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We study a Lagrangian with a cubic Galileon term and a standard scalar-field kinetic contribution with
two exponential potentials. In this model the Galileon field generates scaling solutions in which the density
of the scalar field ϕ scales in the same manner as the matter density at early-time. These solutions are of
high interest because the scalar field can then be compatible with the energy scale of particle physics and
can alleviate the coincidence problem. The phenomenology of linear perturbations is thoroughly discussed,
including all the relevant effects on the observables. Additionally, we use cosmic microwave background
temperature-temperature and lensing power spectra by Planck 2018, the baryon acoustic oscillations
measurements from the 6dF galaxy survey and SDSS and supernovae type Ia data from Pantheon in order
to place constraints on the parameters of the model. We find that despite its interesting phenomenology, the
model we investigate does not produce a better fit to data with respect to ΛCDM, and it does not seem to be
able to ease the tension between high and low redshift data.
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I. INTRODUCTION

The standard cosmological scenario, or Λ-cold-dark-
matter (ΛCDM) model, is the most accepted model to
explain the observable Universe and its late-time accel-
erated expansion. However, some mild observational ten-
sions among different datasets emerge in this scenario,
namely Planck data analyzed within the ΛCDM model [1]
show a tension between 4 and 6σ with late-time, model-
independent measurements [2–9] of the Hubble constant
H0 and with weak lensing data for the estimation of the
present time amplitude of the matter power spectrum in
terms of σ8;0 [10], see also Refs. [11–14] for general
overviews. We can further mention the Planck lensing
anomalies about the excess of lensing in the temperature
power spectrum [1]. Additionally, the cosmological con-
stant, Λ, responsible for the late-time accelerated expan-
sion, is plagued by theoretical issues, such as (among
others) the well-known cosmological constant problem
[15–18], i.e., the discrepancy between the theoretically
predicted value for Λ and the observed one, and by the
coincidence problem [19], namely why the magnitude of
the energy densities for matter and the cosmological
constant are comparable today. These issues are motivating
the search for new physics beyond the ΛCDM model [20].
In this paper we specialize on a modified gravity (MG)

theory, the Galileon one [21–23], whose generalization is
equivalent [24] to the Horndeski theory [25]. For a long
time Horndeski theory has been considered to be con-
structed from the most general action for a scalar field

coupled to gravity that leads to second order equations of
motion, but later it has been found that more general actions
can be constructed, namely those of the beyond Horndeski
[26] and DHOST [27] theories. The Galileon/Horndeski
theory allows for self-accelerating solutions which have
been the basis of inflationary scenarios [24,28–37] and
late-time explanations of cosmic acceleration [38,39]. The
observation of the gravitational waves (GW) event
GW170817 [40] and of its electromagnetic counterpart
GRB170817A [41], set a stringent bound on the speed of
propagation of GWs [42], which in turn severely con-
strains the form of the Galileon action [43–46], leaving
only a subclass still viable. Within the surviving Galileon
models, data analysis with Planck data alone found that
H0 is consistent with its local determination respectively
at 1σ for the generalized cubic covariant Galileon model
[47] and at 2σ for the Galileon ghost condensate [48],
resolving the H0 tension. For the latter, a joint data
analysis of cosmic microwave background (CMB) radi-
ation, baryonic acoustic oscillations (BAO), supernovae
type Ia (SN) and redshift-space distortions (RSD) showed
that it is also statistically preferred over the ΛCDM
scenario due to suppressed large-scale temperature anisot-
ropies and a peculiar behavior of the scalar field equation
of state in the early-time expansion history [48].
In this work, we are interested in a particular class of

Galileon models, specifically the one in which the scalar
field can give rise to scaling solutions. Scaling solutions
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[49–65] are characterized by a constant ratio between the
energy density of the matter components and that of the
scalar field. In this case, the density of the scalar field is not
negligible compared to the other components even at early
time, thus the model shows compatibility with the energy
scale associated with particle physics. This feature might
alleviate the coincidence problem since the initial con-
ditions in the scaling regime are fixed by the model
parameters.
A general Galileon Lagrangian allowing for scaling

