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Some gravity waves in isotropic cosmologies
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We construct metric perturbations of two families of isotropic expanding universes describing
gravitational waves propagating through these universes. The waves are nonplanar and owe their wave

front expansion solely to the expansion of the universes. The presence of this radiation leads to a small
perturbation of the perfect fluid matter content of the universes by the appearance of an anisotropic stress.
We then construct exact models of gravity waves in these universes. In this case the matter content of the

models consists of the perfect fluid matter supplemented by anisotropic stress and lightlike matter traveling
with the waves. Under appropriate conditions of approximation the lightlike matter can be neglected and
the exact models coincide with the perturbative models.
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I. INTRODUCTION

In an early study of waves in an expanding universe
Schrodinger [1] made the important observation that in
such universes there are no plane waves filling the whole of
space. However the spatially homogeneous and isotropic
Robertson—Walker geometry has the property that if the
homogeneous hypersurfaces (the 7 = constant hypersur-
faces if T is the cosmic time) have constant curvature k = 0
or —1 then one can find null hypersurfaces in these
spacetimes having the property that their 2—dimensional
intersections with the homogeneous hypersurfaces are
isometric to the Euclidean 2-plane. If such null hyper-
surfaces are the histories of wave fronts of gravitational
waves propagating in these universes then these waves are
arguably the simplest one can find in this context. Their
wave fronts are expanding but the expansion is solely due
to the expansion of the universe. The object of this paper is
to construct perturbations of the Friedman—Lemaitre cos-
mological models whose histories are these null hyper-
surfaces in the Robertson—Walker geometry and then to
construct exact spacetime models of these waves.

There exists in the literature a two-fold approach to
perturbations of cosmological models. In one approach
perturbations of the Robertson—Walker line elements are
used [2,3]. This naturally entails a careful identification of
terms arising which may or may not be transformed away
by gauge transformations. Alternatively there exists the
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gauge invariant and covariant approach which involves
working only with gauge invariant variables [4]. For
perturbations of isotropic cosmologies these variables
(which all vanish when specialized to isotropy) consist
of the spatial gradients of the proper density, isotropic
pressure and scalar expansion of the matter world lines, the
4-acceleration of the matter world lines, their shear and
vorticity, the anisotropic stress and energy flux (or heat
flow) of the matter and the so-called electric and magnetic
parts of the Weyl conformal curvature tensor. The equations
satisfied by these variables are obtained from the Ricci
identities, the Bianchi identities and, for the consistency of
the field equations and the Bianchi identities, the vanishing
covariant divergence of the matter energy-momentum-
stress tensor. Working in the context of this latter approach,
perturbations describing gravitational waves have been
obtained by looking for gauge invariant variables having
an arbitrary dependence on a scalar function [5,6]. This was
an implementation of Trautman’s [7] characterization of
waves, namely, that waves can propagate information with
the information encoded in the arbitrary scalar function.
The paper is organized as follows: In Sec. II we describe
the isotropic cosmologies and in doing so introduce our
notations and sign conventions. In Sec. III we construct a
metric perturbation of the kK = 0 Robertson—Walker geom-
etry and demonstrate how it describes gravitational waves
propagating through this universe and how the presence of
the waves distorts the isotropic perfect fluid matter dis-
tribution. This is followed in Sec. IV by the corresponding
perturbation of the k = —1 Robertson—Walker geometry
and its physical interpretation. In Sec. V we outline how the
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metric perturbations of Secs. III and IV result in the
satisfaction of the equations of the gauge invariant and
covariant perturbation theory. In Sec. VI we construct an
exact model of gravity waves in the k =0 case and
demonstrate that the resulting matter distribution consists
of an isotropic perfect fluid, an anisotropic stress and
lightlike matter traveling with the gravitational waves (i.e.,
having the same propagation direction in spacetime as the
waves). The case of k= —1 corresponding to that
described in Sec. VI is given in Sec. VII. The paper ends
with a brief discussion of our results in Sec. VIIIL.

II. GEOMETRICAL PRELIMINARIES

Our starting point is the Friedman—Lemaitre cosmologi-
cal models with a spatially homogeneous and isotropic
Robertson—Walker geometry. These are described by the
metric tensor given via the line element

S(T)(dX?+dY?+dz?)
(1+45(x2+ 7?2 +2%))?

ds* = g;;dX'dX) = —dT?*, (1)

with k = 0,+1 and the scale factor S(T) >0 for T > 0.
The coordinates X’ = (X,Y,Z,T) correspond to i = 1, 2,
3, 4. We use units for which the gravitational constant
G =1 and the speed of light in a vacuum ¢ = 1. The
integral curves of the unit timelike vector field u' = &} are
the world lines of the constituent particles of the matter in
the universe. The matter is necessarily a perfect fluid with
energy-momentum-stress tensor

TY = (u+ p)u'w + pg". (2)

Here g;ju'u/ = u;u’ = —1, p is the proper-density of the
fluid and p is the isotropic pressure. An equation of state
takes the form p = p(u) but we will leave this unspecified
throughout.

