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We present a new bouncing cosmological solution of the nonlocal theory known as infinite derivative
gravity, which goes beyond the recursive ansatz, □R ¼ r1Rþ r2. The nonlocal field equations are
evaluated using the spectral decomposition with respect to the eigenfunctions of the wave operator. The
energy-momentum tensor computed for this geometry turns out to be much more sensitive to the choice of
the nonlocal form factor, since it depends on the value of the function on a continuous infinite interval. We
show that this stronger dependence on the form factor allows us to source the geometry by the perfect fluid
with the non-negative energy density satisfying the strong energy condition. We show that this bouncing
behavior is not possible in the local theories of gravity such as, in general, relativity or Rþ R2 gravity
sourced by a fluid which meets the non-negative energy and strong energy conditions.
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I. INTRODUCTION

There is no doubt that the current cosmological model,Λ
cold dark matter, gives so far the most accurate description
of the history of the Universe [1]. Nevertheless, it suffers
from some important shortcomings, such as the tensions
between early and late time measures [2], the nature of dark
energy [3,4], and the initial singularity problem [5,6]. The
latter is the most worrisome from a conceptual perspective,
since the existence of singularities signals the limited range
of validity of the theory.
By the time the Friedmann–Lemaître–Robertson–

Walker (FLRW) cosmological solution was introduced,
“t ¼ 0 singularity” was thought to be a consequence of
spacetime symmetries. It was not until the development of
the singularity theorems in the 1960s by Penrose and
Hawking and co-workers [7–10] that the sufficient con-
ditions for the appearance of singularities were elucidated.
In particular, in a cosmological context, one can recall
the Hawking singularity theorem, which states [8] the
following:
Theorem.—LetM be a 4-dimensional manifold equipped

with the metric g satisfying the following conditions:
(1) Global hyperbolicity.
(2) Temporal convergence condition, i.e., v · Ric · v ≥ 0

for every timelike vector v, where Ric is the Ricci
tensor, and · denotes a contraction between adjacent
tensor indices.

(3) There exists a Cauchy hypersurface Σ with expan-
sion of the future-directed geodesic congruence
greater or equal than a constant A > 0.

Then, no past-directed timelike curve from Σ can have a
length greater than 3=jAj. In particular, all past-directed
timelike geodesics are incomplete.
It is clear that this theorem predicts the initial singularity

for quite general requirements, and hence, this behavior is
not due to the specific symmetry of the considered solution.
When applied to a FLRW metric that describes the expan-
sion of the Universe, the first and third conditions hold.
Therefore, in order to predict singularities in such space-
times, we just need to worry about the second condition in
the theorem, the temporal convergence condition. Such a
condition is completely theory independent, but it can be
related to the energy-momentum tensor of a specific theory
via the field equations, obtaining what is known as the
energy conditions.
In the general relativity (GR), the temporal convergence

condition written in terms of the energy-momentum tensor
T can be expressed as

v ·

�
T −

1

2
Tg

�
· v ≥ 0; ð1:1Þ

for every timelike vector v. Such a condition is usually
referred to as the strong energy condition (SEC). In a
particular case of the perfect fluid, which is a source of a
FLRW spacetime, SEC is equivalent to

ρþ p ≥ 0; ρþ 3p ≥ 0; ð1:2Þ
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where ρ and p are the energy density and the pressure of
the perfect fluid, respectively. SEC has an important
physical interpretation; it guarantees the attractive character
of gravity in GR [10,11].
Because of issues linked to the initial singularity problem,

the nonsingular cosmological solutions have become a
widely studied topic in gravitation (for a comprehensive
review, see [5]). The nonsingular cosmological solutions
which contract and then expand are called the bouncing
cosmologies. The first explicit solutions were obtained in the
late 1970s by Novello and Salim [12] and Melnikov and
Orlov [13]. Nevertheless, at that time, they did not attract too
much attention of the community, since they require the
violation of SEC. It was not until two decades later, with the
measurement of the accelerated expansion of the Universe,
that these kinds of metrics started to be regarded as possible
physical solutions of the problems present in the standard
cosmological models.
Resorting to Hawking’s theorem, it is clear that in order to

obtain nonsingular bouncing solutions in GR, SEC must be
necessarily violated [14,15], implying that gravity is not
attractive at the bounce. This fact has served as motivation to
explore bouncing solutions in modified theories of gravity,
where the unattractive character can be a consequence of the
modification, not of the energy-momentum tensor. For a
review of bouncing universes in various theories of gravity,
we refer the reader to [16].
In this paper, we are interested in nonlocal theory

