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We study a family of solutions of Einstein-nonlinear sigma models with S2 and SUð2Þ ∼ S3 target
manifolds. In the S2 case, the solutions are smooth everywhere, are free of conical singularities, and
approach asymptotically the metric of a cosmic string, with a mass per length that is proportional to the
absolute value of the winding number from topological spheres onto the target S2. This gives an interesting
example of a relation between a mass and a topological charge. The case with target SUð2Þ generalizes the
stationary solution found in Canfora et al.Eur. Phys. J. C 81, 55 (2021) to parallel waves with a nonplanar
wave frontW. We prove that theseW-fronted parallel waves are subquadratic in the classification in Flores
et al.Classical Quantum Gravity 20, 2275 (2003) and thus are causally well behaved. These spacetimes
have a nonvanishing baryon current and their geometry has many striking features.
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I. INTRODUCTION: EINSTEIN-NONLINEAR
SIGMA MODEL

Quantum chromodynamics (QCD), a non-Abelian gauge
theory with SUð3Þ gauge group, gives a description of
hadrons in terms of their fundamental degrees of freedom:
quarks and gluons. Hadrons, being composite particles,
appear in the low energy limit of QCD, which corresponds
to the nonperturbative, strongly coupled regime. At these
energy scales it is found that effective theories become the
most efficient tools to describe them. The leading term of
the effective Lagrangian in Minkowski spacetime is the
nonlinear sigma model (NLSM)

L ¼ K
4
TrðLaLaÞ; ð1Þ

where we neglected the quark masses (see, e.g., Sec. VII.1
in [1]) and

La ¼ U−1∂aU ð2Þ

is the Maurer-Cartan form for a field U with the target
group SUð2Þ. This effective theory encodes the low energy
dynamics of pions.
The NLSM in Eq. (2) cannot support static solitonic

solutions in Minkowski spacetime. This was proved long
ago by Derrick using an elegant scaling argument [2].

Solitons are of interest because they can be understood
as baryons. Skyrme [3] introduced a modification to the
NLSM to allow for such static, topologically stable solitonic
solutions on Minkowski spacetime, by adding to the
Lagrangian in Eq. (1) the term Trð½La; Lb�½La; Lb�Þ, which
is part of the subleading contributions to the QCD effective
Lagrangian (see Sec. XI.4 in [1], as well as Chap. 9 in [4]).
Derrick’s scaling argument, however, can also be circum-

vented in other ways, since it uses the symmetries of
Minkowski spacetime and implicit boundary conditions.
One such method is imposing periodic, crystal-like boundary
conditions on flat spacetime [5,6]. Another, and the one
explored in this paper, is coupling the NLSM to Einstein’s
gravity [7–10]. In fact, if we minimally couple the NLSM to
gravity, it is possible to find solitonic solutions keeping
only the low energy leading term Eq. (1), that is, working
with the action

S ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R
2κ

þ K
4
TrðLaLaÞ

�
; ð3Þ

where La is the Maurer-Cartan form in Eq. (2) for a field
U∶ M → SUð2Þ, ðM; gabÞ is the spacetime, κ is Newton’s
constant, and K is the coupling constant of the NLSM,
which is proportional to the square root of the decay constant
of pions. In geometrized units, we have [7]

0 < Kκ ≪ 1: ð4Þ
The NLSM term in (3) has an interesting geometric inter-
pretation: as we prove in Sec. II, it is (proportional to) the
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trace of the pullback of the S3 ¼ SUð2Þ metric onto
spacetime. As such, it belongs to the family of Einstein-
NLSM (ENLSM). In these theories, there is field
Ψ∶ M → N with the target a compact boundaryless
Riemannian manifold ðN;GABÞ, and the action is given
by the Einstein-Hilbert term plus the trace of the pullback by
Ψ of the metric GAB:

SNLSM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ K
2
gab∂aΨA∂bΨBGABðΨðxÞÞ

�
:

ð5Þ

Previous related work [8–10] uses the full Skyrmion model
coupled to Einstein gravity instead of the simpler action in
Eq. (3) [or equivalently Eq. (5)]. This simpler action was,
however, recently considered in [7], where solutions with a
stationary spacetime metric were found that describe soli-
tonic matter.
In this work, we generalize those stationary spacetimes

to be dynamical. Specifically, we find solutions to the
action in Eq. (3) for which the spacetime metric has a Kerr-
Schild character and describes a parallel wave with a
nonplanar wave front with transverse metric ds2W :

ds2 ¼ −dudvþHðu; ρ;ϕÞdu2 þ dρ2 þ SðρÞ2dϕ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼ds2W

: ð6Þ

Metrics of this form generalize plane-fronted waves with
parallel propagation, or pp-waves for short. Such gener-
alized pp-waves were studied in [11–13], where it was
found that the rate of growth of H as a function of the
distance d to a fixed point on W, as d → ∞, determines
the causal behavior of the spacetime. We show below that
our solutions correspond to the subquadratic case in the
classification in [11–13], which has a much better causal
behavior than the ordinary, plane fronted pp-waves [14].
These solutions are interesting not only given the physical
model they are derived from but also because of their
geometric properties as parallel waves traveling on a
cylindrical background.
We also study a particular static solution of the theory (5)

with target S2. This solution has a metric with cylindrical
symmetry, that is, of the form in Eq. (6) withH ¼ 0. It is an
interesting example of an everywhere smoothmetric, which
asymptotically looks like that of a cosmic string, since
SðρÞ ≃ βþρ for large ρwith 0 < βþ < 1. On the other hand,
near ρ ¼ 0 we find that S ≃ ρþOðρ2Þ, which ensures that
ds2W is free of conical singularities. Most interesting, the
mass per length 2πð1 − βþÞ=κ of the asymptotically ap-
parent string is proportional to the absolute value of
the winding number of—topologically—spacetime spheres
onto the target S2.
The paper is organized as follows. In Sec. II we review

the derivation of the baryon charge conservation of the

theory (5) and discuss some subtleties about integration on
hypersurfaces that are not everywhere spacelike. In Sec. III,
we present the field equations of the action Eq. (5) and
derive the solution with the metric as in Eq. (6). A by-
product of these calculations gives a static solution of the
theory (5) with target S2. This is discussed in Sec. IV, where
we elaborate on its geometry and establish the relationship
between its mass per length and the topological winding
number. In Sec. V we return to the SUð2Þ NLSM. After
exploring its geometry through the study of geodesics, we
discuss the baryon charge and, for the particular case in [7]
of a nonstatic U field leading to a static metric, we give
different notions of mass per length and relate it to the
baryon charge. The SUð2Þ field configuration that we
analyze does not carry a topological charge, and it can
be regarded as a parallel wave propagating in an otherwise
cylindrical spacetime. We end with Sec. VI by summariz-
ing our main results and discussing their implications.

