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We study Proca stars in a vector-tensor gravity model inspired by Horndeski’s generalized Einstein-
Maxwell field equations, supplemented with a mass term for the vector field. We discuss the effects of the
nonminimal coupling term on the properties of the resulting Proca stars. We show that the sign of the
coupling constant is crucial in determining the generic properties of these generalized Proca star solutions,
as soon as the magnitude of the coupling constant is sufficiently large to allow for significant deviations
from the standard Proca star case. For negative coupling constant we observe a new type of limiting
behavior for the generalized Proca stars, where the spacetime splits into an interior region with matter fields
and an exterior Schwarzschild region.
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I. INTRODUCTION

In recent times, extended gravity models have received
much interest (see, e.g., [1–4]). This big impetus resides on
the one hand on cosmological issues they might resolve and
on the other hand on the advent of gravitational wave
multimessenger astronomy [5–8], which is now allowing to
test such models in new regimes. Amongst the models
studied are numerous models containing new degrees of
freedom associated with additional scalar or vector type
gravitational fields and nonminimal couplings between
such scalar or vector and tensor fields.
In fact, by requiring the equations of motion to remain

second order, Horndeski proposed already in 1974 a
general Lagrangian in [9–11] based on an extension of
general relativity by a real scalar field. In 1976 Horndeski
then extended Einstein-Maxwell theory and obtained the
most general second-order vector-tensor theory of gravi-
tation and electromagnetism, subject to several conditions
[12]. When relaxing these conditions more general vector-
tensor theories with second-order field equations arise
[13,14], similar to the case of Horndeski-type scalar-tensor
theories (see [15] for the teleparallel version of such
generalized Proca theories).

A central point of interest in extended gravity models
are certainly their black hole solutions. Unlike the case of
scalar-tensor theories, however, vector-tensor theories have
received much less attention in this respect. Black hole
solutions in the vector-tensor model of Horndeski [12], that
features gauge invariance, were examined already in [16]
and generalized recently in [17]. Black hole solutions of the
more general vector-tensor theories [13,14] were discussed
in [18–23]. Analogous to the phenomenon of spontaneous
scalarization of black holes [24–26], recently also the
phenomenon of spontaneous vectorization of black holes
was argued to occur [27–30], when the vector field is
suitably coupled to an invariant. Indeed, in [31] it was
shown that black holes can form Proca hair “spontane-
ously”, when the standard Einstein-Proca theory is
extended to include a nonminimal coupling of the form
AμAμI with I the Gauss-Bonnet invariant.
The presence of additional fields of scalar or vector type

may, however, also lead to regular gravitating solutions. In
the case of complex fields (which are equivalent to doublets
of real fields) these may constitute boson stars as first
conceived in [32–34] for minimally coupled scalar fields.
Such boson stars with scalar fields have been widely
investigated ever since (see e.g., [35–38]). But scalar boson
stars have also been studied in a variety of extended gravity
models [39–47]. In contrast, boson stars composed of
vector fields, i.e., Proca stars, have only been considered
in more recent times.
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Proca stars were first obtained for the case of a massive
vector field coupled minimally to general relativity in
[48], where it was shown that Proca stars are similar to
scalar boson stars in many respects. They are globally
regular solutions of the (extended) Einstein-Proca equa-
tions, where the harmonic time dependence (with fre-
quency ω) of the complex Proca field cancels out in the
stress-energy tensor, and therefore leads to a stationary
spacetime. The global U(1) invariance of the theory gives
rise to a conserved Noether charge, the particle number.
Proca stars form a characteristic spiraling pattern, when
the mass or the charge are considered as functions of
the boson frequency. Subsequent studies considered
Proca stars with self-interaction [49,50] and charge [51],
their time evolution [52], formation [53], and collisions
[54], as well as Proca stars with nonminimal coupling to
gravity [55].
The role of this paper is to emphasize different—and

new—aspects of gravitating Proca stars, when extended
gravity models are employed. Along with [21,22,31]
we here consider a vector-tensor model, but allow for a
complex vector field. In particular, we employ the
invariant of the generalized Horndeski Einstein-
Maxwell theory [12] as the nonminimal vector-tensor
coupling term, supplemented by a mass term. We con-
struct the Proca stars of this extended gravity model and
investigate their properties. This includes the dependence
on the coupling constant and the limiting behavior of the
resulting families of Proca stars.
This paper is organized as follows: We present the

model, the ansatz and the resulting field equations in
Sec. II. We discuss the generalized Proca stars and their
properties for positive and negative coupling constant in
Sec. III, where we also recall the properties of the standard
Proca stars for comparison. We conclude in Sec. IV.

