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We consider a nonminimally coupled curvature-matter gravity theory at the Solar System scale. Both a
fifth force of Yukawa type and a further non-Newtonian extra force that arises from the nonminimal
coupling are present in the solar interior and in the solar atmosphere up to interplanetary space. The extra
force depends on the spatial gradient of space-time curvature R. The conditions under which the effects of
such forces can be screened by the chameleon mechanism and be made consistent with Cassini
measurement of parametrized post-Newtonian parameter γ are examined. Constraints from spectroscopic
observations of the solar atmosphere are also taken into account. This consistency analysis requires a
specific study of the Sun’s dynamical contribution to the arising forces at all its layers.
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I. INTRODUCTION

Cosmological and astrophysical phenomena, such as the
accelerated expansion of the Universe and the flattening of
the rotation curves of galaxies, can be explained by
resorting to dark energy and dark matter, respectively.
Nevertheless, such phenomena could arise, in principle,
from a modification of general relativity (GR) at astro-
physical (galactic and extragalactic) and cosmological
scales. Among such modifications, fðRÞ gravity [1–4]
involves the replacement of the Ricci curvature scalar R,
in the Einstein-Hilbert action, by a nonlinear function fðRÞ.
A further modification of GR is nonminimally coupled

(NMC) gravity, where the Einstein-Hilbert action is
replaced with a more general form involving two functions
of curvature f1ðRÞ and f2ðRÞ [5]. The function f1ðRÞ has a
role analogous to fðRÞ gravity theory, and the function
f2ðRÞ multiplies the matter Lagrangian density giving rise
to a nonminimal coupling between geometry and matter.
This possibility has been extensively studied in the context
of dark matter [6], dark energy [7], inflation [8], energy

density fluctuations [9], gravitational waves [10], cosmic
virial theorem [11], Jeans’s instability, and star formation in
Bok globules [12]. This model has also been examined with
the Newton-Schrodinger approach [13,14].
In a previous paper [15] the case of functions

f1ðRÞ; f2ðRÞ analytic at R ¼ 0 was considered, and con-
straints to the resulting NMC gravity model have been
computed through perturbations to perihelion precession
by using data from observations of Mercury’s orbit.
It turns out that NMC gravity modifies the gravitational

attraction by introducing both a fifth force of the Yukawa
type and an extra force which depends on the spatial
gradient of the Ricci scalar R. While the Yukawa force is
typical also of fðRÞ gravity, the existence of the extra force
is specific of NMC gravity [5,16], and it is an effect of the
nonminimal coupling that induces a nonvanishing covariant
derivative of the energy-momentum tensor. The arising
Yukawa contribution can give origin to static solutions even
though in the absence of pressure [14].
In Ref. [17] constraints to the NMC gravity model with

analytic f1, f2 functions have been computed by using the
results of a geophysical experiment which looked for
deviations from Newton’s inverse square law in the ocean
[18]. It turns out that the presence of the extra force in a
fluid such as seawater imposes more stringent constraints
on the NMC gravity model than the observation of
both Mercury’s perihelion precession and lunar geodetic
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precession. Hence for the NMC gravity model with analytic
functions, because of the extra force, Solar System con-
straints are weaker than geophysical constraints.
In order to look for meaningful Solar System constraints

to NMC gravity, in the present paper we consider the case
of a function f2ðRÞ which contains a term proportional to
Rα, with α < 0, so that f2ðRÞ is not analytic at R ¼ 0. The
resulting model has been used in Ref. [6] to predict the
flattening of the rotation curves of galaxies, and to predict
the current accelerated expansion of the Universe [7].
Since f2ðRÞ is not analytic, the method based on the 1=c

expansion used in Ref. [15] does not work for the present
model. A completely different nonlinear method has to be
used. It turns out that in Solar System the above NMC
model exhibits a screening mechanism, which is the NMC
version of the so-called chameleon mechanism [19], which
makes it possible to compute Solar System constraints.
In the present paper we adapt to NMC gravity the

nonlinear computations made in Ref. [20] for the chame-
leon mechanism in the gravity field of the Sun, assuming
spherical symmetry. The nonminimal coupling complicates
the computation with respect to the case of fðRÞ gravity
considered in Ref. [20], though the solution turns out to
have essentially the same general qualitative properties. We
compute an analytic approximation of the chameleon
solution of the field equations and we find constraints
on the parameters of the NMC gravity model from the
Cassini measurement of parametrized post-Newtonian
(PPN) parameter γ [21]. In order to satisfy the Cassini
constraint the chameleon solution turns out to be close to
GR inside a screening radius rs that has to be large enough,
particularly, rs either lies inside the solar convection zone,
close to the top of the zone, or it is larger. Deviations from
GR are sourced by the fraction of solar mass, including
solar atmosphere, contained in the region with radii r > rs,
so that if rs lies in the convection zone then such deviations
are essentially sourced by a thin shell of mass in the
convection zone, which is a typical property of the
chameleon mechanism [19].
Moreover, by computing the equations of hydrodynam-

ics in the solar interior and atmosphere, both modeled as a
perfect fluid, we find the expressions of the fifth force of
Yukawa type and of the non-Newtonian extra force which is
a consequence of the nonminimal coupling. The shape of
both forces is affected by the screening mechanism and
depends on the dynamical contribution of the various Sun’s
layers. Then we compute the effect of the NMC extra force
that is expected to be relevant where the mass density
gradient is large: for instance, close to the Sun’s edge in the
solar atmosphere, particularly in the chromosphere and in
the transition region between the chromosphere and the
inner solar corona. Further constraints on the gravity model
are then computed by resorting to spectroscopic observa-
tions of the solar atmosphere.
Before performing our computation, let us point out that

in an interesting recent work [22] it has been argued that for

NMC models where the coupling function, f2ðRÞ, is
dominated by negative powers of the scalar curvature,
one should expect sizeable effects of small curvatures at
very dense nuclear physics situations, which demands for a
considerable suppression. This is clearly a quite special
situation, as negative scalar curvature effects were designed
to have implications in astrophysical and cosmological
situations. Negative powers models also lead to pathologi-
cal situations for black holes for which R ¼ 0. In fact, the
f2ðRÞ function of the NMC curvature-matter models were
not devised to have a single universal term, but to be a sum
of terms that would be relevant at specific scales. Thus, the
point made by of Ref. [22] must be regarded as the
statement that at nuclear physics scales the NMC effects
are suppressed. In what concerns the calculation that will be
carried out in the present work, this issue can be addressed
through the proposed screening mechanism which would
yield a plausible scenario for the desired suppression of the
extra force inside a nucleus. Indeed, the nucleus has to be
unscreened, hence the screening radius is zero, due to its
small mass. Thus, with the expression of the extra force
outside the screening radius computed in this paper, the
expression for the density gradient is multiplied by a
negative power of density. In other words, the screening
mechanism would suppress the extra force inside the
nucleus where the density is large.
The paper is organized as follows. In Sec. II the NMC

gravity model is specified. In Sec. III we compute an
approximate solution of the field equations inside and
around the Sun, namely the chameleon solution. In
Sec. IV we compute the equations of hydrodynamics of
a perfect fluid (under the assumption of spherical sym-
metry) and we find the expressions of the fifth force and
extra force in the fluid; particularly, we find an approxi-
mation of the extra force in regions of the solar atmos-
phere where the density gradient is large. In Sec. V we
compute the constraints from Cassini measurement of γ.
In Sec. VI we compute the effect of the extra force in
the chromosphere-corona transition region and we look
for constraints from spectroscopic measurements. An
alternative matter Lagrangian density is considered in
Sec. VII. Conclusions are drawn in Sec. VIII. A model of
mass density profile, both for the solar interior and the
atmosphere, is reported in an appendix and used to find
analytical order of magnitude estimates of the constraints
on the parameters of the gravity model.

II. NONMINIMALLY COUPLED GRAVITY

In the present work we consider gravitational theories
with an action functional of the form [5]

S ¼
Z �

1

2
f1ðRÞ þ ½1þ f2ðRÞ�Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fiðRÞ (with i ¼ 1, 2) are functions of the Ricci scalar
curvature R, Lm is the Lagrangian density of matter, and g
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is the metric determinant. The standard Einstein-Hilbert
action of GR is recovered by taking

f1ðRÞ ¼ c4

8πG
R; f2ðRÞ ¼ 0; ð2Þ

where G is Newton’s gravitational constant.
The variation of the action functional with respect to the

metric gμν yields the field equations:

ðf1R þ 2f2RLmÞRμν −
1

2
f1gμν

¼ ð∇μ∇ν − gμν□Þðf1R þ 2f2RLmÞ þ ð1þ f2ÞTμν; ð3Þ
where fiR ≡ dfi=dR. The trace of the field equations is
given by

ðf1Rþ 2f2RLmÞR− 2f1þ 3□f1Rþ 6□ðf2RLmÞ ¼ ð1þf2ÞT;
ð4Þ

where T is the trace of the energy-momentum tensor Tμν.
A relevant feature of NMC gravity is that the energy-

momentum tensor of matter is not covariantly conserved,
indeed, applying the Bianchi identities to Eq. (3), one finds
that

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR; ð5Þ

a result that, as discussed thoroughly in Refs. [23,24],
cannot be “gauged away” by a convenient conformal
transformation, but is instead a distinctive feature of the
model under scrutiny.
This property, when applied to the hydrostatic equilib-

rium of the Sun, will play an important role in constraining
NMC gravity.

A. Metric and energy-momentum tensors

We use the following notation for indices of tensors:
Greek letters denote space-time indices ranging from 0 to 3,
whereas Latin letters denote spatial indices ranging from 1
to 3. The signature of the metric tensor is ð−;þ;þ;þÞ.
The Sun is modeled as a stationary distribution of matter

with spherical symmetry. Then the metric which describes
the space-time in the gravitational field of the Sun, and in
the solar neighborhood of the Galaxy, has the general
spherically symmetric isotropic form around a source
centered at r ¼ 0:

ds2 ¼ −½1 − 2ΦðrÞ þ 2ΨðrÞ�c2dt2
þ ½1þ 2ΦðrÞ�ðdr2 þ r2dΩ2Þ; ð6Þ

where the potentials Φ and Ψ are perturbations of the
Minkowski metric such that jΦðrÞj ≪ 1 and jΨðrÞj ≪ 1.
For the purpose of the present paper the functions Φ and Ψ

will be computed at order Oð1=c2Þ. These considerations
are consistent with previous assumptions to tackle the
hydrostatic equilibrium in the relativistic limit [25].
The components of the energy-momentum tensor in

spherical coordinates, to the relevant order for our compu-
tations and in the case of spherical symmetry and radial
motion, are given by the following (Ref. [26], Chapter 4.1):

Ttt ¼ ρc2 þOð1Þ; Ttr ¼ ρcvþO
�
1

c

�
; ð7Þ

Trr ¼ ρv2 þ pþO
�
1

c2

�
; ð8Þ

Tθθ ¼ p
r2

þO
�
1

c2

�
; ð9Þ

Tφφ ¼ p
r2 sin2 θ

þO
�
1

c2

�
; ð10Þ

Ttθ ¼ Ttφ ¼ Trθ ¼ Trφ ¼ Tθφ ¼ 0; ð11Þ

where matter (Sun’s interior and solar atmosphere) is
considered as a perfect fluid with matter density ρ, velocity
v, and pressure p.
The Sun is assumed in hydrostatic equilibrium with the

exception of the outer solar corona where the dynamical
equilibrium of a steady atmosphere is considered in order to
take into account solar wind [27]. Density and pressure are
radial functions ρ ¼ ρðrÞ; p ¼ pðrÞ, and velocity v ¼ vðrÞ
in the outer corona is also radial.
The trace of the energy-momentum tensor is

T ¼ −ρc2 þOð1Þ: ð12Þ

In the present paper we use Lm ¼ −ρc2 þOð1Þ for the
Lagrangian density of matter [16].

B. Choice of functions f 1ðRÞ and f 2ðRÞ
Part of computations will be made for general functions

f1ðRÞ and f2ðRÞ, while the constraints to NMC gravity will
be exploited for the following specific choice of functions:

f1ðRÞ ¼ c4

8πG
R; f2ðRÞ ¼ q1Rþ q2Rα; α < 1; ð13Þ

where the function f1ðRÞ corresponds to GR and q1, q2,
and α are real numbers that have to be considered as
parameters of the NMC model of gravity.
The functions (13), with q1 ¼ 0 and negative values of

the exponent α, have been used in Ref. [6] to model the
rotation curves of galaxies, and in Ref. [7] to model the
current accelerated expansion of the Universe. The case
q2 ¼ 0 and q1 ≠ 0 has been used in Ref. [25] to model
stellar equilibrium with computation of solar observables.
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If both terms with q1 and q2 are present, then in Refs. [6,7]
the authors conjecture, for α < 0, that the term with
coefficient q2 dominates at large distances and low den-
sities, while the term with q1 dominates inside astrophysi-
cal objects with high densities such as the Sun.
In the present paper we consider the simultaneous

presence of both terms and we find, for negative α, that
the term in f2ðRÞwith coefficient q1 dominates in the Sun’s
interior, while the parameter q2 becomes important in the
constraint by Cassini measurement. The results are in
agreement with the above conjecture.

C. Viability of the NMC gravity model

In the present paper we set Solar System constraints to
the specific NMC gravity model defined by Eq. (13).
Before considering this kind of constraint we address the
potential problem that the nonminimal coupling between
geometry and matter could violate existing bounds from the
Standard Model of particle physics.
In Ref. [28] minimally coupled matter has been inserted

in the action functional of Palatini fðRÞ gravity. After a
conformal transformation to the Einstein frame it turns out
that matter is nonminimally coupled to a scalar field ϕ
without kinetic term. Then the scalar field can be integrated
out and expressed as an algebraic function of the trace T̄ of
the stress-energy tensor in the Einstein frame. Substituting
back such an algebraic function into the action functional,
and representing matter by means of the Lagrangian density
of a Dirac field, corrections appear that are in conflict with
bounds from electron-electron scattering experiments.
Nevertheless, we will see that the root of the violation
of the Standard Model does not consist in the nonminimal
coupling to matter in the Einstein frame. Note that the
crucial step in the computation of [28] is the expression of
ϕ by means of an algebraic expression of T̄.
The computation of [28] has been criticized in [29]

arguing that the Jordan and Einstein frames are mathe-
matically equivalent but not physically equivalent.
Nevertheless, in [30] it has been shown that the violation
of the Standard Model persists even in the Jordan frame,
though matter is minimally coupled in this frame. Since in
the present paper we work in the Jordan frame, we consider
such a frame in the sequel.
In [30] it has been shown that the violation of the

Standard Model is a consequence of the fact that, by taking
the first variation of the action functional of Palatini fðRÞ
gravity with respect to the metric, and taking the trace of the
resulting field equation, it turns out that the trace equation is
not a differential equation for curvature R, but it is an
algebraic equation, so that R (which is in the Jordan frame
the analogous of ϕ) can be again expressed as an algebraic
function of T.
In [30] the root of the problem has been traced to the

differential structure of the field equations of Palatini fðRÞ
gravity when the matter Lagrangian density is expressed in

terms of fields of the Standard Model of particle physics:
the matter field derivatives are of higher order (third order)
than the metric derivatives (second order). As a conse-
quence, the metric is not necessarily an integral over the
matter fields but can be algebraically related to the matter
fields and even to their derivatives. That does not happen
for the macroscopic description of matter by means of a
perfect fluid because in this case the stress-energy tensor
does not include any derivatives, so that we get a smoothed
distribution of matter with respect to the microscopic
description. In this case Palatini fðRÞ gravity works.
After this discussion we can finally consider NMC

gravity. We are interested in the case when the function
f2ðRÞ in (13) is not linear, hence q2 ≠ 0. In this case the
trace (4) of the field equations is a differential equation for
R, so that R cannot be expressed as an algebraic function of
T, Lm, and □Lm.
Let us now consider Lm expressed in terms of particle

fields of the Standard Model, so that Lm contains first order
derivatives of the matter fields. Then the field equations (3)
contain third order derivatives of the matter fields.
However, differently from Palatini fðRÞ gravity, if f2ðRÞ
is not linear, then the field equations are of fourth order in
the metric. Hence in the field equations the metric deriv-
atives are of higher order than the matter field derivatives.
Eventually, we may conclude that a computation of the type
used in [28] cannot be executed for NMC gravity with
nonlinear f2ðRÞ, and there is no reason to expect that the
issues which rule out Palatini fðRÞ gravity persist for NMC
gravity (see also [31]).