solutions has the form L ¼ Xg2ðYÞ − g3ðYÞ□ϕ [64], where
X ≡ −∂μϕ∂μϕ=2 and g2, g3 are general functions of Y ¼
Xeλϕ with λ being a constant. For this Lagrangian, scaling
solutions are also present when the scalar field ϕ is coupled
to nonrelativistic matter with a constant coupling Q [64].
Concrete models have been proposed for g3, such as
g3 ¼ a1Y þ a2Y2, with a1 and a2 constants, together with
an exponential potential and a direct coupling between the
scalar field and matter [60], or g3 ¼ A lnY, with A being a
constant, together with a standard kinetic term and two
exponential potentials [63]. For the resulting model, the
density associated to the g3 term gives important contri-
butions to the field density during scaling radiation and
matter eras, but then it is subdominant at later-time relative
to the density associated to the standard field Lagrangian
characterizing g2. This feature is expected to accommodate
the observational data of galaxy and integrated-Sachs-
Wolfe (ISW) cross-correlations, which indeed do not
seem to prefer dominance of cubic interactions at late-time
[66–68]. Furthermore, the g3 term modifies the gravita-
tional couplings felt by matter and light, leading to a
modified evolution of perturbations [63]. These signatures
can be used to distinguish the model from standard
quintessence and ΛCDM [69]. In this work we will
investigate this model, to which we will refer to as the
scaling cubic Galileon (SCG) model. We will provide a
thorough analysis of cosmological perturbations and their
effects on CMB anisotropies, lensing potential and growth
of structures and finally we will present the cosmological
constraints obtained using combinations of data sets.
This paper is organized as follows. In Sec. II we review

the theoretical framework of the SCG model. In Sec. III we
present the theoretical predictions for some cosmological
observables. In Sec. IV we provide the cosmological
constraints using the Markov chain Monte Carlo (MCMC)
method. Finally we conclude in Sec. V.

II. THE SCALING CUBIC GALILEON MODEL

In this section we review the SCG model, whose action
reads:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGN
þ LSCGðϕ; XÞ þ Lγðgμν; χγÞ

�
;

ð2:1Þ

whereGN is the Newtonian gravitational constant, gμν is the
metric and g is its determinant, Lγ is the Lagrangian of
matter fluids, χγ , and LSCG is the Lagrangian describing the
SCG model, defined as follows [63]

LSCG ¼ X − V1e−β1ϕ − V2e−β2ϕ − A lnY□ϕ; ð2:2Þ

with V1, V2, β1, β2, A and λ being constants. V1, V2, β1 and
β2 are positive defined and β1 and β2 are chosen such that
β1 ≫ Oð1Þ in order to satisfy early-time constraints on the
field density parameter from big bang nucleosynthesis and
CMB measurements [49,63], while β2 ≲Oð1Þ in order to
realize the late-time acceleration [52]. The double expo-
nential potential is chosen because it provides the necessary
mechanism for the scalar field to exit the early-time scaling
regime during which its density is proportional to that of the
matter components (hence the name SCG) into a late-time
epoch of cosmic acceleration [63] (another example in the
context of standard quintessence is Ref. [52]). In the
following we adopt the unit 8πGN ¼ 1.

A. Background equations

Let us consider a flat Friedmann-Lematre-Robertson-
Walker (FLRW) background described by the line element

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð2:3Þ

where aðtÞ is a time-dependent scale factor. The modified
Friedmann equations for the SCG model read

3H2 ¼ ργ þ ρϕ; ð2:4Þ

2 _H þ 3H2 ¼ −ðpγ þ pϕÞ; ð2:5Þ

where HðtÞ≡ _a=a is the Hubble expansion rate and a
dot represents a derivative with respect to cosmic time.
The quantities ργ and pγ correspond, respectively, to the
energy density and pressure of the standard matter fluids,
namely, cold dark matter (c), baryons (b) and photons (r),
and are related through the barotropic equation of state
pγ ¼ ðγ − 1Þργ . The constant barotropic coefficient is
γb;c ¼ 1 for baryons and cold dark matter and γr ¼ 4=3
for photons. Additionally, ρϕ and pϕ are the energy
density and pressure of the scalar field ϕ defined as

ρϕ ¼
_ϕ2

2
þ V1e−β1ϕ þ V2e−β2ϕ þ 6HA _ϕ − Aλ _ϕ2; ð2:6Þ

pϕ ¼
_ϕ2

2
− V1e−β1ϕ − V2e−β2ϕ − 2A

�
λ _ϕ2

2
þ ϕ̈

�
: ð2:7Þ

Finally, the equation of motion for the scalar field is
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1

a3
d
dt

ða3JÞ ¼ P; ð2:8Þ

with

J ¼ _ϕþ 6AH − 2Aλ _ϕ; ð2:9Þ

P ¼ β1V1e−β1ϕ þ β2V2e−β2ϕ: ð2:10Þ

It is possible to rewrite the dynamics of the background
evolution of the SCG in terms of the following dimension-
less variables:

x¼
_ϕffiffiffi
6

p
H
; y1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1e−β1ϕ

p
ffiffiffi
3

p
H

; y2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2e−β2ϕ

p
ffiffiffi
3

p
H

; ð2:11Þ

together with

Ωm ¼ ρm
3H2

; Ωr ¼
ρr
3H2

and Ωϕ ¼ ρϕ
3H2

; ð2:12Þ

where m ¼ cþ b. Equations (2.4), (2.5) and (2.8) can then
be rearranged into an autonomous system of first-order
differential equations:

x0 ¼ 1ffiffiffi
6

p fðx; y1; y2Þ − h̃ðx; y1; y2Þx; ð2:13Þ

y0i ¼ −
ffiffiffi
3

2

r
βixyi − h̃ðx; y1; y2Þyi; ð2:14Þ

Ω0
r ¼ −4Ωr − 2h̃ðx; y1; y2ÞΩr; ð2:15Þ

where a prime denotes a derivative with respect to ln a,
i ¼ 1, 2 and we have defined the functions f ≡ ϕ̈=H2 and
h̃≡ _H=H2. The latter two can be given completely in terms
of the variables introduced in Eqs. (2.11) and (2.12). Since
their expressions are quite long, we refer the reader to
Ref. [63] for their explicit forms. Finally, the Friedmann
constraint given by Eq. (2.4) becomes

Ωm þ Ωr þ Ωϕ ¼ 1; ð2:16Þ

where the scalar field density parameter Ωϕ reads

Ωϕ ¼ x2 þ y21 þ y22 þ 2xAð
ffiffiffi
6

p
− λxÞ: ð2:17Þ

As such, the SCG model is left with a set of four extra
free parameters with respect to ΛCDM: fA; β1; β2; λg. The
range of possible values for these parameters is constrained
by the enforcement of theoretical viability conditions for
the evolution of both the background and the perturbation
sector, including, for example, the conditions for the
absence of ghost (Qs > 0) and gradient (c2s > 0) instabil-
ities, which respectively read [63]:

Qs ¼
3x2ð1 − 2Aλþ 6A2Þ

ð1 − ffiffiffi
6

p
AxÞ2 ; ð2:18Þ

c2s ¼
3xð1 − 2Aλ − 2A2Þ þ 4

ffiffiffi
6

p
A

3xð1 − 2Aλþ 6A2Þ : ð2:19Þ

We can note that in the limit A → 0 the above conditions
are fully satisfied because the model reduces to standard
quintessence; if A ≠ 0 these translate into theoretical
bounds on A and λ. A full discussion of their impact on
the parameter space can be found in Ref. [63].
Under the validity of the above conditions, the SCG

model has very interesting features: it is possible to realize
scaling solutions followed by the dark energy attractor, in
this case since the scaling fixed point is stable a second
potential is necessary to exit this regime and to start the
late-time accelerated expansion; during the early phase of
the Universe the scalar field density arising form the cubic
g3 term dominates over the standard g2 term while the
opposite happens at late-time; having A ≠ 0 allows for a
wider parameter space for β1 and β2 compared to a standard
quintessence model, in particular it allows for β22 > 2; the
scalar field equation of state today, wϕ ≡ pϕ=ρϕ, can be
closer to −1 than in standard quintessence.
Finally let us stress that in order to solve the system it is

still necessary to provide a set of initial conditions (ICs). In
particular, since the model is characterized by a scaling
fixed point we can use such scaling solution at early-time to
fix the ICs through the model parameters. The ICs for xi
and y1;i are then selected to correspond to the radiation
scaling critical point, given by [63]

ðxi; y1;iÞ ¼
�
2

ffiffiffi
6

p

3β1
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ 6Að3β1 − 4λÞp

3β1

�
; ð2:20Þ

while the IC for y2;i is then determined by iteratively
solving the background equations until the Friedmann
constraint (2.16) is satisfied at present time.

B. Linear perturbations

Let us also consider the perturbed FLRW line element in
Newtonian gauge given by

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1 − 2ΦÞδijdxidxj; ð2:21Þ

where Ψðt; xiÞ and Φðt; xiÞ correspond to the gravitational
potentials and obey the Poisson and lensing equations,
given in Fourier space as follows [70–72]

−
k2

a2
Ψ ¼ 4πGNμðt; kÞρΔ; ð2:22Þ

−
k2

a2
ðΦþ ΨÞ ¼ 8πGNΣðt; kÞρΔ; ð2:23Þ
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where k is the comoving wave number and the comoving
density contrast is defined as Δi ≡ δi þ 3Hvi=k with δi ¼
δρi=ρi the density contrast, ρiðtÞ the background energy
density of a matter component i and vi the irrotational
component of the peculiar velocity. The two phenomeno-
logical functions μ and Σ are, respectively, the effective
gravitational coupling, defining the deviation with respect
to ΛCDM on the clustering of matter and the light
deflection parameter characterizing the modifications
introduced in the paths traveled by photons on cosmo-
logical scales via the modification of the lensing potential
Φþ Ψ. Lastly, the difference between the gravitational
potentials can be described by the gravitational slip
parameter η ¼ Φ=Ψ. The ΛCDM limit is obtained for
μ ¼ Σ ¼ η ¼ 1. As such, any departure from unity trans-
lates a signature of modified gravity.
One can obtain approximate analytical expressions for μ,