of gravity known as the infinite derivative gravity (IDG)
[17–20], which contains operators with an infinite number of
derivatives in the action. The most general action (quadratic
in curvature) with no ghosts or extra degrees of freedom has
been constructed aroundMinkowski [20], de Sitter, and anti-
de Sitter spacetimes [21]. The nonlocal gravitational inter-
action has been argued to improve ultraviolet aspects gravity
at the quantum level [22–26]. At the classical level, it has
been proved that the linearized IDG can yield nonsingular
static solutions for point sources (including electromagnetic
charges), p-branes (and cosmic strings), spinning ring
distributions, sources describing Newman-Unti-Tamburino
charges, null sources, and accelerated particles [20,27–33]. It
was also shown that the linearized IDG prevents mini-black-
hole production for small masses [28,34,35]. Also, hints of
this nonsingular behavior for astrophysical objects have been
studied in [36,37]. Exact gravitational waves generated by
null sources in full IDG were found in [38–41].
Several cosmological studies were performed within

IDG, in particular, the possibility of describing inflation
[42–45] and the existence of nonsingular bouncing sol-
utions [19,46–53]. All the previous examples made an
extensive use of the recursive ansatz on the Ricci scalar R,
i.e., □R ¼ r1Rþ r2, which reduces the field equations to
local second order nonlinear differential equations. As a
matter of fact, in [42], it was proved that such a recursive
ansatz for flat FRLW already incorporates all solutions of

the IDG field equations with a traceless energy-momentum
tensor. In this paper, we go beyond the recursive ansatz and
find a bouncing solution whose energy-momentum tensor
is not traceless and shows much stronger dependence on the
nonlocal form factor.
The paper is organized as follows: In Sec. II, we derive

the field equations of IDG and explain the treatment of the
nonlocal equations with the spectral analysis of the wave
operator. In Sec. III, we present a bouncing solution for
which the eigenvalue problem can be solved and derive an
explicit form of the energy-momentum tensor. In Sec. IV,
we find sufficient conditions for the form factor that ensure
that the energy density of the perfect fluid is non-negative,
and SEC is met. We also show that this bouncing behavior
is not possible neither in GR nor in “Rþ R2 gravity”
sourced by a fluid meeting such conditions. Moreover, we
find that the nonlocality only affects the bounce region,
while recovering GR at late times. Finally, we provide a
brief summary of the results in Sec. V.

II. EVALUATION OF NONLOCAL FIELD
EQUATIONS

In this paper, we consider a nonlocal theory described by
the action of IDG,

S½g� ¼ 1

2

Z
M
g
1
2ðϰ−1ðR − 2ΛÞ þ RFð□ÞRÞ þ Sm; ð2:1Þ

where R is the Ricci scalar, g
1
2 ¼ ffiffiffiffiffiffi−gp

dx4 the volume
element, ϰ ¼ 8πGN the Einstein gravitational constant, □
the wave operator, Λ the cosmological constant, and Sm the
matter sector of the action. The nonlocal operator Fð□Þ is
ofter referred to as the form factor. It is given by an analytic
nonpolynomial function,1

Fð□Þ ¼
X∞
n¼0

fn□n: ð2:2Þ

Performing the variation with respect to the metric g, we
find the field equations of IDG [19,54],

ϰ−1
�
Ric−

1

2
RgþΛg

�
þϒþ 1

2
gðΩþΘÞ−Ω¼ T; ð2:3Þ

where the rank-2 tensors ϒ, Ω, and the scalar Θ are
given by

1Here, the fn are dimensionfull constant coefficients.
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ϒ≡
�
2Ric − 2∇∇ −

1

2
gRþ 2g□

�
Fð□ÞR;

Ω≡X∞
n¼1

fn
Xn−1
k¼0

∇□kR∇□n−k−1R≡ R∇⃗Gð□⃖; □⃗Þ∇⃖R;

Θ≡X∞
n¼1

fn
Xn−1
k¼0

□
kR□n−kR≡ R

□⃖þ □⃗

2
Gð□⃖; □⃗ÞR: ð2:4Þ

The arrows over the covariant derivatives denote left/right

actions of the derivative. The operator Gð□⃖; □⃗Þ is a
nonlocal bilinear operator which is defined as

Gð□⃖; □⃗Þ≡ Fð□⃖Þ − Fð□⃗Þ
□⃖ − □⃗

: ð2:5Þ

The presented field equations are very complicated due
to their nonlocal and nonlinear structure. There exist three
main approaches to solving these equations in the literature:

(i) Linearized regime [20]: Performing the first order
perturbations with respect to a given background,
one can approximate the field equations by linear
nonlocal equations.

