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Bubble universes and traversable wormholes in general relativity can be realized as two sides of the same
concept. To exemplify it, we find, display, and study in a unified manner a Minkowski-Minkowski closed
universe and a Minkowski-Minkowski traversable wormhole. By joining two 3-dimensional flat balls along
a thin shell two-sphere of matter, i.e., a spherical domain wall, into a single spacetime one gets a
Minkowski-Minkowski static closed universe, i.e., a bubble universe. By joining two 3-dimensional
complements of flat balls along a thin shell two-sphere of matter, i.e., a spherical throat, into a single
spacetime one gets a Minkowski-Minkowski static open universe which is a traversable wormhole. Thus,
Minkowski-Minkowski bubble universes and wormholes can be seen as complementary to each other. It is
also striking that these two spacetimes, the Minkowski-Minkowski bubble universe and the Minkowski-
Minkowski traversable wormhole, have resemblances with two well-known static universes of general
relativity. The Minkowski-Minkowski static closed universe, i.e., the Minkowski-Minkowski bubble
universe, resembles in many aspects the Einstein universe, i.e., a static closed spherical universe
homogeneously filled with dust matter and with a cosmological constant. The Minkowski-Minkowski
static open universe, i.e., the Minkowski-Minkowski traversable wormhole, resembles the Friedmann static
universe, i.e., a static open hyperbolic universe homogeneously filled with negative energy density dust and
with a negative cosmological, which is a universe with two disjoint branes, or branches, and can be
considered a failed wormhole. In this light, the Einstein static closed universe and the Friedmann static
open universe should also be seen as the two sides of the same concept, i.e., they are complementary to each
other. The scheme is completed by performing a linear stability analysis for the Minkowski-Minkowski
bubble universe and the Minkowski-Minkowski traversable wormhole and also by comparing it to the
stability of the Einstein static universe and the Friedmann static universe, respectively. This comple-
mentarity between bubble universes and traversable wormholes, that exists for these instances of static
spacetimes, can be carried out for dynamical spacetimes, indicating that such a complementarity is quite
general. The overall study suggests that bubble universes and traversable wormholes can be seen as coming
out of the same concept, and thus, if one type of solution exists the other should also exist.
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I. INTRODUCTION

A. Minkowski-Minkowski bubble universe and
Minkowski-Minkowski traversable wormhole

General relativity is an excellent theory to study universe
solutions and wormhole solutions from which bubble
universes and traversable wormholes can arise as

complementary to each other. To see this, one can attempt
to find within the theory Minkowski-Minkowski bubble
universes and Minkowski-Minkowski traversable worm-
holes and study their properties. One picks up a Minkowski
spacetime and at constant time cuts a ball in it, to obtain two
spaces, namely, a 3-dimensional ball with a flat inside, and
an infinite extended 3-dimensional flat space with a hole,
which is the complement of the ball. Then one picks up
another Minkowski spacetime and do the same, to get a
second ball and a second infinite extended flat space
with a hole. If one joins the two 3-dimensional balls along
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a 2-sphere, a shell containing matter, one obtains a single
3-space that including time makes altogether a static closed
universe. If one joins the two complements, i.e., the two
infinite extended 3-dimensional flat spaces with a hole in
each, along a 2-sphere, a shell containing matter, one
obtains a different single 3-space that including time makes
altogether another universe, which is a traversable worm-
hole. Thus, one has a closed universe, which can be viewed
as a bubble universe, and its complement, an open universe,
which is a traversable wormhole. To implement the idea
of a Minkowski-Minkowski closed universe, i.e., a bubble
universe, and a Minkowski-Minkowski open universe, i.e.,
a traversable wormhole, one uses the equations of general
relativity together with the appropriate thin shell formalism
[1]. When one has a thin shell in an ambient spacetime, the
normal vector field to the shell is an important quantity that
provides a way to determine how the thin shell curves in
that space, i.e., allows to determine the extrinsic curvature
of the shell, which in addition to the induced metric, is the
other quantity that completely characterize the embedded
surface layer. These quantities play a pivotal part in the
junction formalism. Indeed, to find all possible shell
solutions in an ambient spacetime one has to understand
the fact that the normal to a shell can have two relative
directions, such that, for static spherically symmetric
spacetimes, the normal to the shell may point toward or
away from the center of the coordinates. For instance, in an
ambient Minkowski-Schwarzschild spacetime, more pre-
cisely, for a shell with a Minkowski interior with a center
and a Schwarzschild exterior, usually called a fundamental
shell, if the normal points to increasing coordinate radius r in
the exterior, one has a star shell, i.e., a shell that represents a
star. In the same ambient Minkowski-Schwarzschild space-
time, if the normal points to decreasing coordinate radius r
one has a tension shell black hole, i.e., a shell supported by
tension that is in the other side of the Kruskal-Szekeres
diagram as was noted by Katz and Lynden-Bell [2]. This can
also be performed in an ambient Minkowski-Reissner-
Nordström spacetime, yielding, instead of two fundamental
electrically charged shell spacetimes, a bewildering variety
of fourteen fundamental electrically charged shell spacetimes
with different global spacetime structures [3]. Here, in place
of using an ambient Minkowski-Schwarzschild or an ambi-
ent Minkowski-Reissner-Nordström we use an ambient
Minkowski-Minkowski spacetime.
One possibility for a Minkowski-Minkowski spacetime

is for a shell with a Minkowski interior with a center, i.e., a
fundamental shell, such that the normal to the shell points
toward decreasing radius r in the Minkowski exterior. One
then finds the Minkowski-Minkowski closed universe,
made of two 3-dimensional flat balls, or sheets, that are
joined at some domain wall, i.e., a 2-sphere shell with
matter, to make a Minkowski-Minkowski bubble universe.
Note that for a shell with a Minkowski interior with a center
such that the normal to the shell points toward increasing

radius r in the Minkowski exterior yields the trivial global
Minkowski spacetime with a zero shell.
There is yet another possibility for a Minkowski-

Minkowski spacetime, different from the fundamental
shell. It comes from an exotic shell, i.e., a shell attached
to a Minkowski open interior, noting that interior is just a
name since it could as well be called exterior. For a shell
with a Minkowski open interior, when the normal to the
shell points toward increasing r in the Minkowski exterior,
one finds the Minkowski-Minkowski open universe, made
of two 3-dimensional flat open infinite sheets that are
joined at some 2-sphere with matter, to make a Minkowski-
Minkowski traversable wormhole. Note that for a shell with
a Minkowski open interior such that the normal to the shell
points toward decreasing radius r in the Minkowski
exterior yields the trivial global Minkowski spacetime with
a zero shell.
Universes and wormholes are usually envisaged as

distinct objects. The two Minkowski-Minkowski space-
times demonstrate that they can be seen as complementary
to each other, i.e., they are two sides of the same concept.
The concept, i.e., a collection of two Minkowski space-
times together, yields on one side a closed universe, i.e., a
bubble universe, and on the other side an open universe
which is a traversable wormhole. Surely, the collection of
two Minkowski spacetimes can also lead to two separate
Minkowski spacetimes, but this is the trivial case and needs
not be considered.

B. Einstein static closed spherical universe and
Friedmann static open hyperbolic universe

There are two paradigmatic static homogeneous uni-
verses in general relativity: the static closed spherical
universe and the static open hyperbolic universe, with
two separated branes or branches. To implement the idea of
static uniform universes, one uses general relativity itself,
i.e., Einstein equation modified to include a cosmological
constant. From the staticity condition one imposes that
neither the geometry nor the matter depend on time and
from the homogeneous condition one imposes that the
energy-density is a constant in space.
This implementation, that the Universe, in particular a

static universe, could be described within general relativity,
was put forward by Einstein. In devising a way to realize
Mach’s principle, a new interaction, namely, a cosmologi-
cal constant with repulsion features, was postulated.
General relativity with this new cosmological interaction
is indeed the first modified theory of gravitation. This
repulsive cosmological term, that counterbalances the self
gravitational force due to the energy density of the matter
supposed pressureless, was then used to find a unique static
solution for the Universe which was also assumed to be
closed, finite, and spheric [4]. In the limiting case that the
universe would be spatially flat, the Einstein universe

JOSÉ P. S. LEMOS and PAULO LUZ PHYS. REV. D 105, 044058 (2022)

044058-2



disappeared in a Minkowski empty universe. The enforcing
of Mach’s principle in this way proved to be a dead end as
exemplified by the de Sitter universe with no matter and
only a cosmological constant [5], but the static closed
universe of Einstein was of great impact as it indeed started
the concept of universes. For instance, dynamic closed
universes within general relativity, like the Friedmann [6]
and Lemaître [7] expanding universes, came out of
Einstein’s static one, which in turn, due to its instability
and propensity to grow, continued to be studied as a
progenitor of expanding closed universes [8–13].
Remarkably, Friedmann in his second paper on universes

and cosmology proposed to start with an open static
hyperbolic universe, as to exhaust the possible static
pressureless universes [14]. In the process, a cosmological
constant, now with attraction features, was again intro-
duced to counterbalance the self gravitational repulsive
force due to a matter energy density necessarily negative. In
the limiting case the universe would be spatially flat, the
Friedmann universe disappeared in a Minkowski empty
universe. The Friedmann static universe can be seen as an
anti-Einstein universe and it inaugurated the concept of
open universes. Indeed, it was used by Friedmann in [14] to
continue the analysis into dynamic open hyperbolic uni-
verses and it was developed by Harrison [15] who, among
many other universes, also studied its stability. Now, the
Friedmann static universe, being hyperbolic, has two
branches, or branes, which fail to communicate to each
other by an infinitesimal separation. This means that it can
be considered a wormhole, actually, a failed wormhole. It is
not traversable but almost and it can be thought as an
embryo of a wormhole.
The Einstein static closed universe and the Friedmann

static open universe can be seen as complementary, i.e.,
they are two sides of the same concept. The concept here is
the constant spatial curvature of the spacetime, one side
gives positive spatial curvature, i.e., the Einstein universe,
the other side gives negative spatial curvature, i.e., the
Friedmann static universe. The trivial case here would also
be two zero curvature spacetimes, i.e., two separate
Minkowski spacetimes, and needs not be considered.

