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A classical black hole is characterized by a horizon that absorbs the radiation of all frequencies incident
on it. The perturbation of these black holes is well understood via exponentially damped sinusoids known
as quasinormal modes. Any departure from such classical behavior near the horizon may induce significant
modifications in the late-time evolution of the perturbation leading to so-called gravitational wave echoes.
This work considers the effect of black hole area quantization on the formation of gravitational wave
echoes. We investigate how the resulting echo waveform may depend on various model parameters. Our
study opens up a new window to distinguish different models of area quantization using future gravitational
wave observations and provides a novel probe to study the near-horizon physics.
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I. INTRODUCTION

Gravitational wave (GW) astronomy is offering us an
intriguing opportunity to test the classical and quantum
aspects of black holes [1,2]. In a recent work [3], the
authors have suggested that the GWs emitted from black
hole inspirals may carry detectable imprints of the under-
lying quantummechanical properties of the horizon. This is
based upon Bekenstein’s proposal [4,5] of black hole area
quantization: A ¼ αl2pN, where lp is the Planck length,N is
a positive integer, and α is a constant. Such a discretization
process, which could be a consequence of the Planck-scale
physics, may leave its signature on the emission [5] as well
as the absorption spectrum of black holes [3,6–9].
All these works crucially assume the validity of

Bekenstein’s entropy formula—i.e., the black hole entropy
is proportional to the area of the event horizon. In general
relativity (GR), this area law is motivated mainly from the
Hawking area theorem [10], which states that the area of a
classical black hole cannot decrease. However, once we
venture beyond GR, the entropy of a black hole is no longer
proportional to the horizon area, and it can have subleading
correction terms [11,12]. Also, if we interpret the black
hole entropy as the entanglement entropy due to the
entanglement of the modes of a quantum field, the area
law can be obtained by tracing over the modes hidden by
the black hole horizon [13]. Interestingly, if the quantum
field is in a state different from the vacuum, the entropy
receives subleading corrections [14–16]. In fact, it is also
proposed that, in general, only the entropy is quantized
with an equally spaced spectrum [17]. If the entropy is not

proportional to area, the horizon area is then quantized in a
nonuniform manner.
The upshot of such a nonuniform area quantization on

the phasing of gravitational waveforms from coalescing
black hole inspirals is analyzed in Ref. [18]. It has been
shown that any correction to the area law may lead to
detectable consequences in future GW observations.
Moreover, such observations may as well put severe
constraints on various parameters of the underlying model.
This technique also provides a novel test for the area-
entropy proportionality of black hole solutions in Einstein’s
theory of gravity.
A natural question to ask is whether such area discre-

tization may affect the postmerger ringdown phase. The
ringdown spectrum for a classical black hole consists of the
quasinormal modes which are derived using the perfectly
ingoing boundary condition at the horizon. However, due to
its quantized area, a black hole can only absorb at certain
characteristic frequencies. This would lead to a modifica-
tion of the boundary condition at the horizon. Any such
modification will affect the late-time behavior of the
postmerger spectrum and gives rise to so-called GW
echoes.
GW echoes following the merger of compact objects

have been investigated extensively in the last few years
[19–24], and the possible presence of echoes in GW data is
also being analyzed [25–31]. Nevertheless, the modifica-
tion of the horizon boundary condition which led to the
generation of these echo signals was implemented in a
rather ad hoc fashion. However, in Ref. [7], it has been
proposed that the quantization of black hole area may
provide a concrete theoretical justification for the modified
boundary condition at the horizon. It is modeled by adding
a double-barrier potential near the horizon that mimics the
selective absorption of quantum black holes. In that case,
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any future observation of GW echo in the late-time signal
from a binary black hole merger could confirm the
hypothesis of area quantization.
In this paper, we further develop the model proposed in

Ref. [7] by introducing new perspectives. We demonstrate
how the details of the area quantization can be captured by
a careful choice of the double-barrier parameters that are
placed to mimic the boundary condition on the horizon. It
allows us to incorporate finer details of the area quantiza-
tion in the echo spectrum, which was not manifest in the
previous model [7]. As a consequence, our model breaks
the universality of the echo time—i.e., the time difference
between two consecutive echoes—and make it dependent
on the model of area quantization.
Thus, our work complements the results of Ref. [7] by

computing the possible effects of nonuniform area quan-
tization on the gravitational wave echo spectrum similarly
to the inspiral case studied in Ref. [18]. We use a scenario
where the black hole entropy has subleading corrections in
the form of a power law [14–16]. Then, by assuming the
entropy is quantized in equidistant steps, we can find the
nonuniform quantization rules for the horizon area:

A ¼ αl2pNð1þ CNνÞ: ð1Þ

Here, C is a constant present in the power-law correction
term in the entropy. The other parameter ν is assumed to be
negative in order to get back Bekenstein’s area quantization
law as N → ∞. It is important to emphasize that in our
model, the nonuniform area quantization need not be due to
additional higher-curvature terms; we continue using this
model for GR black holes as well. Then, we analyze the
effect of area discretization on the black hole echo
spectrum.
Our work opens up a potential possibility to impose

severe constraints on the choice of theoretically plausible
models of area quantization using the future observation of
black hole echo signals from different sources. Our study
also provides another test for the area-entropy proportion-
ality in parallel to the test presented in Ref. [18].

II. QUANTUM FILTER FOR NONUNIFORM AREA
QUANTIZATION

A classical black hole absorbs any radiation incident on
it. In other words, the event horizon of a classical black hole
has zero reflectivity (R ¼ 0) and unit transmissivity
(T ¼ 1). However, the situation changes drastically when
the black hole’s area is assumed to be quantized, as
prescribed in Eq. (1). Then, it can only absorb at certain
frequencies, characterized solely by the mass of a
Schwarzschild black hole [3,18]:

ωN;n ¼
ακ

8π
f1þ Cð1þ νÞNνgn: ð2Þ

Here, n is a positive integer, and κ is the surface gravity at
the event horizon. As a result, such quantum black holes
will have frequency-dependent reflectivity RðωÞ.

A. Gravitational perturbation

Although incorporating rotation in Eq. (2) is not a
difficult job, we shall only focus on the nonrotating case.
Then, our aim is to study perturbations on this black hole
background as we modify the classical boundary condition
at the horizon to model the absorption profile in terms
of the characteristic frequencies given by Eq. (2). For
this purpose, we consider a massless, quadrupole mode of
the gravitational perturbation of the black hole. Then, the
corresponding master equation for the perturbation Ψðx; tÞ
is

½∂2
t − ∂2

x þ VSch�Ψðx; tÞ ¼ 0; ð3Þ

where the effective potential is denoted by,
VSchðrÞ ¼ ð6=r2Þð1 − 2M=rÞð1 −M=rÞ. It is a well-known
fact that this potential has its maximum at r ¼ 3M, which
signifies the location of the light ring. As we shall see, this
light ring will play a crucial role in the formation of the
black hole echo spectrum. Moreover, we have introduced
the tortoise coordinate outside the horizon at r ¼ 2M
as xðrÞ ¼ rþ 2M log ðr=2M − 1Þ.
Now, using a Fourier transformation of the perturbation,

Ψðx; tÞ ≔ R
dωΨ̃ðx;ωÞe−iωt, we can cast the master equa-

tion into its most useful form:

−∂2
xΨ̃ðx;ωÞ ¼ ½ω2 − VSchðxÞ�Ψ̃ðx;ωÞ: ð4Þ

It is interesting to notice the close resemblance of Eq. (4)
with the time-independent Schrodinger equation. We want
to study this equation with an outgoing boundary condition
near spatial infinity—i.e., Ψ̃ ∝ eiωx as x → ∞. However,
we should be careful in fixing the boundary condition near
the horizon, as the physics there will be modified due to the
quantum effects sourced by the area quantization. It is
reasonable to assume that these quantum modifications will
only be important very close to the horizon—say, up to a
radius r < rϵ ¼ 2Mð1þ ϵÞ for some positive values of
ϵ ≪ 1. For our purpose, we must set a reflecting boundary
condition at x ¼ xϵ ≔ xðrϵÞ:

Ψ̃ðxϵ;ωÞ ∝ e−iωðx−xϵÞ þ RðωÞeiωðx−xϵÞ; ð5Þ

where RðωÞ is the frequency-dependent reflectivity of the
boundary at r ¼ rϵ. The classical result is obtained in the
limit RðωÞ ¼ 0.

B. Modeling the quantum filter

Quantization of the black hole area demands that the
absorption occur only at the characteristic frequencies
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implying RðωN;nÞ ¼ 0, and otherwise RðωÞ ¼ 1.
Therefore, the absorption spectrum of a quantum black
hole consists of sharply peaked lines about its characteristic
frequencies ω ¼ ωN;n given by Eq. (2). As suggested in
Ref. [7], this behavior can be modeled by a quantum-
mechanical double-barrier potential with a suitable choice
of the barrier parameters—namely, its height V, width l,
and separation d (see Fig. 1). However, in Ref. [7], the area
quantization is assumed to be uniform, whereas we are
considering the effect of the nonuniformity.
In order to mimic the black hole case, we must choose

the double-barrier parameters so that the transmissivity
TðωÞ is very close to unity if ω ¼ ωN;n given by Eq. (2).
For any other frequency, TðωÞ should be vanishingly small.
For this purpose, it is instructive to calculate the transition
amplitude tðωÞ by comparing the situation with the similar
problem in quantum mechanics. Using the result derived in
Ref. [32], we may write (setting c ¼ 1)

t ¼ e−iωðdþ2lÞ

eiωdAþ e−iðωd−δÞB
; ð6Þ

with A¼M2 sinh2ðβlÞ and B¼ cosh2ðβlÞþK2 sinh2ðβlÞ.
We have also defined tanðδÞ ¼ K sinhð2βlÞ½cosh2ðβlÞ−
K2 sinh2ðβlÞ�−1.
Here, we are using a rescaled version of the potential

in order to make the aforesaid comparison possible:
ð2m=ℏ2ÞU ¼ V, where U is the actual potential that
appears in the Schrodinger equation. Also, we have defined
β2 ¼ V − ω2. Since the rescaled energy of the particle,
ð2m=ℏ2ÞE ¼ ω2, is less than the height of the potential
barrier V, the quantity β is a positive real number. We
have also used the notations 2M ¼ β=ωþ ω=β and
2K ¼ β=ω − ω=β.
Now, it is easy to calculate the transition probability,

which is defined by the equation T2 ¼ tt̄:

T−2 ¼ A2 þ B2 þ 2AB cosð2ωd − δÞ: ð7Þ

Thus, the transition probability is an oscillatory function
having two envelopes defined according to the maxima and

minima of the sinusoidal part. The equations of these
envelopes are as follows:

Upper envelope∶ jTju ¼ ðA − BÞ−1 ¼ 1;

Lower envelope∶ jTjl ¼ ½2M2sinh2ðβlÞ þ 1�−1: ð8Þ

Therefore, this double-barrier model mimics the
event horizon of the quantum Schwarzschild black hole
if we can choose the barrier separation (d) so that
TðωN;nÞ ¼ Tu ¼ 1. This demands a condition on the
barrier separation d, as 2ωN;nd − δ ¼ ð2sþ 1Þπ. Using
this condition, we get

ωN;n ¼
sπ
d
þ δþ π

2d
: ð9Þ

We should also check whether Tl given in Eq. (8) is
vanishingly small, so that TðωÞ ¼ Tl ≈ 0 when ω ≠ ωN;n.
For a fixed value of the particle’s energy, this can be assured
by choosing larger and larger heights of the potential barrier
—i.e., V ≫ ω2. In this limit, the phase of the sinusoidal part
in the transition amplitude becomes δr ¼ rπ for some
integers r. Then, Eq. (9) gives

ωN;n ¼
�
sþ r

2

�
π

d
þ ω0; ð10Þ

where we define ω0 ¼ π=ð2dÞ. Next, we use Eq. (2) to
obtain a direct relationship between the parameters of the
double-barrier potential on the horizon and the quantization
model of the area as

ακ

8π
f1þ Cð1þ νÞNνgn ¼

�
sþ r

2

�
π

d
þ ω0: ð11Þ

To proceed further, we note that our main purpose is to
study the late-time echo spectrum of the perturbation. For
studying these echoes, we shall consider the initial wave-
form to be a Gaussian that consists of all the modes ωN;n.
Thus, our model makes better sense and simplifies if the
barrier separation (d) does not carry any mode index. In
other words, the n dependency must cancel out from both
sides of the above equation. This task is achieved by first
identifying the integers n ¼ r ¼ s, and then by making a
constant shift in the frequency scale—i.e., by redefin-
ing ω → ωþ ω0.
Finally, Eq. (11) reads for nonuniform area quantiza-

tion as

d ¼ duniform × ½1þ Cð1þ νÞNν�−1; ð12Þ

where duniform ¼ 12π2=ðακÞ is the corresponding quantity
for uniform area quantization. This equation gives a one-to-
one correspondence between the width of the double-
barrier potential and the model of quantization labeled

FIG. 1. Symmetric double-barrier potential with (rescaled)
height V.
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by the quantization parameters ðC; νÞ. Note that the exact
value of the quantity α depends on the details of the
quantization. In his original proposal [4], Bekenstein
considered its value to be 8π, which is motivated by the
transitions of a Schwarzschild black hole between different
energy levels at discrete quasinormal mode frequencies
[33,34]. However, other values of α are also studied in the
literature [34].
Interestingly, Eq. (12) may provide us an important tool

to distinguish the effects of nonuniform quantization from
those of a uniform one in black hole echo. Uniform
quantization gives a universal value for the quantity κd,
for all Schwarzschild black holes. This universality is lost
once the quantization is nonuniform and its value depends
on the black hole mass through N. Therefore, for a given
value of α, measuring the echo spectrum from multiple
observations may provide us with knowledge about the
values of d. We can then check how different its value is
from duniform. In fact, future echo observations may also be
useful in putting stark bounds on model parameters ðC; νÞ.
One way to employ this idea is to plot the quantity κd for

different values of N, which correspond to different black
hole configurations. Then, the uniform quantization is
represented by a horizontal line parallel to the N axis with
an intercept of (12π2=α) with the vertical axis. In contrast,
any deviation from this horizontal line would indicate
nonuniform quantization.
If we demand the correction to the area law to only be in

the subleading order, Eq. (2) suggests that we should
choose the values of ðC; νÞ so that jCð1þ νÞNνj < 1.
Moreover, as discussed in Ref. [18], for enriching the
absorption spectrum, it is recommended to choose C < 0
rather than C > 0. All these considerations cause the
quantity [1þ Cð1þ νÞNν] to lie in the interval (0,1).
Interestingly, from Eq. (12) we can infer that the more
this quantity goes away from unity, the larger the separation
between d and duniform becomes for the lower values of N
(corresponding to black holes of a few solar masses). Thus,
the subleading correction of the area law forces the echo
measurement for nonuniform quantizations to stand out
vividly from the uniform one. However, as N increases, the
separation narrows gradually, to disappear at N → ∞.

III. BLACK HOLE ECHOES

Formation of black hole echoes crucially hinges upon
two important ingredients: the event horizon and the light
ring. Among them, the latter remains unaffected by the
process of area quantization, and it is located at r ¼ 3M.
The former is modeled by the double-barrier potential to
mimic the selective absorption spectrum of the black hole.
Owing to this quantum filter, any perturbation of frequen-
cies other than what are given by Eq. (2) will be reflected
back from the rightmost barrier wall of the potential, which
signifies the extent of the quantum regime outside the black
hole. It is important to note its dissimilarity from the

reflection at a classical reflective surface that works as an
amplitude divider. In other words, any radiation, irrespec-
tive of its frequency, is partly reflected and partly trans-
mitted through a classical barrier. In contrast, the horizon
of an area-quantized black hole works as a frequency filter.
As a result, radiation of a particular frequency will be
either absorbed or reflected completely, but not both
simultaneously.
When the left-bound initial perturbation (taken in the

form of a Gaussian waveform) reaches the light ring at
r ¼ 3M, it excites the photon sphere modes. This, in turn,
results in the initial ringdown signals. After a certain time,
these initial ringdown signals are reflected back from the
barrier and come back to the light ring, where it partially
transmits through the potential maximum of VSch [see
Eq. (4)], and the remaining part is reflected back towards
the horizon. As the process repeats itself, a series of black
hole echoes is produced.

A. Placing the quantum filter

The duration between two consecutive echo signals—
namely, the echo time—is roughly given by twice the light
travel time between the double-barrier boundary and the
light ring. However, depending on details of the near-
horizon physics, this separation can depend on the model of
area quantization. In fact, we have two distinct ways of
placing the double-barrier quantum filter near the horizon.
As we shall see, these two perspectives will give rise to
significantly distinct echo spectra.
The first model is closely related to what is depicted in

Ref. [7], where the rightmost barrier wall of the potential is
aligned with the surface of quantum extent located at
x ¼ xϵ. In this model, we assume that the location of xϵ that
acts as a reflecting surface is model-independent and can be
fixed universally for all Schwarzschild black holes of mass
M. However, due to the model dependency of the barrier
separation d given by Eq. (12), the location of the inner
barrier wall may vary; see Fig. 2. We can think of the inner
barrier wall as the location of the modified absorption
surface xAðC; νÞ due to the quantum effects near the

FIG. 2. Model 1: The dotted line represents the absorption
surface that varies with ðC; νÞ, and the thick line denotes the fixed
reflection surface.
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horizon. Since the distance between the reflecting surface
xϵ and the location of the light ring does not vary with
different choices of ðC; νÞ, the echo time is independent of
the nature of area quantization. In other words, nonuniform
area quantization leads to the same echo time as that of
uniform quantization.
The universality of the echo time can be lifted by

introducing an alternative perspective. In this model, we
consider the location of the absorption surface at xA to be
fixed and model independent. However, the location of the
reflecting surface xϵ is now varying due to the change of the
barrier separation d as given by Eq. (12); for different
choices of model parameters ðC; νÞ, see Fig. 3. As a result,
the separation between xϵ and the light ring becomes model
dependent, and so is the echo time.
However, in any case, we need to be careful so that the

values of xA and xϵ are indeed close to the horizon and
inside the quantum regime.

B. Cauchy evolution equation

In both the models, to find the echoes, we need to
express the time-domain master equation for the perturba-
tion in double-null coordinates defined by u ≔ t − x and
v ≔ tþ x in the units of c ¼ 1. In these coordinates,
Eq. (3) takes the form

½4∂u∂v þ V�Ψðu; vÞ ¼ 0: ð13Þ

Here, the potential V consists of two parts: the classical
Schwarzschild potential VSch, and the quantum filter
VBarrier near the horizon. The second part is required to
incorporate the quantum boundary condition at the boun-
dary at x ¼ xϵ. Thus, the perturbation evolves under the
influence of the combined potential V ¼ VSch þ VBarrier. To
solve Eq. (13) numerically, we discretize the ðu; vÞ plane in
the form of a square grid of length h ≪ 1. Then, the
evolution equation becomes

Ψðuþ h; vþ hÞ ¼ Ψðuþ h; vÞ þΨðu; vþ hÞ −Ψðu; vÞ

−
h2

8
½Vðuþ h; vÞΨðuþ h; vÞ

þ Vðu; vþ hÞΨðu; vþ hÞ�: ð14Þ

Using this equation, we can now study the evolution of
an initial Gaussian waveform in order to find the black hole
echo spectrum.

C. The echo spectrum

We begin with an analysis of the echo time Δtecho for
both the models. As discussed before, the echo time is
roughly twice the light travel time between the light ring
and the rightmost barrier of the quantum filter. In the
leading order, it is given by

M−1Δtecho ∼ 2½1 − 2 ln 2 − 2ϵþ 2 lnðϵ−1Þ�: ð15Þ

Note that the quantityM−1Δtecho has no explicit depend-
ence on mass M; the only dependence on mass may come
implicitly through the parameter ϵ in the context of
model 2.
In model 2, the absorption surface is fixed at a distance

rA ¼ 2Mð1þ aÞ, where a < ϵ ≪ 1. Then, the extent of the
quantum region is governed by the following equation:

ϵðC; νÞ ¼ aExp

�
24π2

αð1þ CNνð1þ νÞÞ
�
: ð16Þ

Thus, for a given massM, the quantum extent outside the
horizon (ϵ) can vary with different choices of quantization
parameters (C, ν). Also, for a fixed choice of the parameters
(C ≠ 0, ν), the extent ϵwill be different for different masses
via N.
In contrast, for model 1, ϵ is a constant parameter

independent of (M, C, ν) and is fixed only by the quantum
extent outside the event horizon. We also point out that in
both the models, Eq. (15) gives the same value of
M−1Δtecho for uniform quantization (C ¼ 0).
Now, let us consider the echo spectrum for the two models

separately. Figure 4 shows the echo spectrum corresponding
to model 1, for both uniform and nonuniform area quanti-
zations. As is expected, the echo wavefronts are almost
identical, revealing no information about the model param-
eters C and ν. This is because the distance between the
reflecting surface xϵ and the location of the light ring does
not vary with (C, ν). As a consequence, the echo time Δtecho
is unaltered for different models and depends only on the
mass M of the black hole. In fact, in the leading order, the
quantity M−1Δtecho does not depend on the mass.
The situation for model 2 is depicted in Fig. 5. This is the

case when the location of the absorption surface at xA is
fixed and model independent, and the reflecting surface xϵ
is varying due to different choices of model parameters

FIG. 3. Model 2: The dotted line represents the reflection
surface that varies with ðC; νÞ, and the thick line denotes the fixed
absorption surface.
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(C, ν). As a result, the echo time, the time separation
between two consecutive echoes, depends on the nature of
quantization. In fact, this immediately suggests a possible
test to distinguish these two models.
In the context of model 2, if the gravitational echo is

observed by future detectors for more than one GW source,
a significant variation of the quantity M−1Δtecho will be a
strong evidence for nonuniform area quantization. This is
quite explicit in an order-of-magnitude estimation of
the echo time for model 2, M−1Δtecho ∼ 4 ln ðϵmax=ϵÞ.
Here, the quantity ϵmax ¼

ffiffiffi
e

p
=2 can be fixed universally.

Interestingly, the positivity of echo time gives an upper
bound on ϵ for a given choice of ðC; νÞ: ϵ < ϵmax. This
bound can be translated to a upper bound on the parameter
a that signifies the location of the absorption surface:

amax ¼
ffiffiffi
e

p
2

Exp

�
−

24π2

αð1þ CNνð1þ νÞÞ
�
: ð17Þ

There is no such bound on ϵ for model 1, since the echo
time is always positive.
Figure 6 shows the variation of the echo time with black

hole mass for model 2. There is a noticeable difference
between uniform and nonuniform area quantizations for
higher values of the black hole mass.
In order to distinguish between these two models

depending on the placement of the quantum filter near
the horizon, and also between the uniform and nonuniform
area quantizations, we may proceed as follows: First, from
the gravitational echo observations by future detectors, we
may investigate the variation of the quantity M−1Δtecho for
multiple GW sources of different masses. If it varies
significantly for different sources, then model 2 is preferred
over model 1. Subsequently, we try to fit the observed echo
time data with theoretically expected values in model 2 for
different choices of (C, ν). If the best-fit model parameter
significantly differs from C ¼ 0, it would suggest that the
black hole area quantization is nonuniform.

IV. CONCLUSION

In this paper, we have explored the effects of both
uniform and nonuniform area quantization on GW echoes
from a perturbed black hole. As a result of area discretiza-
tion, black holes deviate from their classical behavior and
absorb selectively at certain characteristic frequencies.
Motivated by the method presented in Ref. [7], we model
this selective absorption using a double-barrier potential
placed near the horizon. We show that, depending on the
near-horizon physics, there are two distinct ways to place
the potential barrier, which lead to drastically different
consequences on the echo spectrum. The echo profile—and

FIG. 4. Gravitational wave echo spectrum for model 1. The
parameters for the nonuniform quantization are C ¼ −3.6 and
ν ¼ −1=90. We have chosen ϵ ¼ 10−59.

FIG. 5. Gravitational wave echo spectrum for model 2. The
parameters for the nonuniform quantization are C ¼ −3.6 and
ν ¼ −1=90. We have chosen a ¼ 10−70.

FIG. 6. Variation of echo time (in units of solar mass M⊙) with
mass of the black hole for model 2. The parameters for the
nonuniform quantization are C ¼ −3.6 and ν ¼ −1=90.
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in particular, the echo time—is sensitive to the quantization
parameters (C, ν) for only one of these models—namely,
model 2. In that case, the echo time Δtecho scales non-
linearly with the mass and potentially offers an observa-
tional test to distinguish between these two models. In fact,
since Δtecho does not depend on the parameters (C, ν) for
model 1, a parameter estimation for (C, ν) should return
only C ¼ 0. On the other hand, model 2 may allow nonzero
values of C.
Note that we have only considered power-law correc-

tions to the area-entropy proportionality, motivated by
Refs. [14–16]. Interestingly, a logarithmic correction to
the entropy will not have any detectable effects. This is
similar to the inspiral case, as pointed out in Ref. [18].

It will be interesting if we can generalize our analysis
beyond spherical symmetry and for more general black
hole spacetimes. An extension for black holes of higher-
curvature gravity theories may also be useful.
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