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LNE, 61 avenue de l’Observatoire, 75014 Paris, France
5Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma,
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We expose the phenomenology of the massless dilaton theory in the Solar system for a nonuniversal
quadratic coupling between the scalar field which represents the dilaton and the matter. Modified post-
Newtonian equations of motion of an N-body system and the light time travel are derived from the action of
the theory. We use the physical properties of the main planets of the Solar system to reduce the number of
parameters to be tested to three in the linear coupling case. In the linear case, we have a universal coupling
constant α0 and two coupling constants αT and αG related, respectively, to the telluric bodies and to the
gaseous bodies. We then use the planetary ephemeris, INPOP19a, in order to constrain these constants. We
succeeded to constrain the linear coupling scenario, and the constraints read α0 ¼ ð1.01� 23.7Þ × 10−5,
αT ¼ ð0.00� 24.5Þ × 10−6, αG ¼ ð−1.46� 12.0Þ × 10−5, at the 99.5% C.L.
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I. INTRODUCTION

While the equivalence principle (EP) is at the heart of
general relativity (GR), it has been argued that there
actually exist no strong theoretical reasons to expect this
principle to be valid in nature, notably suggesting that GR
should be replaced by a more accurate theory of relativity
[1]. This argument provides a strong motivation to search
for an observational violation of the EP.
Among all the alternative theories of gravitation, scalar-

tensor theories have been widely studied due to their
simplicity as well as their manifest ability to give some-
what natural answers to apparently different issues in
fundamental physics. In this class of theory, there is
a priori no fundamental symmetry that can justify the
EP to be valid. It is therefore natural to consider a
nonminimal coupling between the scalar field and matter
[1]. Furthermore, scalar fields with scalar-matter cou-
plings are ubiquitous in several attempts to unify the
whole fundamental interactions of physics [1], such as in
superstring or Kaluza-Klein theories, for instance. Such a
nonminimal coupling is also considered in some models
of dark matter and dark energy [2,3]. In addition, it has
been argued that scalar-tensor theories satisfying the EP at
the classical level can exhibit a nonminimal coupling

between the scalar field and matter due to quantum loop
corrections [4]. This may actually lead to an impossible
existence of a scalar field minimally coupled to matter
fields in nature. Hence, all scalar-tensor theories are likely
to violate the EP to some extent. In what follows, we
generically name such a class of theories “dilaton theory”,
in reference to the massless dilaton field that is generic in
superstring theories and which nonminimally couples to
matter fields in the perturbative effective action [5,6].
From an experimental point of view, the violation of the

EP has been mainly constrained by two types of experi-
ments: (i) tests of the universality of free fall (UFF) and
(ii) search for space-time variations in the constants of
nature. UFF is tested on Earth by measuring the relative
acceleration between two test masses at the level of 10−13

using torsion balances [7]. Recently, it has also been tested
in space with the MICROSCOPE experiment at the level of
10−14 [8]. Tests at the astronomical scale are performed
considering the free fall of the Earth and Moon towards the
Sun. These experiments give limits at the level of 10−13 as
well [9]. These results have been interpreted in the context
of dilaton theories [10,11]. Besides UFF, there exist
typically three different types of searches for variations
of the constants of nature, all of them comparing the
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behavior of two collocated atomic clocks working on
different atomic transitions [12]. First, comparing the
long-term linear evolution of two atomic clocks gives a
constraint on the cosmological evolution of the scalar
field [6,12]. Such an experiment has been performed by
several groups in the world [13] leading to constraints on
a linear drift of several constants of nature at the relative
level of 10−16 per year, such as for the fine structure
constant, for instance. A second signature commonly
searched for using an atomic clocks comparison is a
harmonic temporal evolution of the constants of nature
[14] motivated mainly by models of ultralight dark matter
[2]. The last type of behavior consists of searching for a
relative variation of the constants of nature as a function
of the gravitational potential. Such a search has also been
performed using atomic clocks [15] but also using
astrophysical observations [16].
Given the ever increasing constraints on any EP violation

from observations and experiments, this may seem to be a
fatal blow for scalar-tensor theories, in general, and to
superstring theories, in particular. Nevertheless, several types
of decouplings exist that can suppress EP violations below
experimental limits—may they be dynamical [5,6,17–20],
intrinsic [21–23], or due to symmetries [24].
Hence, it seems important to continue to explore the

phenomenology of scalar-tensor theories with nonminimal
couplings to matter and to confront it to observations.
While UFF has been tested to an exquisite level with the

MICROSCOPE experiment, the latter actually constrains a
very narrow region of the parameter space when interpreted
in the framework of a dilaton theory [10]. This is due to the
very specific composition of the free falling masses in the
experiment. On the other hand, planets in the Solar system
may help to further expand the region of the parameter space
being explored, due to their different compositions and
scales. Nevertheless, while the dilaton theory has already
been tested using atomic clocks, currently this theory has not
been tested at the scale of the Solar system. In this paper, we
show that a nonuniversally coupled massless dilaton induces
a week equivalence principle (WEP) violation that can be
constrained in the Solar system. We show that the physical
nature of the Solar system allows one to simplify the dilaton
modeling and reduce the number of parameters to be
constrained. The dilaton theory introduces only a limited
number of fundamental parameters to be tested: five in the
case of a linear coupling between the scalar field and matter
and ten in the case of a quadratic coupling. Nevertheless, we
show that in the Solar system these fundamental parameters
appear as combinations such that the number of coefficients
to be tested can be reduced to three in the linear coupling
scenario. These three parameters are derived constant from
the fundamental coupling constants of the theory. This work
is a first step to test dilaton theory in the Solar system.
Finally, we present a data analysis of the recent planetary
ephemeris INPOP19a that leads to a constraint on the dilaton

parameters in the case of a nonuniversal linear coupling
between the dilaton field and the matter fields.
In Sec. II, we summarize the phenomenology induced by

a massless dilaton within the Solar system. We present
the expression of the action, of the equations of motion for a
N-body system and also the expression of the light time
travel. The details of the mathematical derivations are
provided in Appendix A, and some complements about
the Lagrangian and Hamiltonian frameworks and about the
first integrals of the equations of motion in the massless
dilaton theory are given in Appendix B. In Sec. III, we
expose the numerical methods used in our analysis. First, we
show how the number of parameters of the dilaton theory can
be efficiently reduced and present how we implemented the
modified equations of motion to our Solar system planetary
ephemeris INPOP19a to build a test of the theory of massless
dilaton. We also expose the statistical criterion used to
constrain the parameters of the theory. In Sec. IV, we present
the residuals obtained as a function of the dilaton parameters
and deduce a likelihood distribution of these parameters.
In Sec. V, we deduce from the likelihood distributions our
results for a linear coupling between the dilaton and the
matter. These results are the posterior distributions of the
parameters to be tested approximated by histograms.We also
propose confidence intervals at 90% confidence limit (C.L.)
and at 99.5% C.L. Finally, we summarize our results in the
conclusion (Sec. VI).

II. PHENOMENOLOGY OF A MASSLESS
DILATON IN THE SOLAR SYSTEM

A. Action of the theory and field equations

The difference between Einstein’s theory of gravitation
and massless dilaton theory consists in the existence of a
light scalar field φ coupled to a gravity field and matter
[22,25]. In the following, the term “dilaton” is identified with
this scalar field. The massless dilaton theory contains four
terms in its action. The first term consists in the Einstein-
Hilbert action coupled to a differentiable function of the
scalar field fðφÞ, a kinetic term for the scalar field, the
standard model Lagrangian for the matter fields, and a
Lagrangian which parametrizes the interaction between the
dilaton and matter. Let us consider a four-dimensional
manifold M described by a map denoted generically ðxμÞ
(we identify the coordinates chart and the map of M). This
action reads [22]

S½g;ψ i;φ� ¼
1

2κc

Z �
fðφÞR −

ωðφÞ
φ

φ;μφ;μ

� ffiffiffiffiffiffi
−g

p
d4x

þ 1

c

Z
ðLSM½g;ψ i� þ Lint½g;ψ i;φ�Þ

ffiffiffiffiffiffi
−g

p
d4x;

ð1Þ

where g is the metric tensor, g the determinant built with
the matrix of the covariant components gμν of the metric
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tensor g in the map ðxμÞ, φ the scalar field named
“dilaton”, f and ω the two twice differentiable functions
of one variable, LSM the Lagrangian density of matter
described by the standard model, Lint the Lagrangian
density of the interaction between the dilaton and matter,
and ψ i the different matter fields. We could perform all the
calculations with this action, but the field equations and
the derivation of the post-Newtonian equations of motion
can be simplified by performing a conformal transforma-
tion. Let us introduce a conformal transformation of the
metric tensor, g ↦ g�ðg;φÞ,

gμν ¼
f0
fðφÞ g

�
μν; ð2Þ

and a transformation of the scalar field φ ↦ ϕðφÞ which
satisfies

�
dϕ
dφ

�
2

¼ ZðφÞ
2

¼ ωðφÞ
φfðφÞ þ

3

2

�
f0ðφÞ
fðφÞ

�
2

; ð3Þ

where f0 denotes the value of fðφÞ when φ takes its
background value φ0 at infinite distance (a possible
cosmological evolution of this background value is
neglected in the present work). The map ðxμÞ remains
the same. Then, a straightforward calculation shows that
in these new variables the action reads [22,26]