Our sign convention for the components R;j; of the
Riemann curvature tensor is fixed by writing the Ricci
identities for an arbitrary vector field v’ in the form

Vijk = Vinj = ViR jp, (3)

with v; = g;; v/ and the semicolon denotes covariant differ-
entiation with respect to the Riemannian connection
calculated with the metric tensor g;; while a comma will
denote partial differentiation where appropriate. It is also
useful to note the Ricci identities for any covariant tensor
with components A;; now reads

Ajjrt — Aijik = ApiRP iy + Aip R ji. (4)

We write the Ricci tensor components as R;; = Rkikj,
the Ricci scalar is R = ¢“R,; and the Einstein tensor is

Gij=R;; - % gijR. Einstein’s field equations read

Gij =T (5)
where we have absorbed a factor 87 into 7';; on the right-
hand side here. We are thus following the sign conventions
and practice of Ellis [8]. Finally we note that the Weyl

conformal curvature tensor components C,j;; are given by

1
Cijkl = Rijkl 5 (gikle + gleik - gijil - gilek>

R
+ 3 (9ix9j1 — 9u9jk)- (6)

For the special case of (1) and (2) the field equations (5)
read

G;j = pw;u; + ph;;  with  hy; = g;; +wug,  (7)

and u = u(T), p = p(T) since isotropy requires h;'.,uj =
0 = hip; where h';, = g*hy ; 1s the projection tensor which
projects vectors orthogonal to u'. For isotropy relative to
any integral curve of ' there can be no preferred directions
orthogonal to u' at any point of any integral curve. The field
equations calculated with the metric tensor given by (1)
result in

H= 2
with a dot indicating differentiation with respect to 7. The
integral curves of u' are geodesic

W=u'ju =0, 9)
twist-free
w;j = ufyj) + iguj) =0, (10)

with the square brackets denoting skew symmetrization,
shear-free
. 1
Ul]:M(l’])+M(lM]) —5191’11]:0, (11)
with round brackets denoting symmetrization, and with
expansion

. S
d=u'";=3->0, (12)
' S
since § > 0 on account of the Hubble expansion of the
universe. In addition these spacetimes are conformally flat
and the Riemann curvature tensor is given by (6) and (7) to
read

1
Riju = 3 (1 + P giuju; + gjuiug — gjuiu

1
— Gyl jug +§ﬂ(9ik9j1 ~ 9u9jk)- (13)
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III. THE CASE k=0

For the case of k = 0 a simple perturbation is given by a
line element of the form

ds? = S*[(1 + 2a)dX* + 4BdXdY + (1 — 2a)dY?]
+ 8§2d7? — dT?, (14)

wherea = a(X,Y,Z,T)and f = B(X,Y,Z,T) are small of
first order and we will consistently neglect second order
and higher order terms. This form of perturbed line element
has a number of useful properties. In the spacetime with
line element (14) the vector field u’ = & is a unit timelike
vector field which is geodesic, twist-free, and has expan-
sion § and shear o;; given by

9= 3% and  o;; = u;; —%19!1,-]- =T}, —Eh

Shye (19)

respectively where Fj‘k are the Christoffel symbols calcu-

lated with the metric tensor given via the line element (14).
Hence we find that ¢;; = 0 except for

o = SPar, oy = —S%ar, o = S*pr, (16)

with subscripts, here and below, denoting partial differ-
entiation. This perturbed shear of the matter world lines is
small of first order and can be written neatly as

o'/ =aem'm! + om'm/, (17)

with

.0 1 0 0
UzaT+iﬂT and mlaXl:S—\/i<ﬁ+lﬁ)’ (18)

with the bar denoting complex conjugation. For the
histories of gravitational waves in the spacetime with line
element (14) we take the null hypersurfaces

dr 1
¢(Z,T) =Z —=(T) = constant, with T3 (19)
We see that
¢, =1(0,0,1,-871) (20)
and

9 ;= (0,085 = ¢gip,p; =0. (21)

Next we require «, f in (14) to satisfy the Cauchy—Riemann
equations

ay = —fy and ay = fx. (22)

This will ensure that the intersections of the null hyper-
surfaces ¢ = constant with the spacelike hypersurfaces
T = constant are isometric to Euclidean 2-space. From
(14) the induced line elements on these 2-surfaces are
given, modulo a multiplicative constant, by

di* = (1+ 20:)dX2 +4pdXdy + (1 — 2a)dY2. (23)
The Gaussian curvature of such 2-surfaces is
K = axyx — ayy + 2pxy, (24)

and K = 0 on account of the assumption (22). The final
simplification, before examining the field equations, is to
require the null hypersurfaces (19) to be shear-free in
the optical sense. To achieve this we first calculate the
covariant derivative of ¢; with respect to the Riemannian
connection calculated with the metric given by the line
element (14), neglecting second order and smaller terms.
We find

S S
Gij= @ity (uigpj +uj,;)

1
+ E{az + Sar — i(ﬂz + SﬂT)}mimj
1
+ g {az + Sar + i(B, + Spp)}in;. (25)

The right-hand side of this equation has the correct
algebraic form to ensure that ¢ = constant are shear-free
in the optical sense [9] provided

ay + Sa'r + l(ﬂz + Sﬂr) = 0
Sa=alX.Y.§) and B=p(X.Y.$). (26)