(ii) TN/TIII ansatz [40]: In certain class of geometries,
such as the almost universal spacetimes TN/TIII, the
nonlinear terms may not contribute even without
making any approximations. The field equation may
reduce to the linear nonlocal differential equations.

(iii) Recursive ansatz [19]: Assuming the recursive
ansatz for the curvature, such as □R ¼ r1Rþ r2,
the field equations can be recast to the form of local
(second order) nonlinear differential equations.

Only the second and third methods produce exact sol-
utions of the full theory; however, such geometries are
very special. In the TN/TIII ansatz, the nonlinear terms in
the curvature do not contribute. In the recursive ansatz, the
dependence on the form factor is very weak in the sense
that only the values Fðr1Þ and F0ðr1Þ are actually impor-
tant for the energy-momentum tensor. In this paper, we
study a geometry that does not fall in any of these
categories. Its energy-momentum tensor has a strong
dependence on the nonlocal form factor, and the nonlinear
terms do not automatically vanish.
When solving the linear nonlocal differential equations,

for example, those arising in the linearized regime or from
the TN/TIII ansatz, one often employs the spectral repre-
sentation of the nonlocal operators using the eigenvalues of
the wave operator□. The linearity then allows one to invert
the nonlocal operators and write the solutions using the
associated integral transforms (if the spectrum is continu-
ous). Of course, such an inversion is not possible if the
equations are nonlinear; however, one can still use the
method of spectral decomposition to evaluate the field
equation. Namely, we can try to find a certain geometry for
which the eigenvalue problem,

□ψλ ¼ λψλ; ð2:6Þ

possesses simple (analytic) solutions ψλ ¼ ψλðxÞ for discrete
or continuous spectrum λ. If the eigenfunctions ψλ form a
complete orthonormal set, hψλ;ψλ0 i ¼ δλλ0 , then we can
decompose a function f in terms of the eigenfunctions ψλ,

fðxÞ ¼
XZ
λ

fλψλðxÞ; fλ ¼ hψλ; fi ð2:7Þ

where
PR

λ denotes summation
P

λ if the spectrum is discrete
and integration

R
λ if the spectrum is continuous. In the latter

case, these expressions define direct and inverse integral
transforms. (The simplest example is the Fourier transform in
flat spacetime in Lorentzian coordinates.) Equipped with this,
we can represent the action of the nonlocal operator Fð□Þ by

Fð□Þf ¼
XZ
λ

fλFð□Þψλ ¼
XZ
λ

fλFðλÞψλ ð2:8Þ

In the next section, we present a spacetime, where this
process of evaluation of the nonlocal field equations is
tractable, yet still nontrivial in the sense that the energy-
momentum tensor depends on all values of F.

III. NEW NONLOCAL BOUNCING GEOMETRIES

The search for a geometry for which the field equations
can be evaluated using the method described above is quite
nontrivial for several reasons: (i) There are very few
physically interesting geometries that actually admit exact
closed-form solution of the eigenvalue problem. (ii) In many
of these cases, the eigenfunctions are either too complicated
or do not form a complete set. (iii) Even if this is all satisfied,
the Ricci scalar may still fail to be decomposable. To deal
with these issues, we focus on a flat FLRW ansatz,

g ¼ −dtdtþ a2q; ð3:1Þ

where a ¼ aðtÞ denotes the scale factor, and q is the metric
of the 3-dimensional flat space. When acting on scalar
functions, the wave operator □ reads

□ ¼ −∂2
t − 3H∂t; ð3:2Þ

where H ¼ _a=a is the Hubble parameter. The Ricci tensor
Ric and the Ricci scalar R of the metric (3.1) are given by the
expressions

Ric ¼ −
3ä
a
dtdtþ ðaäþ 2_a2Þq

¼ −3ð _H þH2Þdtdtþ ð _H þ 3H2Þa2q;

R ¼ 6

�
ä
a
þ _a2

a2

�
¼ 6ð _H þ 2H2Þ: ð3:3Þ
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The individual terms in the field equations (2.3) can be expressed as

ϰ−1
�
Ric −

1

2
Rgþ Λg

�
¼ ϰ−1ð3H2 − ΛÞdtdt − ϰ−1ð2 _H þ 3H2 − ΛÞa2q;

ϒ ¼ ½ð6H∂t − 3 _HÞFð□ÞR�dtdtþ ½−ð2∂2
t þ 4H∂t þ _HÞFð□ÞR�a2q;

