part is monotonically
decreasing. We refer the reader to Appendix B for
more details on this point.
The N-point functions of the HH state ΩHH are

defined by the analytic continuation of Eq. (3.55) to the
right wedge. Thus, taking x1; x2;…; xN ∈ R and using
Eq. (3.36) we have

hΩHHjΦðx1ÞΦðx2Þ � � �ΦðxNÞΩHHi≡Gðx1; x2;…; xNÞ

¼


Ωð0Þ

βH
jP
�
ΦðRÞ

I ðx1ÞΦðRÞ
I ðx2Þ � � �ΦðRÞ

I ðxNÞ exp
�
−i
Z
C
dtHðRÞ

I ðtÞ
��

Ωð0Þ
βH

�
E; connected

; ð3:56Þ

where the points x1; x2;…; xN appear in this order on C, and HðRÞ
I ðtÞ is defined by Eq. (3.51) with Φ replaced by the

interaction-picture operator ΦðRÞ
I . The path-ordering P indicates that the operators ΦðRÞ

I ðxÞ are ordered according to the
order on C, which coincides with the decreasing order in the imaginary part of t in x ¼ ðt;xÞ.
To show that the HH state ΩHH is a double KMS state at the Hawking temperature, we consider the following N-point

function:

ΔHHðy1; y2;…; yL; x1; x2;…; xRÞ≡ hΩHHjΦðy1ÞΦðy2Þ � � �ΦðyLÞΦðx1ÞΦðx2Þ � � �ΦðxRÞΩHHi; ð3:57Þ

where y1; y2;…; yL ∈ L and x1; x2;…; xR ∈ R with xi ¼
ðti;xiÞ and yi ¼ ðτi; yiÞ, with Rþ L ¼ N. We shall
write this N-point function in a form that can readily
be compared to the N-point function of the state ΩβH .
In particular, we write this N-point function in terms of the

operator ΦðRÞ
I ðxÞ.

Assuming that ti and τi are real, one needs to define this
N-point function as a limit of the N-point function defined
by Eq. (3.56) in which the imaginary parts of some time
variables coincide. For the points in R, Eq. (3.38) implies

that one should let ti → ti − iϵi with ϵi > ϵj if i < j in
taking the limit ϵi → 0þ. A point y ¼ ðτ; yÞ ∈ L is repre-
sented by ð−τ − iβH

2
; ιðyÞÞ according to Eqs. (3.10) and

(3.12), and the latter equation implies that we should let
τi −

iβH
2
→ −τi −

iβH
2
− iεi, where εi < εj if i < j in taking

the limit εi → 0þ. (Notice the reversed order here in
comparison with the case for the right wedge.) The
imaginary parts of the time coordinates dictate the order
on C, and these points should appear on C in the
following order:

−τL −
iβH
2

← −τL−1 −
iβH
2

← � � � ← −τ1 −
iβH
2

← t1 ← t2 ← � � � ← tR: ð3:58Þ

Thus, we find

ΔHHðy1; y2;…; yL; x1; x2;…; xRÞ

¼


Ωð0Þ

βH
jP
�
ΦðRÞ

I

�
−τL −

iβH
2

; ιðyLÞΦðRÞ
I

�
−τL−1 −

iβH
2

; ιðyL−1Þ
�
� � �ΦðRÞ

I

�
−τ1 −

iβH
2

; ιðy1Þ
�

×ΦðRÞ
I ðt1;x1ÞΦðRÞ

I ðt2;x2Þ � � �ΦðRÞ
I ðtR;xRÞ exp

�
−i
Z
C
dtHðRÞ

I ðtÞ
��

Ωð0Þ
βH

�
connected

: ð3:59Þ
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To illustrate the integration contour for the complex-time
coordinate, we consider the special case where the L points
y1; y2;…; yL and the R points x1; x2;…; xR have positive
time coordinates and are time-ordered, i.e., τ1 > τ2 >
� � � > τL > 0 and t1 > t2 > � � � > tR > 0. In this case,
the contour C can be chosen as shown in Fig. 2 (with
the initial time ti set to 0). The time coordinates ti (with
small positive imaginary parts), i ¼ 1; 2;…; R, satisfying
0 < ti < tf are on the path C1 whereas the coordinates
−τj −

iβH
2
, 0 < τj < tf , with further small negative imagi-

nary parts, are on the path C5.
Now, we consider a double KMS state Ωβ, defined by

Eqs. (2.23)–(2.25) with respect to the timelike Killing
vector field ξa and the wedge reflection I. For simplicity we
consider the 4-point function of this state with points y1
and y2 in the left wedge and points x1 and x2 in the right
wedge. The generalization to the N-point function with
N > 4 is straightforward. Our aim is to express the 4-point
function

Δβðy1; y2; x1; x2Þ≡ hΩβjΦðy1ÞΦðy2ÞΦðx1ÞΦðx2ÞΩβi
ð3:60Þ

in terms of the interaction-picture field ΦðRÞ
I ðxÞ in the right

wedge, so we can compare it to the corresponding HH state

4-point function for β ¼ βH. Hence, we first use
Eqs. (2.23)–(2.26) to write the right-hand side of the
4-point function above as

Δβðy1; y2; x1; x2Þ
¼ hΦðy2ÞΦðy1ÞΩβjΦðx1ÞΦðx2ÞΩβi
¼ hJΦðIðy2ÞÞΦðIðy1ÞÞΩβjΦðx1ÞΦðx2ÞΩβi
¼ he−1

2
βH̃ΦðIðy1ÞÞΦðIðy2ÞÞΩβjΦðx1ÞΦðx2ÞΩβi

¼ hΩβjΦðIðy2ÞÞΦðIðy1ÞÞe−1
2
βH̃Φðx1ÞΦðx2ÞΩβi

¼ hΩβje1
2
βH̃ΦðIðy2ÞÞΦðIðy1ÞÞe−1

2
βH̃Φðx1ÞΦðx2ÞΩβi:

ð3:61Þ

To fully express this 4-point function as a correlator of
field operators evaluated on the right wedge, we notice
that e� 1

2
βH̃ ¼ ðe∓ 1

2
βH ⊗ 1Þð1 ⊗ e� 1

2
βHÞ and use the fact

that the operators e∓ 1
2
βH ⊗ 1 commutes with the operators

in the right wedge. This allows us to write

Δβðy1; y2; x1; x2Þ

¼ 1

ZðβÞ trfe
−1
2
βHΦðRÞðIðy2ÞÞΦðRÞðIðy1ÞÞ

× e −1
2
βHΦðRÞðx2ÞΦðRÞðx1Þg; ð3:62Þ

where we have (formally) expressed the expectation value
in the state Ωβ as the trace over the space of states in the
right wedge with the operator e−βH=ZðβÞ inserted.
The right-hand side of Eq. (3.62) is a correlator

involving the Heisenberg field operator Φðt;xÞ. In the
right wedge, this operator evolves in time with the full
Hamiltonian H ¼ H0 þHI according to