This result can also be seen by first taking m' in (18) in the
more accurate form

Lo
m =

.0
aXi S—ﬁ{<1_a_lﬁ)a_x

+i(1 +a+iﬂ)8%}’ (27)

and then finding that

—
¢m'm! = <5 {az + Sar +i(fz + Spr)}. (28)

We see from (25) that ¢p = constant are generated by null
geodesics having expansion (in the optical sense)

1 . S
== 2
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As a consequence of (26) we can write &, with ¢ given by
(18), as

___(d—ip)

=", 30

5= -5 (30)
with the prime denoting differentiation with respect
to ¢. If we put { = X 4 iY then the Cauchy-Riemann
equations (22) mean that we can write o — i’ = G({, ¢)
and so we have

S(T)

o= —

. (31)

The components G;; of the Einstein tensor calculated with

the metric tensor given by (14), along with the extra

conditions (22) and (26), results in G;; = 0 except for
Gy = —8% =288 — (28% + 488)a —28a/,  (32)

Gy = —5% =288 + (287 + 4S8)a + 25/, (33)

G, = —(282 + 488)p — 254, (34)
Gy = —5% =288, (35)
32

Thus Einstein’s equations (5) give us a perturbed matter
distribution with energy-momentum-stress tensor

Ti; = (u+ p)uu; + pg;; + m;j, (37)

which is a perturbation of the perfect fluid isotropic
matter distribution by the addition of an anisotropic stress
m;j = mj; with 7;;u/ = 0 and ¢'z;; = 0. Reading off from
(32)—(36) and (37) we find that

& g 8

which shows that these quantities are unperturbed from
their isotropic values, while z;; = 0 except for

my, = =28, n, = =284, Ty = 28 (39)
The latter can be written neatly as
7'l = gmim + amim/, (40)

with

$ ,
n=-259(¢4) =09 (41)

using (29). Thus we see explicitly that the existence of the
anisotropic stress in the matter distribution has a geomet-
rical origin in the necessary expansion of the wave fronts
due to the expansion of the universe.

The perturbed Weyl conformal curvature tensor Cjj; can
be given equivalently in terms of its electric part

Ey = Cijkluj Ml, (42)
and its magnetic part

, 1
_ ! : _
H;, = C;‘jklufu with C;‘jkl = Emqu

Cry,  (43)
and here 7, = \/=ge; i With g = det(g;;) and €, is the
four dimensional Levi—Civita permutation symbol for
which we take €534 = +1. For the model we have
constructed we find

. g
Ell +1H11 — _F’
/
E12—|—iH12: l%,
E?? 4 iHg?? :g/ (44)
s+’

with all remaining components of EY + iH" vanishing. In
terms of the complex vector field m' given in (18) we can
write this as

/

iy i g i
EV +iHY = —2§m m. (45)

We note that G = G(¢, ¢) and G = 0G/O¢p. We pass from
the electric and magnetic parts of the Weyl tensor to the
Weyl tensor itself using [8]

Ciju + iCiipy = WijpgWrirsu?u' (E® + iH?)

/

= —ZEWiquwkmupurmqm", (46)
with
Wiipg = Yip9iqg = Yiq9jp T Mijpg- (47)
we find that
(Ciju + Cf;kz)(ﬁ‘l =0, (48)

(with ¢! = g’ ;) on account of

T el i) (1 =) =0, (49)

The algebraic condition (48) confirms that the perturbed
field described by (45) is purely radiative with propagation

Ao ros
Wiirs @ u"'m® =
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direction in spacetime ¢ since this corresponds to a Petrov
type N field with degenerate principal null direction ¢'.

We have presented the perturbed shear, anisotropic stress
and electric and magnetic parts of the Weyl tensor in the
specific forms involving (31), (41), and (45) to facilitate
comparison with the more general gauge invariant pertur-
bations derived in [6].

IV. THE CASE k= -1

Our starting point now is the isotropic cosmological
model described by the line element (1) with k = —1. To
put this line element into a suitable form for our purposes
we make the coordinate transformation
X=8xA"", Y=8yi!, Z=-2-8(Z-2)2"', (50)
with A= x?> +y> + (z —2)%. This results in (1) with
k = —1 taking the form

ds?> = S*(T)Z~2(dx* + dy? + dz"*) — dT?.  (51)
Now put 7/ = ¢~¢ and we arrive at
ds®> = S?(T)e* (dx* + dy?) + S*(T)dz* — dT*.  (52)

The perturbed line element of interest to us in this case
reads

ds* = S?e*[(1 + 2a)dx* + 4pdxdy + (1 — 2a)dy?]
+ $2d2 — d1?, (53)

where a = a(x,y,z,T) and ff = f(x,y,z,T) are small of
first order as before. The null hypersurfaces of interest are

dr 1

T =7—-17(T) = tant with — =—. 54
¢(z,T) = z—1(T) = constant  wi T3 (54)
The intersections of ¢ = constant and 7 = constant are
isometric to Euclidean 2-space if a, f satisfy the Cauchy—