1

2
gðΩþ ΘÞ −Ω ¼ −

1

2
ðΘþΩttÞdtdtþ

1

2
ðΘ −ΩttÞa2q: ð3:4Þ

Thus, we can find the formula for the energy-momentum tensor of the flat FLRW spacetime,

T ¼
�
ϰ−1ð3H2 − ΛÞ þ ð6H∂t − 3 _HÞFð□ÞR −

1

2
ðΘþ ΩttÞ

�
dtdt

þ
�
−ϰ−1ð2 _H þ 3H2 − ΛÞ − ð2∂2

t þ 4H∂t þ _HÞFð□ÞRþ 1

2
ðΘ −ΩttÞ

�
a2q: ð3:5Þ

As mentioned above, the spectral decomposition plays a
central role in the evaluation of (3.5). The differential
equation for the eigenvalue problem,

□ψω ¼ λωψω; ð3:6Þ
is remarkably simple in the FLRW geometry (3.1), espe-
cially if we focus on spatially homogeneous eigenfunctions
ψω ¼ ψωðtÞ,

ψ̈ω þ 3H _ψω þ λωψω ¼ 0; ð3:7Þ
where the dot stands for the derivativewith respect to t. Here,
λω denotes the eigenvalues, labeled by a parameter ω.
In order to find explicit solutions of this equation, one

has to specify the geometry even further. Let us focus on the
FLRW spacetimes with the following scale factor:

a ¼ a0 coshγðαtÞ; ð3:8Þ

with α > 0 and γ > 0. This scale factor describes bouncing
cosmologies with the bounce at t ¼ 0, which approach de
Sitter spacetime with the Ricci scalar R ¼ 12α2γ2 for
t → �∞. Note that by explicitly choosing nonsingular
geometries we avoid problems with introducing nonlocal
operators that can act on functions living on manifolds with
boundaries. The Hubble parameterH for this scale factor is
given by

H ¼ γα tanhðαtÞ: ð3:9Þ
The special value γ ¼ 1, has been studied in the literature
[19]. An important property of such a spacetime is that the
Ricci scalar satisfy recursive ansatz. In other words, the
Ricci scalar shifted by a constant is itself an eigenfunction
of □ [i.e., satisfying (3.7)] because

□R ¼ 2α2R − 24α4 ⟺ □R
∘ ¼ 2α2R

∘
; R

∘ ≡ R − 12α2;

ð3:10Þ

meaning that ψ0 ¼ R
∘
and λ0 ¼ 2α2. Also, the particular

case γ ¼ 1=2 has been considered, which gives a constant
curvature spacetime, which clearly satisfies the ansatz [48].
As mentioned above, the recursive ansatz has proved useful
in generating solutions of nonlocal gravity because it
effectively reduces the field equations to the local equations
with only a weak dependence on the nonlocal form factor.
We study the case γ ¼ 2=3, which goes beyond the

recursive ansatz, since

□R ¼ −
3

2

�
R −

16

3
α2
�

2

: ð3:11Þ

The choice γ ¼ 2=3 is rather unique, since the eigenfunctions
take a surprisingly simple form,

ψω ¼ 1ffiffiffiffiffiffi
2π

p sechðαtÞe−iωt; ð3:12Þ

with the corresponding eigenvalues λω ¼ ω2 þ α2; therefore,

□ψω ¼ ðω2 þ α2Þψω: ð3:13Þ

The eigenfunctions (3.12) are very convenient because they
depend on ω only through the multiplicative factor e−iωt.
Thus, they give rise to the integral transformG that is closely
related to the Fourier transform F,

F½h�ðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dthðtÞeiωt;

F−1½h�ðtÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dωhðωÞe−iωt: ð3:14Þ

In particular, for the inverse transform of G, we find
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fðtÞ ¼ G−1½fω�ðtÞ

¼
Z
R
dωfωψωðtÞ

¼ sechðαtÞ 1ffiffiffiffiffiffi
2π

p
Z
R
dωfωe−iωt

¼ sechðαtÞF−1½fω�ðtÞ: ð3:15Þ
Thanks to this relation, we can find also the direct integral
transform,

fω ¼ G½fðtÞ�ðωÞ
¼ F½coshðαtÞfðtÞ�ðωÞ

¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dt coshðαtÞfðtÞeiωt

¼
Z
R
dt cosh2ðαtÞψ�

ωðtÞfðtÞ

¼ hψω; fi; ð3:16Þ
and identify the inner product in which ψω are orthonormal.
Hence, we are ensured that the integral transform G that is
given by eigenfunctions ψω is well defined and has a
corresponding inverse G−1.
To evaluate the nonlocal terms (2.4) in the field equa-

tions, we have to express the Ricci scalar R with the help of

the integral transform G. The Ricci scalar of the flat FLRW
with the scale factor (3.8) and γ ¼ 2=3 is