Φðt;xÞ ¼ eiHðt−tiÞΦðti;xÞe−iHðt−tiÞ; ð3:63Þ

where ti is an arbitrary time coordinate, which will be set to
0 later. To write Eq. (3.62) as a perturbative series, we have
to go to the interaction picture. The interaction-picture field
operator is defined by

ΦIðt;xÞ≡ eiH0ðt−tiÞΦðti;xÞe−iH0ðt−tiÞ; ð3:64Þ

so it satisfies the free-field equation because its evolu-
tion is governed by the free-theory Hamiltonian H0. From
Eqs. (3.63) and (3.64), the Heisenberg field can be
expressed in terms of the interaction-picture field as

Φðt;xÞ ¼ UIðti; tÞΦIðt;xÞUIðt; tiÞ; ð3:65Þ

where

UIðt; tiÞ≡ eiH0ðt−tiÞe−iHðt−tiÞ; ð3:66Þ

FIG. 2. The contour C in the complex Killing-time plane with
monotonically decreasing imaginary part. The path C1 runs
forward in the real time along the real axis, while the path C2

runs along the real axis but backwards. The path C3 runs from
ti − iϵ down to ti −

iβH
2
þ iϵ parallel to the imaginary axis. The

path C4 runs backward in the real time along the line t ¼ − iβH
2
,

while the path C5 runs along the same line but forward. The path
C6 runs from ti −

iβH
2
− iϵ to ti − iβH parallel to the imaginary

axis. The time ti is the initial time and the final time tf is assumed
to be larger than the time coordinate of any external point on C,
but otherwise arbitrary. At the end of the computation we let
ϵ → 0þ, so the paths C1, C2, C4, and C5 become parallel to the
real axis.
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and UIðt; tiÞ≡U†
I ðti; tÞ. The operator UIðt; tiÞ is unitary,

being the product of two unitary operators. We define the
operator UIðt; t0Þ for arbitrary values of t and t0 by

UIðt; t0Þ ¼ UIðt; tiÞUIðti; t0Þ: ð3:67Þ

From this definition and Eq. (3.66) we find

UIðt; t0Þ ¼ eiðt−tiÞH0e−iðt−t0ÞHe−iðt0−tiÞH0 : ð3:68Þ

From this it follows that

UIðt00; t0ÞUIðt0; tÞ ¼ UIðt00; tÞ: ð3:69Þ

The operator UIðt; t0Þ can be shown to satisfy the
following differential equation by direct differentiation
using Eq. (3.68):

i
d
dt

UIðt; t0Þ ¼ HIðtÞUIðt; t0Þ: ð3:70Þ

The unique solution to this equation is given in terms of
Dyson’s series [41]:

UIðt; t0Þ ¼ P exp

�
−i
Z

t

t0
dt00 HIðt00Þ

�
; ð3:71Þ

where the path-ordering P indicates time-ordering if t > t0
and anti-time-ordering if t < t0, and the interaction
Hamiltonian operator HIðtÞ is defined by

HIðtÞ≡ eiH0ðt−tiÞHIe−iH0ðt−tiÞ: ð3:72Þ

Thus, HIðtÞ is the interaction Hamiltonian written in terms
of the interaction-picture field ΦIðxÞ satisfying the free-
field equation.
Furthermore, the operator e−aβH, with a real and pos-

itive, can be seen as an evolution operator in the imaginary
time −iaβ and conveniently expressed as [42]

e−aβH ¼ e−aβH0UIðti − iaβ; tiÞ; ð3:73Þ

which can readily be verified by using Eq. (3.66). We note
that, since the right-hand side is expressed entirely in terms
of the free fieldΦIðxÞ, it can be given explicitly in the mode
expansion order by order in perturbation theory.
Now, let us set the initial time ti ¼ 0 for simplicity. We

then use Eqs. (3.65), (3.69), and (3.73) to write the right-
hand side of the 4-point function (3.62) in the interaction
picture. The result is

Δβðy1; y2; x1; x2Þ

¼ 1

ZðβÞ tr
�
e−

1
2
βH0UI

�
−
iβ
2
; 0

�
UIð0;−τ2ÞΦðRÞ

I ð−τ2; ιðy2ÞÞ

×UIð−τ2;−τ1ÞΦðRÞ
I ð−τ1; ιðy1ÞÞUIð−τ1; 0Þe−1

2
βH0

×UI

�
−
iβ
2
; 0

�
UIð0; t1ÞΦðRÞ

I ðt1;x1ÞUIðt1; t2Þ

×ΦðRÞ
I ðt2;x2ÞUIðt2; 0Þ

�
: ð3:74Þ

The right-hand side of Eq. (3.74) can be expressed as a
thermal average of an operator by moving the operator
e −1

2
βH0 in the middle to the left to combine it with the

operator e −1
2
βH0 on the far left. To do so, we first note that

UIðt; t0Þe−aβH0 ¼ e−aβH0UIðt − iaβ; t0 − iaβÞ; ð3:75Þ

which can be shown using Eq. (3.68) on both sides. This
equation can be used to express the partition function
ZðβÞ in terms of the free-theory thermal state ϱ0ðβÞ≡
e−βH0=Z0ðβÞ as

ZðβÞ ¼ Z0ðβÞtrfϱ0ðβÞUIðti − iβ; tiÞg: ð3:76Þ

Moreover, since the interaction-picture field evolves with
the free-field Hamiltonian operator, we have that

ΦðRÞ
I ðt;xÞe−aβH0 ¼ e−aβH0ΦðRÞ

I ðt − iaβ;xÞ: ð3:77Þ

Using these three equations we can write Eq. (3.74) as
follows:

Δβðy1; y2; x1; x2Þ ¼ tr

�
ϱ0ðβÞUI

�
−iβ;−

iβ
2

�
UI

�
−
iβ
2
;−τ2 −

iβ
2

�
ΦðRÞ

I

�
−τ2 −

iβ
2
; ιðy2Þ

�
UI

�
−τ2 −

iβ
2
;−τ1 −

iβ
2

�

×ΦðRÞ
I

�
−τ1 −

iβ
2
; ιðy1Þ

�
UI

�
−τ1 −

iβ
2
;−

iβ
2

�
UI

�
−
iβ
2
; 0

�
UIð0; t2ÞΦðRÞ

I ðt2;x2ÞUIðt2; t1Þ

×ΦðRÞ
I ðt1;x1ÞUIðt1; 0Þg=trfϱ0ðβÞUIð−iβ; 0Þ

�
: ð3:78Þ

Now, since the operators on the right-hand side of this equation are all in the right wedge, both the numerator and

denominator can be expressed as expectation values of operators in the state Ωð0Þ
β , with trfϱ0ðβÞ � � �g replaced by

hΩð0Þ
β j � � �Ωð0Þ

β i. Then, recalling Eq. (3.71), we can write this equation more concisely as

ATSUSHI HIGUCHI and WILLIAM C. C. LIMA PHYS. REV. D 105, 045002 (2022)

045002-12



Δβðy1;y2;x1;x2Þ

¼


Ωð0Þ

β jP
�
ΦðRÞ

I

�
−τ2−

iβ
2
;ιðy2Þ

�
ΦðRÞ

I

�
−τ1−

iβ
2
; ιðy1Þ

�
ΦðRÞ

I ðt1;x1ÞΦðRÞ
I ðt2;x2Þexp

�
−i
Z
C
dtHðRÞ

I ðtÞ
��

Ωð0Þ
β

�
connected

;

ð3:79Þ

whereC is a directed contour from 0 to −iβwith decreasing
imaginary parts and with −τ2 −

iβ
2
, −τ1 −

iβ
2
, t1 and t2 on it

in this order. For the inverse temperature β ¼ βH, the right-
hand side of Eq. (3.79) is the case with R ¼ L ¼ 2 of
Eq. (3.59). It is straightforward to generalize this result to
the N-point case. Hence, the N-point functions of the
double KMS state at the Hawking temperature ΩβH are
equal to those of the HH state ΩHH. This concludes our
proof that ΩβH ¼ ΩHH, and is the main result of this paper.
Next, we shall write down a perturbative expression of

the double KMS state Ωβ itself as an operator acting on the

free-theory double KMS state Ωð0Þ
β . To do so, we go back to

Eq. (3.78) and express the trace over the free-field states as

the expectation value in the state Ωð0Þ
β . It is convenient to

introduce the following notation for interaction-picture
propagators acting on the left or the right wedge:

UðLÞ
I ðt; t0Þ≡ UIðt; t0Þ ⊗ 1;

UðRÞ
I ðt; t0Þ≡ 1 ⊗ UIðt; t0Þ: ð3:80Þ

Then, the operator UIð−iβ;− iβ
2
Þ in Eq. (3.78) can be

rearranged in the following way. For any operator O with
support on the right wedge,

hΩð0Þ
β jUðRÞ

I

�
−iβ;−

iβ
2

�
OΩð0Þ

β i ¼ hΩð0Þ
β jUðRÞ

I

�
−iβ;−icLβ −

iβ
2

�
UðRÞ

I

�
−icLβ −

iβ
2
;−

iβ
2

�
OΩð0Þ

β i

¼ hΩð0Þ
β jP exp

�
−i
Z

−iβ

−icLβ−
iβ
2

dtHðRÞ
I ðtÞ

�
UðRÞ

I

�
−icLβ −

iβ
2
;−

iβ
2

�
OΩð0Þ

β i

¼ hΩð0Þ
β jP exp

�
−i
Z

0

ið1
2
−cLÞβ

dtHðRÞ
I ðt − iβÞ

�
UðRÞ

I

�
−icLβ −

iβ
2
;−

iβ
2

�
OΩð0Þ

β i

¼ hΩð0Þ
β jeβH̃0UðRÞ

I ð0; icRβÞe−βH̃0UðRÞ
I

�
−icLβ −

iβ
2
;−

iβ
2

�
OΩð0Þ

β i

¼ hΩð0Þ
β jUðRÞ

I

�
−icLβ −

iβ
2
;−

iβ
2

�
OUðRÞ

I ð0; icRβÞΩð0Þ
β i; ð3:81Þ

where in the last equality we have used the invariance of Ωð0Þ
β under the free Hamiltonian and the KMS condition,

Eqs. (2.23) and (2.25), respectively. Here, the non-negative numbers cR and cL satisfy

cL þ cR ¼ 1

2
: ð3:82Þ

Thus, Eq. (3.78) can be cast in the form

Δβðy1; y2; x1; x2Þ

¼ hΩð0Þ
β jUðRÞ

I

�
−icLβ −

iβ
2
;−

iβ
2

�
UðRÞ

I

�
−
iβ
2
;−τ2 −

iβ
2

�
ΦðRÞ

I

�
−τ2 −

iβ
2
; ιðy2Þ

�
UðRÞ

I

�
−τ2 −

iβ
2
;−τ1 −

iβ
2

�

×ΦðRÞ
I

�
−τ1 −

iβ
2
; ιðy1Þ

�
UðRÞ

I

�
−τ1 −

iβ
2
;−

iβ
2

�
UðRÞ

I

�
−
iβ
2
; icLβ −

iβ
2

�
UðRÞ

I ð−icRβ; 0ÞUðRÞ
I ð0; t2Þ

×ΦðRÞ
I ðt2;x2ÞUðRÞ

I ðt2; t1ÞΦðRÞ
I ðt1;x1ÞUðRÞ

I ðt1; 0ÞUðRÞ
I ð0; icRβÞΩð0Þ

β i=hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i: ð3:83Þ

The next step is to express some of the operators appearing in Eq. (3.83) as operators acting on the left wedge. This can been
done by retracing the steps taken in Eq. (3.61). In particular, we observe that for z; z0 ∈ C we can employ the properties

defining the free KMS state Ωð0Þ
β , Eqs. (2.23)–(2.26), to show that
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hΩð0Þ
β jΦðRÞ

I

�
z −

iβ
2
; ιðyÞ

�
� � �ΦðRÞ

I

�
z0 −

iβ
2
; ιðy0Þ

�
OΩð0Þ

β i ¼ hΩð0
β jΦðLÞ

I ð−z0; y0Þ � � �ΦðLÞ
I ð−z; yÞOΩð0Þ

β i; ð3:84Þ

where again O is any operator with support on R. (Notice the reversing of the operator ordering when the right-wedge
operators are converted to left-wedge operators here.) Using this observation, we convert the string of operators

