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The existence of black holes is a central prediction of general relativity and thus serves as a basic
consistency test for modified theories of gravity. In spherical symmetry, only two classes of dynamic
solutions are compatible with the formation of an apparent horizon in finite time of a distant observer.
Moreover, the formation of black holes follows a unique scenario involving both types of solutions. To be
compatible with their existence, any self-consistent theory of modified gravity must satisfy several
constraints. We derive properties of the modified gravity terms of fðRÞ and generic fourth-order gravity
theories and find that they naturally accommodate both classes of solutions. Consequently, the observation
of an apparent horizon by itself may not suffice to distinguish between general relativity and modifications
including up to fourth-order derivatives in the metric.
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I. INTRODUCTION

Black holes are arguably the most celebrated prediction
of general relativity (GR). Due to spectacular advances in
observational astronomy, strong evidence for the existence
of dark massive compact objects (so-called astrophysical
black holes) has accumulated over the last few decades,
thus gradually shifting our perception of black holes from
purely mathematical curiosities to real physical entities.
GR has so far managed to withstand all experimental

tests. Nevertheless, its perceived shortcomings (e.g., the
presence of singularities) have motivated the development
and study of various modified theories of gravity (MTG),
i.e., extensions and/or generalizations of GR involving
additional gravitational degrees of freedom, typically
through the inclusion of higher-order curvature corrections

]1,2[.1 In addition, theoretical considerations indicate that
GR represents the low-energy limit of some effective field
theory of quantum gravity [8–10].
To be considered a viable candidate theory, any proposed

modification of GR must be compatible with current
astrophysical and cosmological data. In particular, it must
provide a model to describe the observed astrophysical
black hole candidates, which are described as ultracompact
objects with or without a horizon in popular contemporary
models [11]. While there is no unanimously agreed upon
definition of a black hole, its most commonly accepted
feature is the presence of a trapped region [12], i.e., a

spacetime domain where both ingoing and outgoing future-
directed null geodesics originating from a two-dimensional
spacelike surface with spherical topology have negative
expansion. Its evolving outer boundary is the apparent
horizon. Following the nomenclature of Frolov [13], we
refer to a trapped region bounded by an apparent horizon as
a physical black hole (PBH). A PBH may include char-
acteristic features of classical black hole solutions, such as
an event horizon or singularity, or it may be a singularity-
free regular black hole. Unlike the global notion of an event
horizon, the apparent horizon is a well-defined quasilocal
observable; i.e., its presence or absence is (at least in
principle) detectable through quasilocal measurements
[14]. This makes it a suitable tool for practical purposes.
In particular, it brings about the question of whether the
apparent horizon can be used as a means to observationally
distinguish between GR and various alternative theories of
gravity [15]. To be of physical relevance, the apparent
horizon must form in finite time according to a distant
observer (Bob) [16,17].
It is natural to ask whether the existence of PBHs as

defined above, i.e., formation of an apparent horizon in
finite time of Bob, imposes constraints on the mathematical
structure of the modified Einstein equations in various
MTG. A recent analysis [18] has identified several such
constraints for arbitrary metric MTG. Our goal is to
determine whether families of higher-order gravity theories
with up to fourth-order derivatives in the metric are
compatible with the PBHs of semiclassical gravity, or if
PBH solutions in these theories—if they exist at all—must
have a fundamentally different mathematical structure. The
fourth-order gravity theories we consider are particularly
interesting in the context of quantum gravity since they are
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1In the interest of brevity, many other appealing applications of

MTG have been omitted from the discussion here. For a
comprehensive overview, the interested reader may wish to
consult Refs. [3–7].
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renormalizable [6,19]. Their field equations contain various
additional degrees of freedom, including a massive scalar
mode as well as massless and massive spin-2 vector modes.
We find that fourth-orderMTGnaturally include the PBH

solutions of semiclassical gravity; i.e., no additional con-
straints are required to be compatible with the formation of
an apparent horizon in finite time of Bob. This implies that
the semiclassical solutions correspond to zeroth-order terms
in perturbative solutions of these models, and the observa-
tion of an apparent horizon by itself is not a distinguishing
feature between GR and various higher-order MTGmodels.
The remainder of this article is organized as follows. In

Sec. II, we discuss mathematical prerequisites and intro-
duce key concepts of our analysis. In Sec. III, we briefly
summarize the properties of PBH solutions in semiclassical
gravity. In Sec. IV, we describe the methodology of our
effective field theory approach and review the constraints
MTG must satisfy to be compatible with semiclassical
PBHs. We then investigate the constraints in the context of
fðRÞ gravity (Sec. V) and generic fourth-order gravity
theories (Sec. VI) and derive properties of their respective
modified gravity terms. Lastly, we discuss the implications
of our findings and motivate avenues for further research
(Sec. VII).

II. PREREQUISITES AND GENERAL
CONSIDERATIONS

Throughout this article, we use the (−þþþ) signature of
the metric gμν and work in units where ℏ ¼ c ¼ G ¼ 1.
Working in the framework of semiclassical gravity,
we use classical notions (e.g., metric, horizons, etc.) and
describe dynamics via the semiclassical Einstein equations
Gμν ¼ 8πTμν or modifications thereof, where Tμν ≡ hT̂μνiω
denotes the expectation value of the renormalized energy-
momentum tensor (EMT) that describes the entire matter
content, i.e., both the collapsing matter and the produced
excitations of the quantum fields. We do not make any
assumptions about the matter content of any given theory,
the quantum state ω, or the underlying reason(s) for
modifications of the gravitational Lagrangian density Lg,
which we organize according to powers of derivatives in the
metric, i.e.,

Lg¼
MPl

2

16π
ðRþλF ðgμν;RμνρσÞÞ

¼MPl
2

16π
Rþa1R2þa2RμνRμνþa3RμνρσRμνρσþ���; ð1Þ

where the cosmological constant term was omitted; MPl is
the Planck mass that we set to 1 in what follows; and the
coefficients a1, a2, and a3 are dimensionless. The dimen-
sionless parameter λ sets the scale of our perturbative
analysis (see Sec. IV) and is set to 1 at the end of our
calculations.

