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It is well known that only the axial piece of the torsion couples minimally to fermions in a Riemann-
Cartan geometry, while the other ones decouple. In this paper, we consider the Dirac field minimally
coupled to a dynamical background with torsion and compute its contribution to the fermionic one-loop
effective action. Such a contribution owns the topological nature since it can be linked with topological
invariants from Riemann-Cartan spaces, like Nieh-Yan and Pontryagin (Chern-Pontryagin) terms.
Furthermore, we propose a novel modified theory of gravity constructed by adding the aforementioned
one-loop contribution to the Einstein-Cartan action. The modified field equations reduce to those ones of
GR under certain circumstances, providing therefore trivial solutions. However, in particular, we find a
nontrivial solution where the modified field equations do not reduce to the GR ones.
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I. INTRODUCTION

The technology progress, mainly over the last three
decades, allowed important experimental breakthroughs in
gravitational physics, as examples one can cite the late-time
accelerated expansion of the Universe [1], detection of
gravitational waves [2] and direct observations of the
shadow of a black hole [3]. These evidences in some
extent corroborate further the astonishing success of the
general relativity (GR) along the years. However, other
issues, as for example, the conjecture of the existence of
dark matter and dark energy filling the Universe, suggest
that GR breaks down in cosmological scales. In this sense,
it is believed that alternative theories of gravity, which
recover GR in an appropriate limit, could be a promising
way for tackling these issues at the cosmic level. In this
spirit, a flurry of alternative theories of gravity has been
proposed [4] from different perspectives, ranging from
including new dynamical fields interacting with gravity like
[5] to considering theories defined on non-Riemannian
geometries, the so-called metric-affine theories of gravity
[6] in which the metric and connection are taken to be
independent a priori.
One of the first metric-affine model proposed in the

literature was the well-known Einstein-Cartan (EC) theory
[7] where the connection is assumed to possess a nontrivial
antisymmetric counterpart called torsion, in addition to the
standard symmetric counterpart (Christoffel symbols)

entirely described by the metric. The torsion within this
theory is nondynamical which means that the degrees of
freedom associated to it cannot propagate and then their net
effects just result in spin-spin contact interactions [8,9]. In
particular, the field equations reduce to the same of GR in
the absence of sources. Nonetheless, there are torsion based
theories—teleparallel gravity theories, see [10] for a review,
where the torsion is permitted to propagate; in addition,
more involved theories with dynamical torsion in the
Riemann-Cartan geometry have been proposed recently
[11,12]. Among various motivations to deem torsion as a
pivotal ingredient of modified theories of gravity, one can
remark the search for a consistent manner of breaking
Lorentz-CPT symmetries within gravity context. It has
been consistently carried out in the context of the Standard-
Model extension (SME) [13], where Lorentz-breaking
terms involving torsion were proposed in a Riemann-
Cartan geometry.
Topological invariants have historically drawn a great

attention in the literature for many reasons [14]. Recently,
modified theories of gravity based on topological invariants
interacting with other fields were proposed. For example,
the Pontryagin topological invariant plays a key role in the
Chern-Simons modified gravity (CSMG) (see [15,16] for
details), and the Gauss-Bonnet topological invariant, con-
tributing to Einstein-dilaton-Gauss-Bonnet action in the
metric formalism (see e.g., [17] and references therein),
have also been formulated for nontrivial torsion [18–20]. It
is worth mentioning that these invariants allow to break
CPT, and in certain cases Lorentz symmetry [15]. In a
scenario involving nontrivial torsion, it is possible to
construct another topological invariant which is the
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Nieh-Yan term [21,22]. Both topological invariants,
Pontryagin and Nieh-Yan terms, will be studied in the
present paper. We discuss its important aspects, namely,
perturbative generation by radiative fermion loops and
some exact solution in the EC modified gravity theory
involving this invariant as a contact term coupled with the
CS topological current.
The structure of the paper looks like follows. In Sec. II,

we describe fermions minimally coupled to gravity in the
Riemann-Cartan geometry. In the Sec. III, we perform
perturbative generation of the Nieh-Yan term, and in the
Sec. IV, we obtain classical equations of motion in the
modified theory given by a sum of EC and a contact term
involving their respective Nieh-Yan and Pontryagin topo-
logical currents, and demonstrate explicitly that the generic
spherically symmetric metric solves these equations, as
well as Gödel metric is a nontrivial solution of this
modified theory. Our conclusions are presented in Sec. V.