UðRÞ
I ðicLβ − iβ

2
;− iβ

2
Þ � � �UðRÞ

I ð− iβ
2
; icLβ −

iβ
2
Þ in Eq. (3.83) into a string of operators on the left wedge. The result is

Δβðy1; y2; x1; x2Þ
¼ hΩð0Þ

β jUðLÞ
I ð−icLβ; 0ÞUðLÞ

I ð0; τ1ÞΦðLÞ
I ðτ1; y1ÞUðLÞ

I ðτ1; τ2ÞΦðLÞ
I ðτ2; y2ÞUðLÞ

I ðτ2; 0ÞUðLÞ
I ð0; icLβÞUðRÞ

I ð−icRβ; 0Þ
×UðRÞ

I ð0; t1ÞΦðRÞ
I ðt1;x1ÞUðRÞ

I ðt1; t2ÞΦðRÞ
I ðt2;x2ÞUðRÞ

I ðt2; 0ÞUðRÞ
I ð0; icRβÞΩð0Þ

β i=hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i: ð3:85Þ

Finally, we use Eq. (3.65) to write some strings of
interaction-picture operators as the Heisenberg operator
(with ti ¼ 0) and use the fact that operators on the right
wedge commute with those on the left ones to cast the
expression above into the form

Δβðy1; y2; x1; x2Þ
¼ hΩð0Þ

β jUðLÞ
I ð−icLβ; 0ÞUðRÞ

I ð−icRβ; 0Þ
×Φðy1ÞΦðy2ÞΦðx1ÞΦðx2ÞUðLÞ

I ð0; icLβÞ
×UðRÞ

I ð0; icRβÞΩð0Þ
β i=hΩð0Þ

β jUðRÞ
I ð−iβ; 0ÞΩð0Þ

β i: ð3:86Þ

It is clear from this equation that the interacting double
KMS state is related to the free one according to

Ωβ ¼
UðLÞ

I ð0; icLβÞUðRÞ
I ð0; icRβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i

q Ωð0Þ
β ; ð3:87Þ

and we recall that the constants cL; cR > 0 and satisfy
Eq. (3.82).
In the case of a quantum system with a finite-

dimensional Hilbert space, it is possible to give a simple
interpretation of Eq. (3.87). The adjoint of Eq. (3.73) is
written as

UðLÞ
I ð0; icLβÞUðRÞ

I ð0; icRβÞ
¼ e−ðcLH⊗1þcR1⊗HÞβeðcLH0⊗1þcR1⊗H0Þβ; ð3:88Þ

The free-theory counterpart of Eq. (2.19) is

Ωð0Þ
β ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

Z0ðβÞ
p X

i

e−
1
2
βEð0Þ

i ψ ð0Þ
i ⊗ ψ ð0Þ

i ; ð3:89Þ

where the ψ ð0Þ
i are eigenstates of the free Hamiltonian and

satisfy H0ψ
ð0Þ
i ¼ Eð0Þ

i ψ ð0Þ
i , with Eð0Þ

i the respective energy
eigenvalues. We first note that

eðcLH0⊗1þcR1⊗H0ÞβΩð0Þ
β ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

Z0ðβÞ
p X

i

ψ ð0Þ
i ⊗ ψ ð0Þ

i ; ð3:90Þ

since cR þ cL ¼ 1
2
. We assume that both free and full

Hamiltonians are invariant under an antiunitary transfor-
mation T satisfying T2 ¼ 1, such as the time-reversal
transformation. In this case, the orthonormal energy eigen-
states in the free and full theories can be chosen to be
invariant under T. Then, at the initial time the free energy
eigenstates can be expanded in terms of the interacting
ones as

ψ ð0Þ
i ¼

X
j

Aijψ j; ð3:91Þ

with Aij as the elements of an orthogonal matrix. This is

because hψ ð0Þ
i jψ ji ¼ hTψ ð0Þ

i jTψ ji ¼ hψ jjψ ð0Þ
i i. The fact

that this matrix is orthogonal implies that

X
i

ψ ð0Þ
i ⊗ ψ ð0Þ

i ¼
X
i

ψ i ⊗ ψ i: ð3:92Þ

Using this equality, we find

UðLÞ
I ð0; icLβÞUðRÞ

I ð0; icRβÞΩð0Þ
β

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Z0ðβÞ

p e−ðcLH⊗1þcR1⊗HÞβX
i

ψ i ⊗ ψ i

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Z0ðβÞ

p X
i

e−
1
2
βEiψ i ⊗ ψ i

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ZðβÞ
Z0ðβÞ

s
Ωβ: ð3:93Þ

A similar argument shows that

hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i ¼ ZðβÞ

Z0ðβÞ
: ð3:94Þ
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Equation (3.87) then follows from this last result
and Eq. (3.93).
Equation (3.87) allows us to evaluate the expectation

value of operators which are not necessarily in the right or
left wedge. Thus, with any points X1; X2;…; XN ∈ M, we
have with the choice cR ¼ 1

2
and cL ¼ 0

hΩβjΦðX1ÞΦðX2Þ…ΦðXNÞΩβi

¼ hΩð0Þ
β jUðRÞ

I

�
−
iβ
2
; 0

�
ΦðX1ÞΦðX2Þ…ΦðXNÞ

×UðRÞ
I

�
0;
iβ
2

�
Ωð0Þ

β i=hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i: ð3:95Þ

If some of the points Xk, k ¼ 1; 2;…; N, are not in either
wedge, we need to use the global time T to construct
the Heisenberg operator ΦðXkÞ in terms of the interaction-
picture operators satisfying the free-field equation. The
Hamiltonian in this construction is time-dependent, in gen-
eral. Nevertheless, as shown in Appendix C, the Heisenberg
operator can still be given in terms of the interaction-picture
operators. Thus, if we write X ¼ ðT;XÞ, we have

ΦðT;XÞ ¼ UIð0; TÞΦIðT;XÞUIðT; 0Þ; ð3:96Þ
where the operator UIðT; T 0Þ is defined in Appendix C.
By substituting this formula into Eq. (3.95), assuming that
Tk > 0 for all k for simplicity, we find for time-ordered
products,

hΩβjT ½ΦðX1ÞΦðX2Þ…ΦðXNÞ�Ωβi

¼ hΩð0Þ
β jUðRÞ

I

�
−
iβ
2
; 0

�
UIð0; TfÞ

× T ½UIðTf ; 0ÞΦIðX1ÞΦIðX2Þ…ΦIðXNÞ�

×UðRÞ
I

�
0;
iβ
2

�
Ωð0Þ

β i=hΩð0Þ
β jUðRÞ

I ð−iβ; 0ÞΩð0Þ
β i; ð3:97Þ

where Tf > Tk for all k.
The right-hand side of Eq. (3.97) is evaluated perturba-

tively as follows. Let MðþÞ
E and Mð−Þ

E be the two halves of
the Euclidean section with TE > 0 (or 0<tE<βH=2¼π=κ)
and TE < 0 (or −π=κ ¼ −βH=2 < tE < 0), respectively.
Let M1 and M2 be two copies of the part of the global
Lorentzian manifold M with 0 < T < Tf . Let