C. Bubble universes and traversable wormholes

Bubble universes and traversable wormholes have been
proposed as structures that might arise if appropriate
physical conditions are available. Indeed, the Universe in
its early phases, of which the inflationary period is an
example, filled with scalar and gauge fields, may have
produced domain walls, cosmic strings, and monopoles,
which can still exist as frozen topological remains of the
symmetry breaking phase transition of that early era. In this
connection, a setting allowed by the prevailing physical
conditions of that early inflationary era, or even of an epoch
before it, is that bubble universes might have unfolded
within the Universe and also, conceivably, systems such as

traversable wormholes might have materialized to connect
distant parts of the Universe or distinct universes. In
addition, a possibility also permitted by the laws of physics,
is that bubble universes and traversable wormholes might
be constructed if sufficient technology is available. General
relativity is an excellent theory to study universe solutions
and wormhole solutions from which bubble universes and
traversable wormholes can emerge as complementary to
each other, and so they can be seen as duals of each other,
leading to a better understanding of both.
A bubble universe, a universe within the Universe, is a

complete solution of the Einstein’s equations. Bubble
universes, together with baby universes, are universes in
themselves, somehow attached to our one. They made their
appearance in the physics of false vacuum decay within
dynamic bubbles [16]. Its interest and uses within the
inflation theory was seen in [17]. The idea of bubble
universes taking off out from our Universe was developed
in [18], general relativistic dynamic bubble universe
solutions with matter were proposed in [19], several
possible universe decays and corresponding expanding
or contracting domain walls were thoroughly analyzed in
[20], interesting scenarios with bubbles with different
gravitational constants were proposed in [21], their intrinsic
stability has not been analyzed, see however [22], and
bubble universe astrophysical connections to black holes
and their formation were studied in [23,24].
A traversable wormhole, joining two otherwise distinct

universes through two mouths and a throat, is also a
complete solution of the Einstein’s equations. A wormhole
is a concept with a history of its own that in a sense was
initiated by Einstein in the celebrated Einstein-Rosen
bridge [25]. The concept had further developments related
to the quantization of the spacetime geometry [26], and it
was essential to understand the maximal extension of the
Schwarzschild spacetime, now seen as a white hole being
converted to a black hole through a nontraversable worm-
hole connecting two separated asymptotically flat space-
times [27], which in turn gave rise to the notion of multiply
connected spacetimes [28]. Wormholes, in particular tra-
versable wormholes, abound in general relativity and in
gravitational theories. Traversable wormhole solutions
were found first in [29,30], were placed in a proper
framework in [31], were studied as inflating solutions in
[32], were proposed in an exercise as a junction of two
Minkowski spacetimes in a remarkable encyclopedic and
also didactic book exclusively dedicated to them [33], had
their matter energy conditions and their connection to the
flare-out condition for the geometry described for generic
dynamic solutions in [34], were built from vacuum stress-
energy tensors in [35], were studied with the aim of
calculating the ground state energy of a scalar field on
the throat of two asymptotically Minkowski spacetime
regions [36], were embedded in a cosmological constant
setting in [37], had the energy conditions at the wormhole’s
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throat generically reassessed in [38], were analyzed in
relation to their shadows and quasinormal modes in [39],
had collisions between their own mouths studied in [40],
had a stability analysis performed in [41–43], see also [33],
and had their possible connection to astrophysics being
proposed in [44–46].
The bubble universe and traversable wormhole solutions

just mentioned are only a few of the vast number of all the
many interesting solutions found in the literature, and it is
not our intention to proceed with an analysis of so vast a
camp. Usually, bubble universes appear in dynamic con-
texts, whereas traversable wormholes are generically real-
ized in static backgrounds, but of course they can both
be static or dynamic. Bubble universes and traversable
wormholes can appear as duals of each other, a possibility
of when quantum gravity dominated or was still non-
negligible, bubble universes and traversable wormholes
would form alike out of the spacetime foam, and would stay
stable or metastable structures well into the classical
regime. We stick to general relativity and to the two static
Minkowski-Minkowski spacetimes and the two static
homogeneous universes of Einstein and Friedmann. With
these four spacetimes it is possible to have two levels of
comparison. On a first level of comparison, on the one
hand, one can compare the two Minkowski-Minkowski
spacetimes between themselves by investigating their
similarities, and on the other hand, one can also attempt
to compare the two static, homogenewous, pressureless
spacetimes of general relativity with cosmological constant
between themselves. On a second level of comparison, the
two Minkowski-Minkowski spacetimes are put face to face
with the two static spacetimes of Einstein and Friedmann.
Let us be specific. When performing the first level
comparison between the two Minkowski-Minkowski
spacetimes, i.e., the Minkowski-Minkowski bubble uni-
verse and the Minkowski-Minkowski traversable worm-
hole, one should take some steps, namely, one has to reveal
in a unified manner the two possible nontrivial cases in a
Minkowski-Minkowski spacetime, or more concretely, one
has to find the fundamental shell spacetime, which is a
closed bubble universe, and find also the exotic shell
spacetime, which is an open traversable wormhole uni-
verse. In doing so, one classifies and analyzes the possible
junctions of Minkowski spacetimes through a static, time-
like, thin matter shell, which are the two nontrivial cases
just mentioned, the trivial one being the no shell pure
Minkowski spacetime. A linear stability study of these
spacetimes completes the comparison. Through this
example, bubble universes and traversable wormholes
can now be understood in a unified light, in the sense
that the Minkowski-Minkowski bubble universe and the
Minkowski-Minkowski traversable wormhole are two sides
of the same concept, in which instance, if one exists it
makes a case to the existence of the other. When perform-
ing the first level comparison between the two static,

homogeneous, pressureless spacetimes with cosmological
constant, i.e., the Einstein closed universe and the
Friedmann open universe, one should take some steps,
namely, one has to reveal in a unified manner these two
possible nontrivial cases, and display them in a new light. A
linear stability study of these spacetimes completes the
analysis. In this new light, the Einstein and Friedmann static
universes can be compared, they are seen anew as a bubble
universe and a failed wormhole, respectively. On the second
level of comparison, the two Minkowski-Minkowski space-
times are put face to face with the two static homogeneous
spacetimes, to find that the Minkowski-Minkowski closed
universe, a bubble universe, goes along with the Einstein
closed universe, which can then be seen then as a bubble
universe, and the Minkowski-Minkowski open universe, a
traversable wormhole, goes along with the Friedmann open
universe,which is a failedwormhole. This comparison shows
some striking resemblances between those spacetimes on
several grounds. In this sense, the Einstein and Friedmann
static universes are really seen anew as a bubble universe and
a failed wormhole, respectively, and also they are an example
that bubble universes and traversable wormholes can be
perceived in a unified light. The complementarity, or duality,
between general relativistic bubble universes and traversable
wormholes exists for these examples of static spacetimes.
One can carry out this idea for dynamical spacetimes and
show that the complementarity, or duality, considered here is
quite generic. Moreover, following this rationale, if one finds
inflating bubble universe solutions, one should be able to find
the corresponding inflating wormhole solutions, and vice
versa, so that, for instance, a given solution already found in
one of the sides could help in looking for the complementary
solution in the other side.
The paper is organized as follows. In Sec. II, we formalize

in a unified way the two possible junctions of two identical
Minkowski spacetime regions and we perform a linearized
stability analysis of the Minkowski-Minkowski universes.
We then build in detail the Minkowski-Minkowski static
closed universe, i.e., a bubble universe, and the Minkowski-
Minkowski static open universe, i.e., the Minkowski-
Minkowski static traversable wormhole. In Sec. III, we
formalize in a unified way the two possible static homo-
geneous universes and we display a linearized stability
analysis of them. We then display in detail the Einstein
static spherical closed universe andwe compare explicitly the
Minkowski-Minkowski static closed universe, i.e., the
Minkowski-Minkowski bubble universe, with the Einstein
static spherical closed universe, and display the Friedmann
static hyperbolic openuniverse, i.e., the failedwormhole, and
compare explicitly the Minkowski-Minkowski static open
universe, i.e., the Minkowski-Minkowski static traversable
wormhole, with the Friedmann failed wormhole. In Sec. IV
we conclude. Throughout the paper wework in geometrized
units system where the constant of gravitation G and the
speed of light c are set to one,G ¼ 1 and c ¼ 1, and use the
metric signature ð−þþþÞ.
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II. MINKOWSKI-MINKOWSKI CLOSED
UNIVERSE AND MINKOWSKI-MINKOWSKI

OPEN UNIVERSE

A. Minkowski-Minkowski universes:
Formal solutions and stability

1. Solutions

The Einstein field equations

Gαβ ¼ 8πTαβ; ð1Þ

where Gαβ ¼ Rαβ − 1
2
gαβR is the Einstein tensor, Rαβ and

R are the Ricci tensor and Ricci scalar, respectively, gαβ is
the metric tensor, Tαβ is the stress-energy tensor, and Greek
indices run from 0 to 3 with 0 representing a time
component and 1, 2, and 3 representing space components.
One wants to join consistently two solutions of Einstein
field equations and the Israel formalism provides the
method needed to make the junction between two different
general relativistic spacetime regions [1]. Consider then
two spacetime manifolds with boundary, one is Mi with
metric gi and the other is Me with metric ge. The space-
times ðMi; giÞ and ðMe; geÞ are solutions of the theory of
general relativity and are to be glued together at a common
boundary, forming a new spacetime M. In brief, M is
partitioned by an hypersurface S into two regions, the
regions Mi and Me. The formalism applies directly to a
hypersurface S that can be either timelike or spacelike, the
extension to the case of a null boundary hypersurface can
also be done with care.
We assume that it is possible to formally define a

common coordinate system fxαg on both sides of the
hypersurface S. We also admit the existence of a normal
vector field n, well defined on both sides of S, which is
orthogonal to the matching hypersurface at each point. We
choose n to point from Mi to Me and, without loss of
generality, nαnα ¼ ε, where nα are the components of n in
the coordinate system fxαg and ε isþ1 or −1 depending on
n being spacelike or timelike, respectively. The null case
has ε ¼ 0 and it would have to be treated separately which
we do not do here. For a timelike normal vector field n one
has that the corresponding hypersurface S is spacelike, and
for a spacelike n one has that the corresponding hypersur-
face S is timelike. Then, assuming fyag to represent a local
coordinate system on S, the normal vector field n must be
orthogonal at each point to the tangent vectors to the
hypersurface S, ea ≡ ∂

∂ya, such that eαanα ¼ 0, with

eαa ≡ ∂xα
∂ya. The induced metric on S as seen from each

region Mi and Me, is hiab ¼ gi αβeαae
β
b, he ab ¼ ge αβeαae

β
b,

respectively, where gi αβ and ge αβ are the components of the
metrics gi and ge in the coordinate system fxαg. Notice that,
in general, the induced metric on S by each metric gi and ge
may not coincide, hence we use the notation hiab and he ab
to refer to the metric induced by the spacetime structure of

Mi or Me, respectively. The extrinsic curvature Kiab or
Ke ab of the hypersurface S, as an embedded manifold in
Mi or Me, respectively, is defined as Ki ab ¼ eαae

β
b∇i αnβ,

Ke ab ¼ eαae
β
b∇e αnβ, where ∇i and ∇e represent the covar-

iant derivatives with respect to gi or ge. Their traces are
Ki ¼ habi Ki ab, and Ke ¼ habe Ki ab, respectively.
Now, we need to give the conditions under which the

matching of the two spacetimes Mi and Me form a valid
solution of the Einstein field equations, Eq. (1). Following
the Israel formalism, to join the two spacetimes Mi and
Me at S, such that the union of gi and ge forms a valid
solution to the Einstein field equations (1), two junction
conditions must be verified at the matching surface S:
(i) The induced metric hab as seen from each regionMi and
Me, must be the same, i.e.,

½hab� ¼ 0: ð2Þ

(ii) If the extrinsic curvature Kab is not the same on both
sides of the boundary S, then a thin shell is present at S
with stress-energy tensor Sab given by

−
ε

8π
ð½Kab� − hab½K�Þ ¼ Sab; ð3Þ

where ½Kab� represents the difference of Kab as seen from
each submanifold at S, i.e., ½Kab�≡ Ke abjS − Ki abjS, and
similarly for [K], and we use the notation Ki ab ≡ KabðMiÞ
andKe ab ≡ KabðMeÞ to refer to Kab defined inMi orMe,
respectively, and similarly for K.
The Minkowski spacetime with line element ds2 ¼