Σ and η by assuming the quasistatic approximation (QSA)
[73,74], which, in the case of Galileon theory, has been
proven to be a valid assumption for modes with k≳
0.001 h=Mpc [75,76]. In the specific case of the SCG
model, the QSA yields [63]

μ ¼ Σ ¼ 1þ 6A2x2

Qsc2sð1 −
ffiffiffi
6

p
AxÞ2 ; η ¼ 1: ð2:24Þ

Therefore the presence of the cubic coupling introduces
modifications on both the growth of structures (μ ≠ 1) and
the evolution of the weak lensing potential ðΣ ≠ 1Þ for all
A ≠ 0. Additionally, μ ¼ Σ > 1 for all viable values of the
parameters. As a consequence, we expect the gravitational
interaction to be stronger than the one of ΛCDM.
Let us stress that while here we present the equations

under the QSA, in what follows we shall not rely on this
approximation and instead evolve the full linear perturba-
tion equations. The discussion in this section will, never-
theless, help in the interpretation of the results we present in
Sec. III B.

III. COSMOLOGICAL OBSERVABLES

A. Methodology

The main goal of this project is to investigate the
evolution of linear cosmological perturbations and
obtain observational constraints on the SCG model. To
achieve this, we make use of the effective field theory
(EFT) formalism [77,78] (see Ref. [76] for a review) and
then resort to the public available Einstein-Boltzmann code
EFTCAMB [79]1 and MCMC engine EFTCOSMOMC [80]. As
such, in this section we briefly discuss the implementation
of the SCG model in EFTCAMB.
The EFT offers a model-independent framework to

describe both the background evolution of the Universe

and the behavior of linear cosmological perturbations in
gravity theories with a single additional scalar DoF. This
description is made in terms of a set of free functions of
time known as EFT functions. The EFT action encompass-
ing Galileon theory with the additional consideration of the
bound on the speed of propagation of tensor modes coming
from GWs (c2T ¼ 1) is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p m2
0

2

�
ð1þΩðtÞÞ þ 2ΛðtÞ

m2
0

−
2cðtÞ
m2

0

δg00

þH2
0γ1ðtÞðδg00Þ2 −H0γ2ðtÞδg00δK

�
þ Sγ; ð3:1Þ

where m2
0 is the Planck mass and δg00 and δK are the linear

perturbations of the upper time-time metric component and
the trace of the extrinsic curvature Kμ

ν , respectively. The
time dependent prefactors fΩ;Λ; c; γ1; γ2g are the afore-
mentioned EFT functions.
The action (3.1) can then be connected to a specific

Galileon model by finding the corresponding forms of
the EFT functions through a procedure known as mapping
[81–83]. For the SCG model, we follow the procedure
depicted in Ref. [83] and find:

ca2

m2
0

¼ 3H2x2 þ AH2½3
ffiffiffi
6

p
x − 6λx2 −

ffiffiffi
6

p
bðxÞ�; ð3:2Þ

Λa2

m2
0

¼ 3H2ðx2−y21−y22Þ−2H2A½3λx2þ
ffiffiffi
6

p
bðxÞ�; ð3:3Þ

γ1 ¼
ffiffiffi
3

4

r
AH2

a2H2
0

ðbðxÞ − 3xÞ; ð3:4Þ

γ2 ¼ −
2

ffiffiffi
6

p
AH

aH0

x; ð3:5Þ

where bðxÞ ¼ x0 þ h̃x and H is the Hubble function in
conformal time τ. The use of conformal time and the
redefinitions of c and Λ are done to match the notation of
the EFTCAMB code. Let us note that Ω ¼ 0 in the SCG.
From the forms of γ1 and γ2, the two EFT functions

which impact the linear perturbation sector only, we can
expect modifications in the growth of perturbations to
arise when the parameter A, present in both (3.4) and (3.5),
is nonzero. On the other hand, the λ parameter, which
appears on the background EFT functions c and Λ, will
consequently propagate its effect through the background
evolution.
Finally, we have implemented the previous EFT func-

tions together with a background solver, composed by
Eqs. (2.13)–(2.14), in EFTCAMB, with the purpose of
obtaining theoretical predictions for cosmological observ-
ables and observational constraints on the SCG parameters
using EFTCOSMOMC. We stress that EFTCAMB solves the full1Web page: http://www.eftcamb.org.
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linear perturbation equations without resorting to the QSA
approximation.