In (3þ 1) dimensions, the Einstein-Hilbert action

SEH ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
Rd4x ð2Þ

of classical GR is the most general gravitational action
that can be constructed from symmetric rank 2 tensors
involving at most second-order derivatives in the metric
while maintaining diffeomorphism invariance (which
implies, inter alia, that the EMT is divergence free, i.e.,
∇μTμν ¼ 0). Here, g≡ detðgμνÞ denotes the determinant of
the metric tensor, and the gravitational Lagrangian density
Lg is strictly linear in the Ricci scalar R, but this is no
longer true for the higher-derivative MTG we consider in
Secs. V and VI.
We restrict our considerations to spherical symmetry.

In Schwarzschild coordinates, a general spherically sym-
metric metric is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð3Þ

where r denotes the areal radius, the Misner-Sharp mass
[20] Cðt; rÞ=2 is invariantly defined via

fðt; rÞ ≔ ∂μr∂μr ¼ 1 − Cðt; rÞ=r; ð4Þ

and the function hðt; rÞ plays the role of an integrating
factor in coordinate transformations, e.g.,

dt ¼ e−hðehþdv − f−1drÞ ð5Þ

between Schwarzschild ðt; rÞ and advanced null ðv; rÞ
coordinates. The definition of Eq. (4) is particularly
convenient as it allows for a consistent description of
solutions in four- and higher-dimensional models of both
GR and MTG. The apparent horizon is located at the
Schwarzschild radius rgðtÞ, which corresponds to the
largest root of fðt; rÞ ¼ 0 [21]. Its definition implies

Cðt; rÞ ¼ rgðtÞ þWðt; xÞ; ð6Þ

where x ≔ r − rg denotes the coordinate distance from the
apparent horizon, and

Wðt; 0Þ ¼ 0; Wðt; xÞ < x ∀ x > 0: ð7Þ

In general, this definition is an observer-dependent notion.
However, in spherical symmetry, the apparent horizon is
unambiguously defined in all foliations that respect this
symmetry [21].
Apart from spherical symmetry, our only assumption is

that a regular apparent horizon forms in finite time of a
distant observer (Bob). Regularity is a necessary require-
ment to maintain predictability of the theory [10,22], and
finite-time formation according to Bob is needed to ensure
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that the PBH solutions we consider are observationally
relevant physical objects (as opposed to mere mathematical
idealizations) [16,17]. Mathematically, regularity of the
horizon is expressed through the finiteness of the curvature
scalars

T ≔ Tμ
μ ¼ −R=8π þOðλÞ; ð8Þ

T ≔ TμνTμν ¼ RμνRμν=64π2 þOðλ2Þ; ð9Þ

i.e., the trace and square of the EMT, at the horizon. Our
self-consistent approach is based on the assumption of at
least continuity of the curvature invariants but uses
Schwarzschild coordinates where the metric is discontinu-
ous. Imposing the requirement of regularity then allows us
to identify the valid PBH solutions [23,24].
It is convenient to work with the effective EMT

components

τt ≔ e−2hTtt; τt
r ≔ e−hTt

r; τr ≔ Trr: ð10Þ

The regularity requirement can then be expressed as

T ¼ ðτr − τtÞ=f → g1ðtÞfk1 ; ð11Þ

T ¼ ½ðτtÞ2 − 2ðτtrÞ2 þ ðτrÞ2�=f2 → g2ðtÞfk2 ; ð12Þ

for some functions g1;2ðtÞ and k1;2 ≥ 0. A priori, there are
infinitely many solutions that satisfy these constraints.
However, it has been demonstrated that only two distinct
classes of solutions with k1 ¼ k2 ≕ k, k ∈ f0; 1g, are
admissible [24,25]. We briefly summarize their properties
in Sec. III.

III. PHYSICAL BLACK HOLES IN
SEMICLASSICAL GRAVITY

In spherical symmetry, the semiclassical Einstein equa-
tions for the components Gtt, Gt

r, and Grr are given by

∂rC ¼ 8πr2τt=f; ð13Þ

∂tC ¼ 8πr2ehτtr; ð14Þ

∂rh ¼ 4πrðτt þ τrÞ=f2: ð15Þ

Only two distinct classes of dynamic (r0gðtÞ ≔
drg=dt ≠ 0) solutions are compatible with the formation
of an apparent horizon in finite time of a distant observer
(Bob). With respect to the regularity conditions of Eqs. (11)
and (12), they correspond to the values k ¼ 0 (i.e.,
k1 ¼ k2 ¼ 0) and k ¼ 1 (i.e., k1 ¼ k2 ¼ 1). Their main
properties are summarized in Table I. For a detailed
derivation, the reader is referred to Refs. [24,25]. For the
class of k ¼ 0 solutions, a static solution is impossible, as
in this case T would diverge at the apparent horizon. For

k ¼ 1 on the other hand, a static solution is possible, but
there is only one self-consistent dynamic solution
[described by Eqs. (k1.1)–(k1.8)] for which the energy
density E ≔ −Tt

t and pressure P ≔ Tr
r at the horizon take

on their extreme values E ¼ −P ¼ 1=ð8πr2gÞ. For this
extreme-valued k ¼ 1 solution, the identity c2 ¼ c32h12
between the coefficients of its metric functions (k1.1)–
(k1.2) holds (a derivation is provided in Sec. IV.B. of
Ref. [18]) and leads to many simplifying cancellations, e.g.,
the vanishing of the

ffiffiffi
x

p
term in the Ricci scalar expansion

[see Eq. (k1.8)] due to the fact that R12 ∝ c32h12 − c2.
When the matter content of a theory is not specified

explicitly, the permissible states of matter are usually
constrained by means of energy conditions [26–28]. The
weakest of all energy conditions is the null energy con-
dition (NEC), which postulates that Tμνlμlν ≥ 0, i.e., the
contraction of the EMT with any null vector lμ is non-
negative. In contrast to classical spherically symmetric
solutions, the NEC is violated in the vicinity of the outer
apparent horizon for both classes (i.e., k ¼ 0 and k ¼ 1) of
semiclassical solutions [17,23,25,29]. For expanding white
hole solutions (r0gðtÞ > 0), the energy density, pressure, and
flux perceived by an infalling observer diverge fast enough
to violate quantum energy inequalities that bound viola-
tions of the NEC [30–32], indicating either the breakdown
of semiclassical physics or confirming the instability
of white hole horizons [33]. As our interest lies in
describing scenarios resulting from gravitational collapse,
we restrict our considerations to evaporating PBH solutions
(r0gðtÞ < 0) in what follows.
At the instant of its formation, a PBH is described by the