III. APPROXIMATE SOLUTION OF THE
FIELD EQUATIONS

We begin by adapting to NMC gravity the method of
solution applied in [20] to fðRÞ gravity. Since the metric
potentials Φ and Ψ are small perturbations we neglect the
higher order terms that include products of potentials or
their derivatives, and cross products between their deriv-
atives and the potentials. By computing the Ricci tensor and
curvature it follows that the functions Φ and Ψ satisfy the
following equations [20]:

∇2ðΦþ ΨÞ ¼ −
R
2
; ð14Þ

∇2Ψ ¼ −
1

2

�
R0
0 þ

R
2

�
: ð15Þ

We introduce the scalar field η, which is a function of
curvature R also explicitly depending on the radial coor-
dinate r:

η ¼ ηðr; RÞ ¼ f1R − 2f2RρðrÞc2: ð16Þ

Aiming to consider the stationary case we have
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□η ¼ ð1 − 2ΦÞ d
2η

dr2
þ
�
2

r
−
4

r
Φþ dΨ

dr

�
dη
dr

; ð17Þ

and neglecting the products of Φ and dΨ=dr by the
derivatives of η, which are second order quantities, we
get □η ≈∇2η.
In this approximation the time-time component of the

field equations (3) is given by

ηR00 þ
1

2
f1 ¼ ∇2ηþ ð1þ f2Þρc2; ð18Þ

and the trace (4) of the field equations becomes

ηRþ 3∇2η − 2f1 ¼ −ð1þ f2Þρc2: ð19Þ

Following Ref. [20] and combining the time-time compo-
nent with the trace of the field equations we obtain

R0
0 ¼

1

6η
½2ηR − f1 − 4ð1þ f2Þρc2�; ð20Þ

then Eq. (15) for the potential Ψ becomes

∇2Ψ ¼ −
1

12η
½5ηR − f1 − 4ð1þ f2Þρc2�: ð21Þ

In the sequel the functions f1ðRÞ and f2ðRÞ are required to
satisfy the following conditions in the gravitational field of
the Sun that will have to be verified a posteriori:

���� 8πGc4
f1

R
− 1

���� ≪ 1; jf2j ≪ 1; ð22Þ

and the following condition on the derivatives of f1 and f2

with respect to R,

���� 8πGc4 η − 1

���� ≪ 1: ð23Þ

The conditions (22) mean that the Lagrangian density in
Eq. (1) is a small perturbation of the Lagrangian of GR,
while the condition (23), in the case f2ðRÞ ¼ 0, becomes a
condition used in Ref. [20] for fðRÞ gravity theory. Using
such conditions, Eqs. (14) and (21) for Φ and Ψ are
approximately given by

∇2Φ ¼ −
4πG
c2

ρþ 1

6

�
8πG
c2

ρ − R

�
; ð24Þ

∇2Ψ ¼ 1

3

�
8πG
c2

ρ − R

�
; ð25Þ

and the trace (19) of the field equations is approximated by

∇2η ¼ c4

24πG
R −

1

3
ρc2: ð26Þ

Note that the above equations are formally the same as the
ones found in Ref. [20] for fðRÞ gravity, with the difference
that the scalar field η, defined in (16), depends explicitly on
r through the multiplication by ρðrÞ due to the nonminimal
coupling. Such a dependence on ρðrÞ will be exploited in
the sequel.

A. High-curvature solution

Following the approach commonly used for this kind of
problem [19,20], we introduce a potential function V ¼
Vðr; ηÞ and an effective potential Veff ¼ V − ρηc2=3 such
that

∇2η ¼ ∂Veff

∂η ;
∂V
∂η ¼ c4

24πG
ωðη; ρÞ; ð27Þ

where the function ωðη; ρÞ is obtained by solving Eq. (16)
with respect to R. Here we assume that such a solution
exists and it is unique: particularly, this property is satisfied
for the specific choice of functions f1ðRÞ; f2ðRÞ defined in
Eq. (13). Again, the difference with respect to fðRÞ gravity
consists in the explicit dependence of ∂V=∂η on ρðrÞ due to
the nonminimal coupling.
The effective potential has an extremum which corre-

sponds to the GR solution

R ¼ ωðη; ρÞ ¼ 8πG
c2

ρ; ð28Þ

which will be called the high-curvature solution as in
Ref. [20]. We require that such an extremum is a minimum
(see Refs. [19,20] and the discussion in the sequel), which
yields the condition

∂2Veff

∂η2 ¼ c4

24πG
1

ηR
≥ 0; ð29Þ

with ηR ¼ f1RR − 2f2RRρc
2 and R ¼ ωðη; ρÞ, the double

subscript in fiRR denoting second derivative with respect
to R.

1. Case of specific choice of f 1, f 2

The minimum condition (29) is equivalent to ηR ≥ 0 and,
for the specific choice (13) of functions of curvature, the
condition becomes

αðα − 1Þq2½ωðη; ρÞ�α−2 ≤ 0: ð30Þ

In the following we assume q2 ≠ 0, α ≠ 0, and α < 1, and
the curvature R ¼ ωðη; ρÞ positive in the Solar System, so
that the minimum condition requires
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�
0 < α < 1 ⇒ q2 > 0

α < 0 ⇒ q2 < 0
: ð31Þ

Equation (30) is an application to the choice of f1, f2 of
the general stability condition against Dolgov-Kawasaki
instability in NMC gravity found in Refs. [32,33].

2. Consistency condition in the Sun’s interior

We require the solution η of the trace equation to be a
perturbation of the GR solution in part of the Sun’s interior,
where we then look for an approximation of the high-
curvature solution. Such a requirement must be met in order
to satisfy the constraint from Cassini measurement of PPN
parameter γ. Moreover, the finiteness of ∇2η at the origin
(Sun’s center) imposes the boundary condition

dη
dr

¼ 0; at r ¼ 0: ð32Þ

The high-curvature solution (28) is an exact solution of
Eq. (26) for η only if ∇2η ¼ 0, hence if η is a harmonic
function. Under spherical symmetry, the only harmonic
function which satisfies the boundary condition (32) is a
constant and, by definition (16) of the function η, it follows
that the Sun’s density would satisfy the condition

f1R − 2f2RρðrÞc2 ¼ constant: ð33Þ

For instance, for the choice (13) of functions f1ðRÞ; f2ðRÞ
it follows that the density ρðrÞmust also be constant, which
is not the case for the Sun’s interior. Hence the high-
curvature solution can only be an approximate solution
of Eq. (26), and a consistency condition for such a solution
is then

j∇2ðηðr; R ¼ 8πGρðrÞ=c2ÞÞj ≪ 1

3
ρc2: ð34Þ

Computing the Laplacian of η according to (16), and setting
at the minimum of Veff ,

∂2Veff

∂η2 ¼ 1

λ2
> 0; for ωðη; ρÞ ¼ 8πG

c2
ρ; ð35Þ

where λ ¼ λðρÞ > 0 has dimension of length and depends
on density, the consistency condition (34) for the high-
curvature solution reads

����ðλ2 − 6f2RÞ∇2ρþ 8πG
c2

�
dλ2

dR
− 12f2RR

��
dρ
dr

�
2
���� ≪ ρ;

ð36Þ

with R ¼ 8πGρ=c2.

3. Case of specific choice of f 1, f 2

For the specific choice (13) of functions of curvature we
have

λ2 ¼ 6q2αð1 − αÞ
�
8πG
c2

ρ

�
α−1

; ð37Þ

and the consistency condition Eq. (36) reads

����λ2
�

α

1 − α
∇2ρ −

αþ 1

ρ

�
dρ
dr

�
2
�
þ 6q1∇2ρ

���� ≪ ρ: ð38Þ

If α < 0 and the order of magnitude of jαj is unity, and
if the following conditions hold separately,

8<
:

λ2j∇2ρj ≪ ρ

λjdρ=drj ≪ ρ

jq1∇2ρj ≪ ρ

; ð39Þ

then the consistency condition is satisfied. If f2ðRÞ ¼ 0
NMC gravity reduces to fðRÞ gravity, then in this case the
first two conditions of (39) correspond to the consistency
condition found in Ref. [20].
The explicit expression of the solution for η in the Sun’s

interior will be found in Sec. III A 7.

4. Solution for η in the outskirts of the Solar System

The outer coronal atmosphere of the Sun escapes
supersonically into interstellar space giving rise to the
solar wind [27]. We approximate the galactic mass
density in the solar neighborhood of the Milky Way with
the constant value ρg ≈ 10−24 g=cm3. We denote by rg a
distance from the Sun’s center such that mass density is
dominated by the galactic density component for r > rg.
We choose rg at the heliopause, the boundary between the
solar wind and the interstellar medium, corresponding
to a heliocentric radial distance of about 120 AU ¼
2.58 × 104R⊙, where R⊙ is the Sun’s radius. By using
the density model of the outer solar corona in
Appendix B 2 e, we find for the electron density of the
solar wind, at distance rg, the value ne ≈ 3.24 × 10−4 cm−3

which is not far from that measured by the Voyager
spacecrafts [34]. Across the heliopause a large (factor of
20 to 50) density increase takes place so that mass density
reaches the galactic value [34].
We will assume that in the solar neighborhood of the

Galaxy, for r > rg, the space-time curvature R is approx-
imately given by the GR solution, Rg ¼ 8πGρg=c2. Hence,
for the gravitational field of the Galaxy the high-curvature
solution holds in the solar vicinity for r > rg, and the field η
approximately minimizes the effective potential Veff . The
meaning of such an assumption will be discussed later.
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If the condition R ¼ Rg is exactly satisfied for r > rg,
then Eq. (26) implies that η is a harmonic function so that,
under spherical symmetry, ηðrÞ ¼ a1 þ a2=r, with a1, a2
suitable constants, and by definition (16) of η,

ηðrÞ ¼ f1Rg
− 2f2Rg

ρgc2 ¼ constant; for r > rg; ð40Þ

and a2 ¼ 0. Then, integrating Eq. (26) over spheres of radii
r ≥ rg centered at r ¼ 0, and using the divergence theorem,
we find

Z
rg

0

�
R −

8πG
c2

ρ

�
r2dr ¼ 0: ð41Þ

However, we will find at the end of Sec. III B 5 that the
presence of the gravitational field of the Sun makes the
integral in (41) strictly negative (see also [20]), so that
equality (41) is not satisfied and the solution with R ¼ Rg

for r > rg is not consistent. Then the GR solution can only
be an approximate solution, R ≈ Rg, of Eq. (26) for r > rg.
Applying the divergence theorem to Eq. (26) over the

sphere with radius rg, we have that the integral in Eq. (41) is
negative if and only if

dη
dr

ðr ¼ rgÞ < 0: ð42Þ

If we now denote by ηg the minimizer of the effective
potential VeffðηÞ corresponding to ρðrÞ ¼ ρg, since η
approximately minimizes Veff in the solar neighborhood
of the Galaxy, then Eq. (27), using Eq. (35), becomes

∇2η ≈
1

λ2g
ðη − ηgÞ; for r > rg; ð43Þ

where λg ¼ λðρgÞ. The computations in the present paper
will be made under the condition λg ≫ rg, which will
permit us to find analytic estimates of the results. We will
find that such a condition is largely satisfied when the
constraint from Cassini measurement is saturated.
We require the gravitational field of the Sun to become

negligible in comparison with the galactic field at large
distances from the Sun’s center, so that we impose the
boundary condition

ηðrÞ ≈ ηg; for
r
λg

≫ 1: ð44Þ

The solution of Eq. (43) with such a boundary condition is
the Yukawa profile

ηðrÞ ¼ C
e−r=λg

r
þ ηg; r > rg; ð45Þ

with C constant to be determined by matching the Yukawa
profile with the solution for r < rg that will be computed in

the next section. The constant C measures the deviation of
R from Rg in the solar neighborhood of the Galaxy. Note
that if the extremum of the effective potential were a
maximum, then the Yukawa profile would be replaced by a
damped (according to 1=r) trigonometric one.
Using λg ≫ rg the Yukawa profile is approximated by

ηðrÞ ≈ C
r
þ ηg; rg < r ≪ λg: ð46Þ

Note that the condition (42) imposed by the presence of the
Sun requires C > 0.

5. Case of specific choice of f 1, f 2

For the specific choice (13) of functions of curvature the
minimizer ηg of the effective potential VeffðηÞ, correspond-
ing to ρðrÞ ¼ ρg, is given by

ηg ¼
c4

8πG

�
1 −

16πG
c2

ρg

�
q1 þ αq2

�
8πG
c2

ρg

�
α−1

�	
: ð47Þ

Using Eq. (37) we see that for α < 1 the quantity λðρÞ
increases as density decreases, and this is a typical property
of the chameleon mechanism [19]. Particularly, the Yukawa
range λg ¼ λðρgÞ is an upper bound for λ in the Solar
System.

6. Solution for η in the Sun’s interior

In the region of the Sun’s interior where the high-
curvature solution approximately holds, according to
definition (16), η is given by

ηðr; RÞ ≈ ηðr; 8πGρðrÞ=c2Þ: ð48Þ

7. Case of specific choice of f 1, f 2

For the specific choice (13) of functions of curvature,
using (16) and the expression (37) of λ2, we have

η ≈
c4

8πG
− 2

�
q1 þ q2α

�
8πG
c2

ρ

�
α−1

�
ρc2

¼ c4

8πG
− 2

�
q1 þ

λ2ðρÞ
6ð1 − αÞ

�
ρc2; ð49Þ

where

λ2ðρÞ ¼ λ2g

�
ρ

ρg

�
α−1

: ð50Þ

Hence for α < 0 the length λðρÞ becomes very small in the
part of the solar interior where the high-curvature solution
holds, although λg ≫ rg. For instance, if α ¼ −1 and
λg ¼ 103rg ∼ 105 AU, at the bottom of the solar convection
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zone where ρ≈ 1.65×10−1 g=cm3, we have λðρÞ≈ 10−7 m.
At the top of the convection zone where ρ ≈ 2.73×
10−7 g=cm3, we have λðρÞ ≈ 7 × 10−2 m, hence com-
pletely negligible quantities in both cases (the values of
density are computed by using the density profile in
Appendix B 1 a).
Hence in the case α < 0 and jαj of order of magnitude

unity, neglecting the contribution of the term proportional
to λ2, in the high-curvature region we have

η ≈
c4

8πG
− 2q1ρc2; ð51Þ

so that the linear term q1R in the NMC function f2ðRÞ is
dominant in the Sun’s interior [25], where density is large
enough. Then, using the trace equation (26), the curvature
R is given by

R ≈
8πG
c2

ρ − 48q1
πG
c2

∇2ρ; ð52Þ

so that, after neglecting λðρÞ, the consistency condition (38)
becomes

6jq1j
j∇2ρj
ρ

≪ 1; ð53Þ

which corresponds to the third condition of Eq. (39). By
using the model of mass density profile in the radiative part
of the solar interior reported in Appendix B 1 b, the
maximum of the quantity j∇2ρj=ρ in the radiative interior is
achieved at r ≈ 0.22R⊙ and it is of order of 102=R2

⊙, from
which it follows the constraint

jq1j ≪ 10−2R2
⊙ in the radiative interior: ð54Þ

In the case of the solar convection zone, using the model of
mass density profile reported in Appendix B 1 a, the
maximum of the quantity j∇2ρj=ρ in the convection zone is
achieved at the top of the zone and it is of order of 107=R2

⊙,
from which it follows the constraint

jq1j ≪ 10−7R2
⊙ in the convection zone: ð55Þ

Hence the upper bound on jq1j in the Sun’s interior
becomes more stringent as mass density decreases.