S̃½g�;ψ i;ϕ� ¼ S½gðg�ðφðϕÞÞÞ;ψ i;φðϕÞ�

¼ 1

2κ�c

Z
ðR� − 2gμν� ϕ;μϕ;νÞ

ffiffiffiffiffiffiffiffi
−g�

p
d4x

þ 1

c

Z
L�
m½g�;ψ i;ϕ�

ffiffiffiffiffiffiffiffi
−g�

p
d4x; ð4Þ

where

L�
m½g�;ψ i;ϕ� ¼ ðLSM½gðg�Þ;ψ i�

þ Lint½gðg�Þ;ψ i;φðϕÞ�Þ
ffiffiffiffiffiffi−gpffiffiffiffiffiffiffiffi
−g�

p ; ð5Þ

where R� is the Ricci scalar computed with the new metric
tensor g�, g� the determinant computed with the covariant
components g�μν of the metric tensor g� and

κ� ¼
κ

f0
: ð6Þ

The frame used after this transformation is usually called
“Einstein frame”. In this frame, a straightforward calcu-
lation shows that the field equations read [22,26]

R�
μν −

1

2
R�g�μν ¼ κ�T�

μν þ 2ϕ;μϕ;ν − g�μνϕ;αϕ;α ð7Þ

□�ϕ ¼ −
κ

2

∂ðL�
mÞ

∂ϕ ; ð8Þ

where

T�
μν ¼ −

2ffiffiffiffiffiffiffiffi−g�
p ∂ðLm

ffiffiffiffiffiffiffiffi−g�
p Þ

∂gμν� ; ð9Þ

and □� ¼ ∇�
μ∇μ

�, where g� is used to compute the
covariant derivatives.

B. Interaction between matter and the dilaton field

An effective Lagrangian describing the interactions
between matter and the dilaton is assumed to be described
by some differentiable functions of the dilaton multiplied
by the main matter fields [22],

Lint ¼
DeðφÞ
4e2

FμνFμν −
DgðφÞβ3ðg3Þ

2g3
Ga

μνG
μν
a

−
X

i¼e;u;d

ðDmi
ðφÞ þ γmi

DgðφÞÞmiψ̄ iψ i; ð10Þ

where Fμν is the Faraday tensor, Ga
μν the gluons tensor, g3

the strong force coupling constant, β3ðg3Þ ¼ μ∂ ln g3=∂μ
its beta function relative to the quantum scale invariance
violation, μ the energy scale of the relevant physical
processes, mi the fermions mass, ψ i their spinor, and γmi

¼
−μ∂ lnm=∂μ the beta function relative to the dimensional
anomaly of the fermions masses coupled to the gluons.
The DiðφÞ functions describe the different couplings
between the matter fields and the dilaton. De characterizes
the φ dependency of the fine structure constant, Dg the φ
dependency of the QCD mass scales Λ3, andDmi

the quarks
masses. The Lagrangian density (10) is a straightforward
nonlinear generalization of Damour and Donoghue theory
[25]. The theory considered here becomes equivalent to the
one of Damour and Donoghue [25] if we set DiðφÞ ¼ diφ.
Indeed, the dependency of the constant of nature to the scalar
field reads [25]

αðφÞ ¼ ð1þDeðφÞÞα; ð11aÞ

Λ3ðφÞ ¼ ð1þDgðφÞÞΛ3; ð11bÞ

meðφÞ ¼ ð1þDme
ðφÞÞme; ð11cÞ

mqðφÞ ¼ ð1þDqðφÞÞmq; q ¼ u; d: ð11dÞ

Damour and Donoghue [25] have shown that the matter
action of a point mass, at a macroscopic level, becomes

Sm ¼ −c2
Z

mAðφÞdτA; ð12Þ
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where A is the label of the considered body,

dτA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðv⃗A; v⃗AÞ

p
dt, where v⃗A ¼ cdzA

⟶
=dx0 the 4-veloc-

ity of body A [zA ∈ M is the position of body A in the
manifold and its coordinates in a generic map ðxμÞ are zμA].
The velocity vector in the tangent space TzAM is denoted

vA
⟶

, and its coordinates are vαA ¼ dzαA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdz

μ
Adz

ν
A

q
. The φ

dependency of mA depends on the internal structure of body
A and is responsible for the violation of the WEP. All this
violation can be encoded in a coupling parameter,

αAðφÞ ¼
d lnmA

dφ
: ð13Þ

Damour and Donoghue have found a semianalytical expres-
sion of αA with respect to its atomic composition [25]. The
nonlinear generalization is straightforward. At first order,
one needs to replace the di of Damour and Donoghue by
D0

iðφÞ. It is convenient to decompose αA into a universal
term αu (which does not depend explicitly on the atomic
composition of the various bodies) and a nonuniversal part
αA (which depends explicitly on the atomic composition).
The coupling function reads

αAðφÞ ¼ αuðφÞ þ ᾱAðφÞ; ð14Þ

where a straightforward nonlinear generalization of Eqs. (71)
and (72) of [25] reads

αuðφÞ ¼ D0
gðφÞ þ ½9.3 × 10−2ðD0

m̂ðφÞ −D0
gðφÞÞ

− 1.4 × 10−4ðD0
me
ðφÞ −D0

gðφÞ� ð15Þ

and

ᾱAðφÞ ¼ ðD0
m̂ðφÞ −D0

gðφÞÞQA
m̂ þ ðD0

δmðφÞ −D0
gðφÞÞQA

δm

þ ðD0
me
ðφÞ −D0

gðφÞÞQA
me

þD0
eðφÞQA

e : ð16Þ

The coupling functions to the quarks have been
redefined,

Dm̂ðφÞ ¼
muDmu

ðφÞ þmdDmd
ðφÞ

mu þmd
ð17Þ

Dδm ¼ mdDmd
ðφÞ −muDmu

ðφÞ
md −mu

: ð18Þ

In Eq. (16), the dilatonic charges appear as QA
m̂, Q

A
δm, Q

A
me
,

and QA
e . They are responsible for the weak equivalence

principle violation, because they depend explicitly on the
atomic composition of body A. Charges QA

m̂ and QA
δm

quantify the coupling between the quarks of body A and
the dilaton field, Qme

the coupling with the mass of the
electrons, andQe the coupling with the electromagnetic field.
LetA be the average number of nucleons of body A andZ its
average number of protons. Then, the dilatonic charges are
the same as the one in Damour and Donoghue theory [25],

QA
m̂ ¼ −3.6 × 10−2

A1=3 − 2.0 × 10−2
ðA − 2ZÞ2

A2
− 1.4

× 10−4
ZðZ − 1Þ

A4=3 ; ð19Þ

QA
δm ¼ 1.7 × 10−3

A − 2Z
A

; ð20Þ

QA
me

¼ 5.5 × 10−4
Z
A
; ð21Þ

Qe ¼ 8.2 × 10−4
Z
A

þ 7.7 × 10−4
ZðZ − 1Þ

A4=3 : ð22Þ

Note that compared to Damour and Donoghue’s
work [25], we have removed the constant part of the
dilatonic charges, because they are taken into account in αu,
the universal coupling constant [see Eq. (15)].
We have computed some dilatonic charges by estimating

the composition of the main bodies of the solar system. We
report the values in Table I. Damour and Donoghue have
already computed these charges [25,27].
Let us note that if we follow the work of Nitti and Piazza

[28], the electromagnetic interaction should present a trace
anomaly similarly to the other interactions, and we should

TABLE I. Dilatonic charges of some atoms computed with Eqs. (19)–(22). For SiO2 dilatonic charges, we
compute the average of oxygen and silicium, as did Damour and Donoghue [25,27].