extreme-valued k ¼ 1 solution [24]. Its behavior then
immediately switches to that of a k ¼ 0 solution. Since
the energy density and pressure are negative in the vicinity
of the outer apparent horizon and positive in the vicinity of
the inner horizon [13,34], these two quantities jump at the
intersection of the two horizons. However, the abrupt
transition from f1 to f0 behavior is only of conceptual
importance as this aspect of the evolution is continuous in
ðv; rÞ coordinates, and there is no discontinuity according
to observers crossing the respective horizon surfaces.

IV. MODIFIED GRAVITY: EINSTEIN
EQUATIONS AND CONSTRAINTS

Variation of the gravitational action results in

Gμν þ λEμν ¼ 8πTμν; ð16Þ

where Gμν denotes the Einstein tensor and the terms Eμν

result from the variation of F ðgμν; RμνρσÞ [cf. Eq. (1)].
In spherical symmetry, the modified Einstein equations
take the form

fr−2e2h∂rCþ λEtt ¼ 8πTtt; ð17Þ
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r−2∂tCþ λEt
r ¼ 8πTt

r; ð18Þ

2f2r−1∂rh − fr−2∂rCþ λErr ¼ 8πTrr: ð19Þ

We assume that there is a solution of Eq. (16) with the
metric functions

Cλ≕ C̄ðt; rÞ þ λΣðt; rÞ; ð20Þ

hλ ≕ h̄ðt; rÞ þ λΩðt; rÞ; ð21Þ

where the bar labels functions of semiclassical gravity
described in Sec. III, e.g., C̄ ≔ rg þ W̄ [cf. Eq. (6)], and Σ

and Ω denote the perturbative corrections. To avoid
artifactual divergences, we use the physical value of
rgðtÞ that corresponds to the perturbed metric
gλ ≔ ḡμν þ λg̃μν, i.e., Cλðt; rgÞ ¼ rg. Similarly, the EMT
depends on λ through the metric gλ, and potentially also
through effective corrections resulting from perturbative
corrections to the modified field equations (17)–(19). It is
decomposed as

Tμν ≕ T̄μν þ λT̃μν; ð22Þ

where T̄μν ≡ Tμν½C̄; h̄� corresponds to the semiclassical
term. The perturbative corrections must satisfy the boun-
dary conditions

TABLE I. Comparison of the two classes of dynamic solutions in spherical symmetry. The metric functions C and h [cf. Eqs. (3) and
(4)] are obtained as the solutions of Eqs. (13) and (15) and are written together with the effective EMT components and Ricci scalar as
series expansions in terms of the coordinate distance x ≔ r − rg from the apparent horizon rg. The function ϒðtÞ > 0 parametrizes the
leading contributions to the effective EMT components for k ¼ 0 solutions, and ξðtÞ is determined by the choice of time variable. In
spherical symmetry, the geometry near the apparent horizon [23–25] is constrained sufficiently enough to identify ϒðtÞ and ξðtÞ and
match them with the semiclassical results [35]. The letter j ∈ Z 1

2
labels half-integer and integer coefficients and powers of x. Since only

the leading terms in each series are relevant, we simplify the notation by writing c12 instead of c1=2, and similarly for higher orders and
coefficients of the EMT expansion and Ricci scalar. To remind us of their connection to physical quantities, the coefficients of the
effective EMT components are denoted ej (energy density), ϕj (flux), and pj (pressure). Consistency of Eqs. (14) and (15) implies
E ¼ −P ¼ 1=ð8πr2gÞ and Φ ¼ 0. The lower (upper) signature in Eqs. (k0.4), (k0.6), and (k1.4) describes an evaporating PBH (an
expanding white hole). The dynamic behavior of the horizon r0g ≔ drg=dt is determined by Eq. (14), and also implicitly through the
requirement that the Ricci scalar R be finite at the horizon, that is Eqs. (k0.4) and (k1.4) must hold for the k ¼ 0 and k ¼ 1 solutions,
respectively, in order for the divergent terms in the series expansion of R to vanish. The Einstein equations Eqs. (13)–(15) hold order by
order in terms of x. Accordingly, explicit expressions for higher-order terms in the metric functions are obtained by matching those of the
same order in the EMT expansion [18,36].

k ¼ 0 solutions k ¼ 1 solution

Metric functions

C ¼ rg − c12
ffiffiffi
x

p þ
X∞
j≥1

cjxj ðk0:1Þ

h ¼ −
1

2
ln
x
ξ
þ
X∞
j≥1

2

hjxj ðk0:2Þ

C ¼ rg þ x − c32x3=2 þ
X∞
j≥2

cjxj ðk1:1Þ

h ¼ −
3

2
ln
x
ξ
þ
X∞
j≥1

2

hjxj ðk1:2Þ

Leading coefficient
c12 ¼ 4

ffiffiffi
π

p
r3=2g ϒ ðk0:3Þ c32 ¼ 4r3=2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−πe2=3

p
ðk1:3Þ

Horizon dynamics
r0g ¼ �c12

ffiffiffi
ξ

p
=rg ðk0:4Þ r0g ¼ �c32ξ3=2=rg ðk1:4Þ

Effective EMT
τt ¼ −ϒ2 þ

X∞
j≥1

2

ejxj ðk0:5Þ

τt
r ¼ �ϒ2 þ

X∞
j≥1

2

ϕjxj ðk0:6Þ

τr ¼ −ϒ2 þ
X∞
j≥1

2

pjxj ðk0:7Þ

τt ¼ Ef þ
X∞
j≥2

ejxi ðk0:5Þ

τt
r ¼ Φf þ

X∞
j≥2

ϕjxj ðk0:6Þ

τr ¼ Pf þ
X∞
j≥2

pjxi ðk0:7Þ

Ricci scalar
R ¼ R0 þ R12

ffiffiffi
x

p þ R1xþ
X∞
j≥3

2

Rjxj ðk0:8Þ R ¼ 2=r2g þ R1xþ
X∞
j≥3

2

Rjxj ðk1:8Þ
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Σðt; 0Þ ¼ 0; ð23Þ

lim
r→rg

Ωðt; rÞ=h̄ðt; rÞ ¼ Oð1Þ; ð24Þ

where the first condition follows from the definition of the
horizon radius rg, and the second condition ensures that
perturbations can be treated as small; i.e., the divergence of
Ω on approach to the horizon (i.e., as r → rg) must not be
stronger than that of h̄. Substituting Eqs. (20) and (21) into
Eq. (16) and keeping only first-order terms in λ results in