II. FIELDS AND CONSERVED CURRENTS

In this section, we derive the equation for the baryon
conserved current thereby providing some further physical
background to the QCD Einstein-NLSM with action (3).
We also explain in some detail how to calculate the total
baryon charge at an open spacelike surface Σ0 that is
computationally challenging to find, by using Stokes/Gauss
theorem and replacing it with an integral on an asymptoti-
cally matching surface Σ.
We parametrize SUð2Þ ∼ S3 using hyperspherical coor-

dinates zA ¼ ðα;Θ, ΦÞ:

R4 ∋

0
BBB@

x1

x2

x3

x4

1
CCCA ¼

0
BBB@

sin α sin Θ sin Φ
sin α sin Θ cos Φ

sin α cos Θ
cos α

1
CCCA: ð7Þ

The normalized S3 metric GAB is

GABdzAdzB ¼ 1

2π2
ðdα2 þ sin2αdΘ2 þ sin2αsin2ΘdΦ2Þ:

ð8Þ

In terms of the coordinates ðα;Θ;ΦÞ, the SUð2Þ matrices
are given by

U�1 ¼ cosðαÞ12 � sinðαÞn̂ · t ¼ e�αn̂·t;

t ¼ ðiσ1; iσ2; iσ3Þ ð9Þ

with σj the Pauli matrices,

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
; ð10Þ
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and

n̂ ¼ ðsinðΘÞ cosðΦÞ; sinðΘÞ sinðΦÞ; cosðΘÞÞ: ð11Þ
The three pion fields are—mod normalization
conventions—π ¼ αn̂ [1]. Inserting Eqs. (9)–(11) into
Eq. (2) gives

La ¼ ½ð∂aαÞn̂þ sinðαÞ cosðαÞ∂an̂þ sin2ðαÞðn̂ × ∂an̂Þ� · t:
ð12Þ

This implies, as anticipated, that

−
1

2
Tr½LaLb� ¼ ∂aα∂bαþ sin2α∂aΘ∂bΘ

þ sin2αsin2Θ∂aΦ∂bΦ ð13Þ

is the pullback onto spacetime of the S3 metric in Eq. (8)
[compare (13) with (8)], whose trace Tr½LaLa� appears in
the action [see Eq. (3)].
The vector field

Ja ¼ 1

24π2
ϵbcdaTrðLbLcLdÞ ð14Þ

describes the baryon current and is dual to the 3-form
(conventions as in [15])

�Jbcd ¼ Jaϵabcd

¼ 1

4π2
TrðL½bLcLd�Þ

¼ 3

π2
sin2ðαÞ sinðΘÞ∂ ½bα∂cΘ∂d�Φ: ð15Þ

Index antisymmetrization is defined as a sum over signed
permutations divided by the factorial of the number of
antisymmetrized indices, so the above equation can be
written in the language of forms as

1

24π2
TrðL ∧ L ∧ LÞ ¼ 1

2π2
sin2αsin2Θdα ∧ dΘ ∧ dΦ;

ð16Þ

which is the pullback of the normalized S3 volume form
from Eq. (8). Since exterior derivatives commute with
pullbacks and the dimension of S3 is 3, the exterior
derivative of this 3-form vanishes. In view of the duality
in Eq. (15), this is equivalent to the condition of baryon
current conservation:

∇aJa ¼ 0: ð17Þ

The total baryon charge BΣ0 measured by the observers
with velocities na normal to an (open oriented) spacelike
hypersurface Σ0 is

BΣ0 ¼
Z
Σ0
JanaϵΣ

0
bcd ðϵΣ0

bcd ¼ ϵabcdnaÞ: ð18Þ

If BΣ00 is a second such a surface, and either Σ00 − Σ0 ¼ ∂V,
the boundary of an open subset of spacetime (the relative
sign here indicates reversal of the normal), or V is
topologically a cylinder with cups Σ00 and Σ0 and the fields
decay fast enough so that the flow through the lateral is
null; then charge is conserved, meaning that BΣ0 ¼ BΣ00 .
This follows from the Gauss theorem and Eq. (17), or
equivalently to the dual Stokes theorem and the fact that the
3-form dual to Ja, Eq. (15), is closed. It is important to
recall how one switches from Stokes’ to Gauss’ version in
the most general case: Consider a—possibly nonclosed—
orientable hypersurface Σ ⊂ M, choose a normal smooth
vector field Na on Σ. We allow the case where Σ changes
character from spacelike to timelike, as long as its
normal Na is null only on a zero measure set Σo. Let
na ¼ Na=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijNcNcj
p

. This vector field is smooth on
Σ̃ ¼ ΣnΣo (a disconnected set if Σo ≠ ∅), it is undefined
on Σo, and it is normalized to nana ¼ −1 (þ1) on the
spacelike (timelike) sectors of Σ. Let ϵΣ̃bcd ¼ ϵabcdna be the
volume form on Σ̃. Given a 3-form αabc on M with dual
va ¼ 1

6
ϵbcdaα

bcd (that is, αabc ¼ ϵdabcvd), we have

αbcdjΣ̃ ¼ −vanaðnknkÞϵΣ̃bcdjΣ̃; ð19Þ

where on the left side we mean pullback. The above
equality is used when proving Gauss theorem from
Stokes theorem on manifolds with boundary (the nknk ¼
�1 factor is the reason why we need to switch from outer to
inner normal when leaving spacelike sectors of the boun-
dary). Equation (19) is particularly useful when it is
difficult to explicitly determine the timelike/spacelike
sectors of Σ, since its left side is insensitive to these
changes. From now on we will treat integrals on Σ; thus the
distinction between Σ and Σ̃ is irrelevant. Suppose Σ is an
open hypersurface that is asymptotically spacelike and that
can be deformed onto a hypersurface Σ0 that is spacelike
everywhere and matches Σ in the asymptotic region.
Suppose we are interested in the total charge

R
Σ0 vanaϵΣ0

for a divergence-free vector field va, we do not know Σ0 in
detail, and, although we do know Σ, we would like to avoid
determining the sectors where Σ is timelike/spacelike.
In this case we can use the Gauss theorem and Eq. (19)
and find that (the orientation is chosen such that, when
timelike, na is future pointing)

Z
Σ0
vanaϵΣ

0
bcd ¼

Z
Σ
−vanaðnknkÞϵΣbcd ¼

Z
Σ
ϵabcdva: ð20Þ

For va ¼ Ja given in Eq. (14) the above equation gives
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BΣ0 ¼
Z
Σ0
JanaϵΣ

0
bcd ¼

1

4π2

Z
Σ
TrðL½aLbLc�Þ: ð21Þ

The integral on the left is the total baryon charge measured
by observers with velocity na. The above equation shows
that this can be calculated as an integral over the asymp-
totically matching surface Σ without knowing the sectors
where Σ is not spacelike.
The baryon charge in Eq. (21) is a conserved quantity in

the sense that the integral on the right is the same on surfaces
in the same homology class. This quantity, however, does
not necessarily have a topological meaning. If Σ is open and
complete and the fieldU tends to a constant (say, the identity
matrix) in the asymptotic region, we may regard BΣ0 as the
integral of the pullback of the normalized S3 metric onto a
manifold that is topologically equivalent to S3 (the one point
compactification of Σ0). In this case BΣ0 will be an integer:
the number of times this sphere wraps around SUð2Þ ¼ S3.
In general, however, U does not have a common limit at
infinity, and thus BΣ0 is not an integer.