Atom A Z Qm × 102 Qdm Qme × 104 Qe

Hydrogen 1 1 −5.60 −1.70 × 10−3 5.50 8.20 × 10−4

Helium 4 2 −2.27 0.00 2.75 6.53 × 10−4

Oxygen 16 8 −1.45 0.00 2.75 1.48 × 10−3

Silicium 28.10 14 −1.21 6.05 × 10−6 2.74 0.205
Iron 56.00 26.00 −0.994 1.21 × 10−4 2.55 2.72 × 10−3

Magnesium 24.30 12.00 −1.27 2.10 × 10−5 2.72 1.85 × 10−3

SiO2 −1.33 3.02 × 10−6 2.75 1.76 × 10−3
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replaceD0
eðφÞ byD0

eðφÞ −D0
gðφÞ in Eq. (16). In this case, if

the coupling is universal, which means if it appears as
Lint ¼ DðφÞTSM—where TSM is the whole trace anomaly of
the Standard Model, which includes a classical contribution
from the fermion mass terms, plus a quantum contribution
containing the beta functions of the theory and the fields’
anomalous dimensions—then all the coupling functions are
equal, and we get ᾱA ¼ 0 such that the weak equivalence
principle is still satisfied. Damour and Donoghue do not take
the electromagnetic trace anomaly into account; therefore,
in their theory, even with a universal coupling, the weak
equivalence principle is broken. In our computations, it is
always possible to replace D0

eðφÞ by D0
eðφÞ −D0

gðφÞ if
needed. In terms of Solar system phenomenology, if the
coupling functions are different, then it changes nothing for
testing alternative theories in an “agnostic” way, which are
blind with respect to the choices of the definitions of coupling
functions. Indeed, since we do not know anything about any
coupling functions a priori, constraining D0

eðφÞ instead of
D0

eðφÞ −D0
gðφÞ is exactly the same when we perform

experimental tests.
In our nonlinear dilaton theory, some second-order terms

will appear at the post-Newtonian order. We introduce the
quadratic coupling function

βAðφÞ ¼
dαA
dφ

¼ d2 lnmA

dφ2
: ð23Þ

Similarly to the decomposition introduced in Eq. (14),
we can decompose the quadratic coupling function in a
universal part βu and a nonuniversal part β̄A. It reads

βAðφÞ ¼ βuðφÞ þ β̄AðφÞ; ð24Þ

where

βuðφÞ ¼ α0uðφÞ; ð25Þ

and

β̄AðφÞ ¼ ðD00
m̂ðφÞ −D00

gðφÞÞQA
m̂ þ ðD00

δmðφÞ −D00
gðφÞÞQA

δm

þ ðD00
me
ðφÞ −D00

gðφÞÞQA
me

þD00
eðφÞQA

e : ð26Þ

C. Modified Einstein-Infeld-Hoffmann-Droste-Lorentz
equations of motion

In Appendix A, we present the derivation of the post-
Newtonian equations of motion for N massive test particles
from the fields equations (7) and (8), and the description of
matter presented in Sec. II B. We show that after rescaling
the constants as follows:

α0 ¼ α�uðφ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s �
αuðφ0Þ −

f0ðφ0Þ
2fðφ0Þ

�
; ð27aÞ

β0 ¼ β�uðφ0Þ ¼
2

Zðφ0Þ
�
βuðφ0Þ þ

1

2

�
f0ðφ0Þ
fðφ0Þ

�
2

−
1

2

f00ðφ0Þ
fðφ0Þ

�

−
Z0ðφ0Þ
Zðφ0Þ2

�
αuðφ0Þ−

f0ðφ0Þ
2fðφ0Þ

�
; ð27bÞ

α̃A ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
ᾱAðφ0Þ; ð27cÞ

β̃A ¼ 2

Zðφ0Þ
β̄Aðφ0Þ −

Z0ðφ0Þ
Z2ðφ0Þ

ᾱAðφ0Þ; ð27dÞ

dβA ¼ β̃A
2

α20
ð1þ α20Þ2

; ð27eÞ

γ ¼ 1 − α20
1þ α20

; β ¼ 1þ β0
2

α20
ð1þ α20Þ2

; ð27fÞ

δA ¼ α0α̃A
1þ α20

; δAB ¼ α̃Aα̃B
1þ α20

; ð27gÞ

μA ¼ G
f0

ð1þ α20Þð1þ δAÞmAðφ0Þ; ð27hÞ

where ZðφÞ is defined by Eq. (3) and where the α and β
functions are defined in the previous section, the equations
of motion read, at the first post-Newtonian order,

aT ¼ −
X
A≠T

μA
r3AT

rATð1þ δT þ δATÞ −
X
A≠T

μA
r3ATc

2
rAT

�
γv2T þ ðγ þ 1Þv2A − 2ð1þ γÞvA:vT −

3

2

�
rAT:vA
rAT

�
2

−
1

2
rAT:aA

− 2ðγ þ β þ dβTÞ
X
B≠T

μB
rTB

− ð2β þ 2dβA − 1Þ
X
B≠A

μB
rAB

�
þ
X
A≠T

μA
c2r3AT

½2ð1þ γÞrAT:vT − ð1þ 2γÞrAT:vA�ðvT − vAÞ

þ 3þ 4γ

2

X
A≠T

μA
c2rAT

aA; ð28Þ

where μA is the gravitational parameter of body A, rAT the
relative position of body T with respect to A, rAT ¼ jrAT j,
and vA the coordinate velocity of body A while aA is its

coordinate acceleration. These are the modified Einstein-
Infeld-Hoffmann-Droste-Lorentz (EIHDL) equations of
motion.
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In Einstein theory of GR (that is to say without dilaton:
γ − 1 ¼ β − 1 ¼ δT ¼ δAT ¼ dβA ¼ 0), these equations of
motion have been first written by Lorentz and Droste in
1917 ([29,30], for an English translation, see [31]), then by
Einstein, Infeld, and Hoffmann in 1939 [32]. This name
composed of five personalities (EIHDL) tells better science
history than only the three first names [33]. In Appendix B,
we give some more considerations about the dynamical
system of N mass monopoles in the massless dilaton
theory: global Lagrangian and Hamiltonian formulation
and first integrals are derived.

D. Nordtvedt effect

So far we have only considered test particles and have
neglected their self-gravitation. In Einstein’s GR, it is
possible to proceed like this by virtue of the strong
equivalence principle. However, in any tensor-scalar
theory, this principle is broken. The calculation of the
strong equivalence principle violation was first done by
Nordtvedt (1968) by considering extended bodies as a set
of only gravitationally interacting points, and the auto-
gravitation energy was integrated on this set in a formal-
ism in which the strong equivalence principle is broken
[34,35]. Later (1981), Will generalized this approach by
modeling the bodies as perfect fluid [36].1 More recently
(2000), Klioner and Soffel have generalized this formal-
ism by modeling the bodies as multipolar moments in the
parametrized post-Newtonian formalism [37].
A heuristic argument allows us to implement the

Nordtvedt effect without performing all these integrations
[38]. In Appendix C, we show that the Nordtvedt effect can
be integrated in a massless dilaton theory by substituting δA
of EILDH equations of motion by δ0A, where

δ0A ¼ δA − ð4β − γ − 3Þ 3μA
5RAc2

; ð29Þ

where RA is the average radius of body A. The quantity
μA=RAc2 corresponds to the self-gravitating energy of body
A. We use this term in all our modeling of the Solar system in
the following.

E. Modified time travel

In addition to impacting the trajectory of planets, the
dilaton theory will also impact the light propagation. In
tensor-scalar theory, it is known that the behavior of light in
the geometric optic approximation does not depend on the
frame chosen [39] (Einstein versus Jordan frames). We can
then use the solutions of the field equations in the Einstein
frame presented in Appendix A 2 and the fact light follows
the null-geodetic curves. With these approximation, a

classical calculation leads to the modified time travel
between an emission event e and a reception event r

cðtr− teÞ ¼
R
c
þ
X
A

ðγþ 1− δAÞ
μA
c2

ln
n · rrAþ rrA
n · reAþ reA

; ð30Þ

where the δA parameter is given by Eq. (A35),
n ¼ ðrr − reÞ=krr − rek, riA ¼ ri − zA, and riA ¼ kriAk
with i ¼ e or r.

III. NUMERICAL METHODS WITH INPOP

We included the modifications to the equations of motion
presented in Eq. (28) and to the light propagation presented
in Eq. (30) in the INPOP planetary ephemerides to search
for a possible signature induced by a massless dilaton.

A. Reduction of the number of parameters

Constraining the WEP at the Solar system scale using a
totally general phenomenological approach is difficult,
because without any physical hypothesis or without con-
sidering a specific underlying theory, there are too many
parameters to be constrained—at least as many as the
number of planets. For example, this would be the case
if we tested the EP by including one parameter δ ¼
ðmg=mIÞ − 1 for each body (mG andmI being, respectively,
the gravitational and the inertial masses). On the other
hand, considering a specific theory like the massless dilaton
allows one to search for a specific violation of the WEP
limiting the parameters space to be explored. The param-
eters that characterize the theory described by the action
from Eq. (1) are the function fðφÞ, ωðφÞ and the coupling
functions characterizing the interaction between the scalar
field and matter DiðϕÞ. At the post-Newtonian level, only
the background values for the function ZðφÞ defined in
Eq. (3) and of the background values for the first and
second derivatives of the coupling functions impact the
measurements.
In the case of a linear coupling between the scalar

field and matter, only the following coefficients enter
the expression of the equations of motion and of the

Shapiro time delay: γ ¼ 1−α2
0

1þα2
0

, δA ¼ α0α̃A
1þα2

0

þ ðγ − 1Þ jΩAj
mAc2

,

and δAB ¼ α̃Aα̃B=ð1þ α20Þ. These effective parameters
are related to the fundamental parameters of the theory
through α0 which is defined by Eq. (27b) and through
α̃A ¼ dm̂QA

m̂ þ dδmQA
δm þ dme

QA
me

þ deQA
e [see Eqs. (27c)

and (16)] with

dm̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½D0

m̂ðφ0Þ −D0
gðφ0Þ�; ð31aÞ

dδm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½D0

δmðφ0Þ −D0
gðφ0Þ�; ð31bÞ1The cited book was published in 2018, but the first edition

was published in 1981.
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dme
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½D0

me
ðφ0Þ −D0

gðφ0Þ�; ð31cÞ

de ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½D0

eðφ0Þ�: ð31dÞ

In case of a nonlinear coupling, the following coeffi-
cients enter also the modeling of the observations: β ¼
1 − β0α