Ḡμν þ λG̃μν þ λĒμν ¼ 8πðT̄μν þ λT̃μνÞ; ð25Þ

where Ḡμν ≡Gμν½C̄; h̄�, G̃μν corresponds to the first-order
term of the Taylor expansion in λ where each monomial
involves eitherΣ orΩ, and Ēμν ≡ Eμν½C̄; h̄�; i.e., themodified
gravity terms are functions of the unperturbed solutions.
If we adopt the schematic separation of the EMT

according to Eq. (22) for the effective EMT components
defined in Eq. (10), i.e., τ ¼ τ̄ þ λτ̃, then the modified
gravity field equations Eqs. (17)–(19) can be written
explicitly as [18]

−Σ∂rC̄þ ðr − C̄Þ∂rΣþ r3e−2h̄Ētt ¼ 8πr3τ̃t; ð26Þ

∂tΣþ r2Ēt
r ¼ 8πr2eh̄ðΩτ̄tr þ τ̃t

rÞ; ð27Þ

Σ∂rC̄ − ðr − C̄Þð4Σ∂rh̄þ ∂rΣÞ
þ 2ðr − C̄Þ2∂rΩþ r3Ērr ¼ 8πr3τ̃r: ð28Þ

To be compatible with the dynamic PBH solutions of
semiclassical gravity (summarized in Sec. III, Table I), any
arbitrary MTG must satisfy several constraints. They are
summarized in Table II and derived explicitly in Ref. [18].
First, the series expansions of the MTG terms Ēμν in terms
of x ≔ r − rg must conform to the structures prescribed by
Eqs. (k0.I)–(k0.III) and Eqs. (k1.I)–(k1.III) for the k ¼ 0
and k ¼ 1 solutions, respectively. Second, the coefficients
of the MTG terms must satisfy three additional identities
[Eqs. (k0.IV)–(k0.V)] in the k ¼ 0 case and two additional
relations [Eqs. (k1.IV)–(k1.V)] for the unique k ¼ 1
solution.
There is a priori no reason to believe that the constraints

imposed by Eqs. (k0.I)–(k0.V) and (k1.I)–(k1.V) should or
should not be satisfied in any particular MTG. If they are
not satisfied, the MTG in question may still possess
solutions corresponding to PBHs, albeit their mathematical
structure must then be fundamentally different from those
of semiclassical gravity (which may or may not give rise to
observationally distinguishable features). On the other
hand, if the constraints are satisfied identically in a
particular MTG, then the semiclassical PBH solutions
can be regarded as zeroth-order terms in perturbative

solutions of this model. It is also possible that the con-
straints are satisfied only if additional conditions are
fulfilled. In this case, compatibility with semiclassical
PBHs would impose further constraints on the MTG in
question, i.e., beyond those listed in Table II. It is worth
noting that, since semiclassical PBHs are described by the
extreme-valued k ¼ 1 solution at their formation [24], the
failure of a particular MTG to satisfy any one of the k ¼ 1
constraints Eqs. (k1.I)–(k1.V) suffices to necessitate that
the PBH formation scenario in that theory differs from that
of semiclassical gravity.
In Secs. V and VI, we examine the constraints in the

context of fðRÞ and generic fourth-order theories of
gravity to determine which of the outcomes described
above is realized and derive properties of their respective
MTG terms.

V. PHYSICAL BLACK HOLES IN fðRÞ GRAVITY

As mentioned in Sec. II, the gravitational Lagrangian
density of GR is strictly linear in the Ricci scalar R, i.e.,
Lg ¼ R [cf. Eq. (2)]. One of the simplest conceivable
modifications of GR is fðRÞ gravity [6,7]: a class of theories
in which the linearity requirement is relaxed andLg is taken
to be an arbitrary function of R, i.e., Lg ¼ fðRÞ. Despite
this seemingly simple modification, the relevant field
equations in fðRÞ theories already involve up to fourth-
order derivatives in the metric. We consider generic fðRÞ
theories, i.e., fðRÞ≕Rþ λF ðRÞ, where F ðRÞ ¼ βRq and
β; q ∈ R. For the action

SfðRÞ ¼
1

16π

Z
ðfðRÞ þ LmÞ

ffiffiffiffiffiffi
−g

p
d4xþ Sb; ð29Þ

where the matter Lagrangian is represented by Lm and Sb
denotes the boundary term, the field equations are given by

f0Rμν −
1

2
fgμν þ ðgμν□ −∇μ∇νÞf0 ¼ 8πTμν; ð30Þ

where f0 ≔ ∂fðRÞ=∂R and □ ≔ gμν∇μ∇ν denotes the
d’Alembertian. In spherical symmetry [i.e., for the metric
of Eq. (3)], it is given by

□F 0 ¼ ½∂t∂t þ ∂r∂r þ ð∂thÞ∂t þ ð∂rhþ 2=rÞ∂r�F 0: ð31Þ

Second-order covariant derivatives of a scalar function can
be expressed in terms of partial derivatives, i.e.,

∇μ∇νF 0 ¼ ð∂μ∂ν − Γζ
μν∂ζÞF 0: ð32Þ

The modified Einstein equations are then given by
[cf. Eq. (16)]
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Gμν þ λ