II. THE MODEL

We consider the following nonminimally coupled vector-
tensor model

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
R−

1

4
F�
μνFμνþγIðg;A;A�Þ−UðA�

μAμÞ
�

ð1Þ

where R is the Ricci scalar and Fμν is the field strength
tensor of a complex vector field Aμ. The nonminimal
coupling term between the vector field and the tensor field
Iðg; A; A�Þ reduces for a real vector field to the coupling
term of the generalized Einstein-Maxwell theory of
Horndeski [9,12], which uniquely satisfies the following
conditions; it yields second-order vector-tensor field equa-
tions via a variational principle, it yields charge conserva-
tion, and it yields the Maxwell equations in the flat space-
time limit. The coupling term reads,

Iðg;A;A�Þ¼−
1

4
ðF�

μνFκλRμν
κλ−4F�

μκFνκRμ
νþF�

μνFμνRÞ;
ð2Þ

and its strength is governed by the coupling constant γ.
Whereas Horndeski theory features gauge invariance of the
vector field, we here break gauge invariance by adding a
potential UðψÞ for the vector field,

UðψÞ ¼ μ2

2
ψ þ λ

4
ψ2; ψ ¼ A�

μAμ; ð3Þ

that contains a mass term and a self-interaction term.
The Lagrangian (1) possesses a global Uð1Þ symmetry

Aμ → expðiχÞAμ with an associated conserved Noether
current of the form

jα ¼ i
2
ððFαβÞ�Aβ − FαβA�

βÞð1þ γRÞ

þ iγ
2
ðAβF�μν − A�

βF
μνÞRαβ

μν

− 2iγððFμβÞ�Aβ − FμβA�
βÞRα

μ: ð4Þ

Wewill follow [12] to derive the Einstein and vector field
equations. Variation of Eq. (1) with respect to the metric gij
yields the generalized Einstein equations

Aij¼0¼ ffiffiffiffiffiffi
−g

p �
−
1

2κ
Gij−

γ

8
Aij
ðIÞ þ

1

2
Aij
ðFÞ−Aij

ðUÞ

�
; ð5Þ

with

Aij
ðIÞ ¼ δiabcdefkg

dj

�
1

2
ð½F�

alF
el þ FalF�el�Rbc

fk þ∇kF�
al∇cFel þ∇kFal∇cF�elÞ

�
;

Aij
ðFÞ ¼

1

2
ðF�iaFj

a þ FiaF�j
aÞ −

1

4
gij

1

2
ðF�abFab þ FabF�

abÞ;

Aij
ðUÞ ¼

∂U
∂ψ

∂ψ
∂gij þ

1

2
Ugij;
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and δabcdefkl ¼ ηabcdηefkl, where ηabcd denotes the Levi-Civita
tensor.
On the other hand, variation with respect to the vector

field A�
i yields the vector field equations

Bi ¼ 0 ¼ −
γ

4
δiabcdefk∇aFdeRbc

fk þ∇jFij þ 2
∂U
∂ψ Ai: ð6Þ

A. Ansatz

We will be interested in spherically symmetric solutions
and hence choose the metric to be of the form

ds2 ¼ −fðrÞðσðrÞÞ2dt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdφ2Þ;

fðrÞ ¼ 1 −
2mðrÞ

r
; ð7Þ

while the compatible most general ansatz for the vector
field reads

Aμdxμ ¼ e−iωt½a0ðrÞdtþ ia1ðrÞdr�: ð8Þ

With this ansatz the nonvanishing components of the
field strength and the nonminimal coupling term read,
respectively,