III. PARALLEL WAVE SOLUTIONS

In this section, we present the field equations of the QCD
ENLSM (3) and a general class of parallel wave solutions
that generalize the solutions with static metrics found in [7].
The field equations derived from the action in Eq. (3) are

∇aLa ¼ 0 ð22Þ

and

Gab ¼ κTab; ð23Þ

where the energy-momentum tensor of the SUð2Þ field is

Tab ¼ −
K
2
Tr

�
LaLb −

1

2
gabLcLc

�

¼ K

�
sin2ðαÞsin2ðΘÞ

�
∂aΦ∂bΦ −

1

2
gab∂cΦ∂cΦ

�

þ sin2ðαÞ
�
∂aΘ∂bΘ −

1

2
gab∂cΘ∂cΘ

�

þ
�
∂aα∂bα −

1

2
gab∂γα∂γα

��
: ð24Þ

Equation (22) shows a minimal coupling to gravity of the
pion field equation in Minkowski spacetime. Note that,
since La ¼ U−1∂aU, this equation is indeed second order
in the pion fields π. Note also that it has the form of a
conserved current equation. This is because the action in
Eq. (3) is invariant under the SUð2Þ × SUð2Þ (global)
transformation

U → gLUg†R; ðgL; gRÞ ∈ SUð2Þ × SUð2Þ; ð25Þ

and La is the Noether current under the left SUð2Þ
subgroup for which gR ¼ I [16]. The conservation
of the additional conserved current from the subgroup
gL ¼ I is trivially related to Eq. (22).
The field equations (22) and (23) admit solutions in

which the metric is a W-fronted parallel wave metric (as
defined in [17] and references therein):

ds2 ¼ −dt2 þ dz2 þHðt − z; r;ϕÞðdt − dzÞ2
þ l2e−2RðrÞðdr2 þ dϕ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ds2W

: ð26Þ

We may occasionally switch to null coordinates in t − z
space:

u ¼ t − z; v ¼ tþ z; ð27Þ

and use an alternative radial variable ρ for the wave front
cross section W, which has ðþ;þÞ metric

ds2W ¼ l2e−2RðrÞðdr2 þ dϕ2Þ ¼ dρ2 þ S2ðρÞdϕ2: ð28Þ

In terms of r, ρ and SðρÞ are given by

dρ
dr

¼ �S; S ¼ le−RðrÞ: ð29Þ

Switching to ðu; v; ρ;ϕÞ coordinates, the metric in Eq. (26)
becomes that of Eq. (6).
Note thatH, R, r, and ϕ are dimensionless, l, t, z, u, v, ρ

have dimensions of length, and

−∞ < r; z; t; u; v < ∞; ϕ ∼ ϕþ 2π: ð30Þ

The range of ρ depends on how S decays as r → �∞.
The wave vector ka, given in ðu; v; �; �Þ coordinates by

ka∂a ¼ ∂v is: (i) orthogonal to the wave fronts u ¼ const,
(ii) null, and (iii) covariantly constant. The latter property
ensures that the spacetime is a member of the Kundt class,
which are Lorentzian manifolds admitting a geodesic null
congruence with vanishing optical scalars (expansion,
shear, and twist) [18]. The wave vector ka is used to select
a time orientation by defining it to be future oriented. This
choice implies that, in those regions where ∂t in Eq. (26) is
timelike, it is future oriented. We call these spacetimes
W-fronted parallel waves because the wave vector k is
covariantly constant and the transverse metric on the wave
fronts is ds2W . These generalize pp-waves, which corre-
spond to the particular case where ds2W is planar. We will
prove below that the decay of H at large distances alongW
guarantees that our solutions fall, in the classification
in [12], in the subquadratic type, making them causally
well behaved, contrary to what happens with the flat
fronted pp-waves [14].
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Our SUð2Þ field ansatz is

α ¼ αðrÞ; Θ ¼ qϕ; Φ ¼ Fðt − zÞ; ð31Þ

where F is a function that models the wave profile. It
generalizes that in [7] allowing for nonstationary spacetime
metrics [19].
For the ansatz (26)–(31), we find that Eqs. (22) and (23)

reduce to three independent field equations:

ðα0ðrÞÞ2 ¼ q2sin2ðαðrÞÞ;
R00ðrÞ ¼ Kκq2sin2ðαðrÞÞ; ð32Þ

and [note the trivial way F0ðt − zÞ appears in this equation]

ð∂2
r þ ∂2

ϕÞH
¼ −2Kκl2 expð−2RðrÞÞsin2ðαðrÞÞsin2ðqϕÞðF0ðt − zÞÞ2

¼ −2
�
l
q

�
2

expð−2RðrÞÞR00ðrÞsin2ðqϕÞðF0ðt − zÞÞ2:

ð33Þ

We find that the function F is constrained neither by the
field equations nor by energy conditions. The dominant
and strong energy conditions are satisfied in any case for
this theory, as proved in [20]. Alternatively, the strong
energy condition

Rabζ
aζb ≥ 0 for timelike ζa ð34Þ

follows from Proposition 2.2 in [11] and the facts that
Eq. (33) implies that the W-Laplacian of H is negative,
whereas Eq. (32), together with RW

jk ¼ diagðd2R=dr2;
d2R=dr2Þ in ðr;ϕÞ coordinates, implies that RW

jk is positive
definite.
Discarding the uninteresting solution to Eq. (32) with

αðrÞ ¼ 0; π and RðrÞ¼Arþb, we are left with the solution

αðrÞ ¼ 2 arctan ðexpðϵjqjrþ C1ÞÞ;
RðrÞ ¼ Kκ ln ðcoshðϵjqjrþ C1ÞÞ þ C2rþ C3; ð35Þ

with ϵ ¼ �1 and C1, C2, and C3 arbitrary constants.
Interestingly, despite the fact that the field equations are
nonlinear and coupled in an intricate way, whether or not F0
is a constant (and consequently whether the metric is static
or dynamical), the field equations for the nonlinear sigma
model together with the corresponding Einstein equations
lead to the same solutions for αðrÞ and RðrÞ. This is a
remarkable property of the ansatz in Eqs. (26) and (31) that
allows us to disentangle the physical effects introduced
through FðuÞ.
We now analyze the constraints on the relevant integra-

tion constants. All algebraic (that is, nondifferential)

curvature scalar fields made out of the Riemann tensor,
the metric, and its inverse, and the volume form—for which
a basis is given in [21]—are powers of the Ricci scalar R,

R ¼ 2

l2
e2RðrÞR00ðrÞ; ð36Þ

and thus are independent of H. Since

e2RðrÞR00ðrÞ ¼ Kκq2 coshðϵjqjrþ C1Þ2Kκ−2e2C2rþ2C3

∼ ejqjjrjð2Kκ−2Þe2C2r as jrj → ∞; ð37Þ

in view of (4), requiring that the scalars of curvature be well
behaved for −∞ < r < ∞ is equivalent to the condition
found in [7]:

jC2j < ð1 − KκÞjqj: ð38Þ

The relation between the radial coordinates −∞ <
r < ∞ and ρ is dρ=dr ¼ �S, with

S ¼ le−RðrÞ

¼ l coshðϵjqjrþ C1Þ−Kκe−C2r−C3

≃ ν�e−Kκjqjjrje−C2r≕ ν�eβ�r as r → �∞; ð39Þ

where we assumed that the constants

βþ ¼ −Kκjqj − C2; β− ¼ Kκjqj − C2 ð40Þ

are nonzero. The positive constants ν� depend on C1, C3, ϵ,
κK, and l. Note that

β− − βþ ¼ 2Kκjqj ≥ 0: ð41Þ

This inequality allows three out of four sign possibilities:
(i) β− and βþ are positive, (ii) β− is positive and βþ
negative, and (iii) β− and βþ are negative. The solutions of
type (iii) are trivially related to those of type (i). This is a
consequence of the symmetry of the metric [see Eq. (26)]
under r → −r: given a solution αðrÞ, RðrÞ, andHðt; z; r;ϕÞ
of the field equations (32) and (33), the functions α̃ðrÞ ¼
αð−rÞ, R̃ðrÞ ¼ Rð−rÞ, and H̃ðt; z; r;ϕÞ ¼ Hðt; z;−r;ϕÞ
are also solutions, and the asymptotic behaviors of these
two solutions are related by ðβ̃−; β̃þÞ ¼ ð−βþ;−β−Þ. We
will then assume from now, without loss of generality, that
β− > 0. This guarantees that r ¼ −∞ is a point at a finite
distance from any other point in W. We define ρ to be the
W-geodesic distance to this point:

ρðrÞ ¼ l
Z

r

−∞
e−RðyÞdy; ð42Þ

so that ρ → 0 as r → −∞, the upper sign choice holds in
Eq. (29), that is dρ=dr ¼ S ¼ le−RðrÞ, and
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SðρÞ ≃ β−ρ as ρ → 0: ð43Þ

To avoid conical singularities in W, we further impose
that β− ¼ 1. Adding also the regularity condition (38), the
cases of interest narrow down to

(i) Case 1: β− ¼ 1; βþ > 0.
The values of the different constants are

β− ¼ 1; βþ ¼ 1 − 2κKjqj;

1 < jqj ≤ 1

2κK
; C2 ¼ κKjqj − 1: ð44Þ

W has the manifold structure of a plane with ðρ;ϕÞ
polar coordinates. The metric ds2W is regular every-
where and asymptotically conical, with a deficit
angle at infinity of 2πð1 − βþÞ ¼ 4πKκjqj:

ds2W ≃
�
dρ2 þ ρ2dϕ2 as ρ → 0

dρ2 þ ð1 − 2κKjqjÞ2ρ2dϕ2 as ρ → ∞:

ð45Þ

The asymptotic formulas for the inverse of
Eq. (42) are

r ≃
� lnðρ=lÞ as ρ → 0

1
βþ
lnðρ=lÞ as ρ → ∞:

ð46Þ

(ii) Case 2: β− ¼ 1, βþ ¼ −1.
The values of the different constants are

β−¼1; βþ¼−1; jqj¼ 1

κK
; C2¼0: ð47Þ

This case is of little interest, as it requires fine-
tuning: Kκjqj ¼ 1. Let

ρ∞ ¼ l
Z

∞

−∞
e−RðyÞdy; ð48Þ

then W has the manifold structure of S2 with
ð2π ρ

ρ∞
;ϕÞ angular coordinates (respectively, colati-

tude and azimuth). The sphere is equipped with a
smooth metric, smoothness at the poles follows from

ds2W ≃
�
dρ2 þ ρ2dϕ2 as ρ → 0

dρ̃2 þ ρ̃2dϕ2 as ρ̃≡ ρ∞ − ρ → 0:
ð49Þ

The asymptotic formulas for the inverse of
Eq. (42) are

r ≃
�
lnðρ=lÞ as ρ → 0

− lnðρ∞−ρ
l Þ as ρ → ρ∞:

ð50Þ

The solution presented here, with waves traveling along
the positive z-direction, could have been taken as traveling
oppositely by proposing FðvÞ instead of FðuÞ in Eq. (31).
A linear superposition of such waves does not lead to
solutions of the field equations.
Note that we have solved two out of three field

equations, those in (32). We postpone the treatment of
the nonhomogeneous linear equation (33) to Sec. V and
consider, in the following section, the trivial case where
F ¼ H ¼ 0.

IV. AN ENLSM WITH TARGET S2

The field equations (32) and (33) admit the solution
F ¼ 0, H ¼ 0, with αðrÞ and RðrÞ as in Eq. (35). This may
at first look as an uninteresting solution, since Φ ¼ 0
implies that the baryon current vanishes [see Eqs. (14) and
(15)]. The U field wraps around the S2 equator of S3

defined by ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼ 1 in Eq. (7):

R4 ∋

0
BBB@

x1

x2

x3

x4

1
CCCA ¼

0
BBB@

0

sin α sin Θ
sin α cos Θ

cos α

1
CCCA: ð51Þ

This static solution of the QCD ENLSM (3) is unstable
since U can unwrap within S3 [22]. The instability can
readily be checked: if we linearly perturb this solution
within the SUð3Þ theory by setting α ¼ αðrÞ þ ϵα1,
Θ ¼ qϕþ ϵΘ1, Φ ¼ ϵΦ1, and keeping only first order
terms in ϵ, it readily follows from Eqs. (31) and (32) that a
possible solution is α1 ¼ 0, Θ1 ¼ 0, H ¼ 0, and Φ1 an
arbitrary function of t − z [the lack of backreaction is due
to the fact that the right side of Eq. (32) is order ϵ2]. This
certainly signals an instability, as the perturbation does
not stay bounded in time, oscillating around the unper-
turbed static solution, as would be the case if this solution
were stable.
However, αðrÞ and RðrÞ as in Eq. (35) give a solution to a

different theory: the ENLSM (5) with target S2, the target
2-sphere being that defined in (51), parametrized with polar
and azimuthal angles α and Θ, respectively. This follows
from the fact that for Φ≡ 0, the matter field piece in (3) is
the trace of the pullback of the S2 metric, as follows from
(13), so in particular (35) is a stationary point of the action

S̃ ¼
Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R
2κ

−
K
2
gabð∂aα∂bαþ sin2α∂aΘ∂bΘÞ

�
ð52Þ

for the S2 ENLSM.
The metric in this case has cylindrical symmetry,

ds2 ¼ −dt2 þ dz2 þ dρ2 þ S2ðρÞdϕ2; ð53Þ
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and belongs to the class of Petrov type D spacetimes. The
vector field ta∂a ¼ ∂t is a timelike global Killing vector
field, orthogonal to the 3-Riemannian slices with metric
dz2 þ dρ2 þ S2ðρÞdϕ2. The results in Sec. VA show that
this metric is geodesically complete. In Case 1, defined in
Eq. (44), we get an everywhere smooth solution, free of
conical singularities, which asymptotically looks like a
cosmic string presenting a deficit angle sourced by regular
matter fields. In Case 2, Eq. (47), the t ¼ const slices are
cylinders S2ðρ;ϕÞ ×Rz.

There is a topological number q ∈ π2ðS2Þ ¼ Z associ-
ated with these solutions, which guarantees their stability as
solutions of the S2 ENLSM. Its absolute value is propor-
tional to the mass per length, as we now proceed to prove.

A. Topological number

In view of the first equation in (35), αðrÞ covers
monotonically the interval ð0; πÞ as r goes from minus
to plus infinity. This assures that (assuming q is an integer)
the map from the t ¼ to, z ¼ zo submanifolds W onto S2

are well defined in Case 2 (for which W is a sphere).
Moreover, in Case 1, for which W is a plane, the limits at
infinity are direction independent, so we get a map of the
one point compactification of this plane, which is topo-
logically a 2-sphere. As a consequence, in either case we
have a topological number associated with this map.
To compute it, we note that the canonical S2 metric dα2 þ
sin2 αdΘ2 has normalized volume form 1

4π sin αdα ∧ dΘ
which pulls back to the spacetime 2-form

ωq ¼
q
4π

sinðαðρÞÞðdα=dρÞdρ ∧ dϕ: ð54Þ

Since ωq is closed, its integral on any two-surface W 0 in
the same homology class as a t ¼ to, z ¼ zo two-surface
W gives Z

W 0
ωq ¼ −ðq=2Þ½Δ cosðαÞ� ¼ ϵq: ð55Þ

This is the—signed—number of times that W 0 wraps
around the target S2 [that is, ϵq ∈ π2ðS2Þ].