�
F 0Rμν −

1

2
Fgμν þ ðgμν□ −∇μ∇νÞF 0

�
¼ 8πTμν:

ð33Þ

We obtain expressions for the modified gravity terms Ēμν

by performing the expansion in λ and keeping terms only
up to the first order, i.e.,

Ēμν ¼ F 0R̄μν −
1

2
F ḡμν þ ðḡμν□̄ − ∇̄μ∇̄νÞF 0; ð34Þ

where all objects labeled by the bar are evaluated with
respect to the unperturbed metric ḡμν, and F ≡ F ðR̄Þ.
Using Eqs. (31) and (32) to evaluate Eq. (34) with the

metric of Eq. (3), we obtain the explicit form of the MTG
terms Ēμν as a function of unperturbed quantities, i.e.,

Ētt

βλ
¼ F 0R̄tt −

1

2
F ḡtt þ

�
ḡtt

�
∂t∂t þ ∂r∂r þ ð∂th̄Þ∂t þ

�
∂rh̄þ 2

r

�
∂r

�
− ∂t∂t þ Γt

tt∂t þ Γr
tt∂r

�
F 0; ð35Þ

Ēt
r

βλ
¼ F 0R̄t

r − ð∂t∂r þ Γr
tt∂t þ Γr

tr∂rÞF 0; ð36Þ

Ērr

βλ
¼ F 0R̄rr −

1

2
F ḡrr þ ḡrr

�
∂t∂t þ ð∂th̄ − Γr

rtÞ∂t þ
�
∂rh̄þ 2

r
− Γr

rr

�
∂r

�
F 0: ð37Þ

To determine whether the constraints of Table II are satisfied in fðRÞ theories, we substituteF ðR̄Þ ¼ βR̄q,F 0 ¼ βqR̄q−1 into
Eqs. (35)–(37) to obtain

Ētt

βλ
¼ qR̄q−1R̄tt −

1

2
R̄qḡtt þ q

�
ḡtt

�
∂t∂t þ ∂r∂r þ ð∂th̄Þ∂t þ

�
∂rh̄þ 2

r

�
∂r

�
− ∂t∂t þ Γt

tt∂t þ Γr
tt∂r

�
R̄q−1; ð38Þ

Ēt
r

βλ
¼ qR̄q−1R̄t

r − qð∂t∂r þ Γr
tt∂t þ Γr

tr∂rÞR̄q−1; ð39Þ

Ērr

βλ
¼ qR̄q−1R̄rr −

1

2
R̄qḡrr þ qḡrr

�
∂t∂t þ ð∂th̄ − Γr

rtÞ∂t þ
�
∂rh̄þ 2

r
− Γr

rr

�
∂r

�
R̄q−1: ð40Þ

TABLE II. Necessary conditions for the existence of semiclassical PBHs in arbitrary metric MTG. To be compatible with
semiclassical PBHs of the k ¼ 0 (k ¼ 1) type, the MTG terms of arbitrary metric MTG must conform to the structures prescribed by
Eqs. (k0.I)–(k0.III) [Eqs. (k1.I)–(k1.III)] when expanded in terms of x ≔ r − rg. Additionally, their lowest-order coefficients must
satisfy the three (two) identities given by Eqs. (k0.IV)–(k0.V) [Eqs. (k1.IV)–(k1.V)].

k ¼ 0 solutions k ¼ 1 solution

Decomposition of MTG terms
Ētt ¼

æ1̄

x
þæ12ffiffiffi

x
p þæ0þ

X∞
j≥1

2

æjxj ðk0:IÞ

Ēt
r ¼ œ12ffiffiffi

x
p þ œ0 þ

X∞
j≥1

2

œjxj ðk0:IIÞ

Ērr ¼ ø0 þ
X∞
j≥1

2

øjxj ðk0:IIIÞ

Ētt ¼
æ32

x3=2
þ æ1̄

x
þ æ12ffiffiffi

x
p þ æ0 þ

X∞
j≥1

2

æjxj ðk1:IÞ

Ēt
r ¼ œ0 þ

X∞
j≥1

2

œjxj ðk1:IIÞ

Ērr ¼
X∞
j≥3

2

øjxj ðk1:IIIÞ

Relations between MTG
coefficients æ1̄ ¼

ffiffiffī
ξ

q
œ12 ¼ ξ̄ø0 ðk0:IVÞ æ32 ¼ 2ξ̄3=2œ0 − ξ̄3ø32 ðk1:IVÞ

æ12 ¼ 2

ffiffiffī
ξ

q
œ0 − ξ̄ø12 ðk0:VÞ æ1̄¼2ξ̄3=2ðh12œ0þœ12Þ− ξ̄3ð2h12ø32þø2Þ ðk1:VÞ
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Direct evaluation of Eqs. (38)–(40) using the metric func-
tions Eqs. (k0.1)–(k0.2) and (k1.1)–(k1.2) of the k ¼ 0
and k ¼ 1 solutions, respectively, shows that theMTG terms
Ēμν of any arbitrary fðRÞ theory conform to the series
expansion structures prescribed by Eqs. (k0.I)–(k0.III) and
(k1.I)–(k1.III) listed in Table II, respectively. In addition, the
identities Eqs. (k0.IV)–(k0.V) and (k1.IV)–(k1.V) are sat-
isfied identically; i.e., no additional conditions are required to
be compatible with the semiclassical PBH solutions.
For k ¼ 0 PBH solutions, the lowest-order MTG coef-

ficients are given explicitly by

æ1̄ ¼ −qc12R
q−3
0

ffiffiffī
ξ

q
½c12

ffiffiffī
ξ

q
½2R2

0 þ ðq− 1Þrgð2R0R1

þR12ððq− 2ÞR12 −R0h12ÞÞ� þ ðq− 1Þr2gR0R0
0�=ð4r3gÞ

¼
ffiffiffī
ξ

q
œ12 ¼ ξ̄ø0; ð41Þ

where Rj denote coefficients of the Ricci scalar expansion
(k0.8). Explicit expressions for the MTG coefficients
at the next-highest order [i.e., those needed to evaluate
the third constraint (k0.V)] are considerably more
convoluted and can be accessed via the linked Github
repository [37].
For the extreme-valued k ¼ 1 solution, the relevant