−dt2 þ dr2 þ r2dΩ2, where t and r are the time and radial
coordinates, and dΩ2 ≡ dθ2 þ sin2 θdφ2, with θ and φ
being the angular coordinates, is a solution of Einstein
equations, see Eq. (1), in fact the simplest solution. We
assume now that the interior and exterior spacetime have
Minkowski line elements, and find and analyze all possible
junctions of two Minkowski spacetimes through a static,
thin matter shell. Using the Israel formalism, we consider
two spacetimes, Mi and Me, each endowed with the
Minkowski metric tensor field glued together at a common
hypersurface, S. To apply the formalism, we will have to
find the induced metric and extrinsic curvature induced on
an embedded hypersurface of each spacetime, Mi or Me.
We will start by making the analysis in the interior
spacetime, Mi, and extend the results to the exterior
spacetime, Me.
The interior Minkowski spacetime, Mi, is characterized

by the following line element, in spacetime spherical
coordinates,

ds2i ¼ −dt2i þ dr2i þ r2i dΩ2; ð4Þ

where ti and ri are the time and radial coordinates,
respectively, measured by a free-falling observer in Mi,
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and again dΩ2 ≡ dθ2 þ sin2θdφ2, with θ and φ being the
angular coordinates. On the one hand, for the solution itself
we are interested in studying the case where the hypersur-
face S is timelike and static, i.e., static as seen from an
observer free falling in the interior Minkowski spacetime.
On the other hand for the stability analysis that we will take
we have to allow for the hypersurface to be dynamical, so
we compute the induced metric and extrinsic curvature of S
allowing for a dynamical shell and when needed we take
the static solution. In the study of the properties of the
matter shell at S, we will then restrict the setup to the static
case. Since we assume the hypersurface to be timelike,
it is convenient to choose the coordinates on S to be
fyag ¼ ðτ; θ;φÞ, where τ is the proper time measured by an
observer comoving with S. In this coordinate system, it
follows that eτ ≡ u, where u is the 4-velocity of an observer
comoving with the shell. The hypersurface S, as seen from
the interior Mi spacetime, is parametrized by τ, such that
the surface’s radial coordinate is described by a function
Ri ¼ RiðτÞ. Then, the 4-velocity ui, where the subscript i is
not an index and as before denotes interior, as seen from the
interior spacetime is given by ui ¼ ðdtidτ ; _Ri; 0; 0Þ, where
overdot represents the derivative with respect to the proper
time, i.e., _Ri ≡ dRi

dτ . Since S is a timelike hypersurface, it
must verify uiαuαi ¼ −1, therefore we find

ui ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

i

q
; _Ri; 0; 0Þ, where we chose dti

dτ > 0 as we

assume ui to point to the future. The expression for the
4-velocity of an observer comoving with S and the
condition eαanα ¼ 0 allow us to find the components of
the normal vector field to S, n, as seen from the interior

spacetime Mi, ni ¼ ξið _Ri;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

i

q
; 0; 0Þ, where ξi is a

normalization factor. Using nαnα ¼ ε, Eq. (4), and the
condition that the normal vector field ni is spacelike, yields
ξi ¼ �1. Now, defining ∇iri as the gradient of ri, the
choice ξi ¼ þ1 or ξi ¼ −1 represents whether the inner
product giðni;∇iriÞ > 0 or giðni;∇iriÞ < 0, respectively.
Under the Israel formalism both values for ξi are possible
and we shall consider both cases. Using the induced metric

equation, hiab ¼ gi αβeαae
β
b, and ui ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

i

q
; _Ri; 0; 0Þ,

we find that the induced metric on S by the spacetime Mi,
is such that the line element can be written as
ds2jSi

¼ −dτ2 þ R2
i dΩ2. Gathering these results, we can

compute the components of the extrinsic curvature of S as
seen fromMi, Ki

ab. In the case where the matching surface
S is timelike and spherically symmetric, the non-null
components of the extrinsic curvature are given by, drop-
ping here the superscript i to not overcrowd the notation,
Kττ ¼ −aαnα, Kθθ ¼ ∇θnθ, Kφφ ¼ ∇φnφ, where aα ≡
uβ∇βuα represents the components of the 4-acceleration
of an observer comoving with S. Taking into account

Eq. (4) and ui ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

i

q
; _Ri; 0; 0Þ, we find that the

nontrivial components of the exterior curvature as seen
from the interior Minkowski spacetime are given by

Ki
τ
τ ¼ ξi

R̈iffiffiffiffiffiffiffiffi
1þ _R2

i

p , and Ki
θ
θ ¼ Ki

φ
φ ¼ ξi

ffiffiffiffiffiffiffiffi
1þ _R2

i

p
Ri

, where the

induced metric habi associated with the hypersurface line
element was used to raise the indices. Since we assume the
shell to be static, one has _Ri ¼ 0: So in this static case, in
brief, one has, that the 4-velocity ui and the normal ni are
ui ¼ ð1; 0; 0; 0Þ and ni ¼ ξið0; 1; 0; 0Þ, the line element on
the shell is

ds2jSi
¼ −dτ2 þ R2

i dΩ2; ð5Þ

and the extrinsic curvature is given by

Ki
τ
τ ¼ 0; Ki

θ
θ ¼ Ki

φ
φ ¼ ξi

Ri
: ð6Þ

Under the Israel formalism both values for ξi are possible
and we shall consider both cases.
The exterior Minkowski spacetime,Me, is characterized

by the following line element, in spacetime spherical
coordinates,

ds2e ¼ −dt2e þ dr2e þ r2edΩ2; ð7Þ

where te and re are the time and radial coordinates,
respectively, measured by a free-falling observer in Me,
and again dΩ2 ≡ dθ2 þ sin2θdφ2, with θ and φ being the
angular coordinates. Since the setup is the same as the one
for the interior we will sketch the calculations briefly in
order to be complete. For a timelike hypersurface it is
convenient to choose the coordinates on S to be
fyag ¼ ðτ; θ;φÞ, where τ is the proper time measured by
an observer comoving with S. In this coordinate system, it
follows that the 4-velocity u of an observer comoving with
the shell is given by eτ ≡ u. The hypersurface S, as seen
from the exteriorMe spacetime, is parametrized by τ, such
that the surface’s radial coordinate is described by a
function Re ¼ ReðτÞ. Then, ue ¼ ðdtedτ ; _Re; 0; 0Þ, where the
subscript e is not an index and as before denotes exterior,
and _Re ≡ dRe

dτ . Since S is timelike, one has ue αuαe ¼ −1, so
ue ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

e

p
; _Re; 0; 0Þ, where we chose dte

dτ > 0 as we
assume ue to point to the future. From eαanα ¼ 0, one
finds the components of the normal vector field to S, n, as
seen from the exterior spacetime, namely ne ¼
ξeð _Re;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

e

p
; 0; 0Þ, where ξe is a normalization factor.

Using nαnα ¼ 1 and Eq. (7), yields ξe ¼ �1. Defining∇ere
as the gradient of re, the choice ξe ¼ þ1 or ξe ¼ −1
represents whether the inner product geðne;∇ereÞ > 0 or
geðne;∇ereÞ < 0, respectively. Using the induced metric

equation, he ab ¼ ge αβeαae
β
b, and ue ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

e

p
; _Re; 0; 0Þ,

we find that the induced metric on S by the spacetimeMe,
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is such that the line element can be written as
ds2jSe

¼ −dτ2 þ R2
edΩ2. The non-null components of

the extrinsic curvature are here given by, dropping here
the superscript e to not overcrowd the notation,
Kττ ¼ −aαnα, Kθθ ¼ ∇θnθ, Kφφ ¼ ∇φnφ, where aα ≡
uβ∇βuα represents the components of the 4-acceleration
of an observer comoving with S. Taking into account

Eq. (7) and ue ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

e

p
; _Re; 0; 0Þ the nontrivial com-

ponents of the exterior curvature as seen from the exterior

Minkowski spacetime are given by Ke
τ
τ ¼ ξe

R̈effiffiffiffiffiffiffiffi
1þ _R2

e

p , and

Ke
θ
θ ¼ Ke

φ
φ ¼ ξe

ffiffiffiffiffiffiffiffi
1þ _R2

e

p
Re

, where the induced metric habe
associated with the hypersurface line element was used to
raise the indices. Since we assume the shell to be static, one
has _Re ¼ 0. So in this case one has that the 4-velocity ue
and the normal ne are ue ¼ ð1; 0; 0; 0Þ and
ne ¼ ξeð0; 1; 0; 0Þ, the line element on the shell is

ds2jSe
¼ −dτ2 þ R2

edΩ2; ð8Þ

and the extrinsic curvature is given by

Ke
τ
τ ¼ 0; Ke

θ
θ ¼ Ke

φ
φ ¼ ξe

Re
: ð9Þ

Both values for ξe are possible and we shall consider
both cases.
To complete the solution we have find the properties of

the matter at the thin shell. Indeed, having found previously
the necessary expressions at the hypersurface S as seen
from theMi andMe spacetimes, we can now use the Israel
formalism to glue together the two spacetimes. Imposing
the first junction condition, Eq. (2), and using Eqs. (5) and
(8) for the induced metrics, we find that the radial
coordinate of S as seen from the interior and exterior
spacetimes, Ri and Re, respectively, must be the same,
Ri ¼ Re. We then denote by R the value of the radial
coordinate of S as seen from both spacetimes,

R≡ Ri ¼ Re: ð10Þ

We also assume that the stress-energy tensor Sab of the thin
shell on S, can be cast in a perfect fluid form
Sab ¼ σuaub þ pðhab þ uaubÞ, where σ is the energy per
unit area, p is the tangential pressure of the fluid, hab is the
induced metric on S, and ua is the fluid’s 3-velocity on S.
Using the appropriate equations we find Sττ ¼ −σ, and
Sθθ ¼ Sφφ ¼ p. Having found previously the expressions
for the extrinsic curvature of the hypersurface S as seen
from the Mi and Me spacetimes, and knowing that the
stress-energy tensor of the shell is that of a perfect fluid, we
can now impose the second junction condition, Eq. (3).
Applying it to our spherically symmetric problem gives that
the only nontrivial components of the stress-energy tensor

Sab are given by Sττ ¼ 1
4π ½Kθ

θ�, and Sθθ ¼
Sφφ ¼ 1

8π ½Kτ
τ� þ 1

4π ½Kθ
θ�. Using then for the interior,

Ki
τ
τ ¼ ξi

R̈ffiffiffiffiffiffiffiffi
1þ _R2

p , Ki
θ
θ ¼ Ki

φ
φ ¼ ξi

ffiffiffiffiffiffiffiffi
1þ _R2

p
R , and for the

exterior, Ke
τ
τ ¼ ξe

R̈ffiffiffiffiffiffiffiffi
1þ _R2

p , and Ke
θ
θ ¼ Ke

φ
φ ¼ ξe

ffiffiffiffiffiffiffiffi
1þ _R2

p
R ,

we find σ ¼ ðξi − ξeÞ
ffiffiffiffiffiffiffiffi
1þ _R2

p
4πR and p ¼ −ðξi − ξeÞ RR̈þ _R2þ1

8πR
ffiffiffiffiffiffiffiffi
1þ _R2

p .

From these two equations we derive the following con-
servation law for the shell _σ þ 2 _R

R ðσ þ pÞ ¼ 0. For a static
shell, the time derivatives are zero and so, using directly if
one wishes Eqs. (6) and (9),

σ ¼ ðξi − ξeÞ
1

4πR
; ð11Þ

p ¼ −ðξi − ξeÞ
1

8πR
: ð12Þ

From Eqs. (11) and (12) we derive

σ þ 2p ¼ 0: ð13Þ

The matter of the thin shell obeys necessarily this equation
of state, namely, p ¼ − 1

2
σ, for a Minkowski-Minkowski

static spacetime. From Eqs. (11) and (12), we see that for
ξi ¼ ξe, and so

1
2
ðξi − ξeÞ ¼ 0we get the trivial case, σ ¼ 0

and p ¼ 0. For ξi ¼ 1 and ξe ¼ −1, and so 1
2
ðξi − ξeÞ ¼ 1,

we get σ ¼ 1
2πR and p ¼ − 1

4πR. For ξi ¼ −1 and ξe ¼ 1, and
so 1

2
ðξi − ξeÞ ¼ −1, we get σ ¼ − 1

2πR and p ¼ 1
4πR. All

cases obey Eq. (13), i.e., the relation between the surface
energy density σ and the surface pressure p is independent
of ξi or ξe. Besides the trivial case, i.e., the Minkowski
universe which has 1

2
ðξi − ξeÞ ¼ 0, there are two possible

universes at this juncture, the Minkowski-Minkowski static
closed universe which has 1

2
ðξi − ξeÞ ¼ 1, and the

Minkowski-Minkowski static open universe which
has 1

2
ðξi − ξeÞ ¼ −1.