B. Mass per length

For the spacetime metric in Eq. (53), we find

Tab ¼
1

κ
Gab ¼

1

2κ
diagðRW ;−RW ; 0; 0Þ≡ ðe;−e; 0; 0Þ

ð56Þ

and

Ra
b ¼

1

2
diagð0; 0;RW ;RWÞ; ð57Þ

where RW ¼ −2S00ðρÞ=SðρÞ is the Ricci scalar of
ds2W ¼ dρ2 þ S2ðρÞdϕ2.
As Minkowski spacetime, the metric (53) has a unit norm

timelike covariantly constant vector field ta∂a ¼ ∂t, orthogo-
nal to t ¼ const hypersurfaces, which can be regarded as a
velocity field of the congruence of privileged, “inertial”
observers. The current Ja ¼ −Ta

btb (4-momentum density
measured by these observers) is conserved: ∇aJa ¼ 0. Its
flow through a t ¼ const surface Σ gives the total energy
measured by these observers, and this is conserved in time.
The volume form on Σ is ϵΣ ¼ SðρÞdρ ∧ dϕ ∧ dz,
the normal is ta, so that we need to integrate eεΣ ¼
− 1

κ S
00ðρÞdρ ∧ dϕ ∧ dz to obtain the total energy. The mass

per unit length on Σ is obtained by omitting the integration
on z and is found to be proportional to the absolute value
of the topological charge (55):

μ¼−
1

κ

Z
W
S00ðρÞdρ∧dϕ¼2π

κ
ð1−βþÞ¼4πKjqj: ð58Þ

Note that μ ¼ 2π
κ ð1 − βþÞ is a standard result for cosmic

strings [23].
We conclude that this simple solution of the S2 ENLSM

theory is: (i) smooth everywhere, (ii) geodesically com-
plete, (iii) free of conical singularities, (iv) asymptotically
conical in Case 1, with a mass per length sourced on the
NLSM and proportional to the (absolute value) of its
topological charge.
Remark. For electromagnetic fields, there is a direct link

between the vanishing of the magnetic part of the Weyl
tensor and the vanishing of the vorticity tensor ωab of the
time translation Killing vector field (i.e., ωab ¼ −∇½atb� þ
a½atb� with the acceleration given by aa ¼ tb∇bta) [24].
There are no such general results known for the ENLSM,
but this example illustrates that this link in the electro-
magnetic case might be more general, as we find that the
electric and magnetic part of the Weyl tensor in ðt; z; ρ;ϕÞ
coordinates are

Eab ≔ Cacbdtctd

¼ diag
�
0;
S00ðρÞ
3SðρÞ ;−

S00ðρÞ
6SðρÞ ;−

1

6
S00ðρÞSðρÞ

�
; ð59Þ

Bab ≔ �Cacbdtctd ¼ 0: ð60Þ

V. SOLUTIONS OF THE SUð2Þ ENLSM
This section describes the dynamical spacetimes that

are solutions to the full Einstein-SUð2Þ NLSM in Eq. (3)
with a nonvanishing baryon current. The backreaction of
the nontrivial Φ ¼ FðuÞ is the piece Hðu; ρ;ϕÞ that makes
the metric a parallel wave. We present the general solution
of Eq. (33) and single out a unique preferred one. For this,
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we study its asymptotic behavior, which is used throughout
the rest of this section. Next, we probe the spacetime
geometry through the study of geodesics in Sec. VA.
The baryon charge is discussed in Sec. V B. Finally, in
Sec. V C we review for the static case F0 ¼ ω different
notions of mass per length and analyze its connection to
the baryon charge.
The metric is Eq. (26) with H ≠ 0, the SUð2Þ field has α

and R as in Eq. (35), and

Θ ¼ qϕ; Φ ¼ Fðt − zÞ ¼ FðuÞ ≢ 0: ð61Þ

The field equation (33) for H is, in view of F ≢ 0,
nontrivial and admits a solution of the form

Hðu; r;ϕÞ ¼ −ðF0ðuÞÞ2½hðrÞ þ ψðrÞ cosð2qϕÞ�; ð62Þ

where

h00ðrÞ ¼
�
l
q

�
2

R00ðrÞ expð−2RðrÞÞ;

ψ 00ðrÞ − 4q2ψðrÞ ¼ −
�
l
q

�
2

R00ðrÞ expð−2RðrÞÞ: ð63Þ

Particular solutions for these equations are

hðrÞ ¼
�
l
q

�
2
Z

∞

r
dz

Z
∞

z
e−2RðyÞR00ðyÞdy ð64Þ

and

ψðrÞ ¼ l2

4jqj3
�
e2jqjr

�Z
∞

r
e−2jqjy−2RðyÞR00ðyÞdy

�

þ e−2jqjr
�Z

r

−∞
e2jqjy−2RðyÞR00ðyÞdy

��
≕ψ1ðrÞ þ ψ2ðrÞ: ð65Þ

Note that, since R00ðrÞ ¼ Kκq2 sin2ðαðrÞÞ > 0, both hðrÞ
and ψðrÞ (and indeed ψ1 and ψ2) are positive definite.
To estimate the asymptotic form of H for the particular
solution (62)–(65) we notice that

e−2RðrÞR00ðrÞ ≃ α�e2β�re∓2jqjr as r → �∞; ð66Þ

where α� are positive constants involving C1, C3, q, κK,
and ϵ.
From (66) follows that, for Case 1 [Eq. (44)],

hðrÞ ≃
(

αþl2

4q2ðβþ−jqjÞ2 e
2ðβþ−jqjÞr as r → ∞

−Jr as r → −∞;
ð67Þ

and

ψ1ðrÞ ≃
(

αþl2

8jqj3ð2jqj−βþÞ e
2ðβþ−jqjÞr as r → ∞

J1e2jqjr as r → −∞;
ð68Þ

ψ2ðrÞ ≃
( αþl2

8jqj3βþ e
2ðβþ−jqjÞr as r → ∞

α−l2

8jqj3ðβ−þ2jqjÞ e
2ðβ−þjqjÞr as r → −∞;

ð69Þ

where J and J1 are positive constants:

J ¼
�
l
q

�
2
Z

∞

−∞
e−2RðyÞR00ðyÞdy;

J1 ¼
l2

4jqj3
Z

∞

−∞
e−2jqjy−2RðyÞR00ðyÞdy: ð70Þ

The above formulas are also valid in Case 2, with the
exception of Eq. (69):

ψ2ðrÞ≃
(
J2e−2jqjr as r→∞

α−l2

8jqj3ð2jqj−1Þe
2ðjqj−1Þr as r→−∞

ðCase 2 onlyÞ;

ð71Þ

where

J2 ¼
l2

4jqj3
Z

∞

−∞
e2jqjy−2RðyÞR00ðyÞdy: ð72Þ

Now let us discuss the general solution of Eq. (33). The
general solution of the associated homogeneous equation is

Hhðu; r;ϕÞ ¼ A0ðuÞ þ A1ðuÞr

þ
X∞
n¼1

½ðCnðuÞenr þDnðuÞe−nrÞ cosðnϕÞ

þ ðEnðuÞenr þ FnðuÞe−nrÞ sinðnϕÞ�: ð73Þ

Thus, the general solution of (33) is H given in (62)–(65)
plus a general solution Hh above. The only addition from
(73) to (62) that does not worsen the general behavior as
jrj → ∞ is of the form Hh ¼ XF0ðuÞ2r. A suitable choice
of X moves the linear (in jrj) growth as r → −∞ to a linear
in r growth as r → ∞. For this reason, in what follows we
will stick to the particular solution in Eq. (62).
Collecting our results we find the following behavior of