B. Screening mechanism

In the outer zone of the solar interior (the outer part of the
convective zone), in the solar atmosphere, and in the
interplanetary space, the solution η interpolates between
the value (48) in the inner Sun’s interior, and the value (46)
in the outskirts of the Solar System, respectively. In order to
compute such interpolating function we adapt to NMC
gravity the chameleon mechanism developed in Ref. [19]
and further analyzed in Ref. [35].
According to Ref. [19], in the inner zone of the Sun’s

interior the solution ηðrÞ remains close to the minimizer of
the effective potential Veff for r < rs, where rs is a critical
radius, called the screening radius, that has to be deter-
mined. Hence the high-curvature solution holds for r < rs,
GR is approximately satisfied, the consistency condition
(36) has also to be satisfied, and the solution for η is given
by Eq. (48).
In order to compute η for r > rs, first we integrate ∇2η

over the spherical shell of radii rs and r > rs, and we use
the divergence theorem:

4π

Z
r

rs

∇2ηðr0Þ2dr0 ¼ 4π

�
dη
dr

ðrÞr2 − dη
dr

ðrsÞr2s
�
; ð56Þ

from which, solving with respect to dη=dr and integrating,
it follows

ηðrÞ ¼ ηðrsÞ þ
dη
dr

ðrsÞ
�
rs −

r2s
r

�

þ
Z

r

rs

1

ðr0Þ2
Z

r0

rs

∇2ηðr00Þ2dr00dr0; ð57Þ

then, integrating by parts, using Eq. (27) and the expression
of the effective potential Veff , it follows that the function η
satisfies the integral equation

ηðrÞ ¼ ηðrsÞ þ
dη
dr

ðrsÞ
�
rs −

r2s
r

�
þ 1

r

Z
r

rs

�
1

3
ρðr0Þc2 − ∂V

∂η
�
ðr0Þ2dr0 −

Z
r

rs

�
1

3
ρðr0Þc2 − ∂V

∂η
�
r0dr0; ð58Þ

where ηðrsÞ and dη=drðrsÞ are evaluated by using Eq. (48).
Now we proceed to estimate the expression in square

brackets in the integrands. For r > rs, in the outer zone of
the Sun’s interior and in the inner solar atmosphere, where
mass density is significantly larger than the galactic density
ρg, we require the potential Vðη; ρÞ to satisfy the condition
(see also Ref. [19])

���� ∂V∂η ðη; ρÞ
���� ≪ 1

3
ρc2; ð59Þ

as soon as η is displaced enough from the minimizer of Veff .
The explicit dependence of ∂V=∂η on density ρ is a
distinctive feature of the application of the chameleon
mechanism to NMC gravity with respect to fðRÞ gravity.
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Using Eq. (27), condition (59) reads

c2

8πG
ωðη; ρÞ ≪ ρ: ð60Þ

This inequality will be verified a posteriori in the case of
the specific choice (13) of functions of curvature. Given
that the proof is a bit technical, it is given in Appendix A 1.
Since the function ωðη; ρÞ is equal to curvature R, then R

is small in comparison with the GR solution and we say that
Eq. (60) is the condition for a local low-curvature solution
as in Ref. [20]. Hence, for r > rs the solution locally
deviates from GR, while deviations from GR are screened
for r < rs. We also say that the Sun is screened for r < rs.
In the outer solar atmosphere and interplanetary space,

where mass density becomes smaller and gradually
approaches the galactic density ρg, we expand the derivative
of the potential around the minimizer ηg:

∂V
∂η ðη; ρÞ ≈ ∂V

∂η ðηg; ρÞ þ
∂2V
∂η2 ðηg; ρÞðη − ηgÞ: ð61Þ

1. Case of specific choice of f 1, f 2

For the specific choice (13) of functions of curvature, the
function ωðη; ρÞ, that has to be used in condition (60), is
given by

ωðη; ρÞ ¼
�
16πG
c2

αq2ρ

�
1=ð1−αÞ

×
�
1 −

16πG
c2

q1ρ −
8πG
c4

η

�
1=ðα−1Þ

: ð62Þ

Since in the present paper we restrict to the case α < 1, by
Eq. (31) we have αq2 > 0 so that the above expression of
ωðη; ρÞ is well defined, and analogous expressions found in
the sequel will always be well defined. Moreover, the
applications of this NMC gravity model to rotation curves
of galaxies [6] and to the current accelerated expansion of
the Universe [7], all require α < 1.

2. Solution for η in the case of specific functions f 1, f 2

In the sequel we consider the specific choice (13) of
functions of curvature. We assume α < 0 and jαj of order of
magnitude unity, moreover, we require the consistency
condition (38) to be satisfied for r < rs in the Sun’s interior.

Using now (13) and the definition (16) of η we have

η ¼ c4

8πG
− 2ðq1 þ αq2Rα−1Þρc2: ð63Þ

In Sec. III A 7 we have argued that the linear term q1R in
the NMC function f2ðRÞ is dominant in the Sun’s interior,
where density is large enough. Conversely, in regions with
low mass density, such as galactic and interplanetary space
and even the solar atmosphere, the effect of the term q2Rα

becomes dominant for α < 0 as it will be shown in the
sequel (see also Ref. [25] and the discussion in Ref. [7]).
Then, because of the smallness of the space-time curvature
R in the outer solar atmosphere and interplanetary space,
we assume

jq1j ≪ jq2jRα−1; ð64Þ

so that in this region of space η is given by

η ≈
c4

8πG
− 2αq2Rα−1ρc2: ð65Þ

The validity of assumption (64) will be verified a posteriori
by resorting to the constraint from Cassini measurement.
Since the proof is a bit technical it is given in
Appendix A 2. Solving Eq. (65) with respect to curvature
R ¼ ωðη; ρÞ we find

ωðη; ρÞ ≈
�
16πG
c2

αq2ρ

�
1=ð1−αÞ�

1 −
8πG
c4

η

�
1=ðα−1Þ

; ð66Þ

from which, using (27), we obtain the property

∂V
∂η ðη; ρÞ ≈

�
ρ

ρg

�
1=ð1−αÞ ∂V

∂η ðη; ρgÞ: ð67Þ

Taking now into account that at density ρg (in the solar
vicinity of the Galaxy) the field η approximately minimizes
the effective potential Veff , so that

∂V
∂η ðηg; ρgÞ ≈

1

3
ρgc2: ð68Þ

We can compute the approximation (61) of the derivative of
the potential:

∂V
∂η ðη; ρÞ ≈

�
ρ

ρg

�
1=ð1−αÞ�∂V

∂η ðηg; ρgÞ þ
∂2V
∂η2 ðηg; ρgÞðη − ηgÞ

�
≈
�
ρ

ρg

�
1=ð1−αÞ�1

3
ρgc2 þ

1

λ2g
ðη − ηgÞ

�

≈
1

3
ρgc2

�
ρ

ρg

�
1=ð1−αÞ

; ð69Þ
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where we have taken into account that λg is assumed large.
We now proceed to solve the equation for η by evaluating

the integrals in Eq. (58). For r > rs, in the outer zone of
the Sun’s interior and in the inner solar atmosphere, using
Eq. (59) we have

1

3
ρc2 −

∂V
∂η ≈

1

3
ρc2: ð70Þ

In the outer solar atmosphere and interplanetary space,
using (69) we have

1

3
ρc2 −

∂V
∂η ≈

1

3
ρc2

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

: ð71Þ

Since we have

α < 0 ⇒ 0 < −
α

1 − α
< 1; ð72Þ

for jαj not too small, the second term inside the square
bracket in Eq. (71) is negligible in comparison to 1 in the
outer zone of the Sun’s interior and in the inner solar
atmosphere, where mass density is significantly larger than

the galactic density ρg, so that Eq. (71) is valid with a good
approximation for any r > rs.
We are ready to write the solution for η in terms of the

screening radius. Using Eq. (49), for r < rs we have the
solution

η ¼ c4

8πG
− 2

�
q1 þ

λ2ðρÞ
6ð1 − αÞ

�
ρc2; ð73Þ

which satisfies the boundary condition (32) by using the
expression (37) of λ2ðρÞ and the density model of the
Sun’s radiative interior in Appendix B 1 b, which yields
dρ=dr ¼ 0 at r ¼ 0.
Then we introduce the effective massMeffðrÞ defined for

r > rs as follows:

MeffðrÞ ¼ 4π

Z
r

rs

ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

ðr0Þ2dr0: ð74Þ

Substituting now the expression (71) in Eq. (58), and
using Eqs. (73)–(74), we obtain the solution η for
rs < r < rg:

ηðrÞ ¼ c4

8πG
− 2c2

��
q1 þ

λ2s
6ð1 − αÞ

�
ρs þ

�
q1 þ

αλ2s
6ð1 − αÞ

�
ρ0s

�
rs −

r2s
r

�	
þ c2

12π

MeffðrÞ
r

−
c2

3

Z
r

rs

ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

r0dr0; ð75Þ

where ρs ¼ ρðrsÞ, ρ0s ¼ dρ=drðrsÞ, and λs ¼ λðρsÞ. Here
we have kept the terms involving λs, notwithstanding that
λs is negligibly small (see Sec. III A 7), because such terms
will be necessary for the verification a posteriori of
inequality (60), which is a crucial property of a chameleon
solution [19]. Since this is the only reason to keep the terms
with λs in the expression of η, in the following formulas we
neglect such terms.
The solution (73) and (75) is continuous with its

derivative at r ¼ rs, moreover, η has to be continuous with
its derivative at r ¼ rg. Imposing the continuity of the
derivative in rg, and using the expression (46) of η for
r > rg, the constant C in Eq. (46) is determined:

C ¼ c2

12π
MeffðrgÞ þ 2c2q1ρ0sr2s : ð76Þ

Imposing the continuity of η in rg the integral identity
follows:

c2

8πG
−2q1ðρsþρ0srsÞ−

ηg
c2

¼1

3

Z
rg

rs

ρ

�
1−

�
ρg
ρ

�
−α=ð1−αÞ�

rdr:

ð77Þ

The solution η is completely determined once the screening
radius rs is determined. Then, using the expression (47) of
the minimizer ηg we have

ηg
c2

¼ c2

8πG
− 2q1ρg − 2αq2

�
8πG
c2

�
α−1

ραg : ð78Þ

Substituting in Eq. (77), and taking into account that
ρg ≪ ρðrsÞ, we find an integral equation which determines
the screening radius rs and completes the solution for η:

1

6

Z
rg

rs

ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

rdr

¼ −q1ðρs þ ρ0srsÞ þ αq2

�
8πG
c2

�
α−1

ραg : ð79Þ

This is the NMC version of the integral equation found in
Ref. [35] for the chameleon mechanism. Eventually, the
solution for η is given by formula (75) for rs < r < rg.

3. Verification of inequalities

The solution for η has been computed by assuming
some inequalities, necessary in order to find an analytic
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approximation of the solution, that have to be verified
a posteriori. Thus, we now show that the computed
solution satisfies some of these inequalities (the inequalities
that require a technical proof are verified in Appendix A).
We see immediately that the expressions (73) and (75),

which give the solution for r ≤ rg, satisfy

���� 8πGc4 η − 1

���� ¼ O
�
1

c2

�
≪ 1; ð80Þ

which yields the inequality (23). Moreover, using for-
mula (76) for the constant C, and formula (47) for the
minimizer ηg together with the integral equation (79), we
see that also the solution (46) satisfies the same inequality
for r > rg. Hence the computed solution η satisfies inequal-
ity (23) for any r.
Using now the expression (52) of curvature, for r < rs

we have R ¼ Oð1=c2Þ. Then, the integral equation (79)
implies

jq2j ¼ ρ−αg ·O
�

1

c2−2α

�
≪ 1; ð81Þ

with α < 0, from which, using formula (62) for curvature
R ¼ ωðη; ρÞ and property (80) for η, we have R ¼ Oð1=c2Þ
for rs < r < rg. Eventually, since R ≈ Rg for r > rg this
property is satisfied for any r.
Now we observe that the quantity jq1jR is largest at the

Sun’s center and, using inequality (54), we have

jq1jRð0Þ ≪ 10−2R2
⊙
8πG
c2

ρð0Þ ≪ 10−5; ð82Þ

so that, from definition (13) of f1 and f2, using property
(81) it follows

jf2ðRÞj ¼ jq1Rþ q2Rαj < jq1jRð0Þ þ ρ−αg ·O
�
1

c2

�
≪ 1;

ð83Þ

which yields the second of inequalities (22), the first being
trivial.

4. Solution for the potentials Φ and Ψ
We have assumed that the high-curvature solution holds

for the gravitational field of the Galaxy in the solar
neighborhood for r > rg, so that GR is approximately
satisfied. This assumption implies that the Milky Way is
screened within a distance of about 8 kpc from its center,
where the Solar System is approximately located. Such a
screening condition may impose additional constraints on
the NMC gravity model whose assessment requires the

solution for the gravitational field of the Milky Way,
possibly taking also into account the effect of the other
galaxies in the local group, however that will be the object
of future research.
In what follows we denote by U the Newtonian potential

of the mass distribution with density ρ,

U ¼ G
Z

ρðyÞ
jx − yj d

3y; ð84Þ

which satisfies the Poisson equation ∇2U ¼ −4πGρ.
Using Eqs. (24)–(25) it follows that the potentialΨ of the

metric is related to the deviation from GR, then we impose
the following boundary conditions in the Galaxy at large
distances from the Sun’s center, where GR is satisfied by
our assumptions:

ΦðrÞ ≈ 1

c2
UðrÞ; ΨðrÞ ≈ 0; for

r
λg

≫ 1: ð85Þ

Combining Eqs. (25) and (26) for Ψ and η we have

∇2

�
Ψþ 8πG

c4
η

�
¼ 0; ð86Þ

which implies the following in the case of spherical
symmetry:

Ψþ 8πG
c4

η ¼ a1 þ
a2
r
; ð87Þ

with a1, a2 constants to be determined. Requiring Ψ to be
not singular at r ¼ 0 imposes a2 ¼ 0.
Using the boundary conditions (44) and (85) for η andΨ,

respectively, it then follows

a1 ¼
8πG
c4

ηg; ð88Þ

from which we find

ΨðrÞ ¼ −
8πG
c4

½ηðrÞ − ηg�: ð89Þ

The solution for Ψ then follows immediately from the
solution for η: using Eqs. (64) with R ¼ Rg, (73), and (78),
we find for jαj not too small and r < rs,

ΨðrÞ ¼ 16
πG
c2

½q1ρðrÞ − αq2Rα−1
g ρg�; ð90Þ

using Eqs. (75) and (78)–(79), and neglecting λs, we find
for rs < r < rg,
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ΨðrÞ ¼ −16
πG
c2

q1ρ0s
r2s
r
−
2G
3c2

MeffðrÞ
r

−
8πG
3c2

Z
rg

r
ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

r0dr0; ð91Þ

and, using Eq. (46) and formula (76), we find for r > rg

ΨðrÞ ¼ −
2G
3c2

MeffðrgÞ
r

− 16
πG
c2

q1ρ0s
r2s
r
: ð92Þ

Combining now Eqs. (24) and (25) for Φ and Ψ we have

∇2

�
Φ −

U
c2

−
1

2
Ψ
�

¼ 0: ð93Þ

The solution Φ of this equation which is not singular at
r ¼ 0 and satisfies the boundary conditions (85) is given by

Φ ¼ U
c2

þ 1

2
Ψ: ð94Þ

The solutions found for Φ and Ψ define the space-time
metric (6).