II. FERMIONS IN A RIEMANN-CARTAN SPACE

In this section we intend to study action of a spin-1
2
field

minimally coupled to gravity with torsion. Unlike the
standard approach, where the space-time geometry is taken
to be described by a (pseudo)-Riemannian manifold, we
will consider the Dirac action defined in a Riemann-Cartan
space, i.e., the metric gμν and the torsion Tα

βγ are treated as
independent geometric quantities, see [7] for a detailed
discussion of the Riemann-Cartan spaces.
Now, we provide the most relevant geometrical tools in

Riemann-Cartan spaces. First, let us begin exhibiting the
Dirac action minimally coupled to gravity and torsion in a
Riemann-Cartan background [23–25]

SD¼
Z

d4x
ffiffiffiffiffiffi
−g

p

×

�
i
2
eμaðΨ̄γað∇ðΓÞ

μ ΨÞ− ð∇ðΓÞ
μ Ψ̄ÞγaΨÞ−mΨ̄Ψ

�
; ð1Þ

where γa is the usual flat-space Dirac matrices and eaμ is
the vierbein field. We are choosing the following con-
vention: Latin letters label SOð1; 3Þ group indices running
from 0 to 3 and Greek letters label space-time indices
running from 0 to 3. In addition, the metric of the spacetime
can be locally defined in terms of a set of orthonormal
bases: feaðxÞg and fθaðxÞg,

g ¼ ηabea ⊗ eb ¼ gμνdxμ ⊗ dxν; ð2Þ

where ηab is the Minkowski metric. The duality condition
between both frames leads to the relation: gμν ¼
eμaðxÞeνbðxÞηab. Similarly, the flat-space Dirac matrices
are linked with those ones in curved space through the
relations: γμ ¼ eμaγa and γμ ¼ eμaγa. The Fock-Ivanenko

covariant derivatives acting on spinors in Eq. (1) are
defined by

∇ðΓÞ
μ Ψ ¼ ∂μΨþ ΓμΨ; ð3Þ

∇ðΓÞ
μ Ψ̄ ¼ ∂μΨ̄ − Ψ̄Γμ; ð4Þ

with

Γμ ¼
i
4
ωμabσ

ab; ð5Þ

where ωμab are the components of the spin connection and
σab ¼ i

2
½γa; γb� are the generators of the covering Lorentz

group in the spinor representation.
In order to proceed further it is necessary to define other

important geometrical quantities. For that, let us write down
the Cartan structure equations that summarize the main
properties of the Riemann-Cartan geometry,

0 ¼ Dηab; ð6Þ

Ta ¼ Dθa ¼ dθa þ ωa
b ∧ θb; ð7Þ

Ra
b ¼ Dωa

b ¼ dωa
b þ ωa

c ∧ ωc
b; ð8Þ

where ωa
b ¼ ωμ

a
bdx

μ is the connection one-form, Ta ¼
1
2
Ta

μνdxμ ∧ dxν is the torsion two-form, and Ra
b ¼

1
2
Ra

bμνdxμ ∧ dxν is the curvature two-form. Note that
the first Cartan equation is indeed a constraint on the spin
connection resulting in ωμab ¼ −ωμba. The second Cartan
equation relates the torsion tensor with the tetrad and the
spin connections, in terms of components one can write
down

Ta
μν ¼ ∂μeaν − ∂νeaμ þ ωμ

a
ν − ων

a
μ: ð9Þ

The spin connection can be decomposed into two parts in
Riemann-Cartan geometry,

ωμ
ab ¼ ω̃μ

ab þ Kba
μ; ð10Þ

where ω̃μ
ab is the torsionless Cartan connection which is

entirely determined by the vierbeins. Its explicit form is
given by

ω̃cab ¼ −Ωcab −Ωacb þ Ωbca; ð11Þ

where Ωabc ¼ 1
2
ebμecνð∂μeνa − ∂νeμaÞ are the anholonomy

or Ricci rotation coefficients. The second term on the right-
hand side (rhs) of Eq. (10) is precisely the contorsion
tensor,
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Kμ
αβ ¼