Riemann equations

a, =—p, and a,=p,. (55)
Using the complex null vector field
-0 et 0
1—4 = = 1 - -1 —
" o sﬁ{< “=if) 5,
+i(1 +a+iﬂ)(%}, (56)

we have

o 1
¢ iym'm! = 2 {a, + Sar +i(p.+ Spr)}.  (57)

and thus the null hypersurfaces ¢» = constant are shear-free
in the optical sense if a = a(x,y,¢) and S = f(x,y, ).
The perturbed shear of the matter world lines, given by (15)
but applied to the present k = —1 case, gives ¢;; =0
except for

o1 = S*e*ar = -6y and o, = S?e* Py, (58)
With m’ given by (56) we can write this as

o'l =om'm! + om'm/, (59)
with

o = (ZT + lﬁT (60)

For later comparison with the gauge invariant approach to
this modeling we put this in the form

sa; OV

1
5:aT_iﬂT:_§(a/_iﬂ/):_

with
G(x.y.2.T) = &(d —if) = a({.$)e*7),  (62)
a(¢,¢) = (& —if’)exp {3 ¢} and { = x + iy. We note that

with D = 0/0z + SO/OT the complex valued function G
here satisfies

DG =G = D*’G-G=0. (63)

The nonvanishing components of the Einstein tensor in
this case (neglecting second order and smaller terms in «
and f) are

Gy = e28%p —2¢%(1 + 8)dd, (64)
Gy = e282p + 2% (1 + §)dd, (65)
Gip = 2e%8%Bp — 2¢%(1 + )P, (66)
Gy = S7p, (67)
Guy = p, (68)
with
P B w2 (e

With this Einstein tensor the right-hand side of the field
equations is a energy-momentum-stress tensor of the form
(37) with u; = —6?, p and y given by (69) (the unperturbed
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isotropic expressions in this case) and the anisotropic stress
components z;; vanish with the exception of

my = -1y = —2e%(1 + 8)d
and

Ty =1y = —2e%(1 + 8)p'. (70)
Using the complex null vector field (56) and the function G

given by (62) we can write the anisotropic stress tensor in
the form

7l = mmim/ + xmim/, (71)
with
_ 2 . ) 2e7% .
ﬂ:—§(1+5)(0{’—1ﬂ'):— & (1+5)G. (72)

We note that with ¢ given by (54) and G satisfying (63) we
can write

e % . .
;2 (DG + 8G) = —¢ 1e—5G. (73)

7=

We see from this that the anisotropic stress is present on
account of the expansion of the wave fronts.

The nonvanishing perturbed Weyl tensor components in
this case read

Cizi3 = =SCi314 = 52C1414 = —52621(0/ + 0‘"), (74)
Ca303 = —SCospy = S?Coppy = S?e* (o + "),  (75)
and

C1323 = _SC1324 = _SC1423 = S2C1424
— —S2e%(F + ). (76)

The components of the dual of the Weyl tensor are now
found to be

t313 = =SCiyyy = S?Clypy = =B +4"),  (77)
Chypy = =SCi3py = $°Ciypy = =S?e*(f' + "), (78)
and

CT323 = _SCT324 - _SC§314 = SZCT424
= —S2e%(d + ). (79)

With ¢(z,T) given by (54) we see that Cyj,; and Cjy,
satisfy

Cijklﬁb’l =0= C;ﬁjkﬂs‘l? (80)

which demonstrates that the perturbed Weyl tensor is
purely radiative with propagation direction in spacetime
¢'" and the histories of the wave fronts in spacetime are the
null hypersurfaces ¢ = constant. In addition the electric
part of the Weyl tensor E” has the following nonvanishing
components

Ell — _E22 — _S—4e—21(a/ 4 a//)
and
E2 = —§7e 5 (p 4 ), (81)

while the magnetic part of the Weyl tensor has the non-
vanishing components

Hll — _H22 — S—4e—2z<ﬂ/ +ﬁ//)
and
H"? = -S4~ % (o + o). (82)

In terms of the complex null vector field (57) and the
complex valued function G in (61) we can summarize these
tensor fields as

g . 2 o
E 4 iHT = = S {al + @' = i(p + f")ymim!

2e770G . .
=g a—zm’mf. (83)

The perturbed shear, anisotropic stress and electric and
magnetic parts of the Weyl tensor are presented here using
the forms given by (61), (72), and (83) to make easy
comparison with the more general gauge invariant pertur-
bations obtained in [6].

V. GAUGE INVARIANT
PERTURBATION THEORY

The nonvanishing gauge invariant perturbation variables
above are ¢, 7%, E%*, and H*’. These must satisfy [6]

1 2
Eab :Eﬂ.uh_&ah _g&aab7 (84)
HY = _G(ag;c”b>fgcufa (85)
o =0, (86)

which follow from the Ricci identities and

7y, =0, (87)

044054-6
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which is a consequence of the vanishing divergence of the
energy-momentum-stress tensor. In addition the Bianchi
identities require

Eht—f—SEbt +H(bs;d77t)mdur

1 1 1
= _E(ﬂ—i_p)gbl_zﬁbt_g&”b[’ (88)
and
. 1
H" + 9HY — EC p)rsdy, = —Er/(hradﬂ’)‘“du’. (89)

Once these equations are satisfied ¢”’ automatically sat-
isfies the wave equation

‘ 2 1. 4 1
ahhd;d—gaa”% {—519—582+p—§ﬂ}5m
- bt 2 bt
= -7 —5197/7 . (90)

This is derived by substituting £ and H** from (84) and
(85) into (88) and, in particular, using

5 1
td;bA R bt 1
o’y <6,u 2p>0' , (91)

which is obtained by contracting the Ricci identities (4)
with A;; = o;; and using the isotropic Riemann tensor (13).