Mtotal ≡Mð−Þ
E ∪ M1 ∪ M2 ∪ MðþÞ

E : ð3:98Þ

Then Eq. (3.97) can be expressed as

hΩβjT ½ΦðX1ÞΦðX2Þ…ΦðXNÞ�Ωβi

¼


Ωð0Þ

β jΦIðX1ÞΦIðX2Þ � � �ΦIðXNÞ

× exp

�
−i
Z
Mtotal

ffiffiffiffiffiffi
−g

p
dnxHIðxÞ

�
Ωð0Þ

β

�
connected

; ð3:99Þ

where X1; X2;…; XN ∈ M2. The right-hand side is
expanded using Wick’s theorem in terms of the free-field
two-point function. If the two points x and x0 are on

MðþÞ
E ∪ Mð−Þ

E , then the two-point function Δð0Þ
β ðx; x0Þ is

the Green’s function on the Euclidean section, Gð0Þðx; x0Þ.
If one point is on MðþÞ

E ∪ Mð−Þ
E and the other is on

M1 ∪ M2, then Δð0Þ
β ðx; x0Þ is the analytic continuation

of this function. For the other cases we have

Δð0Þ
β ðx1; x2Þ

¼

8>>><
>>>:

hΩð0Þ
β jΦIðx1ÞΦIðx2ÞΩð0Þ

β i if xi ∈ Mi; i ¼ 1; 2;

hΩð0Þ
β jT ½ΦIðx1ÞΦIðx2Þ�Ωð0Þ

β i if x1; x2 ∈ M2;

hΩð0Þ
β jT̄ ½ΦIðx1ÞΦIðx2Þ�Ωð0Þ

β i if x1; x2 ∈ M1;

ð3:100Þ

where T̄ denotes anti-time-ordering.

IV. EXAMPLES

In this section we briefly comment on the Schwinger-
Keldysh formulation of the HH state in Sec. III B for some
spacetimes with a static bifurcate Killing horizon and a
wedge reflection. The application of this formulation to
Schwarzschild spacetime is straightforward since it was
constructed with this spacetime in mind, except that we
need to change the upper limit Tf for the T integration
depending on the coordinate X because the T coordinate is
bounded by the singularities as jTj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
.

A. Minkowski spacetime

The metric of n-dimensional Minkowski spacetime can
be given as

gMab ¼ −ðdTÞaðdTÞb þ ðdXÞaðdXÞb þ
Xn−2
i¼1

ðdxiÞaðdxiÞb;

ð4:1Þ

where T is the usual inertial time. With ðT; XÞ ¼
ðρ sinhðκtÞ; ρ coshðκtÞÞ, ρ > 0, we obtain the metric on
the right Rindler wedge satisfying −X < T < X:

gMabjR ¼ ½−κ2ρ2ðdtÞaðdtÞb þ ðdρÞaðdρÞb�

þ
Xn−2
i¼1

ðdxiÞaðdxiÞb: ð4:2Þ

The metric covering the left Rindler wedge is obtained by
letting ðT; XÞ ¼ ðρ sinhðκtÞ;−ρ coshðκtÞÞ, ρ < 0, and
takes the same form.
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The Euclidean section is obtained by letting T ¼ iTE,
which has the metric

gM;E
ab ¼ ðdTEÞaðdTEÞb þ ðdXÞaðdXÞb þ

Xn−2
i¼1

ðdxiÞaðdxiÞb:

ð4:3Þ

The manifold MðþÞ
E (Mð−Þ

E ) is the TE > 0 (TE < 0) part of
the Euclidean section and M1 and M2 are two copies of
the portion satisfying 0 < T < Tf of the Lorentzian mani-
fold. Thus, in a double KMS state at the inverse temper-
ature β ¼ βH with respect to the boost Killing vector ∂=∂t,
the time-ordered N-point function is obtained by analytic
continuation of that for the Euclidean theory. As is well
known, theN-point function in the vacuum state is obtained
in the same way. Thus, the vacuum state is a double KMS
state with respect to ∂=∂t. This corresponds to the result of
Bisognano and Wichmann [27] in axiomatic field theory.
If all N operators for the time-ordered N-point function

are in the right Rindler wedge with positive time coor-
dinates, then it can be given by Eq. (3.59) with the contour
C given by Fig. 2 with the path C4 ∪ C5 missing. It is
interesting that in the limit ti → −∞ the paths C3 ∪ C6 can
be omitted [43]. This property is called “factorization” (see,
e.g., Ref. [44]).

B. De Sitter spacetime

The metric of de Sitter spacetime with the Hubble
constant set to 1 can be given as

gdSab ¼
4

ð1þ ρ2Þ2 ½−ðdTÞaðdTÞb þ ðdXÞaðdXÞb�

þ
�
1 − ρ2

1þ ρ2

�
2

ωab; ð4:4Þ

with ρ2 ¼ X2 − T2 ∈ ð−1; 1�, where ωab denotes the metric
on the unit (n − 2)-dimensional sphere, Sn−2. This metric
tensor can be cast into a more familiar form by defining the
coordinates τ and χ by

X ¼ cos χ
cos τ þ sin χ

; T ¼ sin τ
cos τ þ sin χ

; ð4:5Þ

where − π
2
< τ < π

2
and 0 ≤ χ ≤ π. The transformation to

these new coordinates yields

gdSab ¼
1

cos2τ
½−ðdτÞaðdτÞb þ ðdχÞaðdχÞb þ sin2χωab�:

ð4:6Þ

Notice that ðdχÞaðdχÞb þ sin2χωab corresponds to the
metric of Sn−1.