5. Screening radius in the convection zone

In this section we consider the case of the screening
radius in the solar convection zone which is relevant for the
constraint from the Cassini measurement. Using the results
of Sec. III A 7, we neglect λ in the convection zone so that
the consistency condition (38) becomes inequality (53),
which we write in the form

jq1j
j∇2ρj
ρ

< ε ≪ 1: ð95Þ

For r > R⊙ we consider the term

−
2G
rc2

�
8πq1ρ0sr2s þ

1

3
MeffðrÞ

�
ð96Þ

in the expression (91) of ΨðrÞ. We approximate the
effective mass (74) for r > R⊙, and the integral in
Eq. (79), with

MeffðrÞ ≈MeffðR⊙Þ ≈ 4π

Z
R⊙

rs

ρðrÞr2dr; ð97Þ

Z
rg

rs

ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

rdr ≈
Z

R⊙

rs

ρðrÞrdr; ð98Þ

where we have neglected the contribution from the solar
atmosphere outside the photosphere, and we have taken
into account that ρg ≪ ρðrÞ for r ≤ R⊙ and α < 0.
Then, using inequality (95) and the expressions of ρ and

∇2ρ in the convection zone reported in Appendix B 1 a, we
find that

8πjq1ρ0sjr2s <
20

3
εMeffðR⊙Þ; ð99Þ

jq1j · jρs þ ρ0srsj < 20ε
1

6

Z
R⊙

rs

ρðrÞrdr; ð100Þ

for any rs in the convection zone. Hence, for ε ≤ 1=20 the
quantity (96) is negative and, using (91)–(92), it follows
ΨðrÞ < 0 for any r > R⊙.
Moreover, for such values of ε, using Eq. (76), it follows

that the constantC in Eq. (46) is positive, in agreement with
the statement immediately following Eq. (46). Hence, it
follows that condition (42) is satisfied, so that the integral in
Eq. (41) is negative as anticipated in Sec. III A 4.
Eventually, with the above approximations, the solution

(75) for η in the interval ðR⊙; rgÞ takes a simpler form,
which, also neglecting λs, we write as

1 −
8πG
c4

η ≈ 2αq2

�
8πG
c2

ρg

�
α

−
16πG
c2

q1ρ0s
r2s
r

−
2G
3c2

MeffðR⊙Þ
r

: ð101Þ

This approximation will be used in the sequel so as to
compute in the solar atmosphere the extra force due to the
nonminimal coupling.

IV. FIFTH FORCE AND EXTRA FORCE

In this section we compute the equations of hydro-
dynamics of a perfect fluid by resorting to the covariant
divergence of the energy-momentum tensor [5], as given by
Eq. (5) that we repeat for convenience:

∇μTμν ¼ f2R
1þ f2

ðgμνLm − TμνÞ∇μR: ð102Þ

First we compute the ν ¼ t component of this equation.
Using the components of the energy-momentum tensor
given by Eqs. (7)–(11), the left-hand side of Eq. (102)
yields

1

c
∇μTμt ¼ ∂ρ

∂t þ
∂
∂r ðρvÞ þ

2

r
ρvþO

�
1

c2

�
: ð103Þ

In order to compute the right-hand side of Eq. (102), first
we observe that, using definition (13) of f2 and property
(81) of q2, we have

f2R ¼ q1 þ αq2Rα−1 ¼ q1 þ ρ−αg ·Oð1Þ ¼ Oð1Þ; ð104Þ
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with respect to 1=c2. Then, taking into account that f2

satisfies the second of inequalities (22), the evaluation of
the right-hand side of Eq. (102) yields

f2R
1þ f2

ðgμtLm − TμtÞ ∂R∂xμ ¼ O
�
1

c

�
: ð105Þ

Neglecting terms of orderOð1=c2Þ the continuity equation,
in the case of spherical symmetry and radial motion, then in
the nonrelativistic limit, it follows as usual:

∂ρ
∂t þ

∂
∂r ðρvÞ þ

2

r
ρv ¼ 0: ð106Þ

The NMC term on the right-hand side of Eq. (102) gives a
distinctive contribution to the spatial part of this equation
that now we compute. For ν ¼ r, using the components
(7)–(11) of the energy-momentum tensor, the left-hand side
yields

∇μTμr ¼ ∂
∂t ðρvÞ þ

∂
∂r ðρv

2Þ − ρc2
�
dΦ
dr

−
dΨ
dr

�

þ 2

r
ρv2 þ ∂p

∂r þO
�
1

c2

�
: ð107Þ

Using now the continuity equation Eq. (106) at orderOð1Þ,
and the solution (94) for the metric potential Φ, we get

∇μTμr¼ρ
dv
dt

þ∂p
∂r −ρ

dU
dr

þ1

2
ρc2

dΨ
dr

þO
�
1

c2

�
; ð108Þ

where d=dt ¼ ∂=∂tþ v∂=∂r is the time derivative follow-
ing the fluid.
The right-hand side of Eq. (102) yields

f2R
1þ f2

ðgμrLm − TμrÞ ∂R∂xμ ¼ −c2f2Rρ
dR
dr

þO
�
1

c2

�
:

ð109Þ

Eventually, the components ν ¼ θ and ν ¼ φ yield terms of
order Oð1=c2Þ.
Combining Eqs. (108) and (109), and neglecting terms of

order Oð1=c2Þ, we obtain the radial equation of NMC
hydrodynamics for a perfect fluid in the nonrelativistic
limit, which in the stationary case reads

ρ
dv
dt

¼ ρ
dU
dr

−
dp
dr

−
1

2
ρc2

dΨ
dr

− c2f2Rρ
dR
dr

: ð110Þ

We observe the presence of two additional terms in
comparison with Eulerian equations of Newtonian
hydrodynamics:

(i) a fifth force density proportional to the gradient of
the metric potential Ψ;

(ii) an extra force density proportional to the product of
f2R by the gradient of curvature R.

The extra force density in (ii) has been extensively
discussed in Ref. [5], and for relativistic perfect fluids in
Ref. [16]. While the fifth force is typical of fðRÞ gravity
theory, the extra force is specific of NMC gravity. Now we
derive the explicit expressions of such force densities
corresponding to the specific choice (13) of functions of
curvature.

A. Forces inside the screening radius

If r < rs, using the solution (90) for Ψ, then we find for
the fifth force:

Ff ¼ −8πGq1ρ
dρ
dr

: ð111Þ

In order to compute the extra force we need f2R which,
using the consistency condition (53), is approximated by
means of the GR value of curvature:

f2R ≈ q1 þ αq2

�
8πG
c2

ρ

�
α−1

¼ q1 þ
λ2ðρÞ

6ð1 − αÞ ≈ q1; ð112Þ

λ2ðρÞ being negligible inside the screening radius. Using
the solution (52) for the curvature inside the screening
radius, we have for the derivative:

dR
dr

¼ 8πG
c2

dρ
dr

− 48q1
πG
c2

d∇2ρ

dr
; ð113Þ

and neglecting the term with q21 (see also Ref. [25] for
analogous computations), we find for the extra force

Fe ¼ −8πGq1ρ
dρ
dr

; ð114Þ

which shows that the fifth force and the extra force are
equal inside the screening radius.

B. Forces outside the screening radius

If rs < r < rg, using the solution (91) forΨ, then we find
for the fifth force:

Ff ¼ −8πGq1ρ0sρðrÞ
�
rs
r

�
2

−
G
3
ρðrÞMeffðrÞ

r2
: ð115Þ

The extra force for rs < r < rg is obtained by computing
the derivative of the curvature R ¼ ωðη; ρÞ, given by
formula (62), and using the solution (75) for η where we
neglect the terms with λs:
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Fe ¼ −
c4

ð1 − αÞ16πG
�
16πG
c2

αq2

� 1
1−α
�
1 −

8πG
c4

η

��
1 −

16πG
c2

q1ρ −
8πG
c4

η

�α−2
1−α

×

�
dρ
dr

�
1 −

8πG
c4

η

�
−
16πG
c2

q1ρ0sρ
�
rs
r

�
2

−
2G
3c2

ρ
MeffðrÞ

r2

�
ρ

α
1−α: ð116Þ

In the case of screening radius in the convection zone, using
the approximation (101) of the solution for η, we can
further approximate the term between square brackets in
the expression of Fe as follows:

−
2G
rc2

�
8πq1ρ0sr2s þ

1

3
MeffðR⊙Þ

��
dρ
dr

þ ρ

r

�

þ 2αq2Rα
g
dρ
dr

: ð117Þ

Let us now consider r varying in the solar atmosphere,
particularly in regions close to the Sun’s edge where the
density gradient is large. Using the model of mass density
profile in the chromosphere and in the chromosphere-
corona transition region, reported in Appendixes B 2 b
and B 2 c, respectively, we observe that in such regions the
density gradient is large enough to have

���� dρdr
���� ≫ ρ

r
: ð118Þ

Consequently, the extra force is approximated by

Fe ≈ −
c4

ð1 − αÞ16πG
�
16πG
c2

αq2

� 1
1−α
�
1 −

8πG
c4

η

�
2

×

�
1 −

16πG
c2

q1ρ −
8πG
c4

η

�α−2
1−α
ρ

α
1−α

dρ
dr

; ð119Þ

where the expression (101) has to be used for function η.
In Appendix A 2, values of rs in the convection zone, r0

in the inner region of solar atmosphere, and α, are given
such that the term with q1 can be neglected for any r > r0:

16πG
c2

jq1jρðrÞ ≪ 1 −
8πG
c4

ηðrÞ: ð120Þ

Nowwe observe that for r in the solar atmosphere and close
enough to the Sun’s edge the quantity 1=r is slowly varying
in comparison with density ρðrÞ and its derivative, so that
we may approximate the expression (101) of ηðrÞ with
ηðR⊙Þ. Then we obtain the further approximation of the
extra force:

Fe ≈ F ðα; q1; q2Þρ α
1−α

dρ
dr

; ð121Þ

where the coefficient

F ðα; q1; q2Þ ¼ −
c4

ð1 − αÞ16πG
�
16πG
c2

αq2

� 1
1−α

×

�
1 −

8πG
c4

ηðR⊙Þ
� α

α−1 ð122Þ

is independent of r. This last approximation of the extra
force can be used in regions of the solar atmosphere with
high density gradient, such as the chromosphere and the
chromosphere-corona transition region.

V. CONSTRAINT FROM CASSINI
MEASUREMENT

In this section we assume the screening radius in the
convection zone and ε in inequality (95) such that ε ≤ 1=20
so that ΨðrÞ < 0 for r > R⊙. Indeed, we will find that the
screening radius that saturates the Cassini constraint lies in
the convection zone. Using the metric (6) we have the
following for PPN parameter γ:

1 − γ ¼ −
Ψ

Φ − Ψ
: ð123Þ

Since ΨðrÞ < 0, using formulas (84) and (94) we have
1 − γðrÞ > 0 for r > R⊙.
The most stringent bound on γ is given by the Cassini

measurement [21]:

γ − 1 ¼ ð2.1� 2.3Þ × 10−5; ð124Þ

which implies

0 < 1 − γ < 2 × 10−6: ð125Þ

Using then (94) and (123), and neglecting 1 − γ with
respect to 1 because of the Cassini bound (124), we get

ð1 − γÞ U
c2

¼ −Ψ
�
1 −

1 − γ

2

�
≈ −Ψ; ð126Þ

from which, using UðrÞ ¼ GM⊙=r for the Newtonian
potential for r > R⊙ in the interplanetary space (neglecting
the contribution of the solar atmosphere), where M⊙ is the
Sun’s mass, we obtain

1 − γ ≈ −
c2

GM⊙
rΨ: ð127Þ
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Using now the solution (91) for Ψ, we have

d
dr

ðrΨðrÞÞ < 0; for rs < r < rg; ð128Þ

from which it follows that 1 − γðrÞ is an increasing
function of r in the interplanetary space. For r > rg,
where the galactic potential Ug dominates over the
Newtonian potential of the Sun (both approaching zero
at infinity), the potential profile of the Galaxy varies

slowly enough in such a way that, for our purposes, it
can be considered constant over the solar neighborhood.
Then, using (92) and (126) with U ¼ Ug, it follows that
1 − γðrÞ is a decreasing function of r in this region. Such
a qualitative behavior of 1 − γðrÞ is in agreement with the
result found numerically in Ref. [20] for fðRÞ gravity.
Inserting now the expression (91) for Ψ in formula (127)

for 1 − γ, and using the upper bound (125) from the Cassini
measurement, we obtain the following inequality:

16π

M⊙
q1ρ0sr2s þ

2

3

MeffðrÞ
M⊙

þ 8π

3

r
M⊙

Z
rg

r
ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

r0dr0 < 2 × 10−6 ð129Þ

for r varying in the interplanetary space. The integral is
extended over the solar atmosphere and, using the corre-
sponding values of mass density reported in Appendix B, it
turns out that the integral term is negligible in comparison
with 10−6 so that, taking into account the approximation
(97) of the effective mass, the previous inequality is
approximated by

16π

M⊙
q1ρ0sr2s þ

2

3

MeffðR⊙Þ
M⊙

< 2 × 10−6: ð130Þ

Since the effective mass MeffðR⊙Þ depends on rs, and the
screening radius is determined by the integral equation (79)
which contains the NMC gravity parameters α; q1; q2, then
inequality (130) is a constraint on NMC gravity parameters.
We observe that if q1 ¼ 0 inequality (130) holds true

also for fðRÞ gravity (see related results in Ref. [20]).