1

2
ðTμ

αβ − Tβ
μ
α − Tα

μ
βÞ; ð12Þ

in which is antisymmetric in the first two indices, Kμνα ¼
−Kνμα and Kμ

αβ − Kμ
βα ¼ Tμ

αβ.
For our purposes it is convenient to rewrite Eq. (1) in a

more appropriate way. Keeping this in mind, we integrate it
by parts and substitute Eqs. (10) and (12) into Eq. (1) to
find

SD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Ψ̄
�
iγμ∇̃μ þ

1

8
Sμγ5γμ −m

�
Ψ

¼ S̃D þ 1

8

Z
d4x

ffiffiffiffiffiffi
−g

p
SμΨ̄γ5γμΨ

¼ S̃D −
1

8

Z
d4x

ffiffiffiffiffiffi
−g

p
SμJ

μ
5; ð13Þ

where S̃D stands for the usual Dirac action defined in terms
of the Cartan connection as we shall see later and Jμ5 ≡
Ψ̄γμγ5Ψ is the axial spin vector current. By virtue of the
above definitions, the Fock-Ivanenko covariant derivatives
acting on spinors are now written as follows

∇̃μΨ ¼ ∂μΨþ Γ̃μΨ;

∇̃μΨ̄ ¼ ∂μΨ̄ − Ψ̄Γ̃μ; ð14Þ

with Γ̃μ defined similar to Eq. (5) just with ω̃μ
ab replacing

ωμ
ab. Furthermore, we also defined the axial-vector torsion

Sμ ¼ ϵμναβTναβ. Therefore, for fermions minimally coupled
to gravity and torsion, only the axial part of the torsion
couples to fermions in Riemann-Cartan spaces [25,26].
In the context of the Standard Model extension (SME)

[13], the spinor-pseudovector interaction term can be
typically re-interpreted as a CPT-violating one since this
interaction mimics the axial coefficient for Lorentz/CPT
violation bμ [13]. In this sense, the effect of the torsion
tensor emerges as an external background field in which
can be identified by bμ ¼ 1

8
Sμ in the SME. This connection

between the CPT-violating coefficient and the background
torsion suggests that experiments estimating bμ could
provide information on the nature of the space-time
geometry, namely, whether it is metric based (pseudo-
Riemannian)—that corresponds to very stringent estima-
tions for bμ—or a Riemann-Cartan geometry. Various
experiments have been proposed in order to estimate the
parameter bμ [27].
In the nonrelativistic limit such an interaction term

mimics a sort of Zeeman effect, then, describing an
interaction between the fermion spin with the external
background field (b⃗) [28,29]. In the next section we will
address the one-loop corrections to the effective fermionic
action treating the axial-vector torsion as an external field.

III. ONE-LOOP INDUCED GRAVITATIONAL
TOPOLOGICAL TERM

We aim at this section to show the induced gravitational
topological term upon integrating the fermions out in the
effective action at one-loop level. To start with the
calculation, let us rewrite Eq. (13) as follows:

SD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Ψ̄
�
i∂ −

1

8
Sγ5 þ Γ̃ −m

�
Ψ; ð15Þ

where Γ̃μ ¼ − 1
4
ω̃μabσ

ab. The next calculations are per-
formed along the same lines as in the paper [30]: we can
rewrite this action within the tetrad formalism as

SD ¼
Z

d4xeeμaΨ̄
�
i∇̃μγ

a −
1

8
Sμγaγ5 −m

�
Ψ; ð16Þ

which allows us to write the one-loop effective action in the
form

Γð1Þ ¼ −iTr ln
�
i=̃∇ −m −

1

8
Sγ5

�
ð17Þ

This action is treated with use of the derivative expansion
formalism [31]. Actually it means that the functional trace
(17) must be expanded up to the first order in derivatives.
Moreover, the zero order can be disregarded since both
connection and torsion have odd numbers of indices and
product of a torsion and two connections, without deriv-
atives, cannot form a scalar object.
To proceed with this calculation, we follow a manner

similar to that one employed in [30]. First of all, following
the standard approach, we must rewrite the one-loop
effective action as a trace of logarithm of some second-
derivative operator. In this case, however, the situation is
slightly different: since the desired term involves both
Cartan connection and torsion dependence, so that in the
zero torsion case it vanishes, we can add the term which
depends explicitly only on the torsion vector, that is,