H in terms of ρ:
In Case 2, Eq. (47), we obtain

H ≃ −F0ðuÞ2
�−I lnðρ=lÞ as ρ → 0

C cosð2qϕÞ½ðρ∞ − ρÞ=l�2jqj as ρ → ρ∞;

ð74Þ
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where C is a positive constant. This behavior is singular in
both poles of the sphere. We therefore disregard this case
from now on.
In Case 1, Eq. (44), H has the asymptotic forms

H ≃ −F0ðuÞ2
( ð−J=β−Þ lnðρ=lÞ as ρ → 0

½Aþ B cosð2qϕÞ�ðρ=lÞ
2ðβþ−jqjÞ

βþ as ρ → ∞;

ð75Þ

where A, B, J are positive constants and βþ − jqj is
negative in view of (44). Note that H is bounded from
above (assuming, as we do, that F0 is bounded), and that

it is negative definite if B < A. Since A ¼ αþl2

4q2ðβþ−jqjÞ2 and

B ¼ αþl2

4q2βþð2jqj−βþÞ, this is the case as long as jqj is

not too large. Specifically, if 1 < jqj < 2þ ffiffi
2

p þ4Kκ
1þ8Kκþ8ðKκÞ2, H is

negative everywhere [this constraint on jqj uses that
Kκ < 1=ð2 ffiffiffi

2
p Þ].

The behavior of the function −H as a function of ρ for
large ρ determines the causal behavior of the spacetime
[12]. In our case we find from (75) that, for large ρ,

−H < −F0ðuÞ2½Aþ B�ðρ=lÞ
2ðβþ−jqjÞ

βþ : ð76Þ

Since 2ðβþ−jqjÞ
βþ

< 0 this behavior falls well in the subqua-

dratic case [−H ∼ ρp, p < 2 for large ρ and fixed ðu;ϕÞ] in
the classification in [12]. This guarantees that the spacetime
is strongly causal (Theorem 3.1 in [12]).

A. Geometry of the spacetime

The class of spacetimes of the form (6) was studied in
[11–13]. In the most interesting case where F0 ≠ 0 (and
consequently H ≠ 0), however, our case deviates slightly
from the one studied in the above references, because the
singular behavior of H as ρ → 0 [see Eq. (75)] implies that
the spacetime manifold is not R2

ðu;vÞ ×W but

ðR2
ðu;vÞ ×WÞ − ð½u1; u2� ×Rv × fpgÞ; ð77Þ

where p ∈ W is the point ρ ¼ 0 and ½u1; u2� is the closure
of the support of F0. We will see below, however, that a
large family of geodesics is indeed well defined in the
entire R2

ðu;vÞ ×W, as H simply drops from the geodesic
equation: the singularity introduced byH is rather mild. For
a metric of the form in Eq. (6),H does not contribute to any
of the algebraic invariant scalar fields made out of the
Riemann tensor, the metric, its inverse, and its volume
form. The metric (6), however, which for H ¼ 0 is type D
in the Petrov classification, is generically type II if H ≠ 0
(requiring that it be of type D imposes a partial differential
equation for H which is incompatible with the field
equations). As remarked above, the dominant and strong

energy conditions are satisfied, and the spacetime is
causally well behaved.
We proceed now to the study geodesics, for which we

recall that we choose a time orientation such that the null
vector field ka∂a ¼ ∂v, which is covariantly constant and
normal to the wave fronts u ¼ const, is future oriented. The
affine geodesics are obtained from the Euler-Lagrange
equations of

L ¼ − _u _vþHðu; ρ;ϕÞ _u2 þ _ρ2 þ SðρÞ2 _ϕ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼LW

; ð78Þ

where a dot denotes the derivative with respect to the affine
parameter s, which is chosen such that

L ¼ κ ¼
8<
:

1 if spacelike;

0 if null;

−1 if timelike:

ð79Þ

Given the selected time orientation, future oriented causal
curves must satisfy

_u ≥ 0: ð80Þ

Now let ðx1; x2Þ ¼ ðρ;ϕÞ, gijW and ΓW
i
jk, i, j, k ¼ 1, 2 the

metric inverse and Christoffel symbols for ds2W. The
geodesic equations from Eq. (78) are

ẍi þ ΓW
i
jk _x

j _xk þ Γi
uu _u2 ¼ 0; ð81Þ

v̈þ 2Γv
ju _x

j _uþ Γv
uu _u2 ¼ 0; ð82Þ

ü ¼ 0; ð83Þ

with

Γi
uu¼−

1

2
gijW∂jH; Γv

uu¼−∂uH; Γv
ju¼−∂jH: ð84Þ

From these equations follows that Γ��v ¼ 0, justifying
our assertion above that ka is covariantly constant. From
Eq. (83), we obtain

uðsÞ ¼ _uosþ uo; ð85Þ

where u0 and _u0 are constants and represent the initial
“position” and “velocity,” respectively, of u at s ¼ 0.
This naturally leads us to consider two different types of
geodesics:

(i) _uo ¼ 0, then uðsÞ ¼ uo for all s.
For these geodesics, since _u ¼ 0, H decouples

from the geodesic equations (81)–(84), which then
have smooth coefficients and can cross the origin at
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ρ ¼ 0 even if uo in Eq. (86) is within the support
of F. From Eqs. (81)–(83), we obtain

ðu; v; xjÞ ¼ ðuo; v ¼ _vosþ vo; xjðsÞÞ; ð86Þ
where xjðsÞ is a geodesic ofW, that is, a solution of
the Euler-Lagrange equations for the Lagrangian
LW in Eq. (78).
The only future causal geodesics of this type are

those with constant xj, that is, null geodesics with
tangent ka:

ðuo; v ¼ _vosþ vo; xjðsÞ ¼ xjoÞ; _vo > 0: ð87Þ
This shows, in passing, that no causal closed geodesics
exist in this family, since s → ðuðsÞ; vðsÞ; xjðsÞÞ is
injective. The geodesics in this class with nonconstant
xjðsÞ are spacelike and, if _vo ¼ 0, they are contained
in a ðu ¼ uo; v ¼ voÞ submanifold W. These sub-
manifolds are then totally geodesic. In particular, ifW
were incomplete (which is not our case since we have
chosen β− ¼ 1), therewould be incomplete spacetime
geodesics of the form (86).