B. Phenomenology

In this section we study the dynamics of scalar
cosmological perturbations in the SCG model and analyze
their impact on some cosmological observables. For our
investigation, we consider four Models (M) specified by
the parameters listed in Table I. The choice of these values
is purely illustrative, nevertheless they satisfy the stability
requirements previously discussed. Notably we have
verified that the β1 and β2 parameters do not have any
direct impact on the phenomenology of the SCG we are
going to present. Even so, they indirectly impact the
parameter space, e.g., larger values of β2 allow to explore
regions of the parameter space with larger values of A (see
Ref. [63]). The cosmological parameters are fixed to be:
H0 ¼ 70 km=s=Mpc, the baryon and cold dark matter
energy densities are Ωbh2 ¼ 0.0226 and Ωch2 ¼ 0.112,
where h ¼ H0=100, and finally the amplitude and tilt of
the primordial power spectrum are As ¼ 2.1 × 10−9 and
ns ¼ 0.96. Let us stress that the cosmological parameters
are kept fixed only for the purpose of the phenomeno-
logical analysis, as in this case we are able to trace back to
the impact of MG on cosmological observables when
compared to ΛCDM. We divide our discussion consider-
ing the three main effects we identify, i.e., on the
gravitational lensing potential and its time derivative
(ISW effect) and on the evolution of matter density
perturbations.

1. Impact on gravitational lensing

The lensing potential ϕlen ¼ ðΦþΨÞ=2 for the SCG
model is modified compared to ΛCDM. In Fig. 1 we show
the evolution of the gravitational potential Ψ normalized by
its initial value as a function of the scale factor for a fixed
k ¼ 0.01 Mpc−1. Let us recall that in this model Φ ¼ Ψ,
therefore ϕlen ¼ Ψ. We note that at late-time the gravita-
tional potential for M1, M3 and M4 is enhanced with
respect to ΛCDM, on the contrary for M2 it is suppressed.
The largest deviation occurs for M4 (∼26% at present time,
z ∼ 0), the model with the largest value of A2, as expected
from Eq. (2.24). Following this line of thinking, we would

expect the growing order in deviation from ΛCDM to be
M2 < M3 < M1 < M4, considering the values of A pre-
sented in Table I. However, this is not the case: M3 is
slightly above M1. This is due to the λ parameter, whose
value is noticeably smaller for M3 than M1, which enters in
the Qsc2s term in Eq. (2.24). This makes μðM3Þ > μðM1Þ
for zþ 1 < 103. Furthermore, the gravitational potential of
M2 is suppressed with respect to ΛCDM, contrary to the
small enhancement expected from Eq. (2.24). This is due to
a suppression of the matter density perturbation with
respect to the standard model. We further discuss this
feature in Sec. III B 3. These modifications in the lensing

TABLE I. Model parameters fβ1; β2; A; λg for the four case-
study SCG models. In addition to the parameter values, we also

show today’s dark energy equation of state wð0Þ
ϕ .

Model β1 β2 A λ wð0Þ
ϕ

M1 100 0.7 −0.3 154 −0.993
M2 100 0.7 0.09 −8 −0.988
M3 100 0.7 −0.28 148.3 −0.993
M4 100 2.5 −1 150 −0.975

FIG. 1. Top: evolution of the metric potential Ψ normalized by
its initial value Ψi as a function of redshift zþ 1 for the wave
number k ¼ 0.01 Mpc−1. The evolution of Ψ=Ψi is shown for the
four models of Table I, specifically: M1 (dashed blue line),
M2 (dot-dashed magenta line), M3 (dotted red line) and M4 (long
dashed green line), as well as for ΛCDM (solid black line).
Bottom: percentage relative difference of the models’ Ψ with
respect to ΛCDM.

FIG. 2. Top: lensing angular power spectra Dϕϕ
l ¼

lðlþ 1ÞCϕϕ
l =ð2πÞ for ΛCDM (solid black line) and the four

M models of Table I, namely: M1 (dashed blue line), M2 (dot-
dashed magenta line), M3 (dotted red line) and M4 (long dashed
green line). Bottom: difference between the lensing power spectra
of each of the M models and that of ΛCDM.
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potential are mirrored in the lensing angular power spectra
as shown in Fig. 2. Finally, M4 is the only case which
generates a significant large deviation from ΛCDM at early
time as confirmed by the evolution of Ψ. The latter is
connected to the evolution of y1 which is the dominant
component at early-time (see Fig. 3). Models that show
early-time modifications of gravity [84,85] are known to
alter the amplitude and phase of the high-l acoustic peaks
of the CMB temperature-temperature (TT) power spectrum.
This is indeed what we find in Fig. 4 for M4.