Γ0½S� ¼ −iTr ln
�
i∂ þmþ 1

8
Sγ5

�
: ð18Þ

We note that this term, although it is not a constant, will
not affect the desired term since it will depend on Sμ only,
and, being a scalar, it can yield only S2 and higher terms
like ð∂SÞ2, S2∂S, S4, etc. (for further details, we refer the
reader to [30,32]). Therefore, the resulting term can be
presented as
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ΓNY ¼ −iTr ln
�
i=̃∇ −m −

1

8
Sγ5

�

− iTr ln

�
i∂ þmþ 1

8
Sγ5

�����
NY

¼ −iTr
�
−□þ iΓ̃∂ þmΓ̃ −m2 þ 1

8
ðΓ̃ − 2mÞSγ5

þ 2i
8
ðS · ∂Þγ5 − 1

64
S2
�
: ð19Þ

We shall proceed along the same lines as in [30], i.e., one
expands the last expression in power series of Sμ up to the
first order, and in the connection up to the second order. In
general, this trace diverges, thus, a regularization procedure
must be used in order to split the finite and divergent
contributions. Here, we shall follow the Schwinger-DeWitt
proper time method [33] and also focus only on the finite
contribution stemming from Eq. (19).
Using the Schwinger-DeWitt method we are able to find

that the first finite contribution of Eq. (19) for the
topological Chern-Simons term is

ΓNY;2 ¼ trD

Z
d4x

Z
∞

0

dse−sm
2

�
1

8
s2m2Γ̃ð∂Γ̃ÞSγ5

þ 1

4
m2s3Γ̃∂ð∂αΓ̃Þ∂αSγ5 þ

1

4
m2s3Γ̃ð∂αΓ̃Þ∂α∂Sγ5

�

× e−s□δðx − x0Þjx0¼x: ð20Þ

Following the same definitions used in [34], the delta
function in curved spaces is defined as below

δðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

ikμ∇̃μσðx;x0Þ; ð21Þ

where σðx; x0Þ is the geodesic distance satisfying the
relation 1

2
∇̃μσðx; x0Þ∇̃μσðx; x0Þ ¼ σðx; x0Þ and defined in

such a way that

lim
x→x0

∇̃μ∇̃νσðx; x0Þ ¼ gμν: ð22Þ

Upon carrying out the trace over the Dirac gamma matrices
and integration over the proper time s (the step-by-step
calculation can be made similarly to [30]), we obtain the
first contribution to the desired effective action:

ΓNY;2 ¼
1

216π2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϵμνλρSμ∂νω̃λabω̃

ab
ρ : ð23Þ

The second contribution arises keeping only derivative
independent terms, but up to the third order in connection,
namely:

ΓNY;3 ¼ itrD

Z
d4x

Z
∞

0

dse−sm
2

�
s2

8
m2Γ̃Γ̃Γ̃Sγ5

þ s3

24
m2ðΓ̃=̃∇Γ̃=̃∇Γ̃þ Γ̃ =̃∇Γ̃Γ̃=̃∇þ Γ̃Γ̃ =̃∇Γ̃ =̃∇ÞSγ5

−
s3

24
m2ðΓ̃ =̃∇Γ̃Γ̃þ Γ̃Γ̃ =̃∇Γ̃þ Γ̃Γ̃Γ̃ =̃∇ÞS · ∇̃γ5

−
s3

24
m4Γ̃Γ̃Γ̃Sγ5

�
e−s□δðx − x0Þjx0¼x: ð24Þ

Proceeding in a similar way to the former contribution we
found

ΓNY;3 ¼
1

324π2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϵμνλρSμω̃νabω̃

bc
λ ω̃a

ρc: ð25Þ

The sum of the above two finite contributions is given by

ΓNY ¼ 1

216π2

Z
d4x

ffiffiffiffiffiffi
−g

p
ϵμνλρ

× Sμ

�
∂νω̃λabω̃

ab
ρ þ 2

3
ω̃νabω̃

bc
λ ω̃ρc

a

�
ð26Þ

is a contact interaction term. Indeed, (26) represents the
interaction between two topological currents, namely,
Nieh-Yan and Pontryagin currents. The origin of both lies
on their respective topological invariants. As it is known,
the Nieh-Yan and Pontryagin topological terms are
defined by