The static metric on the right wedge is found by letting
ðT; XÞ ¼ ðρ sinh t; ρ cosh tÞ, ρ > 0, as

gdSabjR ¼ 4

ð1þ ρ2Þ2 ½−ρ
2ðdtÞaðdtÞb þ ðdρÞaðdρÞb�

þ
�
1 − ρ2

1þ ρ2

�
2

ωab: ð4:7Þ

This can be cast into a more familiar form by defining the
following radial coordinate:

r≡ 1 − ρ2

1þ ρ2
: ð4:8Þ

In terms of the coordinate r, the metric tensor (4.7) then
reads

gdSabjR ¼ −ð1 − r2ÞðdtÞaðdtÞb þ
ðdrÞaðdrÞb
1 − r2

þ r2ωab:

ð4:9Þ
The metric on the left wedge is identical. The state ΩβH
[now with βH ¼ 1=ð2πÞ] is the double KMS state con-
structed for these wedges.
The Euclidean section is given by letting T ¼ iTE. This

can also be achieved by letting τ ¼ iτE in Eq. (4.5), and the
metric (4.6) becomes

gdS;Eab ¼ 1

cosh2τE
½ðdτEÞaðdτEÞb þ ðdχÞaðdχÞb þ sin2χωab�:

ð4:10Þ

Finally, the coordinate change cosh τE ¼ sec η (with
dτE=dη > 0) leads to the familiar metric on Sn:

gdS;Eab ¼ ðdηÞaðdηÞb þ cos2η½ðdχÞaðdχÞb þ sin2χωab�:
ð4:11Þ

The regions with TE > 0 and TE < 0 in the Euclidean
section correspond to the hemisphere with 0 < η < π

2
and

that with − π
2
< η < 0, respectively. The manifold taken in

perturbation theory in the previous section in this case is

given as follows. The manifolds MðþÞ
E and Mð−Þ

E are the
hemispheres of Sn with 0 < η < π

2
and − π

2
< η < 0, respec-

tively. The manifoldsM1 andM2 can both be replaced by
the part of the global Lorentzian manifold with metric (4.6)
with 0 < τ < τf , where τf is larger than the τ-coordinate of
any external point.

V. SUMMARY AND DISCUSSION

In this paper we discussed the relationship between
Euclidean and Lorentzian perturbative formalisms for
quantum fields in static spacetimes with a bifurcate
Killing horizon and a wedge reflection. The natural state
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in such a spacetime is the HH state, which is a thermal
equilibrium state at the Hawking temperature, as measured
by static observers in either of the two static wedges. The
naturalness of the HH state comes from the fact that it
shares the background symmetries and is regular on the
bifurcation surface. Since this state has been originally
defined via the analytic continuation of the Euclidean
theory to real times, the question we have addressed is
how it relates to the double KMS state constructed in an
intrinsically Lorentz-signature approach.
We first reviewed the equivalence of the HH state and a

double KMS state at the Hawking temperature for a
noninteracting scalar field theory. Then, in an interacting
scalar field theory with nonderivative interaction, we
clarified how the N-point correlation functions are ana-
lytically continued from the Euclidean theory with imagi-
nary time to real time in the Schwinger-Keldysh
perturbation theory for the HH state. Then, we showed
that these N-point functions are equal to those in a double
KMS state at the Hawking temperature if the points are in
the union of the right and left wedges. This gives a
perturbative demonstration of the equivalence between
the HH state and this double KMS state, shown formally
by using path-integral by Jacobson [22]. We also found a
perturbative expression of this interacting double KMS
state in terms of the noninteracting one and the free-field
operators. We used this result to express the N-point
functions when the points are not necessarily in the wedges.
It is interesting to compare Jacobson’s path-integral

argument with our operator approach. He started by
pointing out that the HH state can be characterized as
the Schrödinger wave functional on the Cauchy surface
ΣL ∪ B ∪ ΣR constructed by the path integral over the
“lower half ” (with −π < tE < 0) of the Euclidean manifold
with metric (2.15) bounded by this Cauchy surface. To
identify this state as a double KMS state he first noted that
this path integral can be interpreted as the following
imaginary-time evolution operator up to a normalization
factor:

e−1
2
βHH∶ HðSÞ

ΣR → HðSÞ
ΣL ; ð5:1Þ

where HðSÞ
ΣR and HðSÞ

ΣL are the spaces of the Schrödinger
wave functionals of states on ΣR and ΣL, respectively.

Let fψ ðiÞ
ΣRg and fψ ðiÞ

ΣLg be complete sets of orthonormal
wave functionals on ΣR and ΣL, respectively. Then, if
hψ jψ 0i is the inner product between the wave functionals

ψ ;ψ 0 ∈ HðSÞ
ΣL , this path integral gives the following

Schrödinger wave functional on ΣL ∪ B ∪ ΣR (in a heu-
ristic notation):

ΨHH ∝
X
i;j

hψ ðiÞ
ΣL je−1

2
βHHψ ðjÞ

ΣRiψ ðiÞ
ΣL ⊗ ψ ðjÞ�

ΣR ; ð5:2Þ

which is indeed a double KMS state with the Hawking
temperature [see Eq. (2.19)].
Jacobson’s argument corresponds to the demonstration

in this paper that the 4-point function in the double KMS
state Ωβ in Eq. (3.60) is given by a thermal average as in
Eq. (3.62), which is a 4-point function in the HH state if
β ¼ βH. In our operator-formalism derivation we needed to
rewrite the 4-point function involving operators in both
wedges as a 4-point function only with those in the right
wedge using the KMS condition. There is no corresponding
step in the path-integral derivation.
The operator approach in this paper makes it clear

how the N-point functions in the HH state are found in
perturbation theory. Also our derivation, based on
Hamiltonian perturbation theory, can readily be extended
to other quantum field theory, e.g., perturbative quantum
gravity.
The detailed discussion we presented of the analytic

continuation of the Euclidean N-point functions both in
the free and interacting theories is the main contribution of
this paper. In summary, it shows that the Euclidean theory
defines a bona fide state in the Lorentzian section in
perturbation theory. Although this does not come as a
surprise in the scalar field case, some authors have raised
doubts about the validity of Euclidean methods in per-
turbative quantum gravity around de Sitter background
[45,46]. An interesting application we foresee of the
results of this paper is in investigating whether the
gauge-fixed Euclidean partition function for quantum
gravity in de Sitter defines a good state when analytically
continued to the global patch of de Sitter spacetime. The
free Euclidean vacuum for the graviton is known to be
well defined, as it does not display IR divergences [47–
49]. Thus, it will be interesting to use the Schwinger-
Keldysh contour presented in this paper to define the
interacting Euclidean vacuum, i.e., the HH state, in the
global de Sitter spacetime.
In defining the HH state for perturbative gravity we

would need to confront the infrared problem in the
Faddeev-Popov ghost sector [50–52]. Recently it has been
proposed to solve this problem using certain conserved
charges in this sector of the theory [53,54]. Another
challenge would be the conformal-mode problem in
the Euclidean quantum gravity [55–57]. It would be
interesting to see whether this problem could be circum-
vented by the Schwinger-Keldysh approach, which is
intrinsically Lorentzian.
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APPENDIX A: FREE FIELD IN THE
FUTURE REGION