Ftr ¼ ωa1 − a00; I ¼ ðωa1 − a00Þ2ð1 − fÞ
σ2r2

; ð9Þ

where the prime denotes the derivative with respect to r.
The reduced effective Lagrangian density then becomes

Leff ¼
1

κ
ðσð1 − f − rf0ÞÞ þ r2

2σ
ðωa1 − a00Þ2 − σr2UðψÞ

þ γ
ð1 − fÞðωa1 − a00Þ2

σ
;

ψ ≡ −
a20
fσ2

þ fa21; ð10Þ

yielding for the two metric functions mðrÞ and σðrÞ the
equations

m0 ¼ κ

2
r2T0

0eff ;

σ0 ¼ κσr

��
a21 þ

a20
f2σ2

��
μ2

2
þ λ

2

�
fa21 −

a20
fσ2

��

þ γ

r2σ2
ðωa1 − a00Þ2

�
; ð11Þ

with the effective energy density

ðT0
0Þeff ¼

ðωa1 − a00Þ2
2σ2

�
1þ 2γð1− fÞ

r2

�
þ μ2

2

�
fa21þ

a20
fσ2

�

þ λ

4

�
f2a41þ

2

σ2
a20a

2
1 −

3

f2σ4
a40

�
: ð12Þ

The equations for the two Proca-field functions read

ωða00 − ωa1Þ
�
1þ 2γð1 − fÞ

r2

�
þ 2σ2fa1

dU
dψ

¼ 0; ð13Þ

and

σf
r2

d
dr

�ða00−ωa1Þ
σ

ðr2þ2γð1−fÞÞ
�
−2a0

dU
dψ

¼0: ð14Þ

Combining the two equations above, the Lorentz condition
on the Proca field can be obtained as follows (note that this
condition is independent of the Horndeski term)

∇μ

�
dU
dψ

Aμ

�
¼ 0 ⇒

σf
r2

d
dr

�
r2σfa1

dU
dψ

�
þ ωa0

dU
dψ

¼ 0:

ð15Þ

We note that the Eqs. (11)–(14) are consistent with the
general Einstein and vector field Eqs. (5) and (6).
In order to solve the system of four coupled ordinary

differential equations above, we need to impose appropriate
boundary conditions in order to ensure regularity as well as
asymptotic flatness. These conditions read

mð0Þ ¼ 0; a1ð0Þ ¼ 0; a00ð0Þ ¼ 0;

σð∞Þ ¼ 1; a0ð∞Þ ¼ 0: ð16Þ

There are five parameters, κ, γ, μ, λ, and ω. But instead of ω
we use a0ð0Þ as an input parameter, which we impose as an
additional condition on the above system, supplemented
with an auxiliary differential equation for ω, ω0 ¼ 0. Note
that the parameters κ and μ can be set to fixed values
without losing generality by rescaling the vector field and
the radial variable, suitably. The remaining parameters are
then γ, λ, and ω or a0ð0Þ. Also note that mðr → ∞Þ → M,
i.e., the value of the mass function mðrÞ at spatial infinity
gives the ADM mass M.
Within the spherical symmetric ansatz, the globally

conserved charge associated with the locally conserved
Noether current (4) takes the form

Q ¼ 4π

Z
∞

0

j0σr2dr;