A. Computation of the screening radius
and of the effective mass

The mass of the Sun’s convection zone is about 0.02 M⊙
[36] and the mass of the solar atmosphere is about
10−10 M⊙. If ε in inequality (95) is small enough
(ε ≤ 10−2 is sufficient), then using inequalities (99) and
(130), it follows that the screening radius that saturates the
Cassini constraint, i.e., it makes the inequality (130) an
equality, lies in the convection zone.
Moreover, for such values of ε inequality (130) is

satisfied only if R⊙ − rs ≪ R⊙, so that the contribution
to the effective mass only comes from a thin shell [19] of
radii ðrs; R⊙Þ in the upper part of the convection zone and
in the photosphere.
In this section we estimate the screening radius in the

convection zone, as a function of parameters α; q1; q2, by
means of an approximate solution of the integral equa-
tion (79), obtained by resorting to the solar density model
reported in Appendix B.
In order to solve the integral equation (79) we use the

approximation (98). We denote rp the radius at the base of

the photosphere, which coincides with the top of the
convection zone. If rs lies in the convection zone, since
the integration is extended over the thin shell, then we
approximate the integral on the right-hand side of (98),
considered as a function of rs, by means of the second order
Taylor expansion around rp, obtaining

1

6

Z
R⊙

rs

ρðrÞrdr ≈ Iph þ PðrsÞ; ð131Þ

where Iph ¼ 4.19 × 1010 g cm−1 is the contribution of the
photosphere computed by using the mass density profile
reported in Appendix B 2 a, and

PðrsÞ ¼
1

12
½ρpðr2p − r2sÞ − ρ0prpðrp − rsÞ2�; ð132Þ

where ρp ¼ ρðrpÞ, ρ0p ¼ dρ=drðrpÞ. The quantities ρp and
ρ0p are computed by using the density profile of the con-
vection zone reported inAppendixB 1 a, and the derivative is
computed from the side of the convection zone.
The term ρs þ ρ0srs in the integral equation (79) is

approximated in the thin shell by means of the quadratic
approximation of density inside the convection zone start-
ing at rp:

ρs þ ρ0srs ≈QðrsÞ ¼ ρp − ρ0pðrp − 2rsÞ

þ 1

2
ρ00pðrp − rsÞðrp − 3rsÞ: ð133Þ

Substituting such second order approximations in the
integral equation (79), the screening radius rs then solves
the following quadratic equation:

PðrsÞ þ q1QðrsÞ þ Iph ¼ αq2

�
8πG
c2

�
α−1

ραg : ð134Þ

The solution rs ¼ rsðα; q1; q2Þ has to be selected out of the
two roots of the quadratic equation and then substituted into
inequality (130), particularly into the expression of the
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effective mass. The contribution of the thin shell to the
effective mass is computed by means of an analogous
second order Taylor approximation of the integral in (97):

MeffðR⊙Þ≈ 4πrpðrp − rsÞ
�
ρprs −

1

2
ρ0prpðrp − rsÞ

�
þMph;

ð135Þ

where Mph ¼ 2.2 × 1023 g is the mass of the photosphere
computed by using the mass density profile reported in
Appendix B 2 a.
Equations (130), (134), and (135) will be used in the next

section to find the Cassini constraint on NMC gravity
parameters α; q1; q2.

B. Constraints on NMC gravity parameters

The constraint from Cassini measurement determines an
admissible region in the three-dimensional parameter space
with coordinates α; q1; q2. We represent the admissible
region bymeans of two-dimensional exclusion plots obtained
using sections with planes α ¼ constant and q1 ¼ constant.
In order to avoid either too small or too large numbers we

replace parameters q1, q2 with the following rescaled,
dimensionless parameters:

q̃1 ¼
q1
R2
⊙
; q̃2 ¼ q2Rα

g ; ð136Þ

with Rg ¼ 8πGρg=c2. With this substitution, the quadratic
equation (134) which determines the screening radius rs
becomes

8πG
c2

½PðrsÞ þ q̃1R2
⊙QðrsÞ þ Iph� ¼ αq̃2: ð137Þ

The admissible root, which has to satisfy rs ≤ rp, expressed
in the form rs ¼ rsðα; q̃1; q̃2Þ, is substituted in the approxi-
mation (135) of the effective mass, then the admissible
values of parameters α; q̃1; q̃2 satisfy inequality (130). The
admissible region in parameter space is restricted by means
of the condition λg ≫ rg introduced in Sec. III A 4 which,
expressed in terms of parameters α; q̃2 and using Eq. (37)
with ρ ¼ ρg, becomes

�
3

4π
αð1 − αÞ c2

Gρg
q̃2

�
1=2

> 102rg; ð138Þ

where we have required λg > 102rg. The admissible
region is further restricted by the consistency condition,
inequality (95):

jq1j < ε
ρðrÞ

j∇2ρðrÞj for any r < rs: ð139Þ

Using the expression of ∇2ρ in Appendix B 1 a, the ratio
ρ=j∇2ρj is a decreasing function of r in the convection
zone, so that, for given ε, the upper bound on jq1j is smaller
for r ¼ rs. Moreover, for given values of q1 and ε the
consistency condition yields an upper bound rs < r�s ¼
r�sðq1; εÞ on the screening radius, so that, using the integral
equation (79), the approximation (98), and inequality
(100), we get the following lower bound on αq̃2 for
ε ≤ 1=20:

αq̃2 >
4πG
3c2

�
ð1 − 20εÞ

Z
R⊙

r�s
ρðrÞrdr

�
: ð140Þ

Our results are graphically reported in Figs. 1–7:
admissible regions for parameters are plotted in
white, while the excluded regions are plotted in gray.
Figure 1 shows the section of the admissible region in

FIG. 1. Cassini constraint on the parameter quarter plane
jαj; jq̃2j for q̃1 ¼ 0. The solid line yields the upper bound on
jq̃2j from Cassini measurement, the dotted line yields the lower
bound on jq̃2j from inequality λg > 102rg.

FIG. 2. Cassini constraint on the parameter quarter plane
jαj; jq̃2j for q̃1 ¼ 10−7. The dotted colored lines yield the lower
bound on jq̃2j from inequality (140). If ε ¼ 10−2, then the zone
plotted in light gray between the dotted colored lines is
admissible.
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three-dimensional parameter space with the plane q̃1 ¼ 0;
since both α and q̃2 are negative the admissible region is
plotted in the quarter plane with coordinates ðjαj; jq̃2jÞ.
Figure 2 shows the sections with the plane q̃1 ¼ 10−7

corresponding to values ε ¼ 10−2 and ε ¼ 10−3. Using
inequality (139) the value q̃1 ¼ 10−7 corresponds to the
upper bound r�s ≈ 0.99R⊙ for ε ¼ 10−2. Figure 2 shows that
the lower bound (140) is greater than the one resulting from
inequality λg > 102rg.
Figures 3 and 4 show the sections of the admissible

region in three-dimensional parameter space with the
planes α ¼ −1 and α ¼ −10, respectively. The admissible
region is plotted in the half plane with coordinates
ðq̃1; jq̃2jÞ. In the case q̃1 ¼ 0, the value α ¼ −1 has been
used in Ref. [6] to model the rotation curves of galaxies,

and the value α ¼ −10 has been used in Ref. [7] to model
the current accelerated expansion of the Universe. The
asymmetry of the admissible region with respect to the axis
q̃1 ¼ 0 is due to the impact of the sign of q1 in the solution
of the integral equation (79).
Figure 5 shows the allowed region for q̃1 as function of

the dimensionless screening radius ξ ¼ rs=R⊙. That is
computed by intersecting the region allowed by the
inequality of the Cassini constraint, Eq. (130), with the
region allowed by the consistency condition, Eq. (95), for
the values ε ¼ 10−2 and ε ¼ 10−3. Since ρ0s < 0 the Cassini
constraint yields a lower bound on q̃1 while the consistency
condition yields both an upper (positive) bound on q̃1 and a
lower (negative) bound. The intersection point between the
curve of the Cassini constraint and the curve of the upper
bound from the consistency condition, defines a lower
bound on the screening radius. Such a lower bound ξlow is
the value of the screening radius that saturates the Cassini
constraint: values of rs below ξlowR⊙ are excluded. Figure 5
shows that the lower bound on ξ weakly depends on ε and
its value is ξlow ≈ 0.98, which corresponds to a maximum
radial thickness of the thin shell of about 0.02R⊙.
Figures 6 and 7 show the allowed region for jq̃2j as

function of ξ for a fixed value of α. That is computed by

FIG. 3. Cassini constraint on the parameter half plane q̃1; jq̃2j
for α ¼ −1. The solid line is the Cassini bound, the dotted black
line is the bound from inequality λg > 102rg, the dotted colored
lines are the bounds from inequality (140). If ε ¼ 10−2, then the
zone plotted in light gray between the dotted colored lines and the
Cassini bound is admissible.

FIG. 4. Cassini constraint on the parameter half plane q̃1; jq̃2j
for α ¼ −10. The solid line is the Cassini bound, the dotted black
line is the bound from inequality λg > 102rg, the dotted colored
lines are the bounds from inequality (140). If ε ¼ 10−2, then the
zone plotted in light gray between the dotted colored lines and the
Cassini bound is admissible.

FIG. 5. Allowed values of q̃1 as function of the dimensionless
screening radius ξ ¼ rs=R⊙, for different values of the parameter
ε from the consistency condition, Eq. (95). The excluded regions
are colored in gray.

FIG. 6. Allowed values of jq̃2j for α ¼ −1 as function of the
dimensionless screening radius ξ ¼ rs=R⊙ for different values of
the parameter ε from the consistency condition, Eq. (95). The
excluded regions are colored in gray.
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solving the integral equation (79) with respect to q2, then
allowing q1 to vary in its admissible region. This has been
done for α ¼ −1 in Fig. (6) and α ¼ −10 in Fig. 7; in both
cases the values ε ¼ 10−2 and ε ¼ 10−3 have been used.
The constant C̃α corresponds to the lower bound on jq̃2j
from inequality (138), and both figures show that its value
is much smaller than the lower bound computed by means
of the integral equation. Eventually, we observe that jq̃2j
decreases monotonically as the screening radius increases.

C. Verification of the consistency condition

Once the constraint from the Cassini measurement has
been satisfied, we have to check that the consistency
condition (38) is verified in the solar interior for r ≤ rs.
We verify such a condition in the convection zone: using
the model of density profile ρðrÞ in this zone, reported in
Appendix B 1 a, we have

∇2ρ ¼ nc − 1

ncρ

�
dρ
dr

�
2

; nc ¼ 2.33; ð141Þ

from which, using Eq. (50) for λ2 and taking into account
that ∇2ρðrÞ > 0 in the convection zone, the consistency
condition becomes

∇2ρ

ρ

����λ2g
�
ρ

ρg

�
α−1

�
α

1 − α
−

nc
nc − 1

ðαþ 1Þ
�
þ 6q1

���� ≪ 1:

ð142Þ

An expression for λg can be found from the general
expression (37) of λ and the integral equation (79). Let us
choose jq1j < ε10−7R2

⊙, with ε < 10−2 (see Sec. III A 7).
Then, using inequality (100), for an estimate of the order of
magnitude of λg we can neglect the term involving q1 in the
integral equation, obtaining the following:

λ2g ≈
1 − α

ρg

Z
R⊙

rs

ρðrÞrdr; ð143Þ

wherewe have neglected the contribution to the integral from
density in the solar atmosphere outside the photosphere.
Now, it turns out that both

∇2ρ

ρ
and

�
ρ

ρg

�
α−1

ð144Þ

are increasing functions of r in the convection zone, and the
maximum of ∇2ρ=ρ is of order of 107=R2

⊙. Hence, if the
consistency condition is satisfied for r ¼ rs, then it is
satisfied also for any r < rs and the verification of such a
condition depends mainly on the factor ðρ=ρgÞα−1.
Let us now choose for instance the value rs ≈ 0.98R⊙ for

the screening radius, which saturates the Cassini constraint
(see the results in the previous section). Using the density
profile in Appendix B 1 a, we have

∇2ρðrÞ
ρðrÞ <

107

R2
⊙
;

�
ρðrÞ
ρg

�
α−1

< 10−20ð1−αÞ; for r < rs;

ð145Þ

and using (143) we have λ2g ≈ ð1 − αÞ1018R2
⊙. Inserting

these numbers into inequality (142) it turns out that the
consistency condition is verified for the values α ≤ −1
which satisfy the Cassini constraint.
Analogous results can be found for different values of rs

(satisfying the Cassini constraint) and for r varying in the
radiative interior.

D. Comparison with application to cosmology

In Fig. 2 the constraints on the ðjαj; jq̃2jÞ parameter plane
turn out to be very tight for the given value of q1. Since
interesting applications of NMC gravity concern the
rotation curves of galaxies [6] and the current accelerated
expansion of the Universe [7], such tight constraints raise
the question of effectively achieving those effects. In this
section we discuss the application to the accelerated
expansion of the Universe and we show that, by decreasing
the value of jq1j, the admissible region in the plane
ðjαj; jq̃2jÞ becomes large enough to allow for the prediction
of an accelerated expansion.
Following Ref. [7], in order to model the accelerated

expansion of the Universe, we may choose

f2ðRÞ ¼ q1R −
�
R
R0

�
α

; ð146Þ

with the curvature R0 chosen in the form

R0 ¼
�
m
ct0

�
2

; ð147Þ

where t0 ¼ 13.73 Gy is the present-day age of the Universe
and m is an integer. The term q1R turns out to be negligible
at the cosmological scale. We have

FIG. 7. Allowed values of jq̃2j for α ¼ −10 as function of the
dimensionless screening radius ξ ¼ rs=R⊙ for different values of
the parameter ε from the consistency condition, Eq. (95). The
excluded regions are colored in gray.
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q̃2 ¼ q2Rα
g ¼ −

�
Rg

R0

�
α

; ð148Þ

and setting for instance the values α ¼ −4 and m ¼ 4 used
in Ref. [7], one finds

jq̃2j ≈ 10−16: ð149Þ
Now we observe that, by decreasing the value of q1 > 0,
the admissible region in Fig. 2 enlarges and tends to the
admissible region in Fig. 1 as q1 → 0. If we choose, for
instance, ε ¼ 10−2 and q̃1 ¼ 10−9, according to the results
in Sec. V B we have rs < r�s ≈ rp ¼ 0.999R⊙, and inequal-
ity (140) yields for α ¼ −4 the lower bound jq̃2j > 10−17.
Note that this lower bound is achieved when the screening
radius corresponds to the top of the convection zone and the
thin shell essentially reduces to the photosphere. For this
value of q1 it then follows that the point ð4; 10−16Þ is
contained in the admissible region in the ðjαj; jq̃2jÞ param-
eter plane, so that the NMC gravity model is allowed to
predict an accelerated expansion.
We conclude this section by observing that such a result

is not yet conclusive because, according to Ref. [7], the
expansion model with for instance α ¼ −4 and m ¼ 4
matches the present values of the Hubble parameter and
matter density, but it does not match the current value of the
deceleration parameter and the value of the transition
redshift. The actual fitting of the accelerated expansion
can be more complicated and involve more terms. We can
argue that the term −ðR=R0Þα may be part of the set of
terms that fit the accelerated expansion of the Universe.