For the annihilation operator on the right wedge, the
KMS condition (2.25) reads

e−
1
2
βHH̃0aðRÞσ ðωÞΩð0Þ

βH
¼ JaðRÞ†σ ðωÞΩð0Þ

βH

¼ aðLÞ†σ ðωÞΩð0Þ
βH
; ðA1Þ

where we have used Eqs. (2.24) and (3.24) in the second
equality. On the other hand, the commutator

½H̃0; a
ðRÞ
σ ðωÞ� ¼ −ωaðRÞσ ðωÞ; ðA2Þ

together with Eq. (2.23), implies that

e −1
2
βHH̃0aðRÞσ ðωÞΩð0Þ

βH
¼ e

ωβH
2 aðRÞσ ðωÞΩð0Þ

βH
: ðA3Þ

Then, by subtracting Eq. (A3) from Eq. (A1), we obtain

AðRÞ
σ ðωÞΩð0Þ

βH
¼ 0; ðA4Þ

where

AðRÞ
σ ðωÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−ωβH
p ½aðRÞσ ðωÞ − e−

ωβH
2 aðLÞ†σ ðωÞ�: ðA5Þ

One finds similarly,

AðLÞ
σ ðωÞΩð0Þ

βH
¼ 0; ðA6Þ

where

AðLÞ
σ ðωÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−ωβH
p ½aðLÞσ ðωÞ − e−

ωβH
2 aðRÞ†σ ðωÞ�: ðA7Þ

The operators AðRÞ
σ ðωÞ and AðLÞ

σ ðωÞ are normalized so that

½AðRÞ
σ ðωÞ; AðRÞ†

σ0 ðω0Þ� ¼ δσσ0δðω − ω0Þ; ðA8Þ

and the other commutators vanish. Similar commutators are

found for AðLÞ
σ ðωÞ. The field operator with support on the

right wedge can then be expanded as follows:

ΦðRÞ
I ðt;xÞ ¼

Z
∞

0

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωð1 − e−ωβHÞ

p X
σ

× ϕσωðxÞ½AðRÞ
σ ðωÞe−iωt þ AðLÞ

σ ðωÞe−ωβH
2
þiωt

þ AðRÞ†
σ ðωÞeiωt þ AðLÞ†

σ ðωÞe−ωβH
2
−iωt�: ðA9Þ

The coefficient functions of annihilation operators

AðRÞ
σ ðωÞ and AðLÞ

σ ðωÞ are analytically continued to other
regions as global positive-frequency modes, whereas those
of creation operators are analytically continued as global
negative-frequency modes. As the point ðT;XÞ goes across
the horizon X − T ¼ 0 fromR to F , the positive frequency
solution must be analytically continued with the following
conditions: (i) its T þ X dependence should be the same in
R and F ; (ii) the singularity X − T must be avoided by
letting X − T → X − T þ iϵ. The condition (ii) comes from
the fact that, since its high-frequency components with
respect to the global time T are of the form e−ikT with k
large and positive, this solution should be regarded as a
distribution obtained by taking the ϵ → 0þ limit with T →
T − iϵ so that e−ikT → 0 as k → þ∞.
To find out the implications of conditions (i) and (ii) to

the static coordinates, we note that the combinations X � T
are expressed in terms of t and ρ as

X þ T ¼ ρeκt for ðT;XÞ ∈ R ∪ F ðA10Þ

and

X − T ¼
�
ρe−κt if ðT;XÞ ∈ R;

−ρe−κt if ðT;XÞ ∈ F ;
ðA11Þ

respectively. Hence, for the global positive-frequency
solutions we must let ρ → e

iπ
2ρ and t → t − iβH=4, as the

point ðT;XÞ traverses the horizon X − T ¼ 0 from R,
where X − T > 0, to F , where X − T < 0. This implies
that

ϕωσðxÞe�iωtðinRÞ → ϕ̃ωσðxÞe�
ωβH
4
�iωtðinF Þ; ðA12Þ

where ϕ̃ωσðxÞ is obtained from ϕωσðxÞ by replacing ρ

by e
iπ
2ρ.

The coefficient function multiplying creation operators
in Eq. (A9) must be continued as a global negative-
frequency mode, for which ρ → e−

iπ
2ρ and t→ tþ iβH=4.

Thus, the free field in the future region F is obtained from
Eq. (A9) as follows:

ΦðFÞ
I ðt;xÞ ¼

Z
∞

0

dω e−ωβ
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωð1 − e−ωβÞ
p X

σ

× fϕ̃σωðxÞ½AðRÞ
σ ðωÞe−iωt þ AðLÞ

σ ðωÞeiωt�
þ ϕ̃ωσðxÞ½AðRÞ†

σ ðωÞe−iωt þ AðLÞ†
σ ðωÞe−iωt�g:

ðA13Þ

Equations (3.48) and (3.49) readily follow from Eqs. (A9)
and (A13).
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APPENDIX B: ANALYTIC CONTINUATION OF
CORRELATION FUNCTIONS

In this Appendix we show that the N-point function
defined by Eq. (3.55) is analytically continued by changing
the real part of the time variables while keeping their
imaginary part unchanged, under the assumptions made
about the integration over ΣR.
Let Fðx1; x2;…; xN ; y1; y2;…; yMÞ, with xi ¼ ðti; xiÞ

and yj ¼ ðτj; yjÞ, xi; yj ∈ ΣR, denote a product of the
free-theory two-point functions Gð0Þðx; x0Þ with the points
from the set of external points fxigi¼1;2;…;N and the set of
internal points fyjgj¼1;2;…;M. We let each of the external
points xi appear only once as an argument of a two-point
function. An example is

Fðx1; x2; x3; x4; y1; y2Þ
¼ Gð0Þðx1; y1ÞGð0Þðx2; y1Þ½Gð0Þðy1; y2Þ�2
×Gð0Þðy2; x3ÞGð0Þðy2; x4Þ; ðB1Þ

which arises in theΦ4-theory. At each order in perturbation
theory, the N-point function (3.55) is a finite sum of
functions of the form

�YM
j¼1

Z
C
dτj

Z
ΣR

dn−1yj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðyjÞ

q �

× Fðx1; x2;…; xN ; y1; y2;…; yMÞ; ðB2Þ

where C is a contour in CβH defined by Eq. (3.34) with the
points x1; x2;…; xN also on C.
Under the assumption we made about the integrals over

ΣR—in effect we assume that these integrals are cut off in
the ultraviolet and infrared—these integrals do not affect
the analytic property with respect to the time variables ti
and τj. That is, if the integrand has a certain analytic
property, then so does the result of the integration over ΣR.
Thus, we are led to consider