R ¼ 4

3
α2ð4 − sech2αtÞ: ð3:17Þ

Apparently, a problem arises here, since the relevant
integral diverges due to the constant part of the expression.
Instead, we can decompose the Ricci scalar shifted by this
constant,

R̂≡ R −
16

3
α2 ¼ G−1½R̂ω�ðtÞ ¼

Z
R
dωR̂ωψω; ð3:18Þ

where

R̂ω ¼ G½R̂ðtÞ�ðωÞ
¼ F½coshðαtÞR̂ðtÞ�ðωÞ

¼ −
2

ffiffiffiffiffiffi
2π

p

3
αsech

�
πω

2α

�
: ð3:19Þ

As we see, this decomposition is sufficient to rewrite the
field equations to the integral form. Indeed, if we apply the
integral representation of the Ricci scalar (3.18), we can
write

Fð□ÞR ¼ 16

3
α2f0 þ

Z
R
dωFðω2 þ α2ÞR̂ωψω;

Ωtt ¼
Z Z

R2

dωdω0Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0 _ψω _ψω0 ;

Θ ¼ −
16

3
α2f0Rþ

�
16

3
α2
�

2

f0 þ
16

3
α2

Z
R
dωFðω2 þ α2ÞR̂ωψω

þ
Z Z

R2

dωdω0 ω
2 þ ω02 þ 2α2

2
Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0 : ð3:20Þ

Consequently, the individual terms in (3.5) can be expressed as follows:

ϰ−1ð3H2 − ΛÞ ¼ ϰ−1
�
4

3
α2tanh2ðαtÞ − Λ

�
;

−ϰ−1ð2 _H þ 3H2 − ΛÞ ¼ ϰ−1
�
−
4

3
α2 þ Λ

�
;

ð6H∂t − 3 _HÞFð□ÞR ¼ −16α2f0 _H þ
Z
R
dω½−4iα tanhðαtÞω − 2α2ð1þ tanh2ðαtÞÞ�Fðω2 þ α2ÞR̂ωψω;

−ð2∂2
t þ 4H∂t þ _HÞFð□ÞR ¼ −

16

3
α2f0 _H þ

Z
R
dω

�
2ω2 −

4

3
iα tanhðαtÞωþ 2

3
α2ð1þ sech2ðαtÞÞ

�
Fðω2 þ α2ÞR̂ωψω;

∓ 1

2
ðΘ� ΩttÞ ¼ ∓ 1

2

��
16

3
α2
�

2

f0 −
16

3
α2f0Rþ 16

3
α2

Z
R
dωFðω2 þ α2ÞR̂ωψω

�

∓
Z Z

R2

dωdω0
�
1

4
ðω ∓ ω0Þ2 � 1

2
iα tanhðαtÞðωþ ω0Þ þ 1

2
α2ð1� tanh2ðαtÞÞ

�

×Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0 : ð3:21Þ
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When put together, we finally arrive at the explicit formula for the energy-momentum tensor,

T ¼
�
ϰ−1

�
4

3
α2tanh2ðαtÞ − Λ

�
−
128

9
α4f0sech2ðαtÞ

þ
Z
R
dω

�
−4iα tanhðαtÞω − 2α2

�
7

3
þ tanh2ðαtÞ

��
Fðω2 þ α2ÞR̂ωψω

−
Z Z

R2

dωdω0
�
1

4
ðω − ω0Þ2 þ 1

2
iα tanhðαtÞðωþ ω0Þ þ 1

2
α2ð1þ tanh2ðαtÞÞ

�
Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0

�
dtdt

þ
�
ϰ−1

�
−
4

3
α2 þ Λ

�
þ
Z
R
dω

�
2ω2 −

4

3
iα tanhðαtÞωþ 2

3
α2ð5þ sech2ðαtÞÞ

�
Fðω2 þ α2ÞR̂ωψω

þ
Z Z

R2

dωdω0
�
1

4
ðωþ ω0Þ2 − 1

2
iα tanhðαtÞðωþ ω0Þ þ 1

2
α2ð1 − tanh2ðαtÞÞ

�
Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0

�
a2q:

ð3:22Þ

In the next section, we study its properties and show that the
specific nonsingular geometry we chose, i.e., (3.8) with
γ ¼ 2=3, can be actually sourced by a perfect fluid with
non-negative energy density that meets SEC.