2. Linearized stability analysis for
Minkowski-Minkowski universes

An important question regarding the Minkowski-
Minkowski static universe solutions, i.e., the Minkowski-
Minkowski closed and open universes, is if these are stable
under perturbations. Here we will discuss the linear
stability of the Minkowski-Minkowski solutions that we
have found by analyzing the equation of motion of the shell
near the static configuration.
To study the linear stability of the Minkowski-

Minkowski static universe solution we have to find the
evolution equation for the shell radius R and analyze the
behavior of these solutions as we perturb the spacetime.
The analysis can be done in a unified way by making use of
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the parameter 1
2
ðξi − ξeÞ. The equation of motion of the thin

shell previously found, namely, σ ¼ ðξi − ξeÞ
ffiffiffiffiffiffiffiffi
1þ _R2

p
4πR , can be

inverted and put in the form

_R2 þ VðRÞ ¼ 0; ð14Þ
where a dot means derivative with respect to time t, and the
potential VðRÞ is given by

VðRÞ ¼ 1 −
�
4πRσ
ξi − ξe

�
2

: ð15Þ

A thin matter shell is stable if and only if the potential VðRÞ
at the shell’s position is at a local minimum, i.e., if V 0ðRÞ ¼
0 and V 00ðRÞ ≥ 0, with the equality providing the marginal
neutral case and where a prime denotes the derivative with
respect to R. Thus, we have to calculate the matter
properties and its derivatives. All these properties are
functions of the shell radius R, namely, σ ¼ σðRÞ,
p ¼ pðRÞ, σ0 ¼ σ0ðRÞ, and p0 ¼ p0ðRÞ. To find an expres-
sion for σ0ðRÞ, we consider the conservation law for the
shell already found, namely, _σ þ 2 _R

R ðσ þ pÞ ¼ 0, i.e.,

_σ ¼ − 2 _R
R ðσ þ pÞ. Using the inverse function theorem,

we have σ0 ¼ _σ
_R
, and so

σ0 ¼ −
2ðσ þ pÞ

R
: ð16Þ

We have also to analyze the derivatives of the potential
at the static configuration. From Eq. (15) we get
V 0ðRÞ ¼ − 32π2Rσ

ðξi−ξeÞ2 ðσ þ Rσ0Þ. Taking another derivative we

get V 00ðRÞ ¼ 32π2

ðξi−ξeÞ2 ½ðσ þ Rσ0Þðσ þ 2pÞ þ Rσðσ0 þ 2p0Þ�.
Now, if we introduce Eq. (16) into V 0ðRÞ, we have
V 0ðRÞ ¼ 32π2Rσ

ðξi−ξeÞ2 ðσ þ pÞ. To analyze V 00ðRÞ we have to find

an expression for p0ðRÞ. We assume that the thin matter shell
is composed of cold matter such that it verifies a generic
equation of state of the form p ¼ pðσÞ. Then, we can define
the parameter ηðσÞ ¼ ∂p

∂σ such that, p0 ¼ ησ0. Hence, using
σ0 þ 2p0 ¼ σ0ð1þ 2ηÞ and Eq. (16) we can write V 00ðRÞ as
V 00ðRÞ ¼ − 32π2

ðξi−ξeÞ2 ½2σðσ þ pÞð1þ 2ηÞ þ ðσ þ 2pÞ2�. In

brief, the derivatives of the potential VðRÞ are

V 0ðRÞ ¼ 32π2Rσ
ðξi − ξeÞ2

ðσ þ pÞ; ð17Þ

and

V 00ðRÞ ¼ −
32π2

ðξi − ξeÞ2
½2σðσ þ pÞð1þ 2ηÞ þ ðσ þ 2pÞ2�:

ð18Þ

where ηðσÞ ¼ ∂p
∂σ.

We now linearize the equation of motion for the shell
given by Eq. (14) around a static solution. Defining R0 as
the circumferential radius of the static thin shell and
assuming the potential V to be a differentiable function
at R0, we can expand the potential given in Eq. (15) around
R0 as

VðRÞ ¼ VðR0Þ þ V 0ðR0ÞðR − R0Þ þ
1

2
V 00ðR0ÞðR − R0Þ2;

ð19Þ

plus higher order terms ofO½ðR − R0Þ3�. A thin matter shell
with radius R0 is stable or neutrally stable if and only if the
potential VðRÞ satisfies V 0ðR0Þ ¼ 0 and V 00ðR0Þ ≥ 0. For a
shell with radius R0 the static solutions found in the
previous section are characterized generically by the
following expressions, σ ¼ ξi−ξe

4πR0
and p ¼ − ξi−ξe

8πR0
, see

Eqs. (11) and (12), where ξi ≠ ξe for the nontrivial
solutions. Substituting Eq. (11) into Eq. (15) we find
VðR0Þ ¼ 0, as expected. Substituting Eqs. (11) and (12)
into Eq. (17) and evaluating it at the static solution we find
V 0ðR0Þ ¼ 0. Evaluating V 00ðRÞ at the static solution,
R ¼ R0, and using again Eqs. (11) and (12), we find
V 00ðR0Þ ¼ 0. In brief,

V 0ðR0Þ ¼ 0; ð20Þ

and

V 00ðR0Þ ¼ 0: ð21Þ

Moreover, all higher order derivatives of the potential go to
zero at R0 for the static solutions.
Gathering these calculations, we conclude that, besides

the trivial case, i.e., the Minkowski universe which has
1
2
ðξi − ξeÞ ¼ 0 and is trivially neutrally stable, there is the

Minkowski-Minkowski static closed universe which has
1
2
ðξi − ξeÞ ¼ 1 and is nontrivially neutrally stable, and the

Minkowski-Minkowski static open universe which has
1
2
ðξi − ξeÞ ¼ −1 and is also nontrivially neutrally stable.

This neutral stability means that if we slightly displace the
thin shell, it will simply stay at the new radius. This
confirms our expectation, as the interior and exterior
spacetimes are both described by the Minkowski, i.e., flat,
solution.

B. Minkowski-Minkowski universes:
Geometry and physics

1. Minkowski-Minkowski static closed universe:
A bubble universe

Here we display a Minkowski-Minkowski static closed
universe as a solution of general relativity. We rely on the
results presented above. We assume that the Minkowski
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line element is valid for a region, which we call interiorMi,
up to a radius R, i.e., 0 ≤ ri ≤ R, where ri denotes the
interior radial coordinate. We join this region to another
region, which we call exteriorMe, where the exterior radial
coordinate is denoted by re. The junction is done at a
common hypersurface S with circumferential radius
ri ¼ re ¼ R. Thus, the whole spacetime is composed by
the two regions plus the common hypersurface, which is a
domain wall, i.e., a thin shell. The common hypersurface S
is assumed to be static. Assuming the existence of a vector
field n, normal, at each point, to the common hypersurface
S, we have found that the solution depends on the
orientation of this normal field n. For each region, Mi
andMe, the orientation of the normal is encoded in a single
parameter, namely, one for the interior, ξi, and one for the
exterior, ξe. In both cases, ξi and ξe can have values þ1 or
−1. The value þ1 indicates that the normal points in the
direction of increasing radial coordinate and the value −1
indicates that the normal points in the direction of decreas-
ing radial coordinate. The solutions with ξi ¼ ξe are trivial
as the resulting spacetime is simply the full Minkowski flat
universe. Here we consider the first nontrivial solution, i.e.,
ξi ¼ þ1 and ξe ¼ −1. This static solution represents the
case where the normal vector field n points in the direction
of increasing radial coordinate as seen from the interior
spacetime Mi and points in the direction of decreasing
radial coordinate as seen from the exterior spacetime Me.
Since n is assumed to point from Mi to Me this implies
that in the exterior region one also has 0 ≤ re ≤ R. Thus,
this solution is composed by two spatially compact
Minkowski spacetime regions glued together at the
common boundary S. This solution then represents a
Riemann flat spacetime everywhere except at S. Overall
it is a static closed Minkowski-Minkowski universe, for
which the line element can be written as, see also Eqs. (4)
and (7),

ds2 ¼ −dt2 þ dr2i þ r2i dΩ2; 0 ≤ ri ≤ R;

ds2 ¼ −dt2 þ dr2e þ r2edΩ2; 0 ≤ re ≤ R: ð22Þ

Now we turn to the properties of the matter at the domain
wall, or shell, at S. In this case, putting ξi ¼ þ1 and
ξe ¼ −1 into Eqs. (11) and (12), the energy density σ and
the tangential pressure p at the domain wall are given by

σ ¼ 1

2πR
; ð23Þ

p ¼ −
1

4πR
: ð24Þ

This solution is then characterized by the presence of a
surface layer in the form of a domain wall at radius R,
separating two Minkowski halves. The thin domain wall is
composed of a perfect fluid with positive energy density

and is supported by tension such that it obeys the equation
of state σ þ 2p ¼ 0. Moreover, from Eqs. (23) and (24), we
find that the following inequalities are verified: σ ≥ 0,
σ þ p ≥ 0, σ þ 2p ≥ 0 and σ ≥ jpj, therefore, the matter at
the domain wall verifies the null, weak, strong, and
dominant pointwise energy conditions. Since the effective
mass m can be defined by the quantity σ þ 2p and this
latter is zero, one has m ¼ 0. So the domain wall yields no
total mass m as it should to have Minkowski spacetime on
both sides of the domain wall. The volume of this universe
is V ¼ 8π

3
R3.

The spatial structure and the causal structure are also
important to analyze. A time slice t ¼ constant of the
spacetime gives that the 3-space is a highly squashed
3-sphere, i.e., it is made of two copies of two plane 3-balls
joined at a 2-sphere. To see this one makes an embedding.
The embedding of this 3-space can be easily done in
4-dimensional Euclidean space R4. In Fig. 1 we show an
embedding diagram of a θ ¼ π

2
slice of the static

Minkowski-Minkowski closed universe in a 3-dimensional
Euclidean space, displaying clearly the squashed character
of the 3-sphere. One can also make appropriate identifi-
cations between points in the interior and exterior spherical
pieces to turn the space into a projective space. The causal
structure of the resulting spacetime can be shown in a
Carter-Penrose diagram, as in Fig. 2. We use the hash
symbol # to represent the connected sum of the spacetime
manifold in order to conserve the conformal structure in the
Carter-Penrose diagram of the total spacetime. We see that
it represents a universe in which the spatial sections are
highly squashed 3-spheres, i.e., two copies of two plane
3-balls joined at a 2-sphere, such that if we include time
the total spacetime is a squashed 3-cylinder, the time line
times the squashed 3-sphere. A timelike geodesic, or a free-
falling particle, initially moving along the radial coordinate
toward increasing values of it in one half of the spacetime,
would reach the domain wall at r ¼ R at some point, and
then continue until it reaches the center of coordinates at the
other half where it would continue its trajectory into the
antipode point of the wall, and so on.

FIG. 1. Embedding diagram of a t ¼ constant and θ ¼ π
2
slice

of the Minkowski-Minkowski static closed universe in
3-dimensional Euclidean space. The interior coordinate is in
the range 0 ≤ ri ≤ R, the exterior coordinate is in the range
0 ≤ ri ≤ R, the radius of the domain wall, or shell, is R, and the
borders of the circumferences should be identified.