To facilitate verification that (84)—(89) are satisfied in the
case of k = —1 above we note that the covariant derivatives
here operate on first order small quantities and thus involve
the Riemannian connection calculated with the metric of
the isotropic background (52). The nonvanishing connec-
tion components, in coordinates x' = (x,y,z,T) for i = 1,
2, 3, 4 read

S
FL& = r%4 = F§4 :g’
My=I5=1, I =13, = —¢*,
Il = T3, = e¥T4; = S8e™, (92)

and it is helpful to note that

1 1rsd _ 2 2rsd
E s:d" U= —-E s:dM U,

e—ZZ
=g B2+ p). (93)

-2z
E0 P, = (@ 420+ ). (94)
Hls;dnlrsdur — _HZS;d’,Ierdur
e—ZZ
=5 @+ 2 +d).  (95)

e =
H sy, = — = B"+28"+p),  (96)

and

1 lad,,r __ 2
M rad® U = =N g7

) (1 ;_SS) e—ZZ(ﬂ// _|_ﬂ/)7 (97)

2a;dur

(1+35)

G E@ ). (%)

n(lradﬂz)a;dur )

For the case k = 0 the covariant derivatives are with respect
to the Riemannian connection calculated with the metric of
the isotropic background (1) (with £ = 0). In the coordi-
nates X! = (X,Y,Z2, T) for i =1, 2, 3, 4 the nonvanishing
connection components are

S
F%4 :1%4 :F§4 -5

I =T5 =T} = SS. (99)

The helpful formulas in this case read

Ei;dnlrsdur — _E?;dnerdur _ ? , (100)
E(l 2)rsdu _a_” (101)
N r SS B
od"
Hl nlrxdu _ _st; 772”er _ _§7 (102)
HO sy, — P (103)
s:d" r SS s
and
28
nlradﬂla;dur = _nzradﬁza;dur = _E/)Wa (104)
28
;/](lradﬂ.z)a;dur _ Ea//‘ (105)

To accommodate the anisotropic stress in an otherwise
perfect fluid matter distribution the world lines of the fluid
particles must acquire a small amount of shear o;;. This
follows from the fact that in both of the cases k = 0 and
k = —1 above the anisotropic stress satisfies

7l = St ol (106)
Since the proper density p and the isotropic pressure p
satisfy

044054-7
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M+p:%(sz—SS+k) for k =0,=£1, (107)
we can conclude that if 4+ p #0 then qﬁ*k;k # 0 for
k =0,—1 and the anisotropic stress is solely due to the
perturbed shear of the matter world lines. We note that in
the isotropic model y 4+ p # 0 is a reasonable assumption
as it ensures that the matter energy-momentum-stress
tensor has a unique timelike eigenvector.

VI. AN EXACT MODEL WHEN k=0
Consider the line element, in coordinates x' = (x,y, T, ¢)
fori=1,2, 3,4,
ds* = g;;jdx'dx’
= $*{(dx — ad¢)* + (dy — bd¢)*}

+28dTd¢ + S*de?, (108)
with S = S(T), a = a(x,y, ¢), b = b(x,y,¢) and
a,=-b, and a,=b,, (109)

with the subscripts denoting partial derivatives. If a, b are
small of first order this line element can be transformed into
(14) if only terms of first order are retained.

To see this we write the first coefficient of S? in (14) in
the form

(1+2a)dX>?+4pdXdY + (1 —2a)dY>

={(1+a)dX+pdY}*+{pdX+ (1 -a)dY}?, (110)
which holds if we neglect second order terms in a and S. It
follows from (22) that we have two real-valued harmonic
functions f(X,Y,¢) and g(X, Y, ¢) such that

_of of

% 5 99

a=o ﬁ:ﬁ and a=-- ﬂ_ax. (111)
Consequently we have

_ of of

— d(X + f) - f'do, (112)
and

B dg dg

pdX + (1 —a)dY = dY+WdY+8—XdX
=d(Y +g)—ddg, (113)

with the prime as always denoting partial differentiation
with respect to ¢. If we make the infinitesimal coordinate
transformations

x=X+f and y=Y+y, (114)
then (112) and (113) take the form
(1 +a)dX + pdY = dx —a(x,y,p)d¢p, (115)
and
PdX + (1 —a)dX =dy —b(x,y,¢)dp, (116)

respectively, remembering that we are neglecting second

order small quantities. Here a = ' and b = ¢ and it

follows from (111) that to first order a and b satisfy (109).
The 4-velocity of matter is given by

u;dx' = —dT
and thus
giu'w = ujw = =1 and wy; =T7; =uy;,  (118)

where the semicolon denotes covariant differentiation with
respect to the Riemannian connection calculated with the
metric given by (108) and F%- are components of the
Riemannian connection. Since from (108) det(g;;) = —S°
we have exactly 0 = u',; = 3§/S and it follows from (118)
that it; = u;. juf = 0 and w;; = 0 so that the integral curves
of the vector field u’ are expanding, geodesic and twist-free.
The shear of these curves is given by