j0 ¼ a1ðωa1 − a00Þ
σ2

½1þ γðRþ 2R01
01 − 4R0

0Þ� ð17Þ
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with

Rþ 2R01
01 − 4R0

0 ¼ 2

�
1 − f
r2

þ 2fσ0

rσ

�
: ð18Þ

III. RESULTS

A. γ = 0 case

For γ ¼ 0, the Horndeski coupling term is switched off
and the theory reduces to general relativity with a complex
vector field. The field equations then give rise to the well-
known Proca stars. Their properties have been first dis-
cussed in [48], employing only a mass term for the vector
field. In order to check the validity of our numerical
procedure and be able to compare our results for the
nonminimal model to that of minimally coupled gravity,
we have reconstructed these solutions. Our results are
shown in Fig. 1 (left), where we give the value of the
mass M, the Noether charge Q and the value of the metric
function σðrÞ at the origin, σð0Þ, in dependence of ω.
Starting from ωmax ¼ μ, several branches of solutions
exist (we have been able to construct three) that show
the typical spiral-like behavior. For the limiting solution
σð0Þ → 0, while fðrÞ remains perfectly well behaved
on the full interval r ∈ ½0∶∞Þ, see Fig. 1 (right) for the
metric functions fðrÞ and σðrÞ as well as the vector field
functions a0ðrÞ and a1ðrÞ for a solution with a0ð0Þ ¼ −5.
[Note that for γ ¼ 0, the system is symmetric under the
exchange ða0; a1Þ → ð−a0;−a1Þ.] This strongly suggests
that the successive branches of Proca stars approach a
configuration with a curvature singularity at the origin.
In particular the Ricci scalar tends to infinity with

Rð0Þ ∼ −6ðf00ð0Þ þ σ00ð0Þ
σð0Þ Þ þOðr2Þ.

The effect of a quartic self-interaction on the properties
of Proca stars has been studied in [49].

B. γ ≠ 0

In order to study the effect of the nonminimal coupling
on the Proca star solutions discussed above, we now vary
the coupling constant γ. As in the previous case, we set
κ ¼ 0.1, μ ¼ 1, and λ ¼ 0. Since the sign of γ plays a
crucial role for the properties of the Proca stars, we will
now discuss the case of positive and negative γ separately.

1. γ > 0

We find that for positive γ, important qualitative features
found for the standard Proca stars are unaltered; we observe
a spiraling behavior and several branches of solutions when
increasing the parameter a0ð0Þ. This is seen in Fig. 2 (left),
where we show the massM, the Noether chargeQ and σð0Þ
as functions of ω for γ ¼ 4. Compare this to Fig. 2. We also
show the mass-to-charge ratio M=Q as well as the value of
ω versus a0ð0Þ, see Fig. 2 (right). Very similar to what has
been observed in the γ ¼ 0 case, a0ð0Þ can be increased to a
maximal value, where σð0Þ → 0. However, for γ ¼ 4 we
note that M=Q > 1 always. Since M=Q ¼ 1 indicates the
transition to an unbound system of Q bosons of mass
μ ¼ 1, this means that in this case the Proca stars should be
unstable to decay into a system of free particles. This is of
course different from the standard Proca case, where
M=Q < 1 along a large part of the fundamental branch,
prohibiting such decay. However, for sufficiently small
positive values of γ it is clear by continuity from the
standard case that M=Q < 1 will still be realized along a
part of the fundamental branch, and thus stable solutions
will be present. Furthermore we observe that the non-
minimal coupling allows for Proca stars with smaller values
of ω as compared to the standard case.

2. γ < 0

We now turn to negative values of the coupling constant
γ. Our results for two negative values of γ are shown in

FIG. 1. (Left): The mass M, the charge Q and the value of σð0Þ versus ω for solutions with γ ¼ 0 (κ ¼ 0.1, μ ¼ 1, λ ¼ 0)
corresponding to standard Proca stars. (Right): An almost limiting solution of the Proca star branch with a0ð0Þ ¼ −5.
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Fig. 3. As for positive γ, we observe that the nonminimal
coupling allows for lower values of ω also for negative γ.
However, as compared to the standard Proca case, and the

case of positive γ, important qualitative features of the
solutions have changed for negative γ. The main difference
is that for sufficiently negative γ [see Fig. 3 (bottom)

FIG. 3. Same as Fig. 2, but for γ ¼ −0.02 (top left and right) and γ ¼ −0.4 (bottom left and right), respectively. For comparison, we
also show the mass to charge ratio M=Q in function of a0ð0Þ for the γ ¼ 0 solutions (black dashed, right).