2. Impact on the integrated Sachs-Wolfe (ISW) effect

A difference in the evolution of the gravitational poten-
tials relative to the standard cosmological model impacts
the ISW effect which is sourced by the time derivative of

ΨþΦ. We show the evolution with redshift of _Ψþ _Φ for a
fixed k ¼ 0.01 Mpc−1 in Fig. 5. In the latter, M1, M2 and
M3 closely follow the behavior of ΛCDM for almost all z,
showing some larger deviations at intermediate redshift
(10 < z < 100). Then, while models M1 and M3 become
slightly enhanced at present time, with the enhancements
being of about ∼0.3% and ∼2% respectively, M2 is sup-
pressed by ∼5%. M4 is the model which shows the larger
deviations from ΛCDM at all redshift. Despite being sup-
pressed with respect to the standard model for most of its
evolution, it then becomes enhanced at late-time, reaching a
∼12% enhancement relative to ΛCDM at present time.
The change in the ISW effect affects the CMB TT

angular power spectrum through the radiation transfer
function [86]. We show the TT power spectra for the
SCG and ΛCDM in Fig. 4. First, modifications in the time
evolution of the gravitational potentials at late-time induce
a late-time ISW effect which alters the low-l tail. For the
SCG, M1, M3 and M4 show a suppressed ISW tail with
respect to ΛCDM while M2 is slightly enhanced. Second,
changes in _Φþ _Ψ during the transition from the radiation
era to the matter one generate an early-time ISW effect that
alters the amplitude of the first acoustic peak. Indeed we
notice that M4’s has a smaller amplitude. It has been found
that models with a suppressed ISW tail are statistically
favored by CMB data [47,48,87]. On the contrary those
with a large deviation in the late-time ISW source are ruled
out [67,88].

3. Impact on the growth of matter perturbations and the
distribution of large-scale structures

The power spectrum of matter density fluctuations PðkÞ
for the SCG model shows deviations with respect to

FIG. 3. Evolution of the y1 variable for the models M1 (dashed
blue line), M2 (dot-dashed magenta line), M3 (dotted red line)
and M4 (long dashed green line).

FIG. 4. Top: CMB temperature-temperature (TT) angular power spectra DTT
l ¼ lðlþ 1ÞCTT

l =ð2πÞ for ΛCDM (solid black line) and
the four M models of Table I, namely: M1 (dashed blue line), M2 (dot-dashed magenta line), M3 (dotted red line) and M4 (long dashed
green line). On the top-right corner is shown a zoom at large angular scales (small l) of this same quantity. (Bottom) Percentage relative
difference between the lensing power spectra of each of the M models and that of the M models’ TT power spectra with respect to
ΛCDM.

ALBUQUERQUE, FRUSCIANTE, and MARTINELLI PHYS. REV. D 105, 044056 (2022)

044056-6



ΛCDM for k > 10−3 hMpc−1, as depicted in Fig. 6. We
find it to be enhanced for models M1, M3 and M4 whereas
M2 becomes suppressed. The enhancements are in agree-
ment with the observed behavior of μ, with the largest
deviation (up to 66% for larger k), being for the case with
the largest value of A2: M4. The suppression of M2 can be
explained by considering that this case has the largest
deviation in HðtÞ relative to ΛCDM as shown in Fig. 7.
This affects the evolution of the matter density perturba-
tions because it enters as a friction term in the equation
δ̈þ 2H_δ − 4πGNμðtÞρδ ¼ 0, hindering the growth of mat-
ter perturbations. The modifications introduced by μ are
negligible for M2 because μ ∼ 1 at all times. The described

effect has previously been observed for standard quintes-
sence [89].

IV. OBSERVATIONAL CONSTRAINTS

Now that we have investigated the phenomenology
of the SCG, we want to test the theoretical predictions
with observations. In order to do this, we make use of
EFTCOSMOMC [80], a modification of the public COSMOMC

software [90,91], that allows to sample the free parameter
space using a MCMC method, compute theoretical pre-
dictions through our modified version of EFTCAMB and
compare them with observational data, thus reconstructing
the posterior distribution of the sampled parameters.

FIG. 5. Top: evolution of the time derivative of ΨþΦ, computed at k ¼ 0.01 Mpc−1, for ΛCDM (solid black line) and the four M
models of Table I, namely: M1 (dashed blue line), M2 (dot-dashed magenta line), M3 (dotted red line) and M4 (long dashed green line).
It is accompanied by a zoom at late-time of the same quantity. Bottom: Percentage relative difference of the Mmodels’ _Ψþ _Φ computed
with respect to ΛCDM.

FIG. 7. Evolution of the relative difference of the Hubble
parameter HðtÞ for the M models featured in Table I with respect
to ΛCDM. Model M1 is presented in a dashed blue line, M2 in a
dot-dashed magenta line, M3 in a dotted red line and M4 in a long
dashed green line.