NY ¼ Ta ∧ Ta − ea ∧ eb ∧ Rab; ð27Þ

P ¼ Ra
b ∧ Rb

a; ð28Þ

respectively. Note that the second term on the rhs of
Eq. (27) is the well-known Holst term [35]. Their topo-
logical natures are settled by rewriting them as total
derivatives:

NY ¼ dQ; Q ¼ ea ∧ Ta; ð29Þ

P¼ dC; C¼ωa
b ∧ dωb

aþ
2

3
ωa

c ∧ωc
b ∧ωb

a; ð30Þ

where Q and C are the Nieh-Yan and Chern-Simons three-
form topological currents. These invariants can be rewritten
in terms of components as follows

NY ¼ −
1

2
∇̃μSμ; ð31Þ

P ¼ 2∇̃μCμ; ð32Þ

where
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Cμ ¼ ϵμνλρ
�
ωρ

ba∂νωλab þ
2

3
ωνabωλ

bcωρc
a

�
ð33Þ

is the topological Chern-Simons vector current. Similarly,
the axial piece of the torsion is the Nieh-Yan topological
current. These definitions allows us to rewrite Eq. (26) as an
axial-axial contact interaction term coupling both topo-
logical currents

ΓNY ¼ 1

216π2

Z
d4x

ffiffiffiffiffiffi
−g

p
SμC̃

μ; ð34Þ

where C̃μ is defined as in Eq. (33) just with the torsionless
spin connection ω̃μ

ab substituting ωμ
ab. Since the axial

vector part of the torsion (Nieh-Yan current) is assumed to
be a background vector field, then, one can interpret the
fermionic one-loop effective action (34) as an interaction
between the background space-time torsion—more pre-
cisely, the axial-vector torsion—with the Chern-Simons
current C̃μ. In this situation, Sμ, as it was said before, can
be interpreted as a particular coefficient for local Lorentz/
CPT violation from SME [13]. The more important physical
effect is that any observable (in our case C̃μ) which couples to
Sμ will feel the Lorentz-violating effects through the axial-
vector torsion. Thus, in this sense, the contact term is an
explicit local Lorentz-violating term. It is not a surprising
result since as long as we turn off the background torsion
which, aswe have remarked before, plays the role of the axial
field in [30], this effective interaction vanishes, in much the
sameway to take the Lorentz-violating coefficient bμ ¼ 0 in
[30], then our results are in agreement with those found in
[30] for the pseudo-Riemannian geometry. On the other
hand, maintaining a nonzero background torsion, the effec-
tive action at the one-loop level behaves as an axial back-
ground field as pointed out before.Accordingly,we conclude
that this interaction emerges as a purely geometrical effect in
a way different from that one in [30], where the background
field bμ is set by hand in the action.
It is worthwhile to mention that this novel contact term

resembles the interaction term proposed within the non-
dynamical version of CSMGR [15,16], with the axial-vector
torsion background field playing the role of the axial vector
field vμ defined in those papers. However, in our case the
situation looks like thoroughly different because the back-
ground field appears naturally as a result of the modification
of the space-time geometry as we have already mentioned,
while vμ is just an external quantity fixed a priori and then
without any relation with the other geometrical quantities.

IV. EINSTEIN-CARTAN MODIFIED THEORY
WITH ADDITIVE TOPOLOGICAL TERM

In this section we propose a simple modification of the
EC theory inspired by a whole analogy with effective field
theories [36]. Our modification proposal comprises of

adding the contact term generated by the one-loop quantum
correction (34), obtained in the previous section, to the EC
action. To wit,

SECM ¼ 1

4κ2

Z
ðϵabcdea ∧ eb ∧ Rcd þ αSa ∧ ð⋆C̃ÞaÞ

þ Ssources þ � � � ; ð35Þ

where ⋆means the Hodge star operator, Ssources is the action
of matter and spin sources and the ellipsis stands for
subleading terms at low energy level which contain
dynamical and higher-order torsion terms. Nonetheless,
from the phenomenological point of view, one can suppose
that dynamical torsion terms are highly (Planck scale)
suppressed since there is no experimental evidence cor-
roborating the propagation of the torsion [7]. Consequently,
at the classical level, we can safely truncate our effective
modified EC theory to the leading terms displaying in the
former action explicitly. In the context of effective field
theories, the real parameter α ¼ 1