2
0=2ð1 − α20Þ2 and dβA ¼ β̃Aα

2
0=2ð1þ α20Þ2. These

effective parameters are related to the theory through α0, β0
[see Eq. (27b)] and β̃A ¼ bm̂QA

m̂ þ bδmQA
δm þ bme

QA
me

þ
beQA

e [see Eqs. (27d) and (26)]with

bm̂ ¼ 2

Zðφ0Þ
½D00

m̂ðφ0Þ −D00
gðφ0Þ�

−
Z0ðφ0Þ
Zðφ0Þ

½D0
m̂ðφ0Þ −D0

gðφ0Þ�; ð32aÞ

bδm ¼ 2

Zðφ0Þ
½D00

δmðφ0Þ −D00
gðφ0Þ�

−
Z0ðφ0Þ
Zðφ0Þ

½D0
δmðφ0Þ −D0

gðφ0Þ�; ð32bÞ

bme
¼ 2

Zðφ0Þ
½D00

me
ðφ0Þ −D00

gðφ0Þ�

−
Z0ðφ0Þ
Zðφ0Þ

½D0
me
ðφ0Þ −D0

gðφ0Þ�; ð32cÞ

be ¼
2

Zðφ0Þ
D00

eðφ0Þ −
Z0ðφ0Þ
Zðφ0Þ

D0
eðφ0Þ: ð32dÞ

Note that the Nordtvedt term is also modified when
taking into account nonlinear coupling such that δA ¼ α0α̃A

1þα2
0

þ
ðγ þ 3 − 4βÞ jΩAj

mAc2
.

In Table II, we give the values of the dilatonic charges
estimated for the main bodies of the Solar system, using
Table I. We note that, except for Qδm in telluric bodies, all
dilatonic charges have a similar value for the various telluric
planets and have a similar value for the gaseous planets.
More precisely, the variations of the dilatonic charges are
less than 10% for both types of planets. Moreover, we note
that in telluric bodies,Qδm is one order of magnitude smaller
than the other dilatonic charges. If we assume that all
coupling coefficients are of the same order of magnitude,
similarly to what has been assumed in [25], we can also
safely neglect the dispersion of the value of Qδm for telluric
planets. Therefore, in the following, we consider that all
telluric planets share the same dilatonic charges and that all
gaseous planets share the same dilatonic charges as well.

TABLE II. Dilatonic charges of the main gaseous then telluric bodies of the Solar system. For SiO2, the weighting
is computed based on the number of atoms. In the last column, we compute the relative dispersion of the dilatonic
charges.

Sun Jupiter Saturn Uranus Neptune

Hydrogen 74% 90% 96% 83% 80%
Helium 25% 10% 3% 15% 19%
SiO2 0% 0% 0% 0% 0%
Iron 0% 0% 0% 0% 0%
Magnesium 0% 0% 0% 0% 0% σQ

hQi
hQm̂i × 102 −4.76 −5.27 −5.50 −5.09 −4.96 5.6%
hQδmi × 103 −1.27 −1.53 −1.65 −1.44 −1.37 10%
hQme

i × 104 4.81 5.23 5.42 5.08 4.97 4.6%
hQei × 104 7.78 8.03 8.15 7.94 7.88 1.8%

Mercury Venus=Mars Earth Moon

Hydrogen 0% 0% 0% 0%
Helium 0% 0% 0% 0%
SiO2 40% 80% 45% 63%
Iron 60% 20% 32% 13%
Magnesium 0% 0% 14% 0% σQ

hQi
hQm̂i × 102 −1.13 −1.26 −1.20 −1.27 5.3%
hQδmi × 105 7.41 2.67 4.74 2.33 54.5%
hQme

i × 104 2.63 2.71 2.67 2.71 1.4%
hQei × 103 2.34 1.95 2.11 1.93 9.1%
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In Table III, we present the average values for hQm̂ii, hQδmii,
hQme

ii, and hQeii, for the telluric (i ¼ T) and gaseous
bodies (i ¼ G). These assumptions allow us to reduce
significantly the computational time to explore the param-
eters space. This hypothesis can be criticized, because until
we do not have any empirical positive detection of the
coupling constant, nothing can be told about their ratio and
the fact that they should have the same order of magnitude.
While a more detailed modeling including more fitted

parameters would be useful in the case of a positive
detection, the assumptions described above are sufficient
for this first exploration.
Under these assumptions, the number of effective

parameters impacting planetary ephemerides is reduced
to three for the linear coupling;:α0 given by Eq. (27b) and
α̃T and α̃G which are related to the fundamental parameters
of the theory through

α̃T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½−1.2 × 10−2ðD0

m̂ðφ0Þ −D0
gðφ0ÞÞ þ 4.3 × 10−5ðD0

δmðφ0Þ −D0
gðφ0ÞÞ

þ2.7 × 10−4ðD0
me
ðφ0Þ −D0

gðφ0ÞÞ þ 2.1 × 10−3D0
eðφ0Þ�; ð33aÞ

α̃G ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s
½−5.1 × 10−2ðD0

m̂ðφ0Þ −D0
gðφ0ÞÞ − 1.5 × 10−3ðD0

δmðφ0Þ −D0
gðφ0ÞÞ

þ5.1 × 10−4ðD0
me
ðφ0Þ −D0

gðφ0ÞÞ þ 8.0 × 10−4D0
eðφ0Þ�: ð33bÞ

From now, and until the end of the paper, in order to simplify
the notations, we remove the tilde for the first-order coupling
parameters; we set αA ¼ α̃A for A ∈ fT;Gg. If one considers
nonlinear couplings, three additional parameters impact
planetary ephemerides: β0, dβT , which is dβA where A runs
on the telluric bodies, and dβG, which is dβA where A runs
over the gaseous bodies.

B. Introduction in planetary ephemerides

INPOP (Intégration Numérique Planétaire de
l’Observatoire de Paris) is a planetary ephemeris developed
since 2003 [40]. It consists of integrating numerically the
equations of motion of the main bodies and of more than
14,000 asteroids and adjusting the model parameters to the
data with a least-squares algorithm. We model the solar
system as a system of monopoles, except for the Sun, and the
Earth-Moon system. For the Sun, we model its oblateness
J2⊙ defined as the dimensionless coefficient of the quadratic
term of the multipole potential. For the Earth-Moon system,
we model multipole interactions [41]. However, concerning
GR and dilaton effects, only the monopoles terms are
considered. Thus, for GR effects and dilaton effects, bodies
are considered as homogeneous spheres. At the current level
of observational accuracy, this is the level of modelization
that is necessary to minimize the residuals in the planetary
ephemeris INPOP. Additional planetary parameters have

been found to have no impact on the residuals. INPOP19a
includes recent data from Juno which provides accurate
Jupiter barycenter positions, upgrades in the Cassini data sets
which provides Saturn barycenter positions, and additional
Mars orbiter observations. In addition, several asteroids and
a trans-Neptunian objects belt have been added [42,43], and
we have reanalyzed Cassini data, including the recent
Grande Finale [43]. We have summarized the most sensitive
data in Table IV. The complete documentation is available
in [41].
INPOP is regularly used for testing fundamental physics

[11,46–48]. For getting a realistic constraint, we have
already shown, in particular, in [42,48], that the dilaton
parameters have to be constrained together with the param-
eters of the reference model. The reference model contains
the equations of motion and of light propagation at the first
post-Newtonian approximation of GR. The method consists
of adding the alternative terms in the acceleration before
the adjustment. With the dilaton parameters being fixed,
the parameters of the reference model are then adjusted. The
adjustment explores the reference solution parameters space
in the vicinity of the parameters of the reference model until
the convergence is reached. A statistical criterion is then
applied, and only the dilaton parameters whose best fit
satisfies this criterion are kept to build the likelihood. We
repeat this operation for a large number of dilaton parameters
selected randomly with a uniform distribution, and after this,

TABLE III. Average values of the dilatonic charges for telluric and gaseous bodies, computed from Table II.