IV. PROPERTIES OF THE PERFECT FLUID

The energy-momentum tensor (3.22) strongly depends on
the form factor F through expressions involving Fðω2 þ α2Þ
and Gðω2 þ α2;ω02 þ α2Þ integrated over all values of ω
and ω0. In other words, we have a greater freedom to choose
a form factor F such that the energy-momentum tensor for a
given geometry meets the desired properties. We first require
that the energy density is non-negative in order for the
perfect fluid to be physically reasonable. Secondly, we
impose that the perfect fluid satisfies SEC. Note that this
implies that a geometry that would be sourced by the same
perfect fluid in GR would be singular.
This section is divided in two parts: In the first part, we

prove that neither in GR nor in “Rþ R2 gravity” is it
possible to meet the requirements on the energy-momentum
tensor of the perfect fluid for this geometry. In the second
part, we study these requirements in the nonlocal theory. In
particular, we find some sufficient conditions on the form
factors and also provide a specific numerical example of a
form factor that fulfills these conditions.

A. Local gravity: GR & R+R2

The energy-momentum tensor of the perfect fluid in the
flat FLRW spacetime is given by

T ¼ ρdtdtþ pa2q; ð4:1Þ

where ρ is the energy density, and p is the pressure. Let us
see whether the bouncing cosmology (3.8) with γ ¼ 2=3
can be sourced by a physical matter. First, we consider the
general relativity, i.e., Fð□Þ ¼ 0. The condition on non-
negative energy density reads

ρ ¼ ϰ−1
�
4

3
α2 tanh2ðαtÞ − Λ

�
≥ 0; ð4:2Þ

which is satisfied for all t only if Λ ≤ 0. Next, we demand
fulfilment of SEC,

ρþ p ¼ −
4

3
ϰ−1α2sech2ðαtÞ ≥ 0;

ρþ 3p ¼ ϰ−1
�
4

3
α2tanh2ðαtÞ − 4α2 þ 2Λ

�
≥ 0: ð4:3Þ

As we can see, the first condition can never hold, and the
second one is met for all t only if Λ ≥ 2α2. Therefore, the
perfect fluid generating this geometry in GR does not meet
SEC. (A special example is pure GR without the cosmo-
logical term, Λ ¼ 0, where the violation of SEC can be also
argued based on the Hawking theorem applied to this
nonsingular bouncing FLRW spacetime.) Before we proceed
to another theory, let us investigate what happens at late/early
times t → �∞ (i.e., far from the bounce t ¼ 0). The energy
density (4.2) and SEC (4.3) turn into Λ ≤ 4α2=3 and
Λ ≥ 4α2=3, respectively. This means that both conditions
are asymptotically satisfied only if Λ ¼ 4α2=3, which
corresponds to the asymptotic vacuum, T → 0 for
t → �∞. For this specific choice Λ ¼ 4α2=3, the cosmo-
logical term accounts for the accelerated expansion, where
the vacuum corresponds to de Sitter spacetimewith the Ricci
scalar R ¼ 16α2=3.
Let us investigate if this behavior can be improved in

“Rþ R2 gravity”, which is given by a constant form factor
Fð□Þ ¼ f0. The energy density is non-negative if

ρ¼ ϰ−1
�
4

3
α2 tanh2ðαtÞ−Λ

�
−8f0α4sech4ðαtÞ≥ 0; ð4:4Þ

which holds for all t if Λ ≤ −8ϰf0α4. SEC reads
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ρþ p ¼ −
4

3
ϰ−1α2sech2ðαtÞ − 16f0α4sech4ðαtÞ ≥ 0;

ρþ 3p ¼ ϰ−1
�
4

3
α2tanh2ðαtÞ − 4α2 þ 2Λ

�

− 32f0α4sech4ðαtÞ ≥ 0: ð4:5Þ

These two conditions are met for all t only if f0 ≤ −ϰ−1=
12α2 and Λ ≥ 2α2 þ 16ϰf0α4, respectively. Unfortunately,
f0 should be positive to avoid Dolgov–Kawasaki instability
[55,56], which obviously violates SEC. Taking the limits
t → �∞ of (4.4) and (4.5), we again arrive atΛ ≤ 4α2=3 and
Λ ≥ 4α2=3, respectively. As in GR, both conditions are
asymptotically satisfied only for Λ ¼ 4α2=3 corresponding
to the asymptotic vacuum. This is because the contributions
to the energy-momentum tensor arising from the R2 term in
the action decay faster than the contributions from the
Einstein–Hilbert term.