ICðt1; t2;…; tNÞ

≡
�YM

j¼1

Z
C
dτj

�
Fðx1; x2;…; xN ; y1; y2;…; yMÞ: ðB3Þ

What we need to show is that, if kyi − yjk; kyj − xik > ϵ
for all i and j for some ϵ > 0, this function is analytically
continued by changing the real part of ti ∈ C with the
contour C with monotonically decreasing imaginary part
deformed so that ti are always on C.
Let us define an equivalence relation for IC as follows:

IC ∼ IC0 if ICðt1; t2;…; tNÞ and IC0 ðt01; t02;…; t0NÞ are ana-
lytic continuations of each other, with the analytic con-
tinuation performed by changing the real part of ti but
keeping its imaginary part fixed, i.e., ImðtiÞ ¼ Imðt0iÞ for all

i. We now show that IC ∼ IC0 for allC andC0. We define the
horizontal distance (i.e., the distance along the real axis)
between C and C0 by

jC − C0j≡max fjt − t0j∶t ∈ C; t0 ∈ C0; ImðtÞ ¼ Imðt0Þg:
ðB4Þ

Suppose that for some d > 0we have IC ∼ IC0 for all C and
C0 satisfying jC − C0j < d. Then, since ∼ defined here is an
equivalence relation, and thus transitive, we have IC ∼ IC0

for all C and C0 satisfying jC − C0j < nd for any n ∈ N.
This implies that IC ∼ IC0 for all C and C0. Hence, all we
need to show is that there is a number d > 0 such that
IC ∼ IC0 if jC − C0j < d.
In general the two-point function Gð0Þðx; x0Þ with x ¼

ðt;xÞ and x0 ¼ ðt0;xÞ for the free scalar field is singular
only if ImðtÞ ¼ Imðt0Þ and the points ðReðtÞ;xÞ and
ðReðt0Þ;x0Þ can be connected by a null geodesic [37].
This implies that there exists a positive number d such that
the two-point function Gð0Þðt;x; t0;x0Þ with the points
satisfying kx − x0k > ϵ is an analytic function of t and
t0 in a open neighborhood without holes containing C and
C0 if jC − C0j < d.
Now, assume that C and C0 satisfy jC − C0j < d and

define IC0;Cðt01; t02;…; t0NÞ to be the function obtained by
shifting each point ti in the real direction to t0i, which is on
C0. Then, the function IC0;C is an analytic continuation of
IC. That is, IC0;C ∼ IC. Now, the function IC0;C is unchanged
if we replace the contour of integration for τj from C to C0

for any j. If we make this change of the contour for all j,
then the resulting function is IC0 by definition. That is,
IC0 ¼ IC0;C. Hence we have IC ∼ IC0 for all C and C0.

APPENDIX C: INTERACTION PICTURE WITH
A TIME-DEPENDENT HAMILTONIAN

Let the Hamiltonian be given in the Schrödinger
picture as

HSðtÞ ¼ H0;SðtÞ þHI;SðtÞ; ðC1Þ

i.e., it is given in terms of the canonical operators Φðti;xÞ
and their canonical conjugate momenta with ti fixed. The
Hamiltonian H0;SðtÞ describes the free-field theory and
HI;SðtÞ is the nonderivative interaction term. The explicitly
time-dependence of HSðtÞ arises from time-dependent
functions multiplying these canonical operators.
The time evolution of a stateΨ in the Schrödinger picture

is given by

i
d
dt

ΨðtÞ ¼ HSðtÞΨðtÞ: ðC2Þ

This can be solved as
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ΨðtÞ ¼ Uðt; tiÞΨðtiÞ; ðC3Þ

where we have defined the time-evolution operator

Uðt; tiÞ≡ P exp
�
−i
Z

t

ti

HSðτÞdτ
�
; ðC4Þ

with P indicating the path-ordering. That is, products
of the operators HSðτÞ is time-ordered if t > ti and anti-
time-ordered if t < ti. The Heisenberg operator Φðt;xÞ is
given by

Φðt;xÞ ¼ Uðti; tÞΦðti;xÞUðt; tiÞ; ðC5Þ

where Φðti;xÞ is the field operator in the Schrödinger
picture at any time t. The operator Φðt;xÞ satisfies
Heisenberg’s equation of motion:

i
d
dt

Φðt;xÞ ¼ ½Φðt;xÞ; HðtÞ�; ðC6Þ

where HðtÞ is the Hamiltonian in the Heisenberg picture:

HðtÞ ¼ Uðti; tÞHSðtÞUðt; tiÞ: ðC7Þ

The field operator in the interaction picture is defined as

ΦIðt;xÞ ¼ U0ðti; tÞΦðti;xÞU0ðt; tiÞ; ðC8Þ

where U0ðt; tiÞ is the time-evolution operator of the free
system, i.e., the operator defined in Eq. (C4) but withHSðτÞ
replaced byH0;SðτÞ. Defined this way, the operatorΦIðt;xÞ
satisfies the free-field equation:

i
d
dt

ΦIðt;xÞ ¼ ½ΦIðt;xÞ; H0;IðtÞ�; ðC9Þ

whereH0;IðtÞ is the free-field Hamiltonian in the interaction
picture. This operator is defined as

H0;IðtÞ ¼ U0ðti; tÞH0;SðtÞU0ðt; tiÞ: ðC10Þ

From Eq. (C5) and the corresponding expression for
ΦIðt;xÞ we find

Φðt;xÞ ¼ UIðti; tÞΦIðt;xÞUIðt; tiÞ; ðC11Þ

where

UIðt; tiÞ≡U0ðti; tÞUðt; tiÞ: ðC12Þ

Then we find

d
dt

UIðt; tiÞ ¼ −iHIðtÞUIðt; tiÞ; ðC13Þ

whereHIðtÞ is the interaction term in the Hamiltonian in the
interaction picture:

HIðtÞ ¼ U0ðti; tÞHI;SðtÞU0ðt; tiÞ: ðC14Þ

From Eq. (C13) we obtain

UIðt; tiÞ ¼ P exp

�
−i
Z

t

ti

HIðτÞdτ
�
: ðC15Þ

Then, by defining UIðt; t0Þ for general arguments t and t0 as

UIðt; t0Þ ¼ UIðt; tiÞUIðt; tiÞ†; ðC16Þ

we find that the Heisenberg operatorΦðt;xÞ is expressed in
terms of the interaction-picture operators as in Eq. (3.65)
also for a time-dependent Hamiltonian.
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