Dilatonic charge hQm̂iT hQδmiT hQme
iT hQeiT hQm̂iG hQδmiG hQme

iG hQeiG
Average value −1.2 × 10−2 4.3 × 10−5 2.7 × 10−4 2.1 × 10−3 −5.1 × 10−2 −1.5 × 10−3 5.1 × 10−4 8.0 × 10−4
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we can get the final distribution. The method has been
presented in [42] and relies on the computation of the
adjustment likelihood (as defined in [42] or [48] for each of
the ephemerides obtained with some randomly selected
parameters and some fitted parameters). In the present work,
we explore three parameters—in the linear coupling, we
have α0, αT , and αG. From the point of view of the numerical
resources, a Monte Carlo exploration of these three param-
eters is more economic than a exhaustive exploration in a
three-dimensional map (while in [42,48], we could do such
an exhaustive one-dimensional and two-dimensional map-
ping, respectively). Indeed, for one set of dilaton parameters,
we need to adjust all the parameters of the reference solution
several times, which means integrating the equations of
motion, simulating the observations, computing the resid-
uals, and finding the modification of the parameters with the
partial derivatives and doing it again until convergence. Once
this is done, we can compute the likelihood of the solution as
exposed in [42,48]. This procedure takes more than one hour
for each set of dilaton parameters. To speed up the process,
we actually do parallel computations and estimate the
likelihoods of several parameter sets at the same time.
With our resources (see Sec. VI), we could compute 28
800 sets of dilaton parameters. Once we have the likelihood
Lðα0; αG; αTÞ, as in [42,48], we can interpret it as the
probability that the solution is better (if L > 1=2) or worse
(if L < 1=2) than the reference solution. Here, we perform a
rejection sampling (or accept-reject algorithm). This means
that for each set of values of ðα0; αT; αGÞ, we keep the set
of values with a probability equal to Lðα0; αT; αGÞ. If the
ephemeris tested has lower or equal residuals than the
reference ephemeris, it has more chances to be kept, and
if the residuals are higher than the reference ephemeris, it has
more chances to be rejected. We repeat the operation 1000
times in order to decrease the statistical fluctuations. At the
end, the survival population can be interpreted as a sampling
of the posterior distribution.
Initially, we have no idea of which initial intervals of

values must be chosen for the dilaton parameters. So we
had to test empirically several boundaries for the initial
uniform distributions of the parameters. We modified them
using the following criterions:

(i) If the final distribution is close to zero out of the
peak, compared to the initial boundaries, or if there
is almost no survivors with the rejection sampling,
we choose to reduce the selection interval width. The
goal of this operation is to focus on the peak to
increase the accuracy of the histogram of the
posterior distribution.

(ii) If the final distribution contains too many elements
too close of the initial boundary, or equivalently, if
we cannot see any peak in the histogram, then we
choose to enlarge the selection interval width. The
goal of this operation is to avoid missing some part
of the final distribution.

IV. RESIDUALS AND LIKELIHOOD FOR A
LINEAR COUPLING

We plot the residuals with respect to α0, αT , αG in Fig. 1,
after adjustment of the planetary parameters with the
dilaton parameters randomly chosen from a uniform dis-
tribution but before the rejection sampling. It is also
interesting to plot the residuals with respect to the derived
parameters, see Fig. 2.
It appears that the parameters δdA are the most constrained

by the ephemeris. Indeed, in these residuals, we can see that
these parameters are the only ones for which the residuals are
always increasing when the parameters are far from zero.
The smallness of γ − 1 compared to previously published
results (around jγ − 1j ≲ 10−4 [46,47]) can be explained by
the fact that we are considering a specific model where γ is
not independent from the other fitted parameters due to the
presence of α0 in all the derived parameters, see Eqs. (27).
By introducing a dependency between the parameters, one
reduces mechanically the variability of the parameters. This
leads to a reduction of the interval of possible values for γ in
the dilaton framework as far as the INPOP likelihood is
concerned.
We can see that the relative variation of the residuals

with respect to the derived parameters has not the
canonical quadratic behavior expected in order to perform
a classical least square algorithm. This latest statement
validates our approach by considering a partially

TABLE IV. Summary of the data sets and their average observational uncertainties, σr, in meters. Messenger data
where provided by [44]. Cassini JPL data are those provided by JPL [45]. Cassini Navigation and Gravity flybys
data and Grand Finale are those reduced by [41,43].

Observations # Dates σr (m)

Messenger 1065 2011–2014 4.1
Mars Express 27849 2005–2017 2.0
Mars Odyssey 18234 2002–2014 1.3
Cassini JPL 166 2004–2014 25
Cassini Navigation and Gravity flybys 614 2006–2016 6.1
Cassini Grand Finale 9 2017 2.7
Juno 9 2016–2018 18.5
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FIG. 1. Relative variations of the standard deviations (ðσ − σrÞ=σr, where σ is the computed standard deviation, and σr is the standard
deviation of the reference solution) of the residuals with respect to α0, αT , and αG (respectively, first column, second column, and third
column). We plot in red the residuals for which L > 0.01, that is to say the residuals of the ephemeris which have less than 99% chances to
be rejected by the algorithm. Since some residuals are better than those of the reference solution, we plot a yellow line where they are equal.
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FIG. 2. Relative variations of the standard deviations (ðσ − σrÞ=σr, where σ is the computed standard deviation, and σr is the standard
deviation of the reference solution) of the residuals with respect to γ − 1, δdT and δdG (respectively, first column, second column, and third
column). We plot in red the residuals for which L > 0.01, that is to say the residuals of the ephemeris which have less than 99% chances to
be rejected by the algorithm. Since some residuals are better than those of the reference solution, we plot a yellow line where they are equal.
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free-derivatives algorithm instead of a full direct least-
squares inversion with heavy correlated parameters.
Finally, we plot the likelihood with respect to the tested

parameters (Fig. 3) and with respect to the derived
parameters (Fig. 4). We get Figs. 3 and 4.
We recall that for a given set of parameters tested

ðα0; αG; αTÞ L represents the probability to be better than
the reference solution, with respect to the observational χ2

(for the reference solution itself, we have L ¼ 1=2). We note
a blue line confounded with the abscissa axis. This shows
that a lot of sets of values for ðα0; αG; αTÞ have a very low
probability to be better than the reference solution. We also
see that all the nonzero values of L are located around 0
values for the abscissa axis (which represents the tested
parameters). This means that all dilaton parameters

acceptable zones are compatible with zero. At this step,
we can already say that our results are compatible with
Einstein’s GR theory.

V. RESULTS FOR A LINEAR COUPLING

After the rejection sampling, an average of 163 solutions
survive over 288 000 solutions tested. We repeat the rejec-
tion operation 1 000 times in order to average the statistical
fluctuations and present the final results as histograms
in Fig. 5.
The histograms of derived parameters (Fig. 6 shows that

the constraint on γ − 1 is stronger than the usual con-
straints, between 10−4 and 10−5 [47,49]). As already
explained, this is due to the fact that we are considering

FIG. 3. Likelihood with respect to α0, αT , and αG.

FIG. 4. Likelihood with respect to 1 − γ, δT , and δG.

FIG. 5. Histograms of dilaton parameters in the case of a linear coupling, after averaged rejection sampling.
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a specific model where relations are introduced in
between tested parameters with the derived parameters,
which all contain α0.
In Table V, we present the different quantiles associated

to the different confidence levels on the tested parameters
of the massless dilaton theory considering only a linear
coupling between matter and the scalar field. This is for
now our constraint of the massless dilaton with nonuni-
versal linear coupling.
Let us note that the Lunar ephemeris alone constrains

ΔESM ¼ ðδE − δSEÞ − ðδM − δSMÞ to be less than 10−13

[11], where S, E, and M stand for the Sun, Earth, and
Moon respectively. However, with the set of approxima-
tions used in the present paper, one has ΔESM ¼ 0—due to
the specific linear combination that defines ΔESM and to
which the Lunar ephemeris is sensitive to. What is
important to note is that the planetary ephemeris, on the

other hand, allows one to constrain the values of δG, δT ,
and δTG individually—that is, not a linear combination of
them—unlike the Lunar ephemeris alone, despite the
greater accuracy that a Lunar ephemeris has over the whole
planetary ephemeris—thanks to the much more precise
data available regarding the sole position of the retrore-
flectors on the Moon with respect to the Earth.

VI. CONCLUSION

The massless dilaton theory with nonuniversal coupling
violates the WEP, the Einstein equivalence principle, and the
strong equivalence principle. We have presented the phe-
nomenology of this theory in the Solar system and have
shown that because of the close chemical compositions of
the telluric planets in one hand and of the gaseous planets in
the other hand it was possible to reduce the number of
parameters to be fitted to three in the case of a linear coupling
between the dilaton and the matter and to six in the case of a
quadratic coupling. In the case of a linear coupling, the
parameters are α0, a universal coupling constant, and αT , αG,
two nonuniversal coupling constants related, respectively, to
the telluric and gaseous bodies. In the quadratic coupling,
one needs to add an additional universal constant, β0, as well
as two nonuniversal quadratic coupling constants related to
the telluric bodies and gaseous bodies, dβT and dβG,
respectively.

FIG. 6. Histograms of derived parameters: γ − 1, δdG, δ
d
T , δTG, δTT , and δGG.

TABLE V. Final results from our analysis: confidence intervals
on the linear coupling parameters for the massless dilaton theory
obtained using the rejection sampling.