BUBBLE UNIVERSES AND TRAVERSABLE WORMHOLES PHYS. REV. D 105, 044058 (2022)

044058-9



The Minkowski-Minkowski static closed universe is
marginally stable. Indeed, one has from Eq. (21) that
V 00ðR0Þ ¼ 0. The solution is in neutral equilibrium, mean-
ing that for a slight displacement the thin shell stays at the
new radius. This result confirms the expectations. as the
interior and exterior spacetimes are both described by a
Minkowski, i.e., flat, solution.
This Minkowski-Minkowski static closed universe is a

bubble universe which is summarized in Eqs. (22)–(24) and
in Figs. 1 and 2.Moreover, a fundamental shell is defined as a
shell with Minkowski interior with a center and one of the
three basic exterior spacetimes, Minkowski, Schwarzschild,
and Reissner-Nordström. Thus the Minkowski-Minkowski
static closed universe we just found completes the search of
all the fundamental shells in the three basic ambient
spacetimes, namely, Minkowski-Minkowski, Minkowski-
Schwarzschild, and Minkowski-Reissner-Nordström, the
latter two having been found previously.
The Minkowski-Minkowski static closed universe is a

representative of the set of closed universes. It can be
compared with other such closed universes. This will be
done later.

2. Minkowski-Minkowski static open universe:
A traversable wormhole

Here we display a Minkowski-Minkowski static open
universe as a solution of general relativity. We rely on the
previous results. We assume that the Minkowski line
element is valid for a region, which we call interior Mi,
that goes from spatial infinity to a radius R, i.e.,
R ≤ ri < ∞, where ri denotes the interior radial coordinate.
We join this region to another region, which we call exterior

Me, where the exterior radial coordinate is denoted by re.
The junction is done at a common hypersurface S with
circumferential radius ri ¼ re ¼ R. Thus, the whole space-
time is composed by the two regions plus the common
hypersurface, which is a thin shell. The common hyper-
surface S is assumed to be static. Assuming the existence of
a vector field n, normal, at each point, to the common
hypersurface S, we have found that the solution depends on
the orientation of this normal field n. For each region, Mi
andMe, the orientation of the normal is encoded in a single
parameter, namely, one for the interior, ξi, and one for the
exterior, ξe. In both cases, ξi and ξe can have values þ1 or
−1. The value þ1 indicates that the normal points in the
direction of increasing radial coordinate and the value −1
indicates that the normal points in the direction of decreas-
ing radial coordinate. The solutions with ξi ¼ ξe are trivial
as the resulting spacetime is simply the full Minkowski flat
universe. Here, we consider the second nontrivial solution,
i.e., ξi ¼ −1 and ξe ¼ þ1. This static solution represents
the case where the normal vector field n points in the
direction of decreasing radial coordinate as seen from the
interior spacetimeMi and points in the direction of increas-
ing radial coordinate as seen from the exterior spacetimeMe.
Since n is assumed to point fromMi toMe this implies that
in the exterior region one also has R ≤ re < ∞. Thus, this
solution is composed by two spatially open Minkowski
spacetime regions glued together at the commonboundaryS.
This solution then represents a Riemann flat spacetime
everywhere except at S. Overall it is a static closed
Minkowski-Minkowski universe, for which the line element
can be written as, see also Eqs. (4) and (7),

ds2 ¼ −dt2 þ dr2i þ r2i dΩ2; R ≤ ri < ∞;

ds2 ¼ −dt2 þ dr2e þ r2edΩ2; R ≤ re < ∞: ð25Þ

Now we turn to the properties of the matter shell at S. In this
case, putting ξi ¼ −1 and ξe ¼ þ1 into Eqs. (11) and (12),
the energy density σ and the tangential pressure p at the thin
shell are given by

σ ¼ −
1

2πR
; ð26Þ

p ¼ 1

4πR
: ð27Þ

This solution is then characterized by the presence of a
surface layer or thin shell at radius R, separating two
Minkowski open halves. The thin matter shell is composed
of a perfect fluid with negative energy density and is
supported by pressure such that it obeys the equation of
state σ þ 2p ¼ 0. Moreover, from Eqs. (26) and (27), we
find that the following inequalities are verified: σ ≤ 0,
σ þ p ≤ 0, σ þ 2p ≤ 0 and σ ≤ jpj, therefore, the matter

FIG. 2. Carter-Penrose diagram of the Minkowski-Minkowski
static closed universe. The hash symbol represents the connected
sum of the spacetime manifold. The symbols i− and iþ represent
past and future causal infinity, respectively.
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shell violates the null, weak, strong and dominant pointwise
energy conditions, as it could be expected from imposing the
flare-out condition for a traversable wormhole. Since the
effective mass m can be defined by σ þ 2p and this latter is
zero, one hasm ¼ 0. So the shell yields no total massm as it
should to have Minkowski spacetime on both sides of the
shell. The volume of this spacetime, in its simplest personi-
fication, i.e., without making identifications for r, is infinite.
The spatial structure and the causal structure are also

important to analyze. A time slice t ¼ constant of the
spacetime gives that the 3-space is a universe in which the
spatial sections are two copies of the complements of two
plane 3-balls joined at a 2-sphere, the throat, yielding a
nonsimply connected open universe, more precisely, a
traversable wormhole. To see this one makes an embed-
ding. The embedding of this 3-space can be easily done in
4-dimensional Euclidean space R4. In Fig. 3 we show an
embedding diagram of a constant θ ¼ π

2
slice of the static

Minkowski-Minkowski open universe, or traversable
wormhole. One can also make appropriate identifications
of the two open sheets, and turn the space into, e.g., a flat
3-torus, in which case the space is closed. The causal
structure of the resulting spacetime can be shown in a
Carter-Penrose diagram, as in Fig. 4. We use the hash
symbol # to represent the connected sum of the spacetime
manifolds in order to conserve the conformal structure in
the Carter-Penrose diagram of the total spacetime. We see
that it represents a universe in which the spatial sections are
two copies of the complements of two plane 3-balls joined
at a 2-sphere, the throat, yielding a traversable wormhole,
such that if we include time, the total spacetime has the
topology R × Σ, where Σ is a 3-manifold with nontrivial
topology, whose boundary ∂Σ ∼ S2. A causal geodesic, or a
free-falling particle, initially moving in the direction of
decreasing radial coordinate in one half of the spacetime,
would reach the shell at r ¼ R and then continue until it
reaches infinity at the other sheet of the wormhole.

The Minkowski-Minkowski static open universe, i.e., the
Minkowski-Minkowski traversable wormhole, is marginally
stable. Indeed, one has from Eq. (21) that V 00ðR0Þ ¼ 0. The
solution is in neutral equilibrium, meaning that for a slight
displacement the thin shell stays at the new radius. This result
confirms the expectations, as the interior and exterior space-
times are both described by a Minkowski, i.e., flat, solution.
This Minkowski-Minkowski static open universe is a

traversable wormhole which is summarized in Eqs. (25)–
(27) and in Figs. 3 and 4. This open universe is an exotic
shell spacetime rather than a fundamental shell spacetime,
as its interior does not contain a center or origin, instead the
interior opens up to infinity. This further possibility for a
shell spacetime, i.e., that its interior opens up to infinity,
implies that the spacetime is a traversable wormhole
spacetime, and thus the matter properties of the shell must
be exotic since they necessarily violate the energy con-
ditions. The study of the Minkowski-Minkowski open
spacetime, or traversable wormhole, introduces the pros-
pect of analyzing all possible exotic shells, i.e., shells for
which the Minkowski interior has no center, in the other
two basic ambient spacetimes, namely, Schwarzschild and
Reissner-Nordström spacetimes.
The Minkowski-Minkowski static open universe is a

representative of the set of traversable wormholes. It can be
compared with other such open universes and traversable
wormholes. This will be done later.

C. Minkowski-Minkowski universes:
One concept with two sides

The two, close and open, Minkowski-Minkowski space-
times demonstrate the idea that they can be seen as

FIG. 3. Embedding diagram of a t ¼ constant and θ ¼ π
2
slice of

the Minkowski-Minkowski static open universe, or traversable
wormhole, in 3-dimensional Euclidean space. The interior
coordinate is R ≤ ri < ∞, the exterior coordinate is
R ≤ re < ∞, the radius of the shell is R, and the borders of
the circumferences should be identified.

FIG. 4. Carter-Penrose diagram of the Minkowski-Minkowski
static open universe, or traversable wormhole. The hash symbol
represents the connected sum of the spacetime manifold. The
symbols i−, i0, and iþ represent past timelike infinity, spatial
infinity, and future timelike infinity, respectively, and the symbols
I − and Iþ, represent past and future null infinity, respectively.
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complementary to each other, i.e., they are two sides of the
same concept. The concept, i.e., a collection of two
Minkowski spacetimes together, that when cut into spheri-
cal regions yield on one side a closed universe, a bubble
universe, and on the other side an open universe which is a
traversable wormhole. The formalism presented in analyz-
ing the two Minkowski-Minkowski universes is well suited
to show this point. Indeed, from an algebraic point of view,
one side is given by 1

2
ðξi − ξeÞ ¼ 1, the other side is given

by 1
2
ðξi − ξeÞ ¼ −1, where ξi and ξe are the characteristics

of the interior and exterior normals to the shell, respec-
tively. This algebraic side appears clearly in the evaluation
of the matter properties as displayed in Eqs. (11) and (12).
More formally, to implement the idea of a Minkowski-
Minkowski closed universe, i.e., a bubble universe, and a
Minkowski-Minkowski open universe, i.e., a traversable
wormhole, one uses the equations of general relativity
together with the appropriate thin shell formalism. For a
shell with a Minkowski interior with a center, when
the normal to the shell in the exterior region points
toward decreasing r, i.e., 1

2
ðξi − ξeÞ ¼ 1, one finds the

Minkowski-Minkowski closed universe, made of two
3-dimensional flat balls, or sheets, that are joined at some
domain wall, i.e., a 2-sphere shell with matter, to make a
Minkowski-Minkowski bubble universe. For a shell with a
Minkowski open interior, when the normal to the shell
points toward increasing r in the Minkowski exterior, i.e.,
1
2
ðξi − ξeÞ ¼ −1, one finds the Minkowski-Minkowski

open universe, made of two 3-dimensional flat open
infinite sheets that are joined at some throat, to make a
Minkowski-Minkowski traversable wormhole. From a
matter point of view the two universes show a form of
complementarity, as for 1

2
ðξi − ξeÞ ¼ 1 the matter obeys

the energy conditions while for 1
2
ðξi − ξeÞ ¼ −1 the matter

violates the energy conditions. From a geometrical point
of view, the two sides of the concept appear when one
picks up a Minkowski spacetime and at constant time cuts
a ball in it, to obtain two spaces, namely, a 3-dimensional
ball with a flat inside, and an infinite extended 3-dimen-
sional flat space with a hole, which is the complement of
the ball. Then one picks up another Minkowski spacetime
and do the same, to get a second ball and a second infinite
extended flat space with a hole. One side is given if one
joins the two 3-dimensional balls along a 2-sphere, a shell
containing matter, to obtain a single 3-space that including
time makes altogether a static closed Minkowski-
Minkowski universe, a bubble universe. The other side
is given if one joins the two complements, i.e., the two
infinite extended 3-dimensional flat spaces with a hole in
each, along a 2-sphere, a shell containing matter, to obtain
a different single 3-space that including time makes
altogether another Minkowski-Minkowski universe,
which is a traversable wormhole. Comparison of Fig. 1
with Fig. 3 for a spatial geometrical representation
of the bubble universe and the traversable wormhole,

respectively, displays the complementarity of the two
spaces clearly, which can be further strengthened with
the comparison of the spacetime drawings in the form of
Carter-Penrose diagrams, given in Fig. 2 and in Fig. 4,
respectively. From a stability point of view it is also
interesting that both spacetimes are marginally stable,
showing thus here some form of neutral complementarity.
So, that the two Minkowski-Minkowski spacetimes

demonstrate that they can be seen as complementary to
each other, i.e., they are two sides of the same concept, is
clear. It can be raised the point that the bubble universe has
matter that obeys the energy conditions, whereas the
traversable wormhole has matter that does not obey those
conditions. This is obviously true, but there is no real
problem with it. In an early era of the Universe, when
quantum gravity dominates, there is really no obeyance to
the classical energy conditions and the closed and open
universes, created as bubble universes with domain walls
and traversable wormholes with throats out of the space-
time foam must coexist together. Some kind of inflation
would grow these objects to macroscopic dimensions
turning them into new structures inhabiting the Universe
itself, showing that bubble universes and traversable worm-
holes are distinct but connected objects, some obeying the
energy conditions and others not.