B. Nonlocal gravity: IDG

Let us see if the nonlocal theory described by the action
of IDG (2.1) can improve the properties of the perfect
fluid and give rise to a physically reasonable matter. Our
aim is to find sufficient conditions for the form factor
under which the perfect fluid meets the required proper-
ties. First, recall that the bouncing geometry tends to de
Sitter spacetime for t → �∞. Its Hubble parameter and
Ricci scalar approach constants H ¼ 2α=3 and R ¼
16α2=3 with exponential rate, see (3.9) (with γ ¼ 2=3)
and (3.17). Moreover, the derivatives ∂k

t H and ∂k
t R for

k > 0 decay exponentially. Inspecting (3.5), we see that
the contributions to the energy-momentum tensor from all
terms except for the Einstein–Hilbert term become neg-
ligible for t → �∞, and thus, IDG effectively reduces to
GR. This has an important implication for the require-
ments on the perfect fluid because, as we have seen, they
can be satisfied asymptotically only if we set Λ ¼ 4α2=3;
all other choices of Λ would necessarily lead to negative
energy density or violation of SEC.
At this point, we should analyze possible form factors that

allow for non-negative energy density and meet SEC. The
first restriction, however, comes already from the integral
transform we used to evaluate the energy-momentum tensor.
All (1- and 2- dimensional) integrals in (3.22) must con-
verge, which already constraints the form factors that we can
choose. We have to demand that the absolute values of
integrands are integrable functions. Therefore, a sufficient
condition for convergence of the 1-dimensional integrals
over R is that functions

jωjksech
�
πω

2α

�
jFðω2 þ α2Þj; k ¼ 0; 1; 2; ð4:6Þ

belong to L1ðRÞ. To find the conditions of convergence, we
realize that the integrands are analytic functions (F is
analytic), so it is sufficient to investigate the convergence
of the integrals over the intervals ð−∞; c−Þ and ðcþ;∞Þ for
some constants c− and cþ. We rely on the limit comparison
test for improper integral, which says that

R�∞
c�

dωfðωÞ
converges if

R�∞
c�

dωgðωÞ is a known convergent integral
and

lim
ω→�∞

fðωÞ=gðωÞ ¼ L�; 0 ≤ L� < ∞: ð4:7Þ

We use the slowly decreasing function (with a convergent
improper integral), gðωÞ ¼ jωj−1−ε, ε > 0. Then, it is clear
that the most restrictive condition that we can write among
the three mentioned conditions (k ¼ 0; 1; 2) is

lim
ω→�∞

jωj3þεe∓πω
2α jFðω2þα2Þj¼L�; 0≤L�<∞; ε>0:

ð4:8Þ

Before we examine the convergence of the 2-dimensional
integrals, it is important to convince ourselves that the
integrands are also analytic, which may not be apparent
because of the presence of the function G. Indeed, the
function Gðx; yÞ is analytic everywhere including the points
x ¼ y, where it can by analytically extended by its limit
Gðx; xÞ ¼ F0ðxÞ. The conditions for the convergence of
the 2-dimensional integrals over R2 can be obtained from the
2-dimensional Fourier transform conditions of existence [57],
namely, the absolute integrability of the integrand. Hence,
sufficient conditions for convergence are that functions

jωjkjω0jlsech
�
πω

2α

�
sech

�
πω0

2α

�
jGðω2 þ α2;ω02 þ α2Þj;

kþ l ¼ 0; 1; 2; ð4:9Þ

belong to L1ðR2Þ. As we did for the 1-dimensional
integrals, we can use the limit test to study the convergence
[58]. We can choose the slowly decreasing function with a
convergent improper integral over AR ¼ fðx; yÞ ∈ R2 s:t:
x2 þ y2 ≥ Rg, which is gðω;ω0Þ ¼ ðω2 þ ω02Þ−1−ε, ε > 0.
Applying the same reasoning as in the 1-dimensional case,
the most restrictive conditions coming from the limit
convergence test are now

lim
ðω;ω0Þ→∞

ðω2þω02Þ1þεjωjkjω0jle−πjωj
2α e−

πjω0 j
2α jGðω2þα2;ω02þα2Þj¼L; kþ l¼2; 0≤L<∞; ε>0: ð4:10Þ
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Having established the convergence of the integrals, we
can now move on to the condition for non-negative energy
density ρ ≥ 0 and SEC ρþ p ≥ 0, ρþ 3p ≥ 0. Since we
want to satisfy all these inequalities at the same time, we
can easily see that ρþ p ≥ 0 is actually redundant for our

needs: Let us assume that ρ ≥ 0. If p ≥ 0 then SEC holds.
On the other hand, if p < 0 than ρþ 3p ≥ 0 automatically
implies ρþ p ≥ 0. Therefore, we only need to deal with the
quantities ρ and ρþ 3p, which can be read out from (3.22)
(where we set Λ ¼ 4α2=3),