Confidence: 90% 99.5%

α0ð×105Þ −0.94� 5.35 1.01� 23.7
αTð×106Þ 0.24� 1.62 0.00� 24.5
αGð×105Þ 0.01� 4.38 −1.46� 12.0
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We have tested these two scenarios with the planetary
ephemeris INPOP19a. To do this, we have randomly
selected many values of the parameters characterizing
the dilaton theory and used the method of the likelihood
based on the sensitive observations in order to get the
distributions of the selected parameters. We have been
able to constrain the linear coupling parameters but not
the quadratic one. At 99.5% C.L., the results read
α0 ¼ ð1.01� 23.7Þ × 10−5, αT ¼ ð0.00� 24.5Þ × 10−6,
αG ¼ ð−1.46� 12.0Þ × 10−5. The quadratic coupling is
more difficult to constrain, due to a strong correlation
between β and J2⊙. We have some ideas on how to solve
this difficulty, namely, to push the Taylor expansion of βABC
in the EILDH equations and/or to use external constraint on
J2⊙—such as the ones from the observation of the solar
oblateness [50] or from helioseismic data [51].
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APPENDIX A: POST-NEWTONIAN DERIVATION
OF THE EQUATIONS OF MOTION

1. Stress-energy tensor

We consider a set of test particles which do not interact.
The action of these points can be expressed as follows [22]:

Sm ¼−c2
X
A

Z
mAðφÞdτA ¼−c2

X
A

Z
m�

AðΦÞdτ�A; ðA1Þ

where

m�
AðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffi
f0
fðφÞ

s
mAðφÞ: ðA2Þ

We note that m�
Aðϕ0Þ ¼ mAðφ0Þ. The action can be

expressed as a quadrivolumic integral,

Sm ¼ −
Z X

A

ρ�A
ffiffiffiffiffiffiffiffi
−g�

p
d4x; ðA3Þ

where

ρ�A ¼ c2m�
AðϕðxμÞÞffiffiffiffiffiffiffiffi−g�

p
u0A�

δð3Þðx − zAðtÞÞ; ðA4Þ

where δð3Þ is the three-dimensional Dirac distribution,
zμAðtÞ the coordinates of A in the map ðxμÞ, and

uμA� ¼ dzμA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g�αβdzαAdz

β
A

q
the coordinates of the 4-velocity

of A. From here, we deduce

Tμν
� ¼

X
A

ρA
�uμ�Au

ν
�A; ðA5Þ

T� ¼
X
A

ρ�A: ðA6Þ

The mass that appears in the density is a function of ϕ. In
post-Newtonian formalism, the variation of ϕ is a Taylor
expansion, such that we have ϕ − ϕ0 ¼ Oðc−2Þ. Then it is
also possible to express m�ðϕÞ as a Taylor expansion,

m�
AðϕÞ
m�

A;0
¼ 1þ ðϕ − ϕ0Þα�Aðϕ0Þ þ

1

2
ðϕ − ϕ0Þ2β�Aðϕ0Þ

þOðc−6Þ; ðA7Þ

where we have, from Eqs. (3), (14), (24), and (A2),

α�A ¼ d lnm�
A

dϕ
¼ α�uðφÞ þ α̃AðφÞ; ðA8Þ

β�AðφÞ ¼
dα�A
dϕ

¼ β�uðφÞ þ β̃AðφÞ; ðA9Þ

where

α�uðφÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

ZðφÞ

s �
αuðφÞ −

f0ðφÞ
2fðφÞ

�
; ðA10Þ

α̃A ¼
ffiffiffiffiffiffiffiffiffiffi
2

ZðφÞ

s
ᾱAðφÞ; ðA11Þ

β�uðϕÞ ¼
2

ZðφÞ
�
βuðϕÞ þ

1

2

�
f0ðφÞ
fðφÞ

�
2

−
1

2

f00ðφÞ
fðφÞ

�

−
Z0ðφÞ
ZðφÞ2

�
αuðφÞ −

f0ðφÞ
2fðφÞ

�
; ðA12Þ

β̃AðϕÞ ¼
2

ZðφÞ β̄AðφÞ −
Z0ðφÞ
ZðφÞ2 ᾱAðφÞ: ðA13Þ

2. Post-Newtonian solution to the field equations
in the Einstein frame

We consider N mass monopoles and their worldlines
in M. We define a map of M, ðxμÞ, such that at infinity
the metric tensor is the Cartesian Minkowski metric:
kxik → ∞ ⇒ g�μν → ημν ¼ diagð−1; 1; 1; 1Þ. In this map,
the worldlines of each body are described by four functions,
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LA∶ t ↦ zμAðtÞ; ðA14Þ

that we can reduce to three if we consider t as the time
coordinate. This choice is always possible for massive
particles. We assume that in the gravitational fields the
particles are weak (GM=cr ≪ 1) and the velocities are also
weak (v=c ≪ 1). In these approximations, and in Einstein
frame, the consequence is

T00� ¼Oðcþ2Þ; T0i� ¼Oðcþ1Þ; Tij
� ¼Oðc0Þ: ðA15Þ

Moreover, since we know that ϕ − ϕ0 ¼ Oðc−2Þ, then we
have ð∂iϕ; ∂0ϕÞ ¼ Oðc−2; c−3Þ, such that from Eq. (7) one
deduces that there exists a coordinate system that satisfies
the strong isotropy condition as follows [52]:

g�00 ¼ −1þ 2
w�
c2

− 2
w2�
c4

þOðc−6Þ; ðA16Þ

g�0i ¼ −4
wi�
c3

þOðc−5Þ; ðA17Þ

g�ij ¼ δij

�
1þ 2

w�
c2

�
þOðc−4Þ; ðA18Þ

where w� and wi� are four fields that parametrize the metric
tensor and that have to be determined. When linearizing
Eq. (7) and using the time component of the harmonic
gauge equation—that is, gαβ� Γ0

�αβ ¼ 0, where Γ� is the
Christoffel symbol constructed upon the Einstein-frame
metric—we obtain partial differential equations that deter-
mine the potentials w� and wi�,

□w� ¼ −4πG
T00� þ δijT

ij
�

c2
þOðc−4Þ; ðA19Þ

Δwi� ¼ −4πG
T0i�
c

þOðc−4Þ: ðA20Þ

Linearizing Eq. (8) leads to a partial derivative equation that
determines the scalar field ϕ,

□ϕ ¼ −4πG
∂T�
c2∂ϕþOðc−6Þ: ðA21Þ

From here, a straightforward perturbative calculation—
which can also be deduced from the method of Damour
and Esposito-Farèse [26]—leads to the post-Newtonian
solution of the field equations,

ϕ ¼ ϕ0 −
X
A

α�A0
G�mA0

c2rA

�
1þ rA · aA

2c2
þ ðrA · vAÞ2

2c2r2A

þ 1

c2
X
B≠A

G�mB0

rAB

�
1þ α�A0α

�
B0 þ

β�B0α
�
B0

α�A0

��
; ðA22Þ

where

w� ¼ w0� −
1

c2
Δ� þOðc−4Þ; ðA23Þ

wi� ¼
X
A

G�mA0

rA
viA þOðc−2Þ; ðA24Þ

where

w�
0 ¼

X
A

G�mA0

rA
; ðA25Þ

Δ� ¼
X
A

G�mA0

rA

�
rA · aA

2
þ ðrA · vAÞ2

2r2A
− 2v2A

þ
X
B≠A

ð1þ α�A0α
�
B0Þ

G�mB0

rAB

�
; ðA26Þ

where α�A0 ¼ α�Aðϕ0Þ, β�A0 ¼ β�Aðϕ0Þ, rA ¼ x − zA,
rA ¼ krAk, aA ¼ dvA=dt.

3. Equations of motion

Away to deduce the equations of motion is to derive the
Euler-Lagrange equation of a test particle in the gravita-
tional field built by the other particle,

LT ¼ −c2
Z

m�
TðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�μνv

μ
Tv

ν
T

q
: ðA27Þ

Performing a post-Newtonian expansion using the solution
of the field equations and Eq. (A7) leads to the following
Lagrangian:

LT ¼ −mT0c2 þmT0
v2T
2
þ
X
A≠T

GATmA0mT0

rAT
þmT0v4T0

8c2

þ 1

c2
X
A≠T

GATmA0mT0

rAT

�
−2ð1þ γATÞvA · vT

þ 2γAT þ 1

2
v2T þ ðγAT þ 1Þv2A

−
ðvA · rATÞ2

2r2AT
−
rAT · aA

2

�

−
1

c2
X
A≠T

GATmA0mT0

rAT

�X
B≠A

GABmB0

rAB
ð2βABT − 1Þ

þ
X
B≠T

GBTmB0

rBT

�
βTAB −

1

2

��
; ðA28Þ

where rAT ¼ xT − xA, rAT ¼ krATk,

GAB ¼ G
f0

ð1þ α�A0α
�
B0Þ; ðA29Þ
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γAT ¼ 1 − α�A0α
�
T0