VI. EFFECT OF THE EXTRA FORCE IN THE
SOLAR ATMOSPHERE

We compute the effect of fifth force and extra force on
temperature and density in the solar atmosphere when the
screening radius lies in the convection zone. We consider
the chromosphere-corona transition region where a steep
density gradient takes place [37] (see Appendix B 2 c), and
the extra force is expected to have largest intensity.
Models of the transition region have been derived from

the distribution of the emission measure computed from the
intensities of spectral lines in the ultraviolet region of the
solar spectrum [38]. In the approximation of a plane
parallel geometry the average emission measure distribu-
tion EM, for the quiet Sun, is parametrized as a function of
temperature T by [39]

EM ¼
Z
ΔT

N2
edh ¼ aTb; ð150Þ

where Ne is the electron number density, h ¼ hðTÞ is
height above the solar limb, ΔT denotes the temperature
range ΔT ¼ ð0.891T; 1.122TÞ used in [40], and a, b are
parameters which take different values in the two zones

below and above the temperature T0 ¼ 1.5 × 105 K,
respectively.
In the sequel we use the following approximations: we

assume hydrostatic equilibrium, complete ionization of
hydrogen (which is realized for T ≥ 2 × 104 K), single
ionization of helium in the zone below T0 (lower transition
region), and double ionization of helium in the zone above
T0 (upper transition region). Moreover, we neglect ele-
ments other than hydrogen and helium both in the equation
of hydrostatic equilibrium and in ionization equilibrium.
Assuming the perfect gas law, the electron density is then
given by Ne ¼ p=ξkBT, where p is pressure, kB is the
Boltzmann constant, and ξ is related to the degree of
ionization of helium: ξ ¼ 2 in the lower transition region,
and ξ ¼ 1.91 in the upper transition region. Equality (150)
is then written in the form

1

ξ2k2B

Z
ΔT

p2

ðT 0Þ2
dh
dT 0 dT

0 ¼ aTb: ð151Þ

Following the method in [38,39], both pressure p and the
quantity ð1=T2Þdh=dT are approximated with a constant
over the temperature interval ΔT, so that Eq. (151) yields
for a monotone temperature profile TðhÞ:

p2

T
≈

ξ2

0.231
k2B

a
bþ 1

d
dh

ðTbþ1Þ; ð152Þ

where, both in this formula and in the following compu-
tations, the two zones in the transition region below and
above the temperature T0 have to be considered separately
(see Appendix B 2 c).
Multiplying now by pressure p both sides of Eq. (110) in

the case of hydrostatic equilibrium (i.e., dv=dt ¼ 0),
approximating dU=dr ≈ −GM⊙=R2

⊙, replacing d=dr with
d=dh, using ρ ¼ μmpp=kBT with mp the proton mass and
μ the mean molecular weight, and using expressions (115)
with r2 ≈ R2

⊙ and (121) of fifth force and extra force outside
the screening radius, respectively, we obtain

d
dh

�
p2

2

�
¼ −

μmpG

kBR2
⊙

�
M⊙ þ 1

3
MeffðR⊙Þ þ 8πq1ρ0sr2s

�
p2

T

þ F ðα; q1; q2Þpρ α
1−α

dρ
dh

: ð153Þ

We use μ ¼ 0.65 in the lower transition region and μ ¼
0.62 in the upper transition region. We denote p0 the
pressure at the temperature T0, then setting p ¼ p0 þ δp, it
is known that δp is a small variation in the transition zone
[41], and we approximate

F ðα; q1; q2Þp ≈ F ðα; q1; q2Þp0; ð154Þ
where we have neglected the product Fδp. Then, combin-
ing Eqs. (152) and (153), and expressing again ρ in terms of
pressure and temperature, we find that the following
expression has a vanishing derivative with respect to h:
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p2

2
þ ξ2

0.231

μmpkBa

bþ 1

G
R2
⊙

�
M⊙ þ 1

3
MeffðR⊙Þ þ 8πq1ρ0sr2s

�
Tbþ1 − ð1 − αÞF ðα; q1; q2Þ

�
μmp

kB

� 1
1−α
p

2−α
1−α
0 T

1
α−1 ¼ constant;

ð155Þ

where we have again approximated Fp1=1−α ≈ Fp1=1−α
0 .

The value of the constant in Eq. (155) is given by the above
expression evaluated at T0, p0, so that pressure p and
electron number density Ne can be computed, obtaining

Neðα; q1; q2Þ ¼
1

ξT
ðA1 þ A2Tbþ1 þ A3T

1
α−1Þ1=2; ð156Þ

where we stress the dependence of Ne on NMC parameters,
and

A1 ¼
�
p0

kB

�
2

− A2T
bþ1
0 − A3T

1
α−1
0 ;

A2 ¼ −
8.658ξ2

bþ 1
a
μmpG

kBR2
⊙

�
M⊙ þ 1

3
MeffðR⊙Þ þ 8πq1ρ0sr2s

�
;

A3 ¼ ð1 − αÞ 2

k2B

�
μmp

kB

� 1
1−α
p

2−α
1−α
0 F ðα; q1; q2Þ: ð157Þ

For pressure p0 we use p0=kB ¼ 2 × 1015 Kcm−3 derived
from [40], while the values of the various constants are
reported in Appendix B.
Accurate determination of electron density in the tran-

sition region is achieved by the observation of the intensity
ratio of spectral lines emitted by the same ion at the
temperature of formation of such an ion [41]. Particularly,
the quiet Sun intensity ratios of lines emitted by the Siþ2

ion have been used to determine the electron density Ne in
the lower transition region [41], where T < T0, density
exhibits the steepest gradient (see Appendix B 2 c), and the
extra force has largest intensity.
Uncertainties in the derived electron densities [41] are

due to uncertainties in line ratios (typically less than 20%
for quiet Sun), spectral line blending (25%–30% as
maximum possible effect), time variations of the physical
conditions in the solar atmosphere (15% change in line
intensity for quiet Sun over a time interval of 1.5 hr), and
uncertainties in the atomic physics data (systematic): an
overall uncertainty of a factor of 2 in density is then
considered in [41].
Since the measurement of electron density from spectral

line ratios does not depend on gravity, while the expression
(156) of Ne is affected by gravity, then equating such an
expression with density Ne;obs, observed from line ratios,
yields a constraint on α; q1; q2.
The electron density at the temperature of formation of

the Siþ2 ion in ionization equilibrium, determined from
intensity ratios of lines within the Si III multiplet near
1300 Å, is found to be for quiet Sun [41]

Ne;obs ¼ 4.3 × 1010 cm−3: ð158Þ

Since F ðα; q1; q2Þ < 0, taking into account the overall
density uncertainty considered above, we get the constraint

Neðα; q1; q2Þ ≥ 2.15 × 1010 cm−3; ð159Þ

where formula (156) has to be evaluated using the temper-
ature T ¼ 3.2 × 104 K of formation of the Siþ2 ion, and
using the values of a, b reported in Appendix B 2 c for the
lower transition region.
We observe that, using the constraint (130) from Cassini

measurement, the coefficient A2 can be approximated by
the Newtonian value

A2 ≈ −
8.658ξ2

bþ 1
a
μmp

kB

GM⊙

R2
⊙

; ð160Þ

and, using the expression (115) of the fifth force outside the
screening radius, it follows that

jFfðrÞj < 10−6ρðrÞGM⊙

R2
⊙

; ð161Þ

so the fifth force is negligible in comparison with the
Newtonian force.

A. Constraints on NMC gravity parameters

The constraint from spectroscopic measurements
determines an admissible region in the three-dimensional
parameter space with coordinates α; q1; q2. We represent
the admissible region by means of two-dimensional
exclusion plots obtained using sections with planes
α ¼ constant. We use the variables ξ; q̃1; q̃2 introduced
in Sec. V B about the Cassini constraint.
We find convenient to express the electron density Ne as

a function of α, q1 and the screening radius rs, moreover,
we use approximation (160). The screening radius appears
in coefficient A3, particularly in the term ηðR⊙Þ inside F ,
both explicitly and implicitly through the effective mass
MeffðR⊙Þ. In order to obtain the functionNe ¼ Neðα; q1; rsÞ
we eliminate q2 from F ðα; q1; q2Þ using the integral
equation (79):

αq2 ≈
1

ραg

�
8πG
c2

�
1−α

�
q1ðρs þ ρ0srsÞ þ

1

6

Z
R⊙

rs

ρðrÞrdr
�
;

ð162Þ
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where we have again neglected the contribution to the
integral from density in the solar atmosphere outside the
photosphere. Thenwe substitute the above expression of αq2
in formula (122) ofF and in formula (101) of η, which has to
be evaluated in r ¼ R⊙ to compute F . After these sub-
stitutions the constraint (159) becomes

Neðα; q1; rsÞ ≥ 2.15 × 1010 cm−3: ð163Þ
For given α such an inequality determines an admissible
region in the half plane with coordinates ðq1; rsÞ. Such a
region is further restricted by the consistency condition,
inequality (95), that has to be satisfied for any r < rs. Hence,
using coordinates ðq̃1; ξÞ in the half plane, the admissible
region is restricted bymeans of the intersectionwith a region,
symmetricwith respect to the axis q̃1 ¼ 0, which shrinks as ξ
increases, ρ=∇2ρ being a decreasing function of ξ.

The numerical computation shows that the constraint
from spectroscopic measurements imposes a lower bound
on the screening radius which lies in the convection zone for
−1 < α < 0. Conversely, for α ≤ −1 the screening radius
lies in Sun’s radiative interior, so that for such values of α the
constraint from the extra force is surely much weaker than
the constraint from Cassini measurement.
Our results are graphically reported in Figures 8–11:

admissible regions for parameters are plotted in white,
while the excluded regions are plotted in gray. We denote
rconv the radius at the base of the convection zone. Figure 8
shows the admissible region in the half plane ðq̃1; ξÞ for
α ¼ −1=4 and for values ε ¼ 10−2 and ε ¼ 10−3, while
Fig. 9 shows the admissible region for α ¼ −1=3.
Figures 10 and 11 show the admissible region in the

half plane with coordinates ðq̃1; jq̃2jÞ for α ¼ −1=4 and

FIG. 8. Constraint from extra force on the half plane q̃1; ξ for
α ¼ −1=4. The solid line yields the lower bound on the screening
radius from spectroscopic measurements. The dotted colored
lines yield the bound from the consistency condition: if ε ¼ 10−2,
then the zone plotted in light gray between the dotted colored
lines and the bound on ξ is admissible.

FIG. 9. Constraint from extra force on the half plane q̃1; ξ for
α ¼ −1=3. The lower bound on the screening radius increases,
but it decreases if α approaches the value α ¼ −1. The dotted
colored lines yield the bound from the consistency condition: if
ε ¼ 10−2, then the zone plotted in light gray between the dotted
colored lines and the bound on ξ is admissible.

FIG. 10. Constraint from extra force on the half plane q̃1; jq̃2j
for α ¼ −1=4. The solid line yields the upper bound on jq̃2j from
spectroscopic measurements. The dotted colored lines yield the
bound from the consistency condition: if ε ¼ 10−2, then the zone
plotted in light gray between the dotted colored lines and the
bound on jq̃2j is admissible.

FIG. 11. Constraint from extra force on the half plane q̃1; jq̃2j
for α ¼ −1=3. The upper bound on jq̃2j decreases, but it increases
if α approaches the value α ¼ −1. The dotted colored lines yield
the bound from the consistency condition: if ε ¼ 10−2, then the
zone plotted in light gray between the dotted colored lines and the
bound on jq̃2j is admissible.
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α ¼ −1=3, respectively. The value α ¼ −1=3 has been used
in Ref. [6] to model the rotation curves of galaxies.
Figure 11 shows some numerical noise on the left side
of the solid curve which marks the upper bound on jq̃2j
from the extra force, nevertheless such a noise does not
affect importantly the behavior of the bound, moreover it
lies in the excluded region.
When the screening radius lies deeply in the convection

zone the Taylor approximation of the effective mass and
of the integral in Eq. (79) cannot be used, then the
integrals are evaluated analytically by approximating the
polytropic index in the convection zone with nc ≈ 2 (see
Appendix B 1 a).
Eventually, we argue that the constraint from extra force

becomes competitive with the constraint from Cassini
measurement for suitable values of α in the range
−1 < α < 0. Further improvements could be expected
from new spectroscopic measurements in solar missions
like ESA Solar Orbiter [42] and NASA Parker Solar
Probe [43].

VII. ALTERNATIVE MATTER
LAGRANGIAN DENSITY

In the present paper the Lagrangian density of matter
Lm ¼ −ρc2 þOð1Þ has been used for a perfect fluid [16].
In the absence of the nonminimal coupling between
geometry and matter the Lagrangian density can be
replaced with Lm ¼ p, where p is pressure, without
affecting the equations of motion of a perfect fluid [44].
Another choice is, for instance, Lm ¼ −na, where n is the
particle number density and a is the physical free energy.
Nevertheless, in the presence of the nonminimal coupling
such Lagrangian densities are not equivalent so that both
the equations of motion of the fluid and the gravitational
field equations change.
In Ref. [16], starting from the action functional consid-

ered in Ref. [44], the authors argue thatLm ¼ −ρc2 þOð1Þ
is a natural choice for the matter Lagrangian density of a
perfect fluid in the presence of the nonminimal coupling.
Also in [22] it is argued that such a Lagrangian density is
the correct one. Though the arguments in [16,22] can be
considered not yet conclusive, in Refs. [45,46] it is shown
that conservation of the particle number determines
uniquely the Lagrangian density of a barotropic perfect
fluid in the form Lm ¼ −ρðc2 þ ΠÞ, where Π is the specific
energy density (ratio of energy density to rest-mass
density). Hence, at least in the case of barotropic fluids
the degeneracy of the matter Lagrangian density has been
removed. In the general case a unique Lagrangian density
cannot be selected, in principle, by theoretical arguments,
and one could favor one choice over any other based on
experimental arguments. Since in the present paper we
obtain bounds, these bounds could open the possibility of
ruling out some possible choices for the Lagrangian
density.

In the sequel of this section we also consider the
alternative Lm ¼ p.
It turns out that the adaptation to the case Lm ¼ p of the

computation of the solution for function η, for the potentials
Φ and Ψ, and of the constraint from Cassini measurement,
is straightforward. In the following we report the main
results. First we note that, due to the change of sign of Lm,
for given α the sign of q2 changes with respect to Eq. (31),
moreover, the function R ¼ ωðη; pÞ is still well defined for
α < 1. Then Eq. (37) for the range λ is replaced by

λ2 ¼ 48
πG
c4

q2αðα − 1Þ
�
8πG
c2

ρ

�
α−2

p; ð164Þ

from which, arguing as in Sec. III A 7 it follows that, using
for instance the equation of state of a perfect gas,
p ¼ ρkBT=ðμmHÞ, the range λ is still negligible in the
solar interior. The consistency condition (95) for parameter
q1 is replaced by

jq1j
j∇2pj
ρc2

< ε ≪ 1; ð165Þ

from which it follows the constraint jq1j ≪ 102R2
⊙ in the

convection zone which is much weaker than the constraint
(55). This constraint is about of the same order of
magnitude of the one found in Ref. [25] from the relativistic
hydrostatic equilibrium of the Sun, using Lm ¼ p and the
NMC gravity model with q2 ¼ 0.
The constraint (130) from Cassini measurement is

replaced by

−
16π

M⊙c2
q1p0

sr2s þ
2

3

MeffðR⊙Þ
M⊙

< 2 × 10−6; ð166Þ

while the integral equation (79) which determines the
screening radius, neglecting the contribution of density
outside the photosphere, is replaced by

1

6

Z
R⊙

rs

ρðrÞrdr ≈ q1
c2

ðps þ p0
srsÞ − αq2

�
8πG
c2

ρg

�
α−1 pg

c2
;

ð167Þ
where ps ¼ pðrsÞ, p0

s ¼ dp=drðrsÞ, and pg is the pressure
of the interstellar medium in the solar neighborhood of the
Galaxy. For ε small enough in the consistency condition
(165), we find that the lower bound on rs=R⊙ is again about
0.98. Then, setting pg ≈ ρgkBTg=mH, with Tg ≈ 105 K, we
find that the upper bound on parameter jq̃2j in Fig. 1
becomes of order of 10−4, hence a less stringent constraint.
In the case Lm ¼ p the extra force turns out to depend on

the pressure spatial gradient ∇p instead of ∇ρ [16]. Since
in the chromosphere-corona transition region there is a
large density gradient, but pressure exhibits little variation
[41], then the extra force is much smaller with respect
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to the case Lm ¼ −ρc2 and an analogous constraint cannot
be achieved. Then we observe that changing the matter
Lagrangian density significantly modifies all the constraints.
Nowweconsider polytropes that can also be used tomodel

quite well the Sun’s interior. Particularly, we argue that the
use of a polytropic model of the Sun does not change
qualitatively the results obtained in the present paper, which
are then expected to be robustwith respect to such a change of
Sun’s model. First we observe that, with polytropic fluids a
particular case of barotropic fluids, conservation of the
particle number determines uniquely Lm ¼ −ρðc2 þ ΠÞ
[45,46]. For a polytropic fluid we have [45]

p ¼ Kρ1þ1=n; ΠðρÞ ¼ nKρ1=n þ C; ð168Þ
where C is an integration constant. A polytropic equation of
state has to be used in the solar interior, however, because
of the chameleon mechanism and the Cassini constraint,
almost all the solar interior is contained inside the screening
radius rs where GR is approximately satisfied and the
consistency condition (95) has to be satisfied. Taking into
account that by definition of the Laplacian operator we have

dρ
dr

ðrÞ ¼ 1

r2

Z
r

0

∇2ρðr0Þðr0Þ2dr0; ð169Þ

using the consistency condition (95), the expressions (111)
and (114) of the fifth force and the extra force inside rs can be
bounded from above:

jFfðrÞj ¼ jFeðrÞj ¼ 8πGjq1jρðrÞ
���� dρdr ðrÞ

����
≤ 8πGjq1j

ρðrÞ
r2

Z
r

0

j∇2ρðr0Þjðr0Þ2dr0

< 8πGε
ρðrÞ
r2

Z
r

0

ρðr0Þðr0Þ2dr0 ≪ ρðrÞGMðrÞ
r2

;

ð170Þ
where MðrÞ is the mass inside radius r. Hence, inside the
screening radius, the fifth force and the extra force are much
smaller than the Newtonian force. A polytropic model of the
Sun can be used in the convection zone also outside the
screening radius, where GR is not approximately satisfied.
Nevertheless, using the expression (115) of the fifth force
outside rs and arguing as before, we estimate

jFfðrÞj < ρðrÞG
r2

�
2εMðrsÞ þ

1

3
MeffðrÞ

�
≪ ρðrÞGMðrÞ

r2
;

ð171Þ
with ε ≪ 1 and MeffðrÞ ≪ MðrÞ because of the thin shell.
Hence the fifth force is much smaller than the Newtonian
force in the whole solar interior. The extra force is significant
in regions with large density gradient, like the chromosphere-
corona transition region in the solar atmosphere, but in the
solar interior it is suppressed by the much smaller factor

ρ
α

1−α
dρ
dr

; ð172Þ

in the expression (121) of Fe. It follows that the perturbation
δρ to density due to NMC gravity can give rise only to a
second order correction of the constraint from Cassini
measurement, so that density and pressure can be computed
in the solar interior by solving the equation of Newtonian
hydrostatic equilibrium together with an equation of state (for
instance polytropic). Indeed, also in Ref. [20] the Cassini
constraint was computed for fðRÞ gravity by resorting to a
density profile computed by means of Newtonian gravity.
If density in the Sun’s interior is now computed by using

a polytropic equation of state, then one should take into
account that a single polytropic model is not appropriate for
the whole solar interior, and at least two polytropes with
different polytropic exponents should be used for the
convection zone (n ≈ 2) and the radiative interior
(n ≈ 3), respectively. In Appendix B the density profile
in the Sun’s interior has been obtained by computing
suitable analytic approximations of such polytropic models
(based on methods of [47]), instead of computing the
solution of the Lane-Emden equation. It turns out that, in
most of the solar interior, the density values computed by
means of such an approximation are of the same order of
magnitude of the ones computed by means of solar models
that incorporate helioseismological measurements [48],
while they are one order of magnitude smaller in the thin
shell. Hence, a more accurate computation based on the
numerical solution of the Lane-Emden equation will surely
improve the numerical values of density, and consequently
will refine the Cassini constraint, but without changing
qualitatively the results found in the present paper that are
then expected to be robust.
Eventually, we observe that for the computation of the

extra force in the chromosphere-corona transition region,
made in Sec. VI, a polytropic model cannot be used since
models of this region of the solar atmosphere are com-
pletely different and based on the distribution of the
emission measure [38].

VIII. CONCLUSIONS

In this work we obtain Solar System bounds on an
alternative theory of gravity with nonminimal coupling
between curvature and matter, that has been introduced in
Ref. [5], by suitably implementing a screening mechanism
which is the NMC version of the well-known chameleon
mechanism [19,20]. An analytic approximate solution of
the field equations that exhibits the screening mechanism
has been computed inside and around the Sun. Such a
solution shows the typical features of a chameleon solution,
though significantly affected by the nonminimal coupling:
(i) a screening radius rs in the Sun’s interior that has to be
determined, and such that GR is approximately satisfied for
r < rs if a suitable consistency condition on the parameters
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of the model is also satisfied; (ii) a thin shell close to the
Sun’s edge where the solution interpolates between the
values in the Sun’s interior and the values in the outskirts of
the Solar System; and (iii) the existence of the thin shell
permits to satisfy stringent constraints from Solar System
gravity experiments.
A specific feature of the nonminimal coupling between

geometry and matter is the presence of a non-Newtonian
extra force which, together with a fifth force of the Yukawa
type, appears in the solar interior and atmosphere modeled
as a perfect fluid. Constraints on the parameters of the
gravity model have been computed from the Cassini
measurement of PPN parameter γ, and from the effect in
the solar atmosphere of the extra force by resorting to
spectroscopic measurements.
Our results show that taking into account all known solar

physics bounds, the Cassini measurement of the parameter
γ constrains the parameters for the specific model Eq. (13),
under conditions Eq. (31) and rescaled according to
Eq. (136), to be of the order jq̃2j < 10−12 for jq̃1j < 3 ×
10−6 and −10 < α < −1. These are specific constraints
obtained under the assumption that the Galaxy itself is
screened within a distance from its center corresponding to
the location of the Solar System. The assessment of such
an assumption requires an extension of the Solar System
to Galaxy analysis carried out in the present paper.
Particularly, one should look for a chameleon solution of
the field equations in the Milky Way considering the
transition from the outskirts of the galactic halo to the
large-scale structure of the Universe [see Ref. [20] for
the analogous problem in fðRÞ gravity]. Such an analysis
will impose additional constraints on the parameters of the
NMC gravity model that have to be compared with the
Solar System bounds obtained in the present paper.
Moreover, it could also help to better understand the role
of different powers α of curvature in the specific model
Eq. (13) at different scales, as it has been conjectured in
Ref. [6]. Eventually, the extension of the analysis in the
present paper to the gravitational interaction between the
Sun, planets, and satellites should also provide further
constraints on the parameters of the gravity model. All
these issues will be investigated in future research.
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APPENDIX A: CONSISTENCY INEQUALITIES

We give a proof a posteriori of inequalities Eqs. (59) and
(64) that have been used in order to compute the solution η
of Eq. (26). Hence, we prove that the solution (75) found
for function η is consistent with such inequalities.

1. Verification of inequality j∂V=∂ηj ≪ ρc2=3

The inequality is equivalent to inequality (60) which we
then consider. We prove that for r > rs and r close to rs, the
solution (75) for η is such that curvature R ¼ ωðη; ρÞ
quickly becomes much smaller than the GR curvature,
so that inequality (60) is verified a posteriori.
We use formula (62) for curvature which we write in the

form

c2

8πG
ωðη; ρÞ

ρ
¼

�
ρ

ρs

�
α=ð1−αÞ�N

D

�
1=ð1−αÞ

: ðA1Þ

Using Eqs. (37) and (62) we have

N ¼ λ2s
6ð1 − αÞ ρs; D ¼ c2

16πG
− q1ρ −

1

2c2
η: ðA2Þ

We approximate the denominator D by means of a second
order Taylor expansion around rs, so that, using the
expression (75) for η, for ρðrÞ ≫ ρg we have

−
1

24π

MeffðrÞ
r

þ 1

6

Z
r

rs

ρðr0Þr0dr0

¼ 1

12
r2ρs

�
1 −

rs
r

�
2

þO

��
1 −

rs
r

�
3
�
; ðA3Þ

and

D ≈
λ2s

6ð1 − αÞ
�
ρs þ αρ0srs

�
1 −

rs
r

��
þ As

�
1 −

rs
r

�
2

;

ðA4Þ
where

As ¼
r2s
2

�
1

6
ρs − q1∇2ρðrsÞ

�
: ðA5Þ

Since density ρðrÞ is decreasing, we have αρ0s > 0 for α <
0 from which, using the consistency condition (38) for
small λs in the form (95), a lower bound for D follows for
ε < 1=6 and r > rs:

D >
1

12
ρsr2sð1 − 6εÞ

�
1 −

rs
r

�
2

: ðA6Þ

Then, using this lower bound and Eq. (50), we obtain an
upper bound on the ratio ω=ρ:
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c2

8πG
ωðη; ρÞ

ρ
<

ρg
ρs

�
ρ

ρs

�
α=ð1−αÞ� 2

ð1 − αÞð1 − 6εÞ
�
λg
rs

�
2
�
1=ð1−αÞ�

1 −
rs
r

�
2=ðα−1Þ

: ðA7Þ

Now we observe that, for given α, q1, and rs, the Yukawa
range λg is determined by formula (37) and by the integral
equation (79):

1

6

Z
rg

rs

ρ

�
1 −

�
ρg
ρ

�
−α=ð1−αÞ�

rdr

¼ −q1ðρs þ ρ0srsÞ þ
λ2g

6ð1 − αÞ ρg: ðA8Þ

If we compute λg from Eq. (A8), using approximation (98)
and inequality (100), then the effect of the term with q1 is a
fraction of the term with λg for ε < 10−2 and starts to
become negligible for ε < 10−3. Since we are interested in
order of magnitude estimates, we neglect the term with q1
in the following computations. An analogous result holds if
rs lies in the solar atmosphere.
Let us give two examples that show for which values of r

the desired inequality (60) is achieved for given α and rs in
the convection zone. By these examples one can understand
that the results obtained by using inequality (A7) are quite
general.
Let us consider the value rs ≈ 0.98R⊙ for the screening

radius which, using the model of density profile in the
convection zone reported in Appendix B, corresponds to
ρs≈ 3×10−4 gcm−3, and makes the constraint from Cassini
measurement satisfied for −10 ≤ α ≤ −1 and ε ≤ 10−2.
We fix ε ¼ 10−2 since the result does not depend

significantly on ε if ε is small enough [see inequality
(A7)], and we first set α ¼ −1 which implies, using
Eq. (A8), λg ≈ 1.87 × 109R⊙ ≈ 8.7 × 106 AU. In this case
inequality (A7) becomes for r in the convection zone

c2

8πG
ωðη; ρÞ

ρ
<

ρgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 6εÞρsρ
p λg

rs

�
1 −

rs
r

�
−1

<
2 × 10−10

1 − rs=r
; ðA9Þ

where for the last upper bound we have used
ρðrÞ > ρðrpÞ ≈ 2.73 × 10−7 g cm−3, where rp is the radius

at the top of the convection zone. Inequality (60) then
follows:

c2

8πG
ωðη; ρÞ < 10−3ρ for r − rs > 2 × 10−7rs ≈ 140 m;

ðA10Þ

with 10−7rs ≪ R⊙ − rs ≈ 13900 km. Hence, for r > rs
and r very close to rs there is a sharp transition to a
low value of curvature (much smaller than GR curvature),
which is a typical property of a chameleon solution (see
also Refs. [19,20]).
If we now set α ¼ −2, then we get λg ≈ 2.29 × 109R⊙ ≈

1.1 × 107 AU, and

c2

8πG
ωðη; ρÞ

ρ
< ρg

�
2

3ð1 − 6εÞρs

�
1=3

�
λg

rsρð1 − rs=rÞ
�
2=3

<
10−12

ð1 − rs=rÞ2=3
; ðA11Þ

from which inequality (60) follows:

c2

8πG
ωðη; ρÞ < 10−6ρ for r − rs > 10−9rs ≈ 70 cm:

ðA12Þ

Increasing jαj the transition to low curvature becomes
sharper.

2. Verification of inequality jq1j ≪ jq2jRα− 1
Using Eq. (62) with R ¼ ωðη; ρÞ, the inequality is

written in the form

16πG
c2

jαq1jρ ≪ 1 −
8πG
c4

η −
16πG
c2

q1ρ: ðA13Þ

Using now expression (75) for η, neglecting λs and
assuming the screening radius in the solar convection zone,
we approximate MeffðrÞ ≈MeffðR⊙Þ and we get

1 −
8πG
c4

η ≈
16πG
c2

q1ρs þ
16πG
c2

q1ρ0srs

�
1 −

rs
r

�
−
2G
3c2

MeffðR⊙Þ
r

þ 8πG
3c2

Z
R⊙

rs

ρðrÞrdr; ðA14Þ

from which, using the inequality

4π

Z
R⊙

rs

ρðrÞrdr > 4π

R⊙

Z
R⊙

rs

ρðrÞr2dr ≈MeffðR⊙Þ
R⊙

; ðA15Þ
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we obtain

1 −
8πG
c4

η >
16πG
c2

q1ρs þ
16πG
c2

q1ρ0srs

�
1 −

rs
r

�
þ 2G
3c2

MeffðR⊙Þ
R⊙

�
1 −

R⊙

r

�
: ðA16Þ

Using now inequality (99), valid for rs in the convection zone, we find the following lower bounds:

1 −
8πG
c4

η >
16πG
c2

q1ρs þ
2G
3c2

MeffðR⊙Þ
rs

�
ð1 − 20εÞ

�
1 −

rs
r

�
−
�
1 −

rs
R⊙

��
; for q1 > 0;

1 −
8πG
c4

η >
16πG
c2

q1

�
ρs þ ρ0srs

�
1 −

rs
r

�
1þ 1

20ε

�
1 −

r
R⊙

���	
; for q1 < 0: ðA17Þ

Let us first consider the case q1 > 0. In this case the lower
bound can be written in the form

1 −
8πG
c4

η >
16πG
c2

q1ρs þ ϕðr; rs; εÞ; ðA18Þ

where the function ϕðr; rs; εÞ is positive if the following
condition is satisfied:

r > ½1þ δðε; rsÞ�R⊙; ðA19Þ

with

δðε; rsÞ ¼
20εð1 − rs=R⊙Þ
rs=R⊙ − 20ε

: ðA20Þ

Let now r in the solar atmosphere, rs in the convection
zone, and ε > 0 be such that ϕðr; rs; εÞ is positive and
ρðrÞ ≪ ρs ¼ ρðrsÞ. Then we have

16πG
c2

q1ρðrÞ ≪
16πG
c2

q1ρs < 1 −
8πG
c4

η; ðA21Þ

so that inequality (A13) is satisfied if the condition
jαjρðrÞ ≪ ρs is also satisfied.
For rs < rp, where rp ¼ R⊙ − 500 km is the radius at

the base of the photosphere (see Appendix B), the function
δðε; rsÞ is decreasing as rs increases and increasing as ε
increases. Particularly, for a small enough ε, in order to
have inequality (A13) satisfied for r varying in the inner
regions of the solar atmosphere, rs has to be close enough
to R⊙, which means that the contribution to the effective
mass only comes from a thin shell in the upper part of the
solar interior, but this is just the requirement imposed by the
constraint from the Cassini measurement (see Sec. V).
Let us give some examples that show for which values

of r; rs; ε; α, with rs satisfying the Cassini constraint, the
desired inequality (A13) is satisfied. Let us consider thevalue
rs ¼ 0.98R⊙ which corresponds to ρs ≈ 3 × 10−4 g cm−3.

For ε ¼ 10−2 we have δ ¼ 0.005 so that, using the density
model of the solar atmosphere reported in Appendix B,
r0 ¼ ð1þ δÞR⊙ is located in the chromosphere-corona
transition region, and for r > r0 we have ρðrÞ < ρðrcrÞ ¼
9.82 × 10−15 g cm−3 (density at the top of the chromo-
sphere). Then jαjρðrÞ ≪ ρs for jαj < 108 so that for such
values of α inequality (A13) is satisfied.
For ε ¼ 10−3 we have δ ¼ 4 × 10−4, with r0 ¼ ð1þ

δÞR⊙ located in the chromosphere so that, using the density
profile of the chromosphere reported in Appendix B, for
r > r0 we have ρðrÞ < ρð1.0004R⊙Þ ≈ 10−9 g cm−3. In
this case inequality (A13) is satisfied for jαj < 103.
If now rs increases and reaches the top of the convec-

tion zone, rs ¼ rp, then ρs ¼ 2.73 × 10−7 g cm−3 and the
Cassini constraint is satisfied. For ε ¼ 10−2 we have
δ ¼ 1.8 × 10−4, and now we need to take values of r larger
than the ones implied by the inequality r > ð1þ δÞR⊙. If we
take r0 ¼ 1.001R⊙ in the chromosphere, then for r > r0 we
have ρðrÞ < 6.99 × 10−11 g cm−3, and inequality (A13) is
satisfied for jαj < 39.
We consider now the case q1 < 0. We need the expres-

sion of ρ0srs which is obtained by computing the derivative
of the density profile in the convection zone given by
Eqs. (B1) and (B3) in Appendix B:

ρ0srs ¼ −nc
GM⊙

Cp

ρs
GM⊙=Cp − Tors

; ðA22Þ

where nc is an effective polytropic index, Cp is an averaged
value of the specific heat at constant pressure, and To is a
reference temperature (see Appendix B for details and
numerical values). Then the lower bound (A17) can be
written in the form

1 −
8πG
c4

η >
16πG
c2

jq1jρs½ψðr; rs; εÞ − 1�; ðA23Þ

where
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ψðr; rs; εÞ ¼ nc
GM⊙=Cp

GM⊙=Cp − Tors

�
1 −

rs
r

�
1þ 1

20ε

�
1 −

r
R⊙

���
: ðA24Þ

The function ψðr; rs; εÞ is positive in the domain
D ¼ fr ≥ R⊙; 0 ≤ rs ≤ rp; ε ≥ 0g, and in this domain it
achieves the absolute minimum, independent of ε, at
r ¼ R⊙, rs ¼ rp with the value minD ψðr; rs; εÞ ≈ 1.918.
Let now r in the solar atmosphere and rs in the convection
zone be such that jαjρðrÞ ≪ 0.918ρs. Then we have

16πG
c2

jαq1jρðrÞ ≪ 0.918
16πG
c2

jq1jρs

<
16πG
c2

jq1jρs½ψðr; rs; εÞ − 1� < 1 −
8πG
c4

η; ðA25Þ

so that, with q1 < 0, inequality (A13) is satisfied for any
ε > 0.
We now give two examples. Let r and rs be such that

r > R⊙ and rs ¼ 0.98R⊙. Then, using the density profile in
the chromosphere, we have ρðrÞ < 5.9 × 10−9 g cm−3

(density at the bottom of the chromosphere), and inequality
(A13) is satisfied for jαj < 102. If now r and rs are such that
r > r0, with r0 ¼ 1.001R⊙ in the chromosphere, and rs ¼
rp at the top of the convection zone, then inequality (A13)
is satisfied for jαj < 35.
Analogous results can be obtained if the screening radius

is located in the photosphere or outside of the photosphere.

APPENDIX B: SOLAR DENSITY PROFILE

We report on a model of solar mass density profile ρðrÞ,
both for the interior and the atmosphere, which is used in
order to find analytical estimates of the constraints on the
NMC gravity parameters at a suitable order of magnitude.
Matter in the Sun is modeled as a perfect gas in hydrostatic
equilibrium, with the exception of the outer corona, where
dynamical equilibrium of a stationary atmosphere is used.

1. Solar interior

The radius of the Sun R⊙ ¼ 6.9634 × 105 km is defined
to be the radius of the edge, or limb, of the Sun when
observed in white light. The solar atmosphere begins below
the spherical surface of radius R⊙ and center in the origin
[49], at a depth of about 500 km, and extends outward from
the Sun. Then rp ¼ R⊙ − 500 km is the radius at the base
of the photosphere. The density profile is computed for
Newtonian gravity, while a computation based on the
solution of the Lane-Emden equation in the presence of
an Yukawa force can be found in Ref. [50].

a. Convection zone

This outer zone of the solar interior is important since the
screening radius that saturates the Cassini bound (125) lies

in such a zone. We use a polytrope model with an effective
polytropic index nc ¼ 2.33 [47]:

ρðrÞ ¼ Kc½TðrÞ�nc ; ðB1Þ

with Kc ¼ 3.44 × 10−16, and the radius r varying in the
range

rconv ≤ r < rp; rconv ¼ 5.3185 × 105 km: ðB2Þ

The temperature profile is approximated by [47]

TðrÞ ¼ GM⊙

Cpr
− To; ðB3Þ

with M⊙ ¼ 1.989 × 1033 g, Cp ¼ 2.95 × 108 erg g−1K−1

is an averaged value of the specific heat at constant
pressure, and To ¼ 6.461 × 106 K.
In order to verify the consistency condition (39) the

expression of the Laplacian of density is required:

∇2ρðrÞ ¼ ncðnc − 1Þ
�
GM⊙

Cp

�
2Kc

r4
½TðrÞ�nc−2: ðB4Þ

We have ∇2ρðrÞ > 0 in the convection zone and ∇2ρ=ρ is
an increasing function, so that the maximum of the quantity
j∇2ρj=ρ is achieved at r ¼ rp and it is of order of 107=R2

⊙.

b. Radiative interior

The Cassini bound prevents the screening radius from
penetrating inside the radiative interior, hence the density
profile in this region will only be used for verifying the
consistency condition (38). We use the polytrope model
with nr ¼ 3:

ρðrÞ ¼ Kr½T6ðrÞ�nr ; r < rconv; ðB5Þ

with Kr ¼ 2.6885 × 10−2 and T ¼ 106T6 K. The temper-
ature profile is estimated by resorting to an approximation
of the gravitational acceleration profile inside the zone (see
Ch. 9 of Ref. [47] for details):

TðrÞ ¼ TðrconvÞ þ T�

�
χðrÞ − R⊙

rconv

�
; ðB6Þ

where

T� ¼
μmp

ðnr þ 1ÞkB
GM⊙

R⊙
; ðB7Þ
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and

χðrÞ ¼
�
2½3 − ð4r=R⊙Þ2� 0 ≤ r < R⊙=4

R⊙=r R⊙=4 ≤ r < rconv
; ðB8Þ

TðrconvÞ ¼ 2 × 106 K, mp ¼ 1.66 × 10−24 g is the proton
mass, μ ¼ 0.62 is the mean molecular weight, and kB ¼
1.3806 × 10−16 ergK−1 is the Boltzmann constant. This
density profile is used up to r ¼ 0.
The density values computed by means of the above

model and by means of solar models that incorporate
helioseismological measurements [48] are of the same
order of magnitude.
Since the temperature profile is continuous across the

base r ¼ rconv of the convection zone and the polytropic
index changes from the convection zone to the radiative
interior, the density model introduces an artificial disconti-
nuity at r ¼ rconv. Since the density profile in the inner
region of the convection zone and in the radiative interior is
only used for verifying the consistency condition (39),
which requires the computation of the Laplacian of mass
density, then the consistency condition is verified in the
separate regions without crossing the discontinuity.
For 0 ≤ r < R⊙=4 the Laplacian of density is given by

∇2ρ ¼ 6.4 × 10−11nr
KrT�
R2
⊙

½T6ðrÞ�nr−2

×

�
T�

�
224

r2

R2
⊙
− 3

R⊙

rconv
− 18

�
− 3TðrconvÞ

�
;

ðB9Þ

and for R⊙=4 ≤ r < rconv it is given by

∇2ρ ¼ 10−12nrðnr − 1ÞKrT2�½T6ðrÞ�nr−2
R2
⊙

r4
: ðB10Þ

Using the above expressions we find that the maximum of
the quantity j∇2ρj=ρ in the radiative interior is achieved at
r ≈ 0.22R⊙ and it is of order of 102=R2

⊙.

2. Solar atmosphere

Large density gradients take place in the solar atmos-
phere, particularly in the chromosphere-corona transition
region. Then the extra force, which depends on the density
gradient, can become a significant perturbation of hydro-
static equilibrium in such regions with large gradients.

a. Photosphere

For the density in the photosphere we use the following
model, adapted from [51], for rp ≤ r < R⊙:

ρðrÞ ¼ μmppm

kB½Tm þ AðR⊙ − rÞ2�Þ exp
�
R⊙ − r
Hp

�
; ðB11Þ

where μ ¼ 1.26, Hp ¼ 117 km, A ¼ 8.8 × 10−3 km−2K,
Tm ¼ 4.4 × 103 K is the temperature minimum at the
top of the photosphere, pm is pressure corresponding
at the temperature minimum, such that pm=kB ¼
1.2 × 1019 Kcm−3.

b. Chromosphere

The middle chromosphere is characterized by a broad
temperature plateau at T ≈ 6500 K [52], hence, for sim-
plicity, we adopt an isothermal model for this layer of the
solar atmosphere:

ρðrÞ ¼ ρp exp

�
−
r − R⊙

Hc

�
; R⊙ ≤ r < 1.003R⊙; ðB12Þ

with

Hc ¼
kBTR2

⊙

μmpGM⊙
≈ 157 km; ðB13Þ

μ ¼ 1.26, and ρp ¼ 5.9 × 10−9 g cm−3 is the density at the
top of the photosphere (value interpolated from the average
quiet Sun model in [52]). The density profile (B12)
coincides with the best fitting formula used in [53].

c. Chromosphere-corona transition region

Here the steepest density gradient takes place. The
density profile in this region is computed by using hydro-
static equilibrium together with the average emission
measure distribution given in Eq. (150). An analytic
estimate of density is found by approximating the integral
in Eq. (150) as in [38], see Sec. VI. The resulting density
profile ρ ≈ μmpp0=ðkBTÞ is given by

ρðrÞ ¼ μmp
p0

kB

�
Tbþ2
0 þ 0.231

bþ 2

ξ2a

�
p0

kB

�
2

ðr − r0Þ
�
− 1
bþ2

;

ðB14Þ

with T0 ¼ Tðr0Þ ¼ 1.5× 105 K, p0=kB ¼ 2 × 1015 Kcm−3,
and we use the values of a, b reported in [40] for the
average quiet Sun. The transition region is divided into
two zones:

(i) zone with temperature 2× 104 K≤ T < 1.5× 105 K;
in this zone we use μ ¼ 0.65, ξ ¼ 2, b ¼ −3.5,
a ¼ 1 × 1043, and the zone corresponds to

0.003R⊙ ≈ 2089 km ≤ r − R⊙ < 2186 km; ðB15Þ

(ii) zone with temperature 1.5× 105 K≤ T < 1× 106 K;
in this zone we use μ ¼ 0.62, ξ ¼ 1.91, b ¼ 1.65,
a ¼ 2 × 1016, and the zone corresponds to

2186 km ≤ r − R⊙ < 3906 km: ðB16Þ
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Density exhibits the steepest gradient in zone (i), which is
denoted the lower transition region. The thickness of the
transition zone is in good agreement with the empirical
atmospheric model computed in [54] (Ch. 6, Fig. 6.1) using
the emission measures tabulated in [40].

d. Inner corona

We consider the inner corona approximately isothermal,
so that the density profile is

ρðrÞ ¼ ρic exp
�
μmpGM⊙

kBT

�
1

r
−

1

ric

��
; ðB17Þ

with μ ¼ 0.62,

ric ≤ r < ra; ric ¼R⊙þ 3906 km; ra ¼ 1.06R⊙; ðB18Þ

ra is the base of the outer corona, ρic ¼ 2 × 10−15 g cm−3 is
density at the base of the inner corona, and T ≈ 106 K.

e. Outer corona

The model is based on the stationary expansion of the
outer corona in which temperature T is assumed constant
between the coronal base at r ¼ ra and an outer boundary
at r ¼ rb, with adiabatic expansion beyond rb [27,55].
The flow of the expanding atmosphere turns from subsonic
to supersonic, giving rise to the solar wind, as it passes
through a critical radius rc such that ra < rc < rb. Such a
model yields values of solar wind speed and density which
are in good agreement with measurements from the
HELIOS solar probes [56] and Parker Solar Probe [57].

Subsonic zone.—This zone corresponds to the range of
distances ra ≤ r < rc, where the critical radius rc is given
by [27,55]

rc ¼
μmpGM⊙

2kBTa
; ðB19Þ

where we choose Ta ¼ 1 × 106 K for the constant value
of temperature in the range ðra; rbÞ, and μ ¼ 0.54 which
corresponds to the average value 0.032 of the helium
abundance [56], the ratio of helium to proton number
density. Then we get rc≈6.19R⊙. If we set ψ¼v2=c2s <1,
where v ¼ vðrÞ is the velocity of the expanding gas and cs
is the isothermal speed of sound, then in the region where
ψ ≪ j lnðψÞj the density profile is approximated by

ρðrÞ ¼ ρa exp

�
2rc

�
1

r
−

1

ra

��
; ðB20Þ

where ρa ¼ 9.7 × 10−16 g cm−3 is density at the base of the
outer corona.

Supersonic zone.—This zone corresponds to distances
r ≥ rc and it is further divided in two subzones. In the first
subzone the expansion is isothermal and it takes place in
the range rc ≤ r < rb. We use the value rb ¼ 192R⊙ ≈
0.89 AU which corresponds to a velocity vðrbÞ ≈
460 km s−1 of the solar wind [55], in good agreement with
observations [56,57].
In the supersonic zone ψ > 1, and at distances r such

that ψ ≫ lnðψÞ the density profile in the first subzone is
approximated by

ρðrÞ ¼ ρa
exp ½3=2 − 2ðrc=raÞ�

2½lnðr=rcÞ�1=2
�
rc
r

�
2

; ðB21Þ

and we use this approximation in the range ðrc; rbÞ. In the
second subzone r ≥ rb, the expansion is adiabatic, and
density is approximated by

ρðrÞ ¼ ρa
exp ½3=2 − 2ðrc=raÞ�

2½lnðrb=rcÞ�1=2
�
rc
r

�
2

; ðB22Þ

hence density decreases as 1=r2.
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