III. EINSTEIN STATIC CLOSED UNIVERSE AND
FRIEDMANN STATIC HYPERBOLIC OPEN

UNIVERSE

A. Einstein and Friedmann static universes:
Formal solutions and stability

1. Solutions

Two paradigmatic solutions of the theory of general
relativity for static universes are the Einstein and the
hyperbolic Friedmann spacetimes. These two solutions
have various resemblances with the open and closed
Minkowski-Minkowski universes studied in the previous
section, and we will present them in a form suited for
comparing their properties. Consider then the Einstein field
equations with a nonvanishing cosmological constant Λ,

Gαβ þ Λgαβ ¼ 8πTαβ; ð28Þ

where Gαβ ¼ Rαβ − 1
2
gαβR is the Einstein tensor, Rαβ and

R are the Ricci tensor and Ricci scalar, respectively, gαβ is
the spacetime metric, and Tαβ is the stress-energy tensor.
One assumes a static, homogeneous and isotropic

spacetime and, in addition, one supposes that Tαβ corre-
sponds to that of a perfect fluid with energy density ρ and
vanishing pressure p, i.e., a dustlike fluid. With these
assumptions, the solution of the field equations (28) in
spacetime spherical coordinates ðt; r; θ;φÞ is given by the
line element
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ds2 ¼ −dt2 þ dr2 þ R2

�
1ffiffiffi
k

p sin

� ffiffiffi
k

p r
R

��
2

dΩ2; ð29Þ

where t is the time coordinate, r is the radial coordinate,
dΩ2 ≡ dθ2 þ sin2 θdφ2, with θ and φ being the spherical
angular coordinates, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, R is a
positive constant scale factor representing a characteristic
radius of the universe, and k is related with the Ricci
curvature scalar by R ¼ 6k

R2 and may take the values
k ¼ 1; 0;−1. Furthermore, the field equations (28) also
give expressions for the energy density of the fluid and for
the cosmological constant, namely,

ρ ¼ k
4πR2

; ð30Þ

Λ ¼ k
R2

; ð31Þ

and p ¼ 0. From Eqs. (30) and (31) one finds that

ρ −
Λ
4π

¼ 0; ð32Þ

and so Λ counteracts the gravitational pulling effects of ρ.
Noticing that the termΛgαβ can be thought as a perfect fluid
contribution to the stress-energy tensor with energy density
ρ̄ ¼ Λ

8π and pressure p̄ ¼ − Λ
8π, this static homogeneous

universe solution can then be seen as a solution of a two
fluid system, one fluid with energy density ρ ¼ Λ

4π and
pressure p ¼ 0, and the other fluid, a vacuum fluid, with
energy density ρ̄ ¼ Λ

8π and pressure p̄ ¼ − Λ
8π, such that

ρþ ρ̄þ 3p̄ ¼ 0. Besides the trivial case, i.e., the
Minkowski universe which has k ¼ 0, there are two
possible universes at this juncture, the Einstein static closed
universe which has k ¼ 1, and the Friedmann static open
universe which has k ¼ −1.

2. Linearized stability analysis for Einstein and
Friedmann static universes

An important question regarding the static homogeneous
universes, i.e., the Einstein and hyperbolic Friedmann static
universes, is if these are stable under perturbations. Here we
will discuss the linear stability of these cosmological
solutions by analyzing the equation of motion of the
universe near the static configuration. The result for the
Einstein universe is well known, whereas the stability of
the static hyperbolic Friedmann universe appears to be
less known.
To study the linear stability of the static Einstein and

Friedmann universes we have to find the evolution equation
for the scalar factor R and analyze the behavior of these
solutions as we perturb the spacetime. The analysis can be
done in a unified way by making use of the parameter k.

From the general relativity field equations we find the
Friedmann equation, namely,

_R2 þ VðRÞ ¼ 0; ð33Þ

where we have introduced the potential

VðRÞ ¼ k −
8πρþ Λ

3
R2; ð34Þ

and the scale factor R is now a function of the time
coordinate t, R ¼ RðtÞ, and a dot represents derivative with
respect to it, and again k represents the sectional curvature
of constant time slices, such that k ¼ þ1 for the closed
universe, k ¼ 0 for the flat universe, and k ¼ −1 for the
open universe. Note anew that a universe is stable if, and
only if, the potential VðRÞ is at a local minimum, i.e., if
V 0ðRÞ ¼ 0 and V 00ðRÞ ≥ 0, with the equality providing the
marginal neutral case, where a prime denotes the derivative
with respect to R. Thus, we have to calculate the matter
properties and its derivatives. All these properties are
functions of the shell radius R, namely, ρ ¼ ρðRÞ,
p ¼ pðRÞ, ρ0 ¼ ρ0ðRÞ, p0 ¼ p0ðRÞ, and the radius itself
is a function of time RðtÞ. The conservation equation,
which can be taken from the field equations, is
_ρþ 3 _R

R ρ ¼ 0, so that the equation for ρ0, where prime
denotes the derivative with respect to R, is

ρ0 ¼ −3
ρ

R
: ð35Þ

We have now to analyze the derivatives of the potentialVðRÞ
given inEq. (34) at the static configuration. FromEq. (34)we
get V 0ðRÞ ¼ − 1

3
ð8πρ0ÞR2 − 2

3
ð8πρþ ΛÞR, where we

assume that Λ is a constant. Taking the derivative of it we
get V 00ðRÞ¼−1

3
ð8πρ00ÞR2− 4

3
ð8πρ0ÞR− 2

3
ð8πρþΛÞ. Now,

if we introduce Eq. (35) into V 0ðRÞ we obtain
V 0ðRÞ ¼ 2

3
ð4πρ − ΛÞR. Simplifying also V 00ðRÞ we obtain

V 00ðRÞ ¼ − 2
3
ð8πρþ ΛÞ. In brief, the derivatives of the

potential VðRÞ are

V 0ðRÞ ¼ 2

3
ð4πρ − ΛÞR; ð36Þ

and

V 00ðRÞ ¼ −
2

3
ð8πρþ ΛÞ; ð37Þ

where we assume that p ¼ 0 throughout, i.e., the cold
generic equation p ¼ pðρÞ is the trivial one, so here ηðρÞ≡
∂p
∂ρ is zero: ηðρÞ ¼ 0.
Following the usual reasoning, we linearize Eq. (33)

around a static solution. Defining R0 as the radius of the
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static universe and assuming the potential V to be a
differentiable function at R0, we can expand the potential
(34) around R0 as

VðRÞ ¼ VðR0Þ þ V 0ðR0ÞðR − R0Þ þ
1

2
V 00ðR0ÞðR − R0Þ2;

ð38Þ

plus higher order terms of O½ðR − R0Þ3�. Now, a universe
with radius R0 is stable if, and only if, the potential, VðRÞ,
is at a local minimum, i.e., if V 0ðR0Þ ¼ 0 and V 00ðR0Þ ≥ 0,
with the equality providing the marginal neutral case. The
static solutions found in the previous sections are charac-
terized by the following expressions for the energy density
and the cosmological constant of the fluid, ρ ¼ k

4πR2
0

and

Λ ¼ k
R2
0

, see Eqs. (30) and (31), with the fluid pressure p

being zero, p ¼ 0. Then putting Eq. (30) into Eq. (34) we
find VðR0Þ ¼ 0, as expected. Substituting it into Eq. (36)
and evaluating at the static solution we find V 0ðR0Þ ¼ 0.
Evaluating V 00ðRÞ at the static solution, R ¼ R0, we find
V 00ðR0Þ ¼ − 2k

R2
0

. In brief, defining R0 as the value of the

scale factor of the static Einstein and hyperbolic Friedmann
universes, expanding the potential VðRÞ around R0,
Eq. (38), we find that

V 0ðR0Þ ¼ 0; ð39Þ

and

V 00ðR0Þ ¼ −
2k
R2
0

: ð40Þ

Gathering these calculations, we conclude that, besides
the trivial case, i.e., the Minkowski universe which has
k ¼ 0 and is trivially neutrally stable, there is the Einstein
static closed universe which has k ¼ 1 and so is unstable,
and the Friedmann static open universe which has k ¼ −1
and so is stable. The instability of the k ¼ 1 Einstein static
closed universe means that if we slightly displace the scale
radius R toward larger or smaller values, the universe will
expand in the former displacement or collapse in the latter
displacement, and the stability of the k ¼ −1 Friedmann
static closed universe means that if we slightly displace the
scale radius R toward larger or smaller values, the universe
will get back to the initial value R.

B. Einstein and Friedmann static universes:
Geometry and physics

1. Einstein static closed universe

The Einstein universe is a solution of the general theory
of relativity for a dust source with energy density ρ,
pressure p equal to zero, a positive cosmological constant
Λ, and positive curvature, k ¼ 1. In spacetime spherical

coordinates ðt; r; θ;φÞ it is characterized by the line
element given in Eq. (29) with k ¼ 1, i.e.,

ds2 ¼ −dt2 þ dr2 þ R2 sin2
�
r
R

�
dΩ2; ð41Þ

where t is the time coordinate, r is the radial coordinate
with 0 ≤ r ≤ πR, and dΩ2 ≡ dθ2 þ sin2 θdφ2, with θ and
φ being the spherical angular coordinates, 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π. In addition, R is a positive scale factor which
here is a constant, and which gives the characteristic radius
of the universe. The Ricci scalar for the Einstein universe
is given by R ¼ 6

R2. This solution then represents a static
spacetime, a 3-dimensional sphere, and so is a closed
universe. Now we turn to the properties of the matter in the
Einstein universe. Assuming a perfect fluid made of dust,
i.e., the matter has energy density ρ and pressure p ¼ 0, the
Einstein field equations with cosmological constant Λ for
the line element given in Eq. (41) yield

ρ ¼ 1

4πR2
; ð42Þ

Λ ¼ 1

R2
; ð43Þ

see Eqs. (30) and (31) with k ¼ 1. Note that ρ − Λ
4π ¼ 0, see

Eq. (32), and so Λ being positive is repulsive everywhere
and thus assumes the function of a pressure that acts against
the gravitational pull of the matter specified by ρ. This
system can be seen as a two fluid system, one fluid with
energy density ρ, the other fluid, a vacuum fluid, with
energy density ρ̄ ¼ Λ

8π and pressure p̄ ¼ − Λ
8π, such that

ρþ ρ̄þ 3p̄ ¼ 0. All the matter energy conditions are
satisfied. The volume of this universe is V ¼ 2π2R3 and
its mass is m ¼ 2π2R3ρ.
The spatial and causal structure of the spacetime can also

be presented. Considering a slice of constant time of the
spacetime, t ¼ constant, we find that the 3-space is diffeo-
morphic to a 3-sphere. To show this, we can embed the
3-space in 4-dimensional Euclidean space, R4. Defining the
Euclidean spatial coordinates ðw; x; y; zÞ as w ¼ R cos r

R,
x ¼ R sin r

R sin θ cosϕ, y ¼ R sin r
R sin θ sinϕ, and z ¼

R sin r
R cos θ, the line element of the embedded surface is

given by ds2 ¼ dw2 þ dx2 þ dy2 þ dz2, and the surface
verifies the equation w2 þ x2 þ y2 þ z2 ¼ R2, showing that
indeed it can be regarded as a 3-sphere inR4. To visualize the
embedding one makes a θ ¼ π

2
slice, i.e., z ¼ 0 in the

Euclidean coordinates. In Fig. 5we show such an embedding
for the static spherical Einstein universe. By making appro-
priate identifications between points in the two hemispheres,
the spherical space turns into a projective spherical space also
called an elliptical space. In Fig. 6 we show the causal
structure of the resulting spacetime in a Carter-Penrose
diagram. The Einstein universe, a static spacetime, models
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a universe with spherical spatial sections such that if we
include time the total spacetime is a 3-cylinder, R × S3. A
timelike geodesic, or a free-falling particle, initially moving
from r ¼ 0 in the direction of increasing radial coordinate
would reach the other pole at r ¼ πR and then continue until
it reaches back the center of coordinates and so forth.