1þ α�A0α
�
T0

; ðA30Þ

βTAB ¼ 1þ β�T0
2

α�A0
1þ α�A0α

�
T0

α�B0
1þ α�B0α

�
T0

: ðA31Þ

Actually, this Lagrangian was already obtained by Damour
and Esposito-Farèse [26] but with a universal conformal
coupling and not a nonuniversal one. However, they
considered the conformal coupling in a very general way
and did all the calculations with αA ¼ d lnmA=dϕ without
assuming anything about the nature of the coupling during
the calculations, so we can use their work for checking our
equations of motion.
Nevertheless, this Lagrangian can be simplified by taking

into account the composition independent and dependent
nature of some parameters. First, we can decompose the
coupling constants in a universal part and a nonuniversal
one,

α�A0 ¼ α0 þ α̃A; ðA32Þ

where α0 ¼ α�uðϕ0Þ [Eq. (A10)] is the universal coupling
constant, and α̃A has been defined in Eq. (A11). We can then
redefine the gravitational constant as follows:

GAB ¼ G̃ð1þ δA þ δB þ δABÞ; ðA33Þ

where

G̃ ¼ G
f0

ð1þ α20Þ; ðA34Þ

δA ¼ α0α̃A
1þ α20

; ðA35Þ

δAB ¼ α̃Aα̃B
1þ α20

: ðA36Þ

Most of the alternative constants can be absorbed by
redefining the masses as follows:

m̃A ¼ mA0ð1þ δAÞ: ðA37Þ

Then, the Lagrangian of a particle test reads, at the
Newtonian approximation,

LT ¼ −m̃Tð1 − δTÞc2 þ m̃T
v2T
2
ð1 − δTÞ

þ
X
A≠T

G̃m̃Am̃T

rAT
ð1þ δATÞ þOðc−2Þ þOðδ2i Þ: ðA38Þ

The equations of motion read, at the Newtonian order,

aT ¼
X
A≠T

G̃ m̃A
rAT
r3AT

ð1þ δT þ δATÞ: ðA39Þ

At this step, we note that the weak equivalence principle is
broken at several levels. The variation of the ratio between
the inertial mass and the gravitational mass is encoded in the
parameter δT. But here a new violation appears through the
parameter δAT. In some cases, it is possible that α0 ¼ 0 such
that δT ¼ 0 and only δAT ≠ 0, such that the weak equiv-
alence principle violation cannot be reduced to a variation of
the inertial/gravitational masses ratio [11,22]. Let us note
that only the scalars μA ¼ G̃m̃A can be measured by a
gravitation experiment. We can multiply LT by G̃, and then,
only the scalars μA appear. At the post-Newtonian level, we
can neglect the terms of order OðδTc−2Þ and OðδATc−2Þ.
Indeed, if they exist, they will be detected first at the
Newtonian level. Thus, we keep only the universal coupling
constant in the post-Newtonian approximation, since they
have been absorbed at the Newtonian level by a unobserv-
able redefinition of masses and gravitational constant. The
resulting Lagrangian reads

LT ¼ −μTð1 − δTÞc2 þ
μTv2T
2

ð1 − δTÞ

þ
X
A≠T

μAμT
rAT

ð1þ δATÞ þ
μTv4T
8c2

þ
X
A≠T

μAμT
rATc2

�
−2ðγ þ 1ÞvT · vA þ 2γ þ 1

2
v2T

þðγ þ 1Þv2A −
rAT · aA

2
−
ðrAT · vAÞ2

2r2AT

�

−
X
A≠T

μA
rAT

�X
B≠T

2βT − 1

2c2
μB
rBT

þ
X
B≠A

2βA − 1

c2
μB
rAB

��

þOðc−4Þ þOðc−2δiÞ þOðδ2i Þ; ðA40Þ

where

γ ¼ 1 − α20
1þ α20

; ðA41Þ

and where βA can be decomposed in a universal and
nonuniversal part,

βA ¼ 1þ β0 þ β̃A
2

α20
ð1þ α20Þ2

¼ β þ dβA; ðA42Þ

where β ¼ 1þ β0α
2
0=2ð1þ α20Þ2 and dβA ¼ β̃Aα

2
0=

2ð1þ α20Þ2. We can make the post-Newtonian expansion
of the nonuniversal part of βA since it does not appear in the
Newtonian part. We find the well-known γ and β post-
Newtonian parameters [36,37], to which we add nonuniver-
sal coupling constants δA, δAB, and dβA. The derivation of
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this Lagrangian leads to the modified Einstein-Infeld-
Hoffmann-Droste-Lorentz (EIHDL) equations, which
are Eq. (28).

APPENDIX B: GLOBAL LAGRANGIAN AND
HAMILTONIAN FORMULATION

AND FIRST INTEGRALS

We give a global Lagrangian and Hamiltonian formu-
lation of the modified EIHDL equations of motion in
massless dilaton theory. Then, we give an explicit form of
the Euler-Lagrange equation in post-Newtonian formalism.

1. Global Lagrangian formulation

We can write the global post-Newtonian Lagrangian of
a N-body system. The total Lagrange function L is not
equal to the sum of the one-body Lagrangians. To get the
same equations of motion, we need to check that
∂L=∂rA ¼ ∂LA=∂rjr¼rA . To do so, one just has to sum
LT over T, then symmetrize the explicit expressions
including A and T interms of zA and vA [33]. Moreover,
we can simplify the Lagrangian and make the term aA
disappear by remarking that

−
rAT
rAT

· aA ¼ −
d
dt

�
rAT
rAT

· vA

�
þ ðvT − vAÞ

rAT
· vA

−
ðrAT · vAÞ

rAT

ðrAT · vTÞ
rAT

þ
�
rAT · vA
rAT

�
2

: ðB1Þ

One can then replace the term containing the acceleration
by the right-hand side ignoring the total derivative. We can
also get the Lagrangian from the global Lagrangian of
Damour and Esposito-Farèse [26] in the case of a
conformal coupling by substituting our redefinitions of
the constants. The result is the following where we have
replaced label T by label A in order to get a more
“canonical” expression of the Lagrangian, according to
“canonical” post-Newtonian litterature, for example,
[33,36,37]:

L ¼ −
X
A

μAð1 − δAÞc2 þ LN þ 1

c2
X
A

LA

þ 1

2c2
X
A

X
B≠A

LAB þ 1

2c2
X
A

X
B≠A

X
C≠A

LA
BC; ðB2Þ

where

LN ¼
X
A

μAð1 − δAÞ
v2A
2
þ 1

2

X
A

μAμB
rAB

ð1þ δABÞ ðB3Þ

LA ¼ μAv4A
8

; ðB4Þ

LAB ¼ μAμB
rAB

�
ð2γ þ 1Þv2A −

4γ þ 3

2
vA · vB

−
1

2
ðvA · nABÞðvB · nABÞ

�
; ðB5Þ

and

LA
BC ¼ −

μAμBμC
rABrAC

ð2β þ 2dβA − 1Þ; ðB6Þ

where nAB ¼ rAB=rAB. The first mass term −
P

A μA
ð1 − δAÞc2 is useless to derive the equations of motion but
will be useful to express simply the first integrals, in
particular, the barycenter. The Newtonian part LN of the
Lagrange function expresses the weak equivalence principle
violation because, first, the inertial masses μAð1 − δAÞ are not
equal to the gravitational masses, which become inseparable
because their meaning is expressed only by the interaction of
two bodies and are expressed by μAμBð1þ δABÞ. The last
three-body term LA

BC is also responsible for a weak equiv-
alence principle violation because of dβA, which expresses
that the three-body interaction depends on the internal
composition of the body which is in motion but also of
the two bodies which generate the gravitational in which the
body is in motion. Indeed, when we derive this term with
respect to rT , terms proportional to dβT appear but also terms
proportional to dβA where A ≠ T. We note finally that LAB is
symmetric by permutation of A and B, but LA

BC is only
symmetric by permutation of B and C. It is because of these
symmetries that we had to divide the sums by two.
Even by violating the equivalence principle in all these

ways, this Lagrange function conserves the same symmetries
as the modified GR with post-Newtonian parameters β and γ
[53]. In principle, if the massless dilaton theory was well
respected, each mass should be modified, but here we
neglect the terms at the order Oðc−2δAÞ.
The linear momentum of body A is

pA ¼ μAð1 − δAÞvA þ μAv2A
2c2

vA

þ 1

c2
X
B≠A

μAμB
rAB

�
ð2γ þ 1ÞvA −

4γ þ 3

2
vB

−
1

2
ðvB · nABÞnAB

�
: ðB7Þ

The Lagrangian (B2) is invariant by spatial rotation and
translation and by temporal translation. The seven classical
first integrals are well conserved. Linear momentum is
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P ¼
X
A

pA

¼
X
A

μAvA

�
1 − δA þ 1

2c2

�
v2A −

X
B≠A

μB
rAB

��

−
1

2c2
X
A

X
B≠A

μAμB
rAB

ðnAB · vAÞnAB: ðB8Þ

Angular momentum is

J ¼
X
A

zA × pA

¼
X
A

μAzA × vA

�
1 − δA þ v2A

2c2

�

þ 1

c2
X
A

X
B≠A

μAμB
rAB

�
ð2γ þ 1ÞzA × vA

−
4γ þ 3

2
zA × vB −

1

2
ðvB · nABÞzA × nAB

�
: ðB9Þ

Energy is

h ¼
X
A

pA · vA − L

¼
X
A

ð1 − δAÞμA
�
c2 þ v2A

2

�
þ
X
A

3μAv4A
8c2

þ 1

2c2
X
A

X
B≠A

X
C≠A

μAμBμC
xABxAC

ð2β þ 2dβA − 1Þ

−
1

2

X
A

X
B≠A

μAμB
xAB

�
1þ δAB −

2γ þ 1

c2
v2A

þ 4γ þ 3

2c2
vA · vB þ 1

2c2
ðvA · nABÞðvB · nABÞ

�
: ðB10Þ

Three more first integrals can be obtained; they actually
correspond to the Lorentz invariance. A direct derivation
shows that the following vector is a first integral:

q ¼ G − Vt; ðB11Þ

where

G ¼ c2

h

X
A

μAzA

�
1 − δA þ v2A

2c2
−

1

2c2
X
B≠A

μB
rAB

�
ðB12Þ

are the coordinates of the relativistic barycenter of the
system, and

V ¼ c2P
h

ðB13Þ

is the velocity of the barycenter motion. q is called
barycenter constant, since we have

G ¼ qþ Vt; ðB14Þ

and q is the constant component of G.