(ii) _uo ≠ 0, uðsÞ ¼ _uosþ uo (since for future causal
geodesics _uo ≥ 0, and the orientation of spacelike
geodesics is irrelevant, we will assume _uo > 0).
In this case, u is given by Eq. (85). Equation (81)

for the xj follows from a Lagrangian obtained
from LW by adding a time-dependent (that is,
s-dependent) potential:

L̂W ¼ _ρ2 þ SðρÞ2 _ϕ2 þHð _uosþ uo; ρ;ϕÞ _uo2: ð88Þ

The Euler-Lagrange equations from L̂W in Eq. (88),
using Hð _uosþ uo; ρ;ϕÞ ¼ −F02ð _uosþ uoÞ½hðρÞ þ
ψðρÞ cosð2jqjϕÞ� are (a prime on functions of a
single variable denotes a derivative)

2ρ̈¼ 2SðρÞS0ðρÞ _ϕ2− _u2oF02ð _uosþuoÞ
× ½h0ðρÞþψ 0ðρÞcosð2jqjϕÞ�;

d
ds

ð2SðρÞ2 _ϕÞ ¼ 2jqj _u2oF02ð _uosþuoÞψðρÞsinð2jqjϕÞ:
ð89Þ

The solutions xjðsÞ ¼ ðρðsÞ;ϕðsÞÞ of Eq. (89)
can be obtained from the simpler, particular sol-
utions ðρ̃ðsÞ; ϕ̃ðsÞÞ that correspond to the case
with _uo ¼ 1 and uo ¼ 0, via the mapping (see
Theorem 3.2 in [11]):

ρðsÞ ¼ ρ̃ððs − uoÞ= _uoÞ;
ϕðsÞ ¼ ϕ̃ððs − uoÞ= _uoÞ: ð90Þ

After solving the equations for xjðsÞ, v can be
obtained as a final step using the first integral L ¼ κ:

vðsÞ ¼ vo þ
1

_uo

Z
s

so

½−κ þHð _uos̃þ uo; xðs̃ÞÞ _uo2

þ LWðxðs̃Þ; _xðs̃ÞÞ�ds̃: ð91Þ

In the particular case where F0ðuÞ ¼ ω ≠ 0 is a
nonzero constant, the metric is stationary, and
consequently there is an additional constant of
motion. This is reflected in the fact that the potential
in Eq. (88) is time-independent, so that the energy

E ¼ _ρ2 þ SðρÞ2 _ϕ2 −Hðuo; ρ;ϕÞ _uo2 ð92Þ

is conserved. Given the behavior of H as ρ → 0 [see
Eq. (75)], the potential energy becomes infinite as
ρ → 0, and thus ρ ¼ 0 is unreachable.

In what follows we analyze the more interesting
case of a passing wave, that is, F0≠0 for u1<u<u2
with u1 and u2 finite. In this case, the time-
dependent potential is turned on only in the “time
interval” s1 < s < s2, where

sj ¼ ðuj − uoÞ= _uo; j ¼ 1; 2: ð93Þ

In the nontrivial time interval s1 < s < s2, Eq. (89)
admits radial solutions ϕ ¼ ϕo with sinð2jqjϕoÞ ¼ 0
and

2ρ̈ ¼ −F02ð _uosþ uoÞV 0ðρÞ;
VðρÞ≡ hðρÞ þ ψðρÞ cosð2jqjϕoÞ: ð94Þ

We would like to explore the possibility of reaching
ρ ¼ 0 along such a radial geodesic if the geodesic
was approaching this point when the wave arrived
[i.e., _ρðs1Þ < 0]. It is important to keep in mind
Eq. (75), which implies that VðρÞ ≃ −J lnðρ=lÞ as
ρ → 0 with J a positive constant. The asymptotic
behavior of V as ρ → 0 implies that V 0 < 0 in
some interval 0 < ρ < ρ�. We assume, together with
_ρðs1Þ < 0, that ρ1 ¼ ρðs1Þ < ρ�. As a result, the
right-hand side of Eq. (94) is nontrivial and positive
for s ∈ ðs1; s2Þ so that the time-dependent potential
tends to halt the approach to ρ ¼ 0. To evaluate
whether this happens or not, we use that F has
compact support, and so does F0. Assuming F0 is
continuous, it is then necessarily bounded. In par-
ticular, there is a positive c such that F02 < c. This
implies that the positive acceleration ρ̈ is bounded:

0 < 2ρ̈ < −cV 0ðρÞ; ð95Þ

and then, through the interval where _ρ < 0,

2_ρ ρ̈ > −cV 0ðρÞ_ρ: ð96Þ
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Assuming all these conditions hold for s1 < s <
s02 ≤ s2 and integrating the above inequality gives

_ρðs02Þ2 > _ρðs1Þ2 þ c½Vðρðs1ÞÞ − Vðρðs02ÞÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

: ð97Þ

This equation guarantees that ρ ¼ 0 cannot be
reached for s ∈ ðs1; s2Þ, since VðρÞ → −∞ as
ρ → 0 and the available kinetic energy _ρ2 would
be entirely used up before this happens. Moreover,
this analysis also allows us to show that, for
sufficiently large _uo, these radial geodesics can cross
the wave without reversing the sign of _ρ; that is,
ρðs2Þ > 0 and _ρðs2Þ < 0 are possible. This will be
the case if the right-hand side of the inequality (97)
is positive for s02 ¼ s2. Since in view of Eq. (90),

ρðs1Þ ¼ ρ̃ððs1 − uoÞ= _uoÞ
¼ ρ̃ððu1 − uoÞ= _u2o − uo= _uoÞ;

ρðs2Þ ¼ ρ̃ððs2 − uoÞ= _uoÞ
¼ ρ̃ððu2 − uoÞ= _u2o − uo= _uoÞ; ð98Þ

where the function ρ̃ does not depend on _uo, neither
on uo, then it is clear from (98) that ρðs2Þ can be
made as close as we wish to ρðs1Þ, and the inequality

_ρðs1Þ2 þ c½Vðρðs1Þ − Vðρðs2ÞÞ� > 0 ð99Þ

is satisfied by picking _uo large enough. Note that, in
any case, the integral defining vðsÞ in Eq. (91) is
convergent. The conditions _ρðs2Þ < 0, _ϕðs2Þ ¼ 0
guarantee that the geodesic will reach ρ ¼ 0 at
s ¼ s2 − ρðs2Þ=_ρðs2Þ, since _ρ is a constant for s > s2.
In summary, for passing waves, we have found two

kinds of future causal geodesics reaching (and cross-
ing) ρ ¼ 0: the null curves of the form (87), where uo
may or may not belong to the support of F0, and the
radial causal geodesics above. In the latter, u ∉
½u1; u2�when ρ ¼ 0 is crossed, and the geodesic stays
within the domain (77).

B. Baryon charge

The metric induced on a t ¼ to hypersurface Σ,

ds2Σ ¼ ð1þHÞdz2 þ dρ2 þ S2ðρÞdϕ2; ð100Þ

is, in view of Eq. (75), spacelike for sufficiently large ρ.
Given any everywhere spacelike hypersurface Σ0 that
asymptotically matches Σ, we can use the results from
Sec. II, specifically, Eq. (21), to calculate the baryon
charge on Σ0:

B ¼
Z
Σ0
JanaϵΣ0 ¼ 1

2π2

Z
Σ
sin2ðαÞ sinðΘÞdα ∧ dΘ ∧ dΦ:

ð101Þ

What outcome should we expect for our field configura-
tion? In the related Skyrme model on Minkowski space-
time, there are solutions for which the SUð2Þ field U is
time independent, Uðt; x⃗Þ ¼ Uðx⃗Þ, and furthermore satis-
fies limjx⃗j→∞Uðx⃗Þ ¼ I, so that U can be regarded as a map
from a one point compactification of R3 (which is topo-
logically S3) onto SUð2Þ ¼ S3, and these maps carry a
topological invariant winding number in π3ðS3Þ.
In our case, however, the ansatz in Eq. (31) forbids the

possibility that U has a unique asymptotic limit on t ¼ to
surfaces (except for the trivial vacuum configuration
α ¼ 0): even if F in Eq. (31) has compact support, that
is, it represents a passing wave, the limit of α at fixed ρ
[equivalently, fixed r in Eq. (35)] and jzj → ∞ will be a
function of ρ, so the asymptotic values of U on Σ will not
agree. As a consequence, the value of B—if finite—should
not be expected to be an integer; it has no topological
meaning since, although B is the integral on Σ of the
pullback of the SUð2Þ ¼ S3 volume form, Σ cannot be
regarded as a closed manifold.
While the baryon charge does not carry a topological

meaning for this configuration, it remains an interesting
conserved charge that describes the matter content of the
solution. In particular, contrary to what happens for the
stationary solutions in [7], the W-fronted parallel waves
have a finite baryon number whenever the z-integral below
is finite:

B ¼ 1

2π2

Z
∞

−∞
sin2ðαðrÞÞα0ðrÞdr

Z
2π

0

sinðqϕÞq dϕ

×
Z

∞

−∞
F0ðto − zÞdz

¼ ϵ
sin2ðqπÞ

π

Z
∞

−∞
F0ðto − zÞdz; ð102Þ

where we have used that, as r grows α∶ 0 → π for ϵ ¼ 1,
and the reverse for ϵ ¼ −1. Note that B ¼ 0 for integer q,
but if we, following the arguments in [7], allow q ¼ nþ 1

2
,

n ∈ Z, then B ≠ 0, and it is finite for a steplike function
with finite ΔF.
In the stationary case F0 ¼ ω (a constant), if q is an

integer plus one-half, we recover the infinite baryon charge
in [7], with

dB
dz

¼ ϵ
ω

π
; q half-integer: ð103Þ
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C. Mass per length in the static case

In the static case F0 ¼ ω, besides having a notion of
baryon charge per length, Eq. (103), we can also define
mass per length. This is so because the asymptotically
timelike vector field ta given in ðt; z; �; �Þ coordinates by
ta∂a ¼ ∂t is Killing (since ta∂aH ¼ 0). This implies that,
for any constant x, the vector field (here T ¼ Tcdgcd)

Ta ¼
�
Tab −

1

2
xTgab

�
tb ð104Þ

satisfies ∇aTa ¼ 0. Once again, if Σ0 is a timelike hyper-
surface that asymptotically agrees with a t ¼ const surface
Σ, we can use Eq. (20) to calculateZ

Σ0
TanaϵΣ

0
bcd ¼

Z
Σ
ϵabcdTa: ð105Þ

The pullback onto Σ of the 3-form dual of Ta on the right-
hand side above can be written, after using the first equation
in (32), as

½Kð1−xÞq2sin2ðαðrÞÞþKω2l2e−2RðrÞsin2ðαðrÞÞsin2ðqϕÞ�
dr∧dϕ∧dz: ð106Þ

Note that, for either q ∈ Z or q ¼ nþ 1
2
; n ∈ Z,R

2π
0 sin2ðqθÞdθ ¼ π, and that using again the first equation
in Eq. (32) we can calculateZ

∞

−∞
sin2ðαðrÞÞ dr ¼

Z
∞

−∞
sinðαðrÞÞ jα

0ðrÞj
jqj dr

¼ 1

jqj
Z

π

0

sinðαÞ dα ¼ 2

jqj : ð107Þ

Thus, omitting the integration in z, the right side of
Eq. (105) gives an “x-mass” per z-unit:

μx ¼ 4πKjqjð1 − xÞ þ Kl2ω2π

Z
∞

−∞
e−2RðrÞsin2ðαðrÞÞ dr:

ð108Þ

For x ¼ 0 and ω ¼ 0 (that is, Φ ¼ F≡ 0, the case treated
in Sec. IV), this calculation should reduce, in view of
Eq. (104), to that in Sec. IV B. In fact, for x ¼ 0 and
arbitrary ω, the mass per z-unit (108) gives

μx¼0¼4πKjqjþKl2ω2π

Z
∞

−∞
e−2RðrÞsin2ðαðrÞÞdr; ð109Þ

which contains, in addition to the ω ¼ 0 stringlike mass
4πKjqj in Eq. (58), a positive contribution proportional to
ω2. It is interesting to analyze the origin of this splitting.
The relation of the F ¼ 0 stringlike mass with the winding
number on the target S2 was discussed in Sec. IV.

The emergence of such a term in this case, where the
target is SUð2Þ ¼ S3, can be traced back to the first term
in Eq. (106), which using Eq. (32) as in (107), gives
∼Kð1 − xÞjqj sinðαðrÞÞα0ðrÞdr ∧ dϕ ∧ dz. Since integra-
tion in z is omitted, we end up having an integral of the
pullback of an S2 volume form [that of the Φ ¼ const
2-sphere in Eq. (7)].
Let us now analyze the x ¼ 1mass per length. Twice this

mass gives

2μx¼1 ¼
Z
Σ0
ð2Tab − TgabÞtanbϵΣ0

pqr; ð110Þ

which agrees with the Komar mass [see, e.g., Eq. (11.2.10)
in [15] ], since

2μx¼1¼−
1

8π

Z
∂Σ0

ϵabcd∇btd¼−
1

8π

Z
∂Σ
ϵabcd∇btd: ð111Þ

From (108), we find that

2μx¼1 ¼ 2Kl2ω2π

Z
∞

−∞
e−2RðrÞsin2ðαðrÞÞ dr: ð112Þ

When ω ¼ 0, this vanishes, as expected from (111), since
∇bta ¼ 0 in this case.

VI. CONCLUSIONS

In this paper, we proved that the ENLSM in Eq. (3) that
corresponds to the minimal coupling to gravity of the
leading term of the low-energy effective QCD Lagrangian,
admits parallel wave solutions of the form (26), with
nonplanar wave fronts ds2W . Asymptotically along the
wave fronts [that is, as ρ → ∞ in Eq. (28)], the H function
in Eq. (26) decays with a negative power of ρ and the metric
approaches that of a cosmic string. As noticed in [7],
nonstationary matter fields are compatible with stationary
metrics: this happens if FðuÞ ¼ ωðt − zÞ in Eq. (31). In this
particular case, different notions of mass per length
were studied, one of them nicely splitting into a cosmic-
string-like term and a contribution proportional to ω2

[see Eq. (109)].
There is a subcase where the matter field U∶ M →

SUð2Þ has target S2 ⊂ S3 ¼ SUð2Þ. When regarded as a
solution of the ENLSM (3) with target S2, this static
solution is stable. It carries a topological charge q ∈
π2ðS2Þ ≃ Z, and asymptotically looks like a string with
mass per length μ ¼ 4πKjqj, thereby offering an interesting
example of a connection between a topological charge and
a mass. This solution is smooth everywhere, is free of conic
singularities, and thus is an example of a regular source for
an asymptotically stringlike metric with a mass per length
related to a topological charge.
As explained in Sec. V B, since the U field in the ansatz

(31) has a direction dependent limit, the conserved baryon
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charge has no direct topological interpretation. It would be
interesting to see if there are solutions of the field equations
with a uniform asymptotic limit, nontrivial SUð2Þ con-
figurations that somehow generalize the connection found
in Sec. IV between topological charges and notions of mass
for the ENLSM with target S2. If there is a direct link
between mass and a conserved topological charge in the
form of a bound, gravitational radiation should naturally
shut off when this bound is reached. Of course, besides
the interest of the model (3) as the minimal coupling to
Einstein gravity of lowest QCD effective action, finding

relationships between topological charges and mass notions
in generic ENLSM (5), that is, with arbitrary target
manifolds, stands as an interesting problem by itself.
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