MTG coefficients of the lowest orders in x are given
explicitly by

æ32 ¼ 2q−1c32r
−1−2q
g ξ̄3; ð42Þ

æ1̄ ¼ 2q−3c32r
−1−2q
g ξ̄3

× ½4h12 − 3qc32ð2qþ ðq − 1Þr3gR1Þ�; ð43Þ

œ0 ¼ 0; ð44Þ

œ12 ¼ −3 × 2q−3qc232r
−1−2q
g ξ̄3=2

× ½2qþ ðq − 1Þr3gR1�; ð45Þ

ø32 ¼ −2q−1c32r
−1−2q
g ; ð46Þ

ø2 ¼ 2q−3c32r
−1−2q
g

× ½4h12 − 3qc32ð2qþ ðq − 1Þr3gR1Þ�; ð47Þ

where R1 denotes the coefficient of the OðxÞ term in the
Ricci scalar expansion (k1.8). To reduce clutter, we omit
the bar label for purely semiclassical functions in what
follows.

VI. PHYSICAL BLACK HOLES IN
FOURTH-ORDER GRAVITY

A. Field equations and their constituents

While fðRÞ gravity theories offer considerably more
freedom than GR, they are not the most general MTG
with up to fourth-order derivatives in the metric. If one
considers up to fourth-order derivatives in the metric, the
only possible curvature scalars (in addition to the Ricci
scalar R) in the gravitational action are the Kretschmann
scalar K ≔ RμνρσRμνρσ, the square RμνRμν of the Ricci
tensor, and the square R2 ¼ Rμ

μRν
ν of the Ricci scalar.2

However, it has been demonstrated by virtue of the
generalized Chern-Gauss-Bonnet theorem in four dimen-
sions that only two of these scalars are independent
[19,38,39], resulting in a two-parameter family of field
equations. In other words, the quantity

ffiffiffiffiffiffi
−g

p
L2 ¼

ffiffiffiffiffiffi
−g

p ðR2 − 4RμνRμν þ RμνρσRμνρσÞ ð48Þ

is a topological invariant and thus vanishes when integrated
over spacetimes topologically equivalent to flat space,
where

Lj ≔
1

2j
δ
μ1���μ2j
ν1���ν2j R

ν1ν2
μ1μ2 � � �Rν2j−1ν2j

μ2j−1μ2j ð49Þ

labels the dimensionally extended Euler densities [40].
Since constant terms in the Lagrangian density do not

contribute to the equations of motion, this allows us to
eliminate one of the higher-derivative curvature scalars,
e.g., the Kretschmann scalar K. The gravitational action is
then given by

S ¼
Z ffiffiffiffiffiffi

−g
p ð−αRμνRμν þ βR2 þ γκ−2RÞd4x; ð50Þ

where κ2 ¼ 32π. It is worth pointing out that theories of the
form fðR; RμνRμν; RμνρσRμνρσÞ are typically plagued by so-
called ghosts: massive states of negative norm that result in
an apparent lack of unitarity [6,39]. However, models with
only fðR;R2 − 4RμνRμν þ RμνρσRμνρσÞ terms in the action
are ghost free [41,42].
The equations of motion can be derived using the

procedure outlined in Ref. [43] and are given by3

2As pointed out in Ref. [38], it is technically possible to
construct two additional invariants that arise from contractions of
the Riemann tensor with the completely antisymmetric determi-
nant tensor δμνρσ ≔ ϵμνρσ=

ffiffiffi
g

p
, where ϵμνρσ denotes the Levi-

Civita symbol in four dimensions. They shall not concern us here
as they ultimately do not contribute to the field equations.

3They are also provided in Ref. [39] and derived explicitly in
Ref. [44], although some care and diligence is required when
comparing expressions from Refs. [39,44] with Ref. [43] and
those derived here as the former use a different sign convention in
the definition of the action and EMT.
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α

�
−
1

2
RρσRρσgμν−∇ν∇μR−2RρνμσRσρþ1

2
gμν□Rþ□Rμν

�

þβ

�
2RRμν−

1

2
R2gμν−2∇ν∇μRþ2gμν□R

�

þγκ−2
�
Rμν−

1

2
Rgμν

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GR term

¼0: ð51Þ

These field equations encode eight dynamical degrees of
freedom [19,39]: two of them correspond to the familiar
massless spin-2 graviton, five others correspond to a
massive spin-2 particle, and the remaining one corresponds
to a massive scalar (i.e., spin-0) particle. Note that β labels
contributions of fðRÞ gravity [cf. Sec. V, Eq. (34)] for the
parameter choice q ¼ 2, i.e., F ðRÞ ¼ βR2, F 0 ¼ 2βR,
which corresponds to the Starobinsky model [45,46]. We
make no assumptions about the parameters α, β, and γ. In
practice, their values must be tuned to satisfy various
experimental constraints. The equations of motion can be
conveniently recast in the form

Eμν þ γκ−2
�
Rμν −

1

2
Rgμν

�
¼ 0; ð52Þ

with the MTG terms Eμν (i.e., the deviations from the
semiclassical Einstein equations) given by

Eμν ¼ −ðαþ 2βÞ∇ν∇μRþ
�
α

2
þ 2β

�
gμν□R

þ α

�
−
1

2
RρσRρσgμν − 2RρνμσRρσ þ□Rμν

�

þ β

�
2RRμν −

1

2
R2gμν

�
: ð53Þ

All terms in Eq. (53) contain fourth-order derivatives. In
spherical symmetry, the relevant MTG terms are