S
Oij = F?j - < (g + 5?53)

e (119)

The nonvanishing Christoffel symbols appearing in (119)
are

I}, =S5-asS T3 =S5-bs,

T}, =-a,S, Th=s5"8,

I3, = —aSS + (aa, + bb,)S,

I3, = —bSS + (aa, +bb,)S. Ty =3,
3, = SS(1 + a® + b?) — a(aa, + bb,)S

— b(aa, + bb,)S. (120)

Hence the nonvanishing components of the shear tensor
(119) are
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o] = —Cle, O1p = 01 = —ayS,
014 = 041 = (aa, + bb,)S,
Oy = Oyp = (aa}, + bby)S,

044 = —a(aa, + bb,)S — b(aa, + bb,)S.

0y = axS,

(121)

We will make use of these components below.

Next we turn to the Ricci tensor calculated with the
metric given via the line element (108). The nonvanishing
components R;; of the Ricci tensor are found to be

1 .
Ry, :Esz(/,t—p)—ZaxS, (122)
I, :
Ry :ES (,u—p)—2byS, (123)
Ry, = —2a,S. (124)
Rz =pu+p, (125)
1
Ry :ES(#—P)v (126)
1 .
Ry = —EaSz(,u—p) +2(aa, + bb,)S, (127)
1 .
Ry = —Esz(/t — p) +2(aa, + bby)S,  (128)
1
Ry, = ESZ(,M - p)(1 +a*+ b*) —2(ai + a})
—2a(aa, + bb,)S —2b(aa, + bb,)S. (129)

with u, p given by (38). We can write (108) in terms of
basis 1-forms 9@, with a = 1, 2, 3, 4 as

ds® = ()2 + (82))2 42931914

= Gy 99D, (130)
with
19<1> — S(dx — ad¢) = 19(1) = 19(1)idxi, (131)
8% = S(dy — bdg) = 8y = 9y, (132)
3) — S 4= 9,4 = i
89 = dT + 2 dgp = 94y = D', (133)

These 1-forms define a half null tetrad. The tetrad indices in
brackets are lowered using the components of the metric

tensor on the tetrad gu);) so that 9, :g(a)(b)S“’).
Conversely 9@ = gl@®)9,,  with ¢@® given by

gl@)®) Ib)(e) = 5%) . The coordinate indices are raised with

the inverse of the metric tensor ¢“ which satisfies
g gjx = 8. Hence we have from (131)—(134):

.0 0 .0 0 .0 0
191 7.25_]7, lgl 7.:S_17, 191 T/ A
(1) 9 Ox 2) 9 dy G oxt or
.0 0 o 10 0
9 —aS' 4 pS 5 135
Wax — " ot oy 2T 0 9 (135)
The nonvanishing components R ;) = R; jﬁ’('a)&{b) of the
Ricci tensor (122)—(129) are
1 28
Ry ZE(M—P) — e (136)
1 2§
Rp)2) = 5('“ p) _?b)v (137)
2§
Ry =-g % (138)
Raya) =4+ p, (139)
Ry = -1 (140)
1 2 ’ ’
Ruyw) =5 1+ p) — 5 (az +a3). (141)

4 S2

Also the tetrad components u(?) = u’&9§“> of the 4-velocity
(117) are

uV) = ugyy =0,
1

5 (142)

When the Einstein tensor components G, are decom-

posed with respect to this vector field it takes the algebraic
form [8]

Ga)p) = u(ayt(p) + Phiayp) + d(a)tip)

T dw)Ua) t Ta)b), (143)

where hq) ) = ga)(6) + #a) 4(8)> 904" =0, Z(a) )" =0
and 7@ (@) = 0. Since Einstein’s field equations read
Gyw) = T(a)p) the right-hand side of (143) is the
energy-momentum-stress tensor of the matter distribution.
Here i is the energy density measured by the observer with
4-velocity u'® (equivalently u'), q(q) 1s the energy or heat
flux measured by this observer while p and 7(,)(,) = 7 (p)(a)
are the isotropic pressure and the anisotropic stress respec-
tively of the matter distribution. These quantities can be
obtained directly from the components of the Ricci tensor
via the formulas [8]
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1 . .
Riaypyu Pl =2 (i +3p), (144)
a b J—
Ryt h)) = =, (145)
@,m 1.
Raw)hioyha) =5 B =Py + 7@ (146)
We first find that
~ 2 2 2
M= _E(ax+ay)7 (147)
and
~ 2 2 2
P = _F(ax"'_ay)' (148)

The additional terms here, which are small second order
perturbations when a, b are considered small of first
order, will be found to be due solely to the presence
of gravitational waves. If we write i =y + py and p =
p + pw we see that yyy = 3py. Continuing the calculation
of g, and 7, using (144) and (146) we find that

3
9 =0 4 =0. a3 =3pw. dqu=5Pw. (149)
and T(a)(b) = 0 except for
28
(1) = =57 % T Pw (150)
28
T = T % (151)
28
T2)@) = g %~ Pws (152)
7(3)(3) = 2Pw (153)
T(3)4) = Pw (154)
1
Ta)4) =5 Pw (155)