FIG. 2. The mass M, the charge Q and the value of σð0Þ versus ω (left) as well as the mass-to-charge ratio M=Q and the value of ω
versus a0ð0Þ (right) for γ ¼ 4.0. For comparison, we also show the mass to charge ratioM=Q in function of a0ð0Þ for the γ ¼ 0 solutions
(black dashed, right).
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for γ ¼ −0.4] there is now a unique solution for a given
value of ω, i.e., we do not find a spiraling behavior.
Also, for γ ¼ −0.4 the mass-to-charge ratio M=Q < 1
always. Thus the solutions should not be able to decay
into Q free particles.
To better explain the transition from positive to negative

values of γ, we also present results for γ ¼ −0.02, see
Fig. 3 (top). We observe that the spiraling behavior close to
the minimal value of ω has disappeared, but that the local
maximum of the massM and the chargeQ close to ω ¼ 1 is
still present. Moreover, as an intermediate case between the
positive and negative value cases discussed above, there
exist Proca stars with M=Q < 1 as well as with M=Q ≥ 1

for γ ¼ −0.02. Hence, depending on the choice of the
value of a0ð0Þ we would expect the Proca stars to be stable,
respectively unstable, with respect to the decay into
individual particles.
Additionally, the approach to criticality is very different

as compared to the γ ≥ 0 case. When increasing a0ð0Þ from
zero, we find that a new phenomenon arises, when the
maximal value of a0ð0Þ is approached. The set of solutions
no longer ends at this maximal value a0;maxð0Þ. Instead, it
can be continued by decreasing a0ð0Þ again. Thus at the
maximal value two branches bifurcate smoothly and end.
For the data shown in Fig. 3, we find that a0;maxð0Þ ≈ 0.38
with a value of ω ≈ 0.64 for γ ¼ −0.4, while a0;maxð0Þ ≈
1.94 with a value of ω ≈ 0.84 for γ ¼ −0.02, respectively.
This indicates that the larger the absolute value of γ, the
smaller are a0;maxð0Þ and the corresponding ω.
The new second branch of solutions exists for a0ð0Þ ∈

½a0;crð0Þ∶a0;maxð0Þ�, with a0;crð0Þ < a0;maxð0Þ. As the criti-
cal value a0;crð0Þ is approached the metric function fðrÞ
tends to zero at some nonzero, intermediate value of the
radial variable, r ¼ rcr.

The profiles of the metric and vector field functions of a
solution very close to the critical limit are shown in Fig. 4
for γ ¼ −0.02 (left) and γ ¼ −0.4 (right). For comparison
the figure also shows the metric function fSðrÞ for a
Schwarzschild black hole with horizon radius rH ¼ rcr
(black dashed line). Intriguingly, there is almost perfect
agreement of fSðrÞ with the function fðrÞ for r ≥ rcr, i.e.,
in the exterior region of the Schwarzschild black hole.
Moreover, the second metric function σðrÞ≡ 1 for r > rcr,
which is again in agreement with the metric of the
Schwarzschild solution since σSðrÞ≡ 1. This suggests that
for r > rcr the solution corresponds to a Schwarzschild
black hole solution. Of course, a Schwarzschild black hole
is a vacuum solution, so there should not be any nontrivial
matter fields in the exterior region r > rcr. Inspection of the

FIG. 4. The profiles of the metric functions fðrÞ, mðrÞ, σðrÞ, and the vector field functions a1ðrÞ, a0ðrÞ of a solution close to the
limiting solution for γ ¼ −0.02 corresponding to ω ≈ 0.32 (left) and for γ ¼ −0.4 corresponding to ω ≈ 0.22 (right), respectively. For
comparison we also show the metric function of the corresponding Schwarzschild solution fS ¼ 1 − 2M

r (black dashed) with
M ¼ mðr → ∞Þ.