Λ2, where Λ is a typical
high energy (UV) scale. Hence, the previous equation
(disregarding the subleading terms written in terms of
components) becomes

SECM ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
RðΓÞþ α

12
SμC̃

μ

�
þSsources; ð36Þ

where RðΓÞ ¼ gμνRμνðΓÞ is the Ricci scalar of the full
affine connection Γμ

αβ which, in turn, is related to the Levi-
Civita connection (Lμ

αβ) and the contorsion tensor by:
Γμ

αβ ¼ Lμ
αβ þ Kμ

αβ. Taking these definitions into account,
Eq. (36) can be written as

SECM ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p

×

�
R̃þ 2∇̃λKλ þ KαβγKαγβ − KλKλ þ α

12
SμC̃

μ

�

þ Ssources; ð37Þ

where R̃ ¼ gμνRμνðLÞ is the Ricci scalar related to the Levi-
Civita connection and Kλ ≡ Kτ

λτ. Varying the action (37)
with respect to the metric and the contorsion, respectively,
we find the field equations for the modified theory

R̃μν −
1

2
gμνR̃ −

α

24
Xμν ¼ k2Tμν; ð38Þ

Tα
βγ þ δαγTβ − δαβTγ −

α

6
ϵαμγβC̃

μ ¼ κ2Θα
βγ; ð39Þ

where

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSsources

δgμν
ð40Þ
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is the energy-momentum tensor and

Θα
βγ ¼ −

2ffiffiffiffiffiffi−gp δSsources
δKβγ

α

ð41Þ

is the spin tensor. Note that from Eq. (38) the variation with
respect to the Chern-Simons current yields a new sym-
metric tensor which is defined by

Xμν ¼ ðSλϵλβγν∇̃βR̃
μ
γ − ð∇̃σSλÞ�R̃σμλν þ ðμ ↔ νÞÞ; ð42Þ

where �R̃σμλν ¼ 1
2
ϵσμαβRαβλν is the dual Riemann tensor.

The tensor Xμν is sometimes called the Cotton tensor [15].
The Eq. (39) provides an algebraic equation for the torsion
similarly to the situation occurring in the EC theory,
however in our case there is an extra term coming from
the contact interaction one.
To better understand the influence of the role played by

the torsion in the modified theory let us turn our attention to
the vacuum field equations, namely, in the absence of
sources. In this context, the field equations reads

R̃μν −
1

2
gμνR̃ −

α

24
Xμν ¼ 0; ð43Þ

Tα
βγ þ δαγTβ − δαβTγ −

α

6
ϵαμγβC̃

μ ¼ 0: ð44Þ

Upon taking the trace (α ¼ β) in the second equation we are
able to find that Tγ ¼ 0. Inserting this in Eq. (44) one
obtains

Tαβγ ¼
α

6
ϵαμγβC̃

μ; ð45Þ

or by dualizing it

Sμ ¼ −αC̃μ: ð46Þ

This equation is in fact a constraint equation, as a result, it
settles that the axial-vector torsion is completely deter-
mined by the Chern-Simons topological current of the
spinless connection. Such a result is not a surprise because,
formally, the Chern-Simons topological current could be
safely interpreted as an external source for the torsion
similarly to what happens as we allow matter sources to
couple to torsion [25]. Therefore, differently from the EC
theory, the vacuum field equations of the modified theory
entail in the constraint (46) which enforces the axial-vector
torsion to be proportional to the Chern-Simons topological
current. Apart from that, the divergence of Eq. (43) imposes
another constraint or consistency condition to hold the
diffeomorphism invariance of the modified theory

∇̃μXμν ¼ −
α

4
C̃ν∇̃μC̃

μ ¼ 0; ð47Þ

which is somewhat similar to the Pontryagin constraint in
CSMGR [15]. Hence consistent solutions must be restricted
to the parameter space corresponding to the vanishing of
either C̃μ or ∇̃μC̃

μ.
Substituting Eq. (46) into the Eq. (43), we are able to

eliminate the dependence of the Eq. (43) on the axial piece
of the torsion arriving at