FIG. 6. Top: matter power spectra PðkÞ for ΛCDM (solid black
line) and the four M models of Table I, specifically: M1 (dashed
blue line), M2 (dot-dashed magenta line), M3 (dotted red line)
and M4 (long dashed green line). Bottom: percentage relative
difference of the matter power spectra computed with respect to
ΛCDM.
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As our baseline dataset we use here the Planck 2018 [92]
(hereafter “Planck”) data of CMB temperature likelihood
for large angular scales l ¼ ½2; 29� and for the small
angular scales a joint of TT, TE and EE likelihoods
(l ¼ ½30; 2508� for TT power spectrum, l ¼ ½30; 1996�
for TE cross-correlation and EE power spectra). We also
explore the effect on the constraints obtained adding other
datasets to our baseline: we consider the combination
Planckþ lensing, where we also include the CMB lensing
potential data from Planck [92,93], and the combination
Planckþ BAOþ SN where we also include baryon acous-
tic oscillations (BAO) data from the 6dF Galaxy Survey
[94], the Sloan Digital Sky Survey (SDSS) DR7 Main
Galaxy Sample [95] and SDSS DR12 consensus release
[96], and supernova (SN) data from Pantheon [97].
For all these combinations, our set of free parameters

includes the standard cosmological parameters, i.e., the
baryon and cold dark matter energy densities Ωbh2 and
Ωch2, the amplitude and tilt of the primordial power
spectrum As and ns, the optical depth τ and the angular
size of the sound horizon at recombination θs. In addition
to these, we also consider as free the SCG parameters A
and λ and we sample them in the range A ∈ ½0; 3� and
λ ∈ ½−100; 0�. Notice that here we consider the parameters
β1 and β2 as fixed, given that, as it is discussed in Sec. III B,
they have a negligible or no-impact on the observables
under consideration. We set them to the values β1 ¼ 100
and β2 ¼ 0.7. We nevertheless verified, in our baseline data
case, that including them in the analysis and marginalizing
them out does not affect the final results. We use flat priors
on all the sampled parameters. Finally, we impose the
stability conditions to avoid ghost and gradient instabilities
[98,99] which are directly computed by EFTCAMB thanks to
a stability built-in module, thus rejecting all sampled points
in the parameter space that do not satisfy these conditions.
Once we obtain the sampled chains from EFTCOSMOMC

we analyze them using GETDIST [100].

A. Results

We show in Fig. 8 and Table II the results obtained in our
baseline case, i.e., when only Planck data are considered,
on the primary sampled parameters τ, ns, A and λ, and on
the derived parametersH0,Ω0

m and S08 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω0

m=0.3
p

, with
σ8 the dispersion of density perturbations on a scale
of 8 h−1Mpc.
We notice that the SCG parameter A, which can be

considered as an amplitude of the deviation from GR, is
constrained to be very small, thus highlighting the prefer-
ence of Planck data for a GR cosmology. The parameter λ is
instead poorly constrained, mainly due to the fact that its
effects become negligible as A gets close to zero.
Concerning the standard cosmological parameters, we

notice that allowing for a SCG cosmology has the effect of
shifting the constraints on H0 toward smaller values with
respect to the ΛCDM case, while Ω0

m takes slightly larger

values and the other parameters are mostly unchanged. The
first of these effects however is significant; the Planck data
give a value for H0 in ΛCDM that is in tension of
approximately 4.5σ with local measures (see e.g., [12]
for an extensive review), which prefer higher values of this
parameter. While one hopes that new physics would be able
to reconcile this tension, we notice that the SCG does not
allow to ease the difference between low and high redshift
observables, as it instead increases it even if not in a
significant way. In quintessence models it has been found
that having wϕ > −1 worsens the H0 tension [69]. For our
model, if we consider the mean values obtained with the
Planck dataset we find wϕ;0 ¼ −0.98. As for quintessence,
this might be one of the reasons why the SCG is incapable
of solving the H0 tension.

FIG. 8. 68% and 95% confidence level contours obtained using
the Planck dataset for the SCG model (red) and for a ΛCDM
cosmology.

TABLE II. 68% limits on the cosmological and SCG para-
meters obtained using Planck data for a SCG and a ΛCDM
cosmology and their minimum χ2 (χ2min).

Parameter SCG ΛCDM

τ 0.0548þ0.0068
−0.0080 0.0540� 0.0078

H0 66.94� 0.61 67.88� 0.62
Ω0

m 0.3189� 0.0083 0.3091� 0.0083
S08 0.839� 0.016 0.837� 0.016
ns 0.9632� 0.0044 0.9653� 0.0044
A < 0.0133 …
λ > −56.0 …
χ2min 2774 2771
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In addition to this, we notice that the minimum χ2 (χ2min)
increases when one fits the Planck data in the SCG model
with respect to the ΛCDM model. This appears to be
counterintuitive, as the former model has two additional
parameters with respect to the latter; however, the SCG
model we investigate does not have a ΛCDM limit, but
rather reduces to quintessence when A ¼ 0, a limit that
anyway lies at the very edge of the prior range. For such
reason, we can interpret this increase in χ2min as an hint that
ΛCDM is still the model favored by the data, with even the
quintessence A ¼ 0 limit of SCG having a worse goodness
of fit with respect to it.
In Fig. 9 and Table III we compare instead our

baseline results on the SCG model with those obtained
when using the data combinations Planckþ lensing and
Planckþ BAOþ SN. We notice that the inclusion of
additional dataset does not improve significantly the con-
straints on the SCG parameters, with the exception of