The Einstein static closed universe is unstable. Indeed,
from Eq. (40) one has that for k ¼ 1, V 00ðR0Þ < 0,
recovering the well known result that the Einstein static
closed universe is unstable under perturbations. This result
confirms the expectations. For the static Einstein universe a
small increase in the radius of the universe means less
gravitational field due to matter and more cosmological
repulsion field from Λ, so it is a runaway expanding
unstable solution, and reversing the argument for a small
decrease in the radius one finds a runaway contracting
unstable solution. So, although it obeys the energy con-
ditions and is a priori not problematic, it is unstable, giving
rise to an expanding bubble universe.
This Einstein static closed universe is well known. It was

extremely important in initiating the science of cosmology.
The requirement that the boundary conditions on the
gravitational field should be finite and consistent led to
a closed universe, which in turn was also relevant to make
the point that general relativity could be Machian, i.e., that
geometry and inertia would arise solely from matter. The
requirement that the universe should be static, as was
thought at the time, yielded a new constant to physics, the
cosmological constant. The corresponding cosmological
term added to the original general theory of relativity
provided in turn the first modified gravitational theory.
We can now make a comparison between the

Minkowski-Minkowski static closed universe and the
Einstein universe. Although the two universes are, of
course, totally distinct solutions of the general relativistic
field equations, there are differences and also striking
similarities between them. In relation to the matter proper-
ties, the Minkowski-Minkowski closed universe is highly
nonuniform, it is vacuum everywhere except at a thin shell
with circumferential radius R, made of a perfect fluid with a
positive energy density σ and a positive, repulsive, pressure
p to hold it static against gravitational collapse or expan-
sion. The Einstein universe, with characteristic radius R, is
uniform, permeated by a fluid with a positive energy
density ρ and a repulsive cosmological constant to hold
it static against gravitational collapse or expansion. Thus,
both universes obey the energy conditions, they have
positive densities and have some form of pressure, negative
tangential shell pressure in one case and positive cosmo-
logical constant pressure in the other case, to hold them
static. In relation to the geometric and causal properties,
one can compare the figures drawn, namely, a t ¼ constant
and θ ¼ π

2
slice of the Minkowski-Minkowski closed

universe and the corresponding Carter-Penrose diagram
shown in Figs. 1 and 2, respectively, and a t ¼ constant and
θ ¼ π

2
slice of the Einstein closed universe and the corre-

sponding Carter-Penrose diagram shown in Figs. 5 and 6.
The comparison leads to the conclusion that the two
universes have an evident similar causal structure. The
Minkowski-Minkowski closed universe models a universe
with squashed spherical spatial sections such that the total

FIG. 5. Embedding diagram of a t ¼ constant and θ ¼ π
2
slice of

the Einstein static closed universe in 3-dimensional Euclidean
space. The radial coordinate r̄ related to the area defined by it,
namely, r̄ ¼ R sinðrRÞ, is the radial coordinate used in the diagram.
This coordinate runs from 0 at one pole, to R at the equator, and
then back to 0 at the other pole, with R being the characteristic
radius of the Einstein universe.

FIG. 6. Carter-Penrose diagram of the Einstein static closed
universe. The vertical lines represent the two poles of the sphere.
The radial coordinate r̄ related to the area defined by it, namely,
r̄ ¼ R sinðrRÞ, is the radial coordinate used in the diagram. One
pole is situated at the origin with r̄ ¼ 0. The other pole has also
r̄ ¼ 0. The two lines denoted by R constitute the equator. The
hash symbol represents the connected sum of the spacetime
manifold. The symbols i− and iþ represent past and future causal
infinity, respectively.
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spacetime is a squashed 4-cylinder with R × S3, with the
possibility of further identifications in S3. The Einstein
closed universe models a universe with spherical spatial
sections such that the total spacetime is a 4-cylinderR × S3,
with the possibility of further identifications in S3. Both
universes have thus spherical spatial topology and similar
causal structures. The Minkowski-Minkowski closed uni-
verse is the result of compressing, in a sense, the evenly
distributed matter of the Einstein universe into a thin shell
leaving the rest of the spacetime empty. The Minkowski-
Minkowski closed universe is stable, marginally, and the
Einstein closed universe is unstable, so, since there are no
topological obstructions, a possible endpoint of the
Einstein closed universe, if perturbed at constant universe
radius, could be the Minkowski-Minkowski closed
universe.

2. Friedmann static hyperbolic open universe:
A failed wormhole

The Friedmann static universe is a solution of the general
theory of relativity for a dust source with negative energy
density ρ, pressure p equal to zero, a negative cosmological
constant Λ, and negative curvature k ¼ −1. In spacetime
hyperspherical coordinates ðt; r; θ;φÞ it is characterized by
the line element given in Eq. (29) with k ¼ −1, i.e.,

ds2 ¼ −dt2 þ dr2 þ R2 sinh2
�
r
R

�
dΩ2; ð44Þ

where t is the time coordinate, r is the radial coordinate
with 0 ≤ r < ∞, and dΩ2 ≡ dθ2 þ sin2 θdφ2, with θ and φ
being the spherical angular coordinates, 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π. In addition, R is a positive scale factor which
here is a constant, and which gives the characteristic radius
of the universe. The Ricci scalar for the Friedmann universe
is given by R ¼ − 6

R2, so the Friedmann universe is a
negative constant curvature spacetime. Clearly it is a static
hyperbolic spacetime, and so an open universe. Now we
turn to the properties of the matter in the static Friedmann
universe. Assuming a perfect fluid made of dust, i.e., the
matter has energy density ρ and pressure p ¼ 0, the
Einstein field equations with negative cosmological con-
stant Λ for the line element given in Eq. (44) yield

ρ ¼ −
1

4πR2
; ð45Þ

Λ ¼ −
1

R2
; ð46Þ

see Eqs. (30) and (31) with k ¼ −1. Note that ρ − Λ
4π ¼ 0,

see Eq. (32), and so Λ being negative is attractive every-
where, and thus assumes the function of a tension that acts
against the gravitational push of the matter specified by a
negative energy density ρ. This system can be seen as a two

fluid system, one fluid with negative energy density ρ, the
other fluid, a vacuum fluid, with negative energy density
ρ̄ ¼ Λ

8π and tension p̄ ¼ − Λ
8π such that ρþ ρ̄þ 3p̄ ¼ 0. The

matter energy conditions are violated. The volume of this
hyperbolic universe, in its open form, is V ¼ ∞ and its
mass is also infinite.
The spatial and causal structure of the spacetime can

also be presented. Considering a time slice t ¼ constant of
the spacetime gives two copies of the hyperbolic 3-space.
To see this, one makes an embedding. The hyperbolic
3-space cannot be embedded in the 4-dimensional
Euclidean space, but it can be embedded to an open
region of the 4 dimensional Minkowski spacetime.
Defining the Minkowski coordinates ðw; x; y; zÞ,
where w is a time coordinate and ðx; y; zÞ are spatial
coordinates, as w ¼ R cosh r

R, x ¼ R sinh r
R sin θ cosϕ,

y ¼ R sinh r
R sin θ sinϕ, and z ¼ R sinh r

R cos θ, the line
element of the embedded surface is given by
ds2 ¼ −dw2 þ dx2 þ dy2 þ dz2, and the surface verifies
the equation w2 − x2 − y2 − z2 ¼ R2. So the surface,
which represents a time slice of the Friedmann static
universe, is in fact given by two copies of a 3-dimensional
hyperboloid. To visualize the embedding, one makes a
θ ¼ π

2
slice, i.e., z ¼ 0 in the Minkowski coordinates. In

Fig. 7 we show an embedding for the static hyperbolic
open Friedmann universe. Clearly there are two sheets,

FIG. 7. Embedding diagram of a t ¼ constant and θ ¼ π
2
slice of

the Friedmann static open universe in 3-dimensional Minkowski
space. The radial coordinate r̄ related to the area defined by it,
namely, r̄ ¼ R sinhðrRÞ, is the radial coordinate used in the
diagram. This coordinate runs from 0 at one pole, to infinity,
passing through R a some point, and the same at the other pole, it
runs from 0, to infinity, passing through R a some point, with R
being the characteristic radius of the Friedmann static universe.
The poles are at the origin which is common to both branches,
sheets, or branes of the spacetime, although this cannot be seen
explicit in the embedding. The branches are separated, and the
solution is a failed wormhole. Indeed, there are two disconnected
spacetimes almost connected at r̄ ¼ 0.
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i.e., the universe has two branes, the two copies of the
Friedmann static universe. Notice that we opted to map
the two asymptotic flat regions to open sets of the future
and past light cones to show both regions, although one
should bear in mind that, first, this has no physical
relevance as both regions are equivalent and, second, this
has no relation with time reversal. Moreover, admitting it
might not be clear from the embedding diagram, the
vertices of the hyperbolas are identified as the same point
hence, the static hyperbolic Friedmann universe can also
be seen as a model of a failed wormhole where two
asymptotic flat regions have a common point with circum-
ferential radius R sinh r

R ¼ 0, i.e., r ¼ 0, so that the
wormhole’s throat is a point, a zero measure set. Since
the two hyperboloid branes are independent there is
indeed no wormhole, it is a failed wormhole. By making
appropriate identifications each of the two open infinite
sheets turns into some closed 3-space, in which case the
volume of such a universe would be finite. In Fig. 8 we
show the causal structure of the resulting spacetime in a
Carter-Penrose diagram. We use the hash symbol # to
represent the connected sum of the spacetime manifolds in
order to conserve the conformal structure in the Carter-
Penrose diagram of the total spacetime. We see that it
represents a universe in which the spatial sections are two
copies of a 3-hyperboloid. The Friedmann hyperbolic
universe is a spacetime composed of time times

hyperbolic 3-space, actually two copies of it. A geodesic,
or a free-falling particle, initially moving in the upper
brane in the direction of decreasing radial coordinate
would reach r ¼ 0 and would continue until it reaches
infinity, without interacting with a mirror geodesic, or a
mirror free-falling particle, initially moving in the lower
brane in the direction of decreasing radial coordinate
reaching the same r ¼ 0 and continuing until it reaches the
infinity of its own brane.
The Friedmann static open universe is stable. Indeed,

from Eq. (40) one has that for k ¼ −1, V 00ðR0Þ > 0. This
result confirms the expectations. For the static Friedmann
universe, a small increase in the radius of the universe
means less gravitational field due to matter with negative
energy density, so less repulsion, and more cosmological
tension field from Λ, so the universe oscillates around the
original radius in a stable situation.
This open static universe proposed by Friedmann came

after a suggestion by Fock, and was worked out by
Friedmann before introducing, in the same paper, the
new expanding time-dependent hyperbolic solutions.
Friedmann’s main motivation for presenting it was that
the solution represented the other side of Einstein’s static
universe, the two solutions, Einstein’s and Friedmann’s, are
indeed complementary to each other. It is a much forgotten
universe. Since this static solution has a negative energy
density and a negative cosmological constant, and violates
all energy conditions, it seemed a physically inadmissible
strange universe that could hardly captured any attention.
This prejudice against solutions that violate the energy
conditions came to an end when traversable wormholes,
systems that violate several energy conditions, jumped into
the limelight. We see here that the Friedmann static
universe is a wormhole, albeit a failed one. Moreover,
although the solution does not obey the energy conditions,
Friedmann’s static universe is interestingly stable. Thus,
Friedmann had a prescient foresight in contemplating
working out in detail the mathematics of this static solution.
We can now make a comparison between the