Substituting these results into the energy-momentum-stress
tensor T,y given by the right-hand side of (143) above
we arrive at

T(a)p) = HUt(a) ) + Phayp) + Diayp) + Aypy.  (156)

with I1(,) ) vanishing except for

28 28
Onym =-ga oo =Hon = -9,
28
M2)e) = =52 by (157)
and with A(,)) vanishing except for
Ay = pw
= Nij = Suwdd; = =2(az + a3)b i ;. (158)

The coordinate components of the energy-momentum-
stress tensor read

T;j = puju; + phij +T1; + Ay, (159)
with the nonvanishing components IT;; given by
I, = —2a,8, I1,, =1L, = —2ayS,
I, = I, = 2(aa, + bb,)S,
My, = —2b,8, Ty = Iy, = 2(aa, + bb,)S,
M, = —2{a(aa, + bb,) + b(aa, + bb,)}3, (160)

from which it follows that g"TI;; = 0 = I1;;u/. We thus see
that the matter distribution consists of the isotropic perfect
fluid of the cosmological model, an anisotropic stress
and, as evident from (158), matter traveling with the speed
of light accompanying the gravitational radiation which is
present for the following reason: The nonvanishing
components C,;; of the Weyl conformal curvature
tensor are

C1414 = _Sz{a;c +aay, + bbxx}’ (161)
Conpg = _Sz{bf’ +aay, + bbyy} = —Ci14, (162)
C1424 = —Sz{a; + abxx + bayy}. (163)

The nonvanishing independent tetrad components of the
Weyl tensor are C1)4)(1)4) and C(y)4)(2)4)- Thus there is
only one nonvanishing complex Newman—Penrose [10]
component of this tensor, namely,

¥y = =Coywmmw T iCowe@

(a, —id) (a+ib)(a,—ia,),
S Yy 5 YE . (164)

This means that the gravitational field is purely radiative
(Type N in the Petrov classification) with propagation
direction ¢ ; in space-time.

The tetrad components o, ;) of the shear tensor
associated with the matter world lines are obtained

044054-10



SOME GRAVITY WAVES IN ISOTROPIC COSMOLOGIES

PHYS. REV. D 105, 044054 (2022)

from 6, = a,»j&éa>19{b) using (121). We find that the
nonvanishing tetrad components are
omm = =&ST ome) = 0@ =~

0(2)(2) = —byS_l. (165)

Comparing these with I1(,)(;) given in (157) we have

28

M) = 5 owe) =S 'owe):  (166)

with ¢ ;* given by (29). This is an exact version of the
approximate equation (106) in this k = 0 case.

VII. AN EXACT MODEL WHEN k= -1

Consider now the line element,
x = (x,y,T,¢) fori=1,2, 3,4,

in coordinates

ds* = g;;dx'dx/
= $22 ) (dx — ad)? + (dy — bdp)*}

+28dTd¢p + S*dg?, (167)
with § = S(T), t=1(T), a=a(x,y,¢), b =>b(x,y, )
and

d 1
L _ a, =—b

ﬁ = E, and ay = bx, (168)

y
with the subscripts denoting partial derivatives as before.
The coordinates x, y here differ from the coordinates x, y in
(53) by terms which are small of first order, when a, b are
small of first order and second order and smaller terms are
neglected.

Here the matter 4-velocity is again given by (117) and
the integral curves of this unit timelike vector field are
geodesic, twist-free, expanding with expansion 6 = u',; =
3 /S and with nonvanishing shear tensor given by (119)

but in this case the nonvanishing Christoffel symbols (120)
are replaced by

I3 = (S—a,)S P49, T3, = (S—b,)S2?+7),
I3, = —a,Se*+), 3, =578,
3, = (—aS + aa, + bb,)SeX ¥+,
I3, = (=bS + aa, + bb,)Se* ¥+,
3, = SS{1 + (a* + b?)e2¥+0}
—{a(aa, + bb,) + b(aa, + bb,)}Se*?+). (169)

T =5,

With these expressions the surviving components o;; of the
shear tensor are

o1 = —a,SeX 9+, o1 = —aySez(‘ﬁ*’),

014 = (aa, + bb,)Se*#+7),

6y = a,Se2P+7), 624 = (aa, + bb,)Se* P+,
044 = —a(aa, + bb,)Se*#+7)

— b(aa, + bb,)Se*#+7). (170)

Next we shall require the nonvanishing components R;;
of the Ricci tensor calculated with the metric given by the
line element (167). These are found to be

1 )
Ru= (350 =205+ 1)@, )
1 )
Ry = (5 S%(u— p) —2b,(S + 1)) e2(@+7) (172)
Ry = —2a,(S + 1)e2#+7), (173)
Ry =p+p, (174)
1
R34 :Es(ﬂ—l’)’ (175)

1 )
Ry = <—§a52(u —-p)+2(8S+1)(aa, + bbx)>ez(¢”),

(176)

1 )
Ry = <—§b52(/4 = p)+2(S+1)(aa, + bby)) e+,

(177)
1
Riy = =2(at + a}) + 552 (u = p){1 + (@ + b?)e? 1}
—-2{a(aax4‘bbx)*‘b(aay4—bby)}Q§-k1)g%¢+ﬂ‘
(178)

The proper density u and isotropic pressure p appearing
here are given in (69).