Planckþ BAOþ SN that seems to exhibit a peak for λ for
a non-vanishing value. However, despite a good conver-
gence of the chains, this effect might be due to the
aforementioned degeneracies between λ and A with the
former that is allowed to take any value when the latter
vanishes, a degeneracy that might not allow a good samp-
ling with the Metropolis-Hastings algorithm employed
by EFTCosmoMC.
The bounds on the cosmological parameters are instead

tightened by the inclusion of the additional datasets, with the
important features of H0 being brought back to the Planck
value for ΛCDM when we consider Planckþ BAOþ SN.
In this case, the data still allow for a departure from GR,
encoded in the nonvanishing value of A, avoiding the
worsening of the tension with low redshift data that we
noticed in the Planck case.

V. CONCLUSION

We studied for the first time the phenomenology at large
linear scales of a scaling cubic Galileon model given by the
Lagrangian (2.2) and characterized by four additional
parameters fA; λ; β1; β1g in comparison to the standard
cosmological model. Furthermore, we provided the cos-
mological constraints using CMB, CMB lensing, BAO and
SN data.
The model shows very interesting features. First, the

early time scaling regime after which solutions approach a
late time attractor offers the model the opportunity to be
compatible with particle physics’ energy scale at early-
time while still realizing late-time cosmic acceleration.
Regarding the evolution of linear cosmological perturba-
tions, the modifications of the gravitational potentials are
identified to be weighed largely by the parameter A even
though λ can also have a relevant impact. The remaining
two parameters, β1 and β2, have no direct impact on the
perturbations but they change the parameter space of A.
We identify three main effects on the cosmological
observables: deviations in the lensing potential, which
can be either suppressed or enhanced with respect to the
ΛCDM model and correspondingly leads to a suppressed/
enhanced lensing angular power spectrum. Additionally,
the changes in the lensing potential also modify the high-l

FIG. 9. 68% and 95% confidence level contours obtained in a
SCG cosmology for the Planck data (red), the Planckþ lensing
combination (yellow) and Planckþ BAO þ SN (purple).

TABLE III. 68% limits on the cosmological and SCG parameters obtained in a SCG cosmology for the dataset combinations Planck,
Planckþ lensing and Planckþ BAO þ SN.

Parameter Planck Planckþ lensing Planckþ BAOþ SN

τ 0.0548þ0.0068
−0.0080 0.0541� 0.0074 0.0556� 0.0079

H0 66.94� 0.61 67.08� 0.54 67.46� 0.47
Ω0

m 0.3189� 0.0083 0.3168� 0.0072 0.3116� 0.0059
S08 0.839� 0.016 0.834� 0.013 0.826� 0.012
ns 0.9632� 0.0044 0.9637� 0.0042 0.9659� 0.0039
A < 0.0133 < 0.0126 < 0.0129
λ > −56.0 > −55.9 49þ36

−27
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acoustic peaks of the temperature-temperature power
spectrum. Following this, a change in the time derivative
of the gravitational potentials is then expected which
modifies the ISW effect. Indeed we found that modifica-
tions in the early ISWeffect led to a lower amplitude of the
first acoustic peak of the temperature-temperature power
spectrum for the SCG model. The latter is also modified in
the low-l tail where in this case the differences with
respect to ΛCDM were due to modifications in the late
ISW effect. Finally, the power spectrum of matter density
fluctuations is also enhanced/suppressed with respect to
the standard scenario. The modifications are driven mostly
by A2 which enhances the matter power spectrum. We
found that there are cases for which modifications in the
background expansion give rise to a friction term that
dominates over any other modified gravity source, leading
to a suppressed matter power spectrum.
We tested these effects with cosmological data and we

found that the SCG model is also suffering from the H0

tension when using only Planck CMB data which is even
worse than the ΛCDM model. The joint analysis of CMB,
BAO and SN data was able to set an upper bound on the
parameter A < 0.0129 and to constrain λ ¼ 49þ36

−27 at
68% C.L. The parameter A is then very close to zero
which in turn led to loose power in constraining on λ.

Furthermore, the SCG model exasperates the H0 tension
between Planck data and local measurements.
In conclusion if on one side the SCG model eases some

issues of the ΛCDM model, on the other side the H0

tension is still present. It would then be of interest to
consider the model for further investigations in the future,
particularly once new data are available, which will also
help in shedding light on the nature of this tension.
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