2. Derivation of Euler-Lagrange equations of motion

In order to avoid indexes of confusion when we derive,
we derive L with respect to zX and vX ¼ dzX=dt. This work
uses the same method as [53] but is a generalization in the
massless dilaton framework.
Euler-Lagrange equations of motion are

aX ¼ F−1
X

�
HX −

1

c2
ðvX · aXÞvX þ 1

c2
X
B≠X

μB
rXB

�
4γ þ 3

2
aB

þ 1

2
ðaB · nXBÞnXB

��
; ðB15Þ

where

FX ¼ 1 − δX þ v2X
2c2

þ 2γ þ 1

c2
X
B≠X

μB
rXB

ðB16Þ

and

HX ¼
X
B≠X

μB
rXB
r3XB

�
1þ δBX −

3

2
ðvB · nXBÞ2

−ð2γ þ 2ÞvX · vB þ ðγ þ 1Þv2B þ 2γ þ 1

2
v2X

�

−
1

c2
X
B≠X

μB
r2XB

½ð2γ þ 1ÞðnXB · ðvX − vBÞÞðvX − vBÞ

−ðnXB · vBÞvB�

−
1

c2
X
B≠X

μB
rXB
r3XB

�
ð2β þ 2dβX − 1Þ

X
C≠X

μC
rXC

þð2β þ 2dβB − 1Þ
X
C≠B

μC
rBC

�
: ðB17Þ

We note that like in [53] the exact resolution of Euler-
Lagrange equations (B15) conserves exactly the following
first integrals: linear momentum [Eq. (B8)], angular momen-
tum [Eq. (B9)], and energy [Eq. (B10)]. However, they are
not easy to integrate because they do not appear in the form
of an ordinary differential equation. To solve it numerically,
one has to invert a matrix on each step of time. However, in
the first post-Newtonian approximation Oðc−2Þ, one can get
a second-order ordinary differential equation, but we lose the
property of exactitude of the first integrals. A smooth signal
remains at the order Oðc−4Þ. By setting

F−1
X ¼ 1þ δX −

v2X
2c2

−
2γ þ 1

c2
X
B≠X

μB
rXB

þOðc−4Þ ðB18Þ
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and by neglecting all the second post-Newstonian terms at
order Oðc−4Þ that appear when the products are developed,
one finds good EIHDL modified equations (28).

3. Global Hamiltonian formulation

To get the global Hamiltonian, we perform a Legendre
transformation. In this framework, we express energy
(B10) with respect to the conjugated variables ðzA; pAÞ
instead of ðzA; vAÞ. To do so, we have to invert Eq. (B7)
which is always possible by perturbation at order Oðc−2Þ,
then by substituting in Eq. (B10), still neglecting terms at
order Oðc−4Þ, Oðδ2AÞ, and Oðc−2δAÞ. The result is

H ¼
X
A

�
μAð1 − δAÞc2 þ

p2
A

2μA
ð1þ δAÞ −

p4
A

8μ3Ac
2

�

−
1

2

X
A

X
B≠A

1

xAB

�
μAμBð1þ δABÞ

þ 1

c2
μB
μA

ð2γ þ 1Þp2
A −

4γ þ 3

2c2
pA · pB

−
1

2c2
ðpA · nABÞðpB · nABÞ

�

þ 1

2c2
X
A

X
B≠A

X
C≠A

μAμBμC
xABxAC

ð2β þ 2dβA − 1Þ; ðB19Þ

The mass term
P

A μAð1 − δAÞc2 is useless for derivating
equations of motion but will be useful for the first integrals.
The Newtonian part of this Hamiltonian is

HN ¼
X
A

p2
A

2μA
ð1þ δAÞ−

1

2

X
A

X
B≠A

μAμB
rAB

ð1þ δABÞ: ðB20Þ

In the conjugated variables, the first integrals have simpler
expressions. Linear momentum is

P ¼
X
A

pA: ðB21Þ

Angular momentum is

J ¼
X
A

zA × pA: ðB22Þ

The energy is H itself, and the barycenter constant is

q ¼ G − Vt; ðB23Þ

where

G ¼ c2

H

X
A

μAzA

�
1 − δA þ p2

A

2μAc2
−

1

2c2
X
B≠A

μB
rAB

�
ðB24Þ

and

V ¼ c2P
H

: ðB25Þ

Here, as in the Lagrangian formalism, linear momentum,
angular momentum, and energy are exactly conserved
when Hamilton equations of motion,

dzA
dt

¼ ∂H
∂pA ;

dpA
dt

¼ −
∂H
∂zA ; ðB26Þ

are integrated exactly.

APPENDIX C: NORDTVEDT EFFECT IN LIGHT
DILATON FRAMEWORK

We derive the Nordtvedt effect in the dilaton framework
in order to derive Eq. (29). As did Damour and Esposito-
Farèse [26], the idea consists of introducing a sensitivity
parameter,

sA ¼ −
∂ lnmA

∂ lnGL
; ðC1Þ

where GL is the locally measured gravitational constant. In
the weak-field limit, this sensitivity is sA ¼ jΩAj=mAc2,
where

ΩA ¼ G
Z
A

Z
A

ρAðrÞρAðr0Þ
jr − r0j d3rd3r0 ðC2Þ

is the autogravitation energy. In our parametrization, α̃A
should be modified as

α̃0A ¼ ∂ ln m̃A

∂ϕ þ ∂ lnmA

∂ ln G̃
d ln G̃
dϕ

¼ α̃A −
jΩAj
m̃Ac2

d ln G̃
dϕ

; ðC3Þ

where α̃A is the coefficient already computed with respect
to the dilatonic charges. We have also

G̃ ¼ G
fðϕ0Þ

ð1þ α�uðϕ0Þ2Þ; ðC4Þ

thus,

d ln G̃
dϕ

¼ −

ffiffiffiffiffiffiffiffiffiffi
2

ZðφÞ

s
f0ðφÞ
fðφÞ þ

2α0β0
1þ α20

: ðC5Þ

To find the classical parametrization, we can redefine the
constant without measurable modification,

G̃ ↦ e2DðφÞG̃; ðC6Þ

m̃A ↦ eDðφÞm̃A; ðC7Þ

where
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DðφÞ ¼
Z

φ

φ0

αuðxÞdx: ðC8Þ

Then,

d ln G̃
dϕ

				
ϕ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Zðφ0Þ

s �
2αuðφ0Þ −

f0ðφ0Þ
f0

�
þ 2α0β0
1þ α20

¼ 2α0 þ
2α0β0
1þ α20

: ðC9Þ

On the other hand, we have

∂ ln m̃A

∂ϕ ¼ α̃A þ dδA=dϕ
1þ δA

: ðC10Þ

The absence of α0 comes from the redefinition
m̃A ↦ e−DðϕÞm̃A. We have then

δ0A ¼ α0α̃
0
A

1þ α20
ðC11Þ

¼ α0α̃A
1þ α20

−
�
2

α20
1þ α20

þ 2α20β0
ð1þ α20Þ2

� jΩAj
m̃Ac2

ðC12Þ

¼ δA − ð4β − γ − 3Þ jΩAj
m̃Ac2

; ðC13Þ

where δA is the deviation from the weak equivalence
principle. We have neglected the term α0dδA=dϕ=ðð1þ
δAÞð1þ α20ÞÞ because it would make appear terms of order
three in αi. For roughly spherical bodies, we can estimateΩA,

ΩA

m̃Ac2
¼−

G̃
2m̃Ac2

Z
A

Z
A

ρðxÞρðx0Þ
kx−x0k d3xd3x0 þOðc−2Þ ðC14Þ

≈ −
3μA

5RAc2
; ðC15Þ

where RA is the average radius of the body. We can limit our
calculation to this approximation until we have a positive
detection of the strong equivalence principle violation.
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