Minkowski-Minkowski static open universe, or traversable
wormhole, and the Friedmann static hyperbolic universe, or
failed wormhole. Although the two universes are, of
course, totally distinct solutions of the general relativistic
field equations, there are both differences and similarities
between them, although the similarities here are not so
compelling. In relation to the matter properties, the
Minkowski-Minkowski open universe, i.e., the traversable
wormhole universe, is highly nonuniform, it is vacuum
everywhere except at a thin shell throat with circum-
ferential radius R, made of a perfect fluid with a negative
energy density σ and a positive pressure p to hold it static.
The Friedmann static open universe with characteristic
radius R is uniform, permeated by a fluid with a repulsive
negative energy density ρ and a negative, attractive,
cosmological constant Λ to hold it static. Thus, both

FIG. 8. Carter-Penrose diagram of the Friedmann static open
universe. The vertical lines represent the poles of each hyper-
boloid branch, r̄ ¼ 0, where r̄ is the radial coordinate related to
the area defined by it, namely, r̄ ¼ R sinhðrRÞ. There is no hash
symbol here because the two spacetimes are disconnected, no
geodesic can pass from one spacetime to the other. The symbols
i−, i0, and iþ represent past timelike infinity, spatial infinity, and
future timelike infinity, respectively, and the symbols I − and
Iþ, represent past and future null infinity, respectively. The
timelike line R is drawn to call attention that the Friedmann static
open universe has a characteristic intrinsic radius.
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spacetimes violate the energy condition, they have negative
energy densities and have some form of pressure, positive
tangential shell pressure in one case and negative cosmo-
logical constant pressure in the other case, to hold them
static. In relation to the geometric and causal properties,
one can compare the figures drawn, namely, a t ¼ constant
and θ ¼ π

2
slice of the Minkowski-Minkowski open uni-

verse, or traversable wormhole, and the corresponding
Carter-Penrose diagram, shown in Figs. 3 and 4, respec-
tively, and a t ¼ constant and θ ¼ π

2
slice of the Friedmann

open universe, or failed wormhole, and the corresponding
Carter-Penrose diagram shown in Figs. 7 and 8. The
comparison leads to the conclusion that the two universes
have some similarities. Both universes for large radii have
two distinct open sheets, although the circumferential
radius in the Minkowski-Minkowski open universe is finite
not zero, and so composes a traversable wormhole, whereas
in the Friedmann static open universe the circumferential
radius goes to zero, and the wormhole fails to happen. The
bare geometrical structure of the two universes is different,
the Minkowski-Minkowski open universe has geometry
R × Σ, where Σ is a 3-space with nontrivial topology, and
the Friedmann static open universe has geometry R × H3,
with negative curvature in the two copies of the spatial
sections. The Minkowski-Minkowski open universe could
be thought of as being the result of compressing, in a sense,
the evenly distributedmatter of the Friedmann static universe
into a thin shell at some throat radius leaving the rest of the
spacetime empty. TheMinkowski-Minkowski open universe
is stable, marginally, and the Friedmann open universe is
stable. But here there are topological obstructions, one
universe is connected, although not simply connected, the
other universe is disconnected, it has two separate branches,
and so one cannot pass fromone universe to the otherwithout
changing the topology.

C. Einstein and Friedmann static universes:
One concept with two sides

The Einstein and Friedmann static universes can be seen
as complementary to each other, i.e., they are two sides of
the same concept. The concept, i.e., a collection of static
constant curvature homogeneous universes, yields on one
side of the concept a closed universe, a bubble universe,
and on the other side of the concept an open universe which
is a failed wormhole. The formalism presented in analyzing
the two universes is well suited to show this point. From an
algebraic point of view, one side of the concept is given by
k ¼ 1, the other side is given by k ¼ −1, where k is a
characteristic that gives how space curves, positively in one
case, negatively in the other, respectively. This algebraic
side appears clearly in the evaluation of the matter proper-
ties as displayed in Eqs. (30) and (31). More formally, to
implement the idea of a closed universe, i.e., a bubble
universe, and an open universe, i.e., a failed wormhole, one

uses the equations of general relativity. For one universe
one picks up k ¼ 1, a 3-dimensional sphere. For the other
universe one picks up k ¼ −1, a 3-dimensional hyper-
boloid. From a matter point of view the two universes show
a form of complementarity, as for k ¼ 1 the matter obeys
the energy conditions while for k ¼ −1 the matter violates
the energy conditions. From a geometrical point of view,
the two sides of the concept appear when one picks up a
manifold spacetime and at constant time imposes a space
with constant curvature. One side is for positive curvature, a
bubble universe, the other side for negative curvature,
a failed wormhole. Comparison of Fig. 5 with Fig. 7 for
a spatial geometrical representation of the bubble universe
and the traversable wormhole, respectively, displays some
complementarity of the two spaces, which can be further
strengthened with the comparison of the spacetime draw-
ings in the form of Carter-Penrose diagrams, given in Fig. 6
and in Fig. 8, respectively. From a stability point of view we
have seen that one universe is stable and the other unstable,
showing thus some form of complementarity.
So, that the two spacetimes, Einstein and Friedmann,

demonstrate that they can be seen as complementary to
each other, i.e., they are two sides of the same concept, is
clear. It can be raised that the bubble universe has matter
that obeys the energy conditions, whereas the failed
wormhole has matter that does not obey. This is true,
but again there is no real problem. In an early era of the
Universe, when quantum gravity dominates, there is no
necessity of obeyance to the classical energy conditions and
the closed and open universes, created as bubble universes
and failed wormholes. out of the spacetime foam they must
coexist together. Some kind of inflation would grow these
objects to macroscopic dimensions, making bubble uni-
verses and traversable wormholes distinct, but connected,
objects, some obeying the energy conditions and being
unstable, like the Einstein universe, others not obeying the
energy conditions but being stable, like the Friedmann
static universe.

IV. CONCLUSIONS: BUBBLE UNIVERSES AND
TRAVERSABLE WORMHOLES, TWO SIDES OF

ONE CONCEPT

We have analyzed the possible universes that can be built
from a junction of two Minkowski spacetimes through a
static, timelike thin matter shell. Taking aside the trivial
Minkowski flat universe with no shell, there are two such
universes. One is a static closed universe with a spherical
thin shell with positive energy density and negative
pressure that joins two Minkowski balls, i.e., it is the
Minkowski-Minkowski closed universe, a bubble universe.
The other universe is a static open universe with a spherical
thin shell with negative energy density and positive
pressure that joins two Minkowski asymptotic sheets, it
is the Minkowski-Minkowski open universe, or traversable
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wormhole. We have seen that they can be seen as
complementary to each other. More specifically, they are
two sides of one concept, the concept being the collection
of nontrivial Minkowski-Minkovski spacetimes, with one
side given by 1

2
ðξi − ξeÞ ¼ 1, the other side given by

1
2
ðξi − ξeÞ ¼ −1, where ξi and ξe characterize the relative

direction of the interior and exterior normals to the shell,
respectively.
We have analyzed the possible universes that can be built

from static homogeneous pressureless matter with a cos-
mological constant. There are two such universes. One is
the static closed Einstein spherical universe. The other is
the static open Friedmann hyperbolic universe. We have
seen that they can be seen as complementary to each other,
and, indeed, the idea of the construction of the static open
universe by Friedmann was to find the complement to the
Einstein universe. More specifically, they are two sides of
one concept, the concept being the collection of constant
curvature pressureless universes, with one side given by
positive curvature, k ¼ 1, the other side given by negative
curvature, k ¼ −1.
We have also seen that the Minkowski-Minkowski

closed universe, a bubble universe that has positive energy
density and pressure on the matching domain wall and thus
being normal matter obeying the energy conditions, has
resemblances with the static closed Einstein universe
containing homogeneous normal matter with positive
energy density, zero pressure, and positive cosmological
constant, and thus also obeying the energy conditions, and
that the static open Minkowski-Minkowski universe, a
traversable wormhole that has negative energy density
and positive pressure on the matching throat and thus
being exotic matter violating the energy conditions, has
resemblances with the static open Friedmann universe, a
failed wormhole, containing homogeneous exotic matter
with negative energy density, zero pressure, and negative
cosmological constant, and thus also violating the energy
conditions. The Minkowski-Minkowski universes both are
linearly stable, marginally, and the Einstein and Friedmann
static universes are linearly unstable and stable, respec-
tively. One could think of the Minkowski-Minkowski
universes as being a limit of the homogeneous universes
when all the matter of the thin shell is spread evenly
throughout the universes, or vice versa, in which case the
homogeneous universes being a limit of the Minkowski-
Minkowski universes when all the matter of the homo-
geneous universes is put somehow into thin shells. For the
Einstein universe this would be possible classically, within
general relativity, as the two universes have the same
topology, and so, for constant universe radius, the

Minkowski-Minkowski closed universe could be the end
point of the Einstein universe. For the Friedmann static
universe this could not be realized within general relativity,
as the two universes have different topologies and so there
is no way of changing classically, and so continuously,
from one into the other, although quantum jumps of one to
the other geometry might be conceivably possible.
The existence of universes and wormholes within the

Universe is a tantalizing possibility allowed by the laws of
physics. Indeed, in a early cosmic era when primordial
scalar and gauge fields are dominant and symmetry break-
ing phase transitions naturally arise, universes may occur as
bubbles within the Universe, and likewise, wormholes can
exist in the form of traversable shortcuts for distant parts of
the Universe or can even connect what would be distinct
universes. Bubble universes and traversable wormholes are
distinct objects. Normally, bubble universes are found as
dynamic solutions, whereas, typically, traversable worm-
holes are studied as static structures, but of course they can
both be static or dynamic. We have analyzed two static
cases, the two Minkowski-Minkowski spacetimes and the
two static homogeneous universes, and found that these
spacetimes demonstrate, in the way of example, indeed two
coupled examples that reinforce each other, that bubble
universes and traversable wormholes can be seen as
complementary to each other, i.e., they are two sides of
some same concept. Dynamical cases where bubble uni-
verses and traversable wormhole are complementary to
each other can also be found and studied. It is plausible that
in a quantum gravity scenario or in a scenario in which
quantum gravity is weak but non-negligible, both bubble
universes and traversable wormholes are dynamically
created alike, being as well two sides of the same concept.
In addition, using this duality, one can infer that, arbitrarily
advanced civilizations, with arbitrarily advanced technol-
ogy to deal in practical terms with spacetime features, if
they can build bubble universes, they can also build
traversable wormholes, and conversely, if they are apt to
build traversable wormholes, as has been often suggested,
they should be apt to build bubble universes.
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