FIG. 5. The T0
0 component of the energy-momentum tensor

(black) and the Ricci scalar R (purple) for the near criticial Proca
star solutions for γ ¼ −0.02 (solid) and γ ¼ −0.4 (dashed),
respectively.
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vector field function in Fig. 4 confirms, that the vector field
indeed vanishes in the exterior region r > rcr.
In the interior region r < rcr, however, the limiting

solution features a finite vector field, and also the metric
functions differ strongly from the Schwarzschild metric
functions. Thus the spacetime of the limiting solution is
composed of an interior part with matter fields and an
exterior vacuum part, that are joined at the horizon rH ¼ rcr
of the exterior Schwarzschild black hole, where the metric
function fðrÞ exhibits a cusp, while the metric function
σðrÞ exhibits a finite jump. Such jumps arise also for the
two vector field functions. In the standard case such a
limiting behavior is not present. Therefore it represents a
new feature that appears for nonminimal coupling with
sufficiently negative γ.
In Fig. 5 we show the T0

0 component of the energy-
momentum tensor for the two near-critical solutions in the
case γ ¼ −0.02 and γ ¼ −0.4, respectively. Clearly, both
T0
0 and R show a peak close to rH ¼ rcr.
We remark that we have not encountered an analogous

limiting behavior before, where the spacetime splits into an
interior part with nontrivial matter fields and an exterior
Schwarzschild part. In contrast, the split into an interior part
with nontrivial matter fields and an exterior extremal
Reissner-Nordström part has been seen in many different

circumstances, ranging from gravitating monopoles [56,57]
(see also [58]) to scalarized black holes [59,60]. In that case
the metric function fðrÞ develops a degenerate zero at
rH ¼ rcr. In order for such a scenario to be able to
take place, however, the Reissner-Nordström black hole
must be a solution of the field equations. In the present
case this is inhibited by the mass term of the vector field.
The Schwarzschild solution is, however, a solution of the
field equations.
It is then interesting to compare the compactness of these

solutions with the Schwarzschild case. Since our solutions
are certainly not compact in the sense that they have a well
defined radius outside which the energy density is strictly
zero, we can compute the radius R99 (and R95) of the sphere
that contains 99% (respectively 95%) of the mass M of the
Proca star solution. The values are given in Table I. As
expected, these values are very close to the Schwarzschild
radius rS ¼ 2M of these solutions. We have further inves-
tigated the effective potential appearing in the geodesic
equation for test particles in this spacetime. The geodesic
equation can be written as

σ2 _r2 þ VeffðrÞ ¼ E2; VeffðrÞ ¼ fσ2
�
L2
z

r2
− ε

�
; ð19Þ

where the dot denotes the derivative with respect to an
affine parameter. Moreover, ε takes on the value 0 for
massless particles and −1 for massive particles, respec-
tively. We show the effective potential VeffðrÞ=L2

z of
photons (ε ¼ 0) in the spacetime of Proca stars for
γ¼4.0 and γ ¼ −0.4, respectively, in Fig. 6. For γ ¼ 4.0
we find that the effective potential possesses a positive-
valued local maximum and a positive-valued local mini-
mum for sufficiently large values of a0ð0Þ. For a0ð0Þ ¼ 3.5
we find that the local minimum of the effective potential is
located at rV;min ≈ 0.048 (see also Table I) and has value

FIG. 6. The effective potential VeffðrÞ=L2
z [see (19)] for photons (ε ¼ 0) in the space-time of Proca star solutions for γ ¼ 4.0 (left) and

γ ¼ −0.4 (right), respectively. The values of a0ð0Þ ¼ 3.0, 3.2, 3.3, 3.5 (left) correspond to ω ≈ 0.662, 0.658, 0.655, 0.649, while the
values of ω ¼ 0.2145, 0.4000, 0.8000 (right) correspond to a0ð0Þ ≈ 0.158, 0.287, 0.286.

TABLE I. The location of the local minimum rV;min of the
effective potential (see also Fig. 6) for some values of γ and ω
[or a0ð0Þ].
γ ω a0ð0Þ rV;min