R̃μν−
1

2
gμνR̃þα2

24
½C̃λϵ

λβγ
ν∇̃βR̃μγ − ð∇̃σSλÞ�R̃σ

μ
λ
νþðμ↔ νÞ�

¼ 0: ð48Þ

Note that the contact term leads to third-order derivatives of
the metric in the field equations, so it can potentially
develop ghost degrees of freedom. However, such potential
ghosts are very heavy in the regime of validity of the
effective field theory, thus, their impact can be neglected at
the low-energy limit. Because of that, one can interpret the
previous contact interaction as a particular higher-order
Lorentz-breaking term [13].
To clarify further our analysis let us solve the field

equations for a generic spherically symmetric static metric.
A straightforward computation shows that in this case all
components of C̃μ vanish and then one recovers the GR field
equations. Such a result is expected since the CS topological
current seems to be sensitive only for spinningmetrics as, for
example, the Kerr one that provides C̃μ ≠ 0, but does not
solve the equations of motion for the modified theory due to
the fact that the consistency condition fails since ∇̃μC̃

μ ≠ 0.
In particular, Schwarzschild metric persists as a solution of
our EC modified theory, in contrast to the modified theory
proposed in [37]. Another interesting example is the well-
known rotating Gödel metric [38], in this case, the compo-
nent C̃z ≠ 0, however it satisfies the other consistency
condition: ∇̃μC̃

μ ¼ 0. It is worthwhile to remark that the
field equations of the modified theory do not reduce to the
GR ones becauseXμν ≠ 0. Therefore, even the Gödel metric
being a solution for the GR field equations in the presence of
well-motivated matter sources and cosmological constant
[38], it is also a nontrivial solution of our modified theory in
the presence of other kinds of matter sources similarly to
what happens in CSMGR [39].

V. SUMMARY AND CONCLUSIONS

We have tackled with quantum and classical aspects of
fermions minimally coupled to gravity with torsion. First,
we computed the fermionic one-loop effective action by the
proper time method in a full analogy to [30] and we have
found a finite contribution since it is superficially divergent.
Remarkably, upon integrating the fermions out, the fer-
mionic one-loop effective action results in a contact
interaction term between two topological terms, namely:
the axial-vector torsion (Nieh-Yan topological current) and
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the Chern-Simons topological current which is thoroughly
determined by the metric. Therefore, this quantum con-
tribution has geometrical nature different from that one
obtained in [30]. We have also noted that this term
resembles the Zeeman effect in the nonrelativistic limit.
In order to understand further the classical implications

of the contact interaction term, we proposed a simple
modified theory of gravity which consists of adding the
term (36) to the EC action. In the absence of matter sources
the field equations associated to the torsion tensor is
nontrivial, though it remains nondynamical as in the EC
case. Actually, we have seen that the torsion tensor is
completely sourced by the metric as shown in Eq. (45). As
for the metric equation (43), it imposes a constraint or
consistency condition which leads to the vanishing of either
C̃μ or ∇̃μC̃

μ. We have checked that the Schwarzschild
solution persists in our modified theory, indeed the modi-
fied field equations reduces to the GR ones for all spheri-
cally symmetric metrics. On the other hand, the Kerr metric
cannot be a solution of this theory since it does not satisfy
the consistency condition. As a nontrivial solution, we
presented the Gödel metric in which the consistency
condition is fulfilled, but the field equations for it do not
reduce to GR ones.
It is interesting to note that our one-loop result is

very similar to the known four-dimensional gravitational

Chern-Simons term [15], with the role of the constant
vector bμ is played by the axial-vector torsion Sμ. In
principle, it allows us to suggest that the Lorentz-breaking
vectors in certain cases can be generated by nonzero
expectation values (v.e.v.) of the axial-vector torsion, so,
as a by-product of our studies we arrived at a possible
mechanism explaining the Lorentz symmetry breaking.
A natural continuation of this work would consist of

exploring new solutions of this modified field theory. For
example, a good candidate would be the Gödel-type
metrics and also finding a rotating black hole solution in
this model since Kerr metric does not solve the modified
equations of motion. Gravitational waves should be ana-
lyzed as well. We are examining these issues in a possible
forthcoming work.
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