Ett ¼ −ðαþ 2βÞ∇t∇tRþ
�
α

2
þ 2β

�
gtt□R

þ α

�
−
1

2
RρσRρσgtt − 2RρttσRρσ þ□Rtt

�

þ β

�
2RRtt −

1

2
R2gtt

�
; ð54Þ

Et
r ¼ −ðαþ 2βÞ∇t∇rRþ αð−2Rρt

r
σR

ρσ þ□Rt
rÞ

þ 2βRRt
r; ð55Þ

Err ¼ −ðαþ 2βÞ∇r∇rRþ
�
α

2
þ 2β

�
grr□R

þ α

�
−
1

2
RρσRρσgrr − 2Rρ

rr
σR

ρσ þ□Rrr

�

þ β

�
2RRrr −

1

2
R2grr

�
: ð56Þ

Note that here, unlike β in Sec. V [cf. Eqs. (35)–(40)], the
coefficients α and β are not absorbed into the lhs of the
equations for the MTG terms Eμν, which allows us to easily
distinguish their respective contributions. The Ricci and
Riemann tensor contractions that appear in Eqs. (54) and
(56) decompose into

RρσRρσ ¼ RttRtt þ 2RtrRtr þ RrrRrr

þ RθθRθθ þ RϕϕRϕϕ; ð57Þ

RρttσRρσ ¼ RrttrRrr þ RθttθRθθ þ RϕttϕRϕϕ; ð58Þ

Rρ
rr
σR

ρσ ¼ Rt
rr
tRtt þ Rθ

rr
θRθθ þ Rϕ

rr
ϕR

ϕϕ: ð59Þ

The second-order covariant derivatives of the Ricci scalar
and its d’Alembertian can be computed straightforwardly
using Eqs. (32) and (31), respectively. To evaluate
d’Alembertians of the Ricci tensor, we first note that the
covariant derivatives of a (0,2), (1,1), and (2,0) tensor field
Rμν, Rμ

ν, and Rμν with respect to α are given by

∇αRμν ¼ ∂αRμν − Γζ
αμRζν − Γζ

ανRμζ; ð60Þ

∇αRμ
ν ¼ ∂αRμ

ν − Γζ
αμRζ

ν þ Γν
αζRμ

ζ; ð61Þ

∇αRμν ¼ ∂αRμν þ Γμ
αζRζν þ Γν

αζRμζ; ð62Þ

where Γζ
μν denotes Christoffel symbols of the second kind.

Thus, the relevant second-order covariant derivatives of the
Ricci tensor take the form

∇α∇βRμν ¼ ∇αð∂βRμν − Γζ
μβRζν − Γζ

βνRμζÞ
¼ ∂αð∂βRμν − Γζ

μβRζν − Γζ
βνRμζÞ

− Γχ
βαð∂χRμν − Γζ

μχRζν − Γζ
χνRμζÞ

− Γχ
μαð∂βRχν − Γζ

χβRζν − Γζ
βνRχζÞ

− Γχ
ναð∂βRμχ − Γζ

μβRζχ − Γζ
βχRμζÞ; ð63Þ

and analogously for the mixed (1,1) and contravariant (2,0)
Ricci tensor components. In spherical symmetry, gμν ¼ 0
for μ ≠ ν due to the diagonal form of the metric tensor
[cf. Eq. (3)], and thus the d’Alembertian □ ≔ gμν∇μ∇ν

simplifies to □≡ gμμ∇μ∇μ. In addition, the Ricci tensor
and Christoffel symbols of the second kind are symmetric
in their covariant indices. Therefore, all covariant
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derivatives with respect to the angular variables fθ;ϕg
vanish:

∂θRtt ¼ ∂ϕRtt ¼ 0; Rχt ¼ 0 for χ ∈ fθ;ϕg
and Γt

ζt ¼ Γr
ζt ¼ 0 for ζ ∈ fθ;ϕg

⇒ ∇θRtt ¼ ∇ϕRtt ¼ 0; ð64Þ

∂θRt
r ¼ ∂ϕRt

r ¼ 0; Rχ
r ¼ Rt

χ ¼ 0 for χ ∈ fθ;ϕg
and Γt

ζt ¼ Γr
ζt ¼ Γr

ζr ¼ 0 for ζ ∈ fθ;ϕg
⇒∇θRt

r ¼∇ϕRt
r ¼ 0; ð65Þ

∂θRrr ¼ ∂ϕRrr ¼ 0; Rχr ¼ 0 for χ ∈ fθ;ϕg
and Γr

ζt ¼ Γr
ζr ¼ 0 for ζ ∈ fθ;ϕg

⇒ ∇θRrr ¼ ∇ϕRrr ¼ 0: ð66Þ

The d’Alembertians of the relevant Ricci tensor compo-
nents are therefore given by

□Rtt ¼ gtt∇t∇tRtt þ grr∇r∇rRtt; ð67Þ

□Rt
r ¼ gtt∇t∇tRt

r þ grr∇r∇rRt
r; ð68Þ

□Rrr ¼ gtt∇t∇tRrr þ grr∇r∇rRrr: ð69Þ

To determine whether the generic fourth-order gravity
theory specified by the field equations (51) is compatible
with the PBHs of semiclassical gravity, we compute its
MTG terms Eqs. (54)–(56) and check if the constraints
summarized in Table II are satisfied.

B. k = 0 PBH solutions

First, we evaluate Eqs. (54)–(56) using the k ¼ 0 metric
functions Eqs. (k0.1) and (k0.2). The resulting lowest-order
coefficients are given in Eq. (A1). Again, the explicit
expressions for coefficients at the next-highest order are
considerably more convoluted and are therefore provided in
the linked Github repository [37]. All three MTG terms
conform to the series expansion structures prescribed by
Eqs. (k0.I)–(k0.III), and the identities Eqs. (k0.IV) and
(k0.V) between their coefficients are satisfied identically,
i.e., without any additional constraints. Consequently,
generic fourth-order gravity theories are compatible with
the k ¼ 0 PBH solutions of semiclassical gravity, which
can be regarded as zeroth-order terms in pertubative
solutions of such theories.
It is worth noting that the constraints are satisfied

individually by the α and β terms; i.e., they are satisfied
in both limits α → 0 and β → 0. This behavior is expected
since the β terms describe a specific type of fðRÞ theory, and
we have demonstrated in Sec. V that all fðRÞ theories
generically satisfy all constraints. Consequently, if the
constraints are satisfied individually by the β terms (i.e.,

in the limit α → 0), they must also be satisfied individually
by the α terms (i.e., in the limit β → 0) in order for the
entire fourth-order theory to satisfy all constraints.

C. k= 1 PBH solution

Evaluation of Eqs. (54)–(56) with the metric functions
Eqs. (k1.1) and (k1.2) of the extreme-valued k ¼ 1 solution
yields the following coefficients at the two lowest orders:

æ32 ¼ ðαþ 2βÞc32ξ3=r5g; ð70Þ

æ1̄¼ðαþ2βÞc32ξ3ð2h12−3c32ð4þ r3gR1ÞÞ=ð2r5gÞ; ð71Þ

œ0 ¼ 0; ð72Þ

œ12 ¼ −ðαþ 2βÞc232ξ3=2ð4þ r3gR1Þ=ð2r5gÞ ;ð73Þ

ø32 ¼ −ðαþ 2βÞc32=r5g; ð74Þ

ø2 ¼ ðαþ 2βÞc32ð2h12 − 3c32ð4þ r3gR1ÞÞ=ð2r5gÞ: ð75Þ

Once again, the MTG terms match the required expansion
structures of Eqs. (k1.I)–(k1.III), and the two relations
Eqs. (k1.IV) and (k1.V) between their coefficients are
satisfied identically. We note that, even in the more general
fourth-order theory, the coefficient œ0 ¼ 0 as in fðRÞ
gravity [cf. Eq. (44) in Sec. V], even though a term
of order Oðx0Þ in Et

r would not tarnish the compatibility
with the semiclassical k ¼ 1 PBH solution according to
Eq. (k1.II).
From Eqs. (70)–(75), we see that the k ¼ 1 constraints

are not only satisfied individually (as in the k ¼ 0 case) by
the α and β terms that label modifications of the semi-
classical equations of motion, but in fact their contributions
to the MTG coefficients are exactly the same. This is not
true for MTG terms arising from the k ¼ 0 metric, where
the α and β terms of Eq. (51) lead to distinct contributions
[see, for instance, Eq. (A1), which includes pure α and pure
β contributions in addition to mixed ðαþ 2βÞ terms], but it
is true generically for the k ¼ 1 metric, i.e., for all MTG
terms Eμν and all of their coefficients, even those at higher
orders. This implies that the extreme-valued k ¼ 1 solution
that describes the formation of PBHs gives rise to the same
MTG terms in both theories and should be interpreted as an
indication that the process of PBH formation in fourth-
order MTG may not differ from that of semiclassical
gravity, despite the availability of additional gravitational
degrees of freedom. Contributions of the modifications
labeled by α and β to the energy density E and pressure P
are also the same. Close to the horizon, their leading
contributions scale as ∼1=r4g, whereas the leading GR
contribution scales as ∼1=r2g.
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VII. DISCUSSION

MTG must satisfy several constraints (summarized in
Table II) to be compatible with the two classes of PBHs in
semiclassical gravity (whose properties are summarized in
Table I). In fðRÞ and generic fourth-order gravity theories,
all of the constraints are satisfied identically, and the
semiclassical PBH solutions can be regarded as zeroth-
order terms in perturbative solutions of these models.
Consequently, the formation of an apparent horizon on
its own is not sufficient to distinguish between semi-
classical gravity and families of fourth-order MTG. Only
a detailed analysis of the response of the near-horizon
geometry to perturbations may allow us to identify poten-
tial observationally distinguishable features.
In addition to the fact that their MTG terms follow

the expansion structures of Eqs. (k0.I)–(k0.III) and
Eqs. (k1.I)–(k1.III) and satisfy the coefficient relations
Eqs. (k0.IV) and (k0.V) and Eqs. (k1.IV) and (k1.V) for
k ¼ 0 and k ¼ 1 PBH solutions, respectively, a generic
feature of fourth-order gravity theories is that œ0 ¼ 0 for
the extreme-valued k ¼ 1 solution; i.e., there is no Oðx0Þ
term in the MTG term Et

r of the tr equation [cf. Eq. (k1.II)
in Table II]. Moreover, the MTG terms arising from the
k ¼ 1metric that describes PBH formation in semiclassical
gravity appear to be independent of the additional degrees
of freedom provided by the α terms in the equations of
motion (51) of generic fourth-order gravity theories.

In future works, we plan to extend the analysis of
Ref. [24] by systematically investigating PBH formation
scenarios in more general settings, e.g., by considering
nonspherically symmetric spacetimes and including angu-
lar momentum, as well as to extend the analysis presented
here by investigating the constraints in additional modified
gravity theories, such as the recent reformulation of Gauss-
Bonnet gravity in four dimensions with nontrivial gravi-
tational dynamics [47,48].
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APPENDIX: MTG TERM COEFFICIENTS
OF k= 0 PBH SOLUTIONS IN FOURTH-ORDER

GRAVITY THEORIES

Evaluation of Eqs. (54)–(56) with the k ¼ 0 metric
functions Eqs. (k0.1) and (k0.2) yields the following
explicit expressions for the lowest-order MTG coefficients
of Eqs. (k0.I)–(k0.III) in fourth-order gravity theories:

æ1̄ ¼
1

24r5g
½−6αðc1 − 1Þ3rgξþ 2αc312ξð−12h12 þ ð15h12h1 þ h312 − 21h32ÞrgÞ

þ 6c212ξð5αþ αc1ð2rgðh1 − h212Þ − 9Þ þ rgðαð4c2 − 2h1 − c32h12 þ 2h212Þ − 4βrgR0

− 2ðαþ 2βÞr2gR1 þ ðαþ 2βÞh12r2gR12ÞÞ þ 12αðc1 − 1Þr2g
ffiffiffi
ξ

p
c012 − 12αc212r

2
g

ffiffiffi
ξ

p
h012

þ 3c12rg
ffiffiffi
ξ

p
ðα

ffiffiffi
ξ

p
ðc1 − 1Þðh12ðc1 − 1Þ − 4c32Þ − 4αh12rgh012 − 2ðαþ 2βÞr3gR0

0Þ�
¼

ffiffiffi
ξ

p
œ12 ¼ ξø0: ðA1Þ

Explicit expressions for the next-highest order coefficients æ12,œ0, and ø12 of Eqs. (k0.I)–(k0.III) are provided in the linked
Github repository [37].
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