Writing the line element (167) in the form (130) the basis
1-forms are now

W = Set*7(dx — adp) = 91y = Iydx’,  (179)
9@ = Se?*7(dy — bde) = 92y = 9(p;dx’,  (180)
906) = 41 + %qus =94 = dupdx’,  (181)

W = Sdp = 9(3) = 93):dx’. (182)

From these and the metric given by (167) we have

044054-11



PETER A. HOGAN and DIRK PUETZFELD

PHYS. REV. D 105, 044054 (2022)

. 0
i Y o B
19(1) ” =S¢ e
.0 0
9~ = S—l —p—7 ,
(@) 9 dy
;0 0
Yo 90 = o1
0 o 10 0
9 =aS' — bS5 . 183
W= TS g T aar S g (18Y)
Now the nonzero tetrad components R, = Rij&’('a)ﬁfb)
of the Ricci tensor (171)—(178) are
1 2(S+1)
Ry :E(M—P) - g e (184)
1 2(S+1)
R ZE(M—P) —Tby, (185)
2(S41)
Ryey=-—g—a» (186)
Rz =p+p, (187)
Ry = —p, (188)
1 2
R(4)(4):Z(M+P)—§(a + a3). (189)

As mentioned above the 4-velocity of matter is again given
by (117). Its tetrad components u(®) are given by (142) in
the present case also. Now reading fi, p, q(4), 7(4)(») from
(144)-(146) with R, ) given now by (184)—(189) we
find that

with
2 2 2
Hw = 3pw = —g(ax + a3), (190)
1
a0 =4 =0 @ =pw.  q@ =Zkw. (191)

and the nonvanishing tetrad components 7, of the
anisotropic stress are

2(8+1)

T =~ &~ Pw (192)

2(S41)
e =TT @ 4y

(193)

TR)e) = %ax - Pw, (194)
T3)3) = 2Pw- (195)
(3)4) = Pw (196)
T = %pw- (197)

Substituting these into the energy-momentum-stress tensor
T 4)(») given by the right-hand side of (143) we arrive at the
form of energy-momentum-stress tensor given in (156). In
this case the nonvanishing A ;) and I1(,);) are given by

A)@) = pw and

2(S41) 2(5+1)

Oy =-—g— 4% Moo =-—"g %
2(S41)

oo =——g b (198)

The coordinate components of the energy-momentum-
stress tensor again have the algebraic form (159) with
Ajj = ,uWSng,,-(ﬁ‘j and the nonvanishing components IT;;
are given by

I}, = —2a,(8 4 1)e2@+7),

M, = I, = —2a,(S + 1)@+,

I, = Iy = 2(aa, + bb,)(S + 1)e2#+9),
My = —2b,(S + 1)@+,

Iy =My, = 2(aa, + bb},)(s +1)e2@+0),
My, = —2{a(aa, + bb,) + b(aa, + bby)}

X (8 + 1)e2eto), (199)

Hence the matter distribution in this case is again composed
of the cosmological perfect fluid supplemented with an
anisotropic stress II(,)) and matter travelling with the

gravitational waves. The nonvanishing coordinate compo-
nents C;j; of the Weyl tensor in this case are

Ciag = =S{a, + d + aa,, + bby, X+

= —Cy, (200)

Ciypg = —=S*{b, +d, + ab,, + ba,,}e* 7). (201)
The corresponding tetrad components yield the same
expression for W, given in (164) confirming that here
we are again dealing with a purely radiative Weyl tensor.

In this case the shear tensor (170) has nonvanishing
tetrad components
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o) = =5 ax
ome = =5"ay.  opp =-5"a,  (202)
and thus it follows from (198) that
2(S+1) l.
Moy = =5 %@ =S¢ 30w@e)-  (203)

This is an exact version of the approximate equation (106)
in this k = —1 case.

VIII. DISCUSSION

We have derived gravitational wave perturbations of the
isotropic universes corresponding to k = 0 and kK = —1 in
Secs. III and IV. In Secs. VI and VII we have constructed
exact models of gravitational waves in these isotropic
universes which have the property that if the gravitational
wave variables (the functions a, b appearing in (108)
and (167) and their derivatives) are small of first order,
and if second order and smaller terms are neglected, then
these exact models reproduce the perturbative models

described in Secs. III and IV. A striking property of the
exact models is how similar the resulting matter distribution
resembles the matter distribution in the perturbative cases.
The matter distribution of the former differs qualitatively
from that of the latter simply by the appearance of lightlike
matter traveling with the gravitational waves. In the
perturbative scenario this lightlike matter is small of second
order and thus is neglected. It is not unusual in explicit
examples to find gravitational radiation accompanied by
matter travelling with the speed of light [11]. In the exact
models above the presence of lightlike matter is of great
importance since if it is not present then the functions a, b
are independent of x, y and can be disposed of. In this case

the models become simply the k = 0 or k = —1 isotropic
cosmologies.
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