−0.40 0.2145 0.158 2.853
−0.02 0.8330 1.900 0.635
0.00 0.8900 5.000 0.017
4.00 0.6490 3.500 0.048
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Veff=L2
z ≈ 1.493, i.e., a photon with E2=L2

z ¼ 1.493 would
move on a stable circular photon orbit with radius 0.048
around the Proca star. Decreasing γ, we find that the
location of this minimum moves to larger values of r—
see Table I. At values of γ for which we observe the
phenomenon described above (see the plots for γ ¼ −0.4 in
Fig. 6), the location of the minimum of the effective
potential is located roughly at the event horizon of the
corresponding Schwarzschild black hole. The spacetime of
the Proca star for γ ¼ −0.4, ω ¼ 0.2145 has rV;min ≈ 2.853,
while the mass of the star is M ≈ 1.429 corresponding to a
Schwarzschild radius of rH ¼ 2.858. The radius of the
corresponding unstable photon orbit is rV;max ≈ 0.073 for
γ ¼ 4.0, a0ð0Þ ¼ 3.5.
We have also constructed branches of solutions for

fixed value of a0ð0Þ and varying nonminimal coupling
parameter γ. Our results for a0ð0Þ ¼ −0.3 are shown in
Fig. 7. Obviously, the solutions corresponding to γ < 0
exist only up to a maximal value of jγj, where again two
branches of solutions bifurcate smoothly and end. These
branches can, for instance, be distinguished by their values
of ω. One of these branches connects to the standard
Proca star in the limit γ → 0. When decreasing γ from zero
along this branch, we find that the mass increases and
the frequency decreases until the minimal possible value of
γ, γmin, is reached. Here this branch merges smoothly with
the second branch of solutions, that exists for γ ∈ ½γmin∶γcr�,
where γmin < γcr. For a0ð0Þ ¼ −0.3 we find that
γmin ≈ −0.54, while γcr ≈ −0.25. The limit γ → γcr is
analogous to the limit described above with a zero of
the metric function fðrÞ forming at some intermediate
value of the radial variable, r ¼ rcr.

IV. CONCLUSION

We have constructed Proca stars in a vector-tensor
theory, obtained by generalizing the vector-tensor theory

of Horndeski [12] by promoting the vector field to a
complex massive field. In this theory the vector field is
nonminimally coupled to gravity, where the strength of the
corresponding coupling term is regulated by a coupling
constant γ. For vanishing γ general relativity and the
standard Proca stars with their well-known features are
recovered.
As the coupling constant is increased or decreased from

zero the properties of the Proca stars start to change. For
positive values of γ the spiraling pattern of the solutions is
retained, but the global charges M and Q decrease. Since
the charge Q decreases faster, the Proca star solutions no
longer present bound systems for sufficiently large values
of the coupling, since the mass-to-charge ratio is always
greater than one. Thus stability of the solutions should be
lost, since their decay would be energetically favorable.
For negative values of γ, on the other hand, the changes

with respect to the standard Proca case are even stronger,
when the magnitude of γ is sufficiently large. In this case no
trace of the spiraling pattern of the standard Proca stars is
left. Instead the solutions can be continued to much smaller
values of ω before they cease to exist. The mass shows a
single maximum, while the charge continues to rise
monotonically. Consequently, the mass-to-charge ratio of
these configurations is always smaller than one, with the
bosons getting continuously stronger bound, as the limiting
configuration is approached.
The limiting configuration in the case of (sufficiently)

negative coupling possesses rather surprising features.
It consists of two distinct parts, an interior part with matter
fields and an exterior vacuum part. Both parts are joined
at a critical radius rcr, where the exterior Schwarzschild
solution features its event horizon. The transition at rcr is,
however, not smooth. This limiting configuration is
vaguely reminiscent of the limiting configurations occur-
ring in certain non-Abelian or scalarized solutions.
However, in those cases the exterior solution corresponds
to an extremal Reissner-Nordström solution with a degen-
erate horizon. In the present case this would not be
possible, since only a Schwarzschild black hole but not
a Reissner-Nordström black hole is a solution of the field
equations.
Interesting future work in this vector-tensor theory will

be the inclusion of rotation to generate rotating generalized
Proca stars. It will then be tempting to subsequently insert a
horizon. In this latter case generalized Kerr black holes with
Proca hair will result, where the frequency of the Proca
field will be synchronized with the rotational velocity of the
event horizon [61].
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FIG. 7. The value of ω, of σð0Þ as well as of the massM versus
the coupling constant −γ for fixed a0ð0Þ ¼ −0.3.
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