ρ ¼ −
�
4

3
ϰ−1 þ 128

9
α2f0

�
α2sech2ðαtÞ þ

Z
R
dω

�
−4iα tanhðαtÞω − 2α2

�
7

3
þ tanh2ðαtÞ

��
Fðω2 þ α2ÞR̂ωψω

−
Z Z

R2

dωdω0
�
1

4
ðω − ω0Þ2 þ 1

2
iα tanhðαtÞðωþ ω0Þ þ 1

2
α2ð1þ tanh2ðαtÞÞ

�

×Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0 ;

ρþ 3p ¼ −
�
4

3
ϰ−1 þ 128

9
α2f0

�
α2sech2ðαtÞ þ

Z
R
dω

�
10

3
α2 þ 6ω2 þ 4α2sech2ðαtÞ − 8iαω tanhðαtÞ

�
Fðω2 þ α2ÞR̂ωψω

þ 1

2

Z Z
R2

dωdω0½2α2 þ ω2 þ ω02 þ 4ωω0 þ 4α tanhðαtÞð−α tanhðαtÞ − iðωþ ω0ÞÞ�

×Gðω2 þ α2;ω02 þ α2ÞR̂ωR̂ω0ψωψω0 : ð4:11Þ

Let us take a look at these expression term by term. If we
want to have a positive contribution from the first term of ρ,
we need

f0 < −
3ϰ−1

32α2
: ð4:12Þ

To understand the second term (the 1-dimensional integral),
we evaluate an auxiliary integral with the constant positive
form factor Fðω2 þ α2Þ ¼ C > 0,

C
Z
R
dω

�
−4iα tanhðαtÞω − 2α2

�
7

3
þ tanh2ðαtÞ

��
R̂ωψω

¼ 8

9
Cα4ð16cosh2ðαtÞ − 9Þsech4ðαtÞ: ð4:13Þ

Since this integral is always positive, we might be tempted
to assume that FðxÞ is positive and approximately constant
for all x in order to make the second term of ρ also
positive. Nevertheless, this obviously contradicts the
condition (4.12). To overcome this issue, we propose that
FðxÞ should be almost constant and positive (≈C > 0)
only for x > α2 but negative for x ∈ ð0; ζ2Þ, with
α > ζ > 0, so that f0 meets the requirement (4.12).
Although the third term (the 2-dimensional integral) might
be negative, it should not contribute too much because
Gðω2 þ α2;ω02 þ α2Þ is almost zero for all ðω;ω0Þ ∈ R2.
Moving on to ρþ 3p, we realize that its first term is the

equal to the first term of ρ, so it is automatically positive
thanks to (4.12). The second term of ρþ 3p (the single
integral) can be analyzed again by calculating the
approximate integral with Fðω2 þ α2Þ ¼ C > 0,

C
Z
R
dω

�
10

3
α2þ6ω2þ4α2sech2ðαtÞ−8iαωtanhðαtÞ

�
R̂ωψω

¼32

9
Cα4ð4sinh2ðαtÞ−5Þsech4ðαtÞ; ð4:14Þ

which is positive only for jtj > arcsinhð ffiffiffi
5

p
=2Þ=α. Let us

see if we can counter the negativity of this term with the
positivity of the first term of ρþ 3p. By summing the first
term of ρþ 3p with the negative contribution of (4.14)
only, we obtain

−
�
4

3
ϰ−1 þ 128

9
α2f0

�
α2sech2ðαtÞ − 160

9
Cα4sech4ðαtÞ:

ð4:15Þ

Since sech2ðxÞ ≥ sech4ðxÞ for all x, this expression is
positive if

f0 < −
3ϰ−1

32α2
−
5

4
C: ð4:16Þ

The third term of ρþ 3p (the 2-dimensional integral) is
negligible for the same reason as the analogous term in
the analysis of ρ.
To summarize, we have arrived at the following suffi-

cient conditions for the form factor leading to a physically
reasonable perfect fluid:

(i) The form factor must ensure conditions for conver-
gence of integrals appearing in the energy-momentum
tensor, i.e., (4.8) and (4.10).

(ii) The form factor must be almost constant and
positive, FðxÞ ≈ C > 0, for x > α2.
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(iii) The value of f0 ≡ Fð0Þ has to be sufficiently
negative to meet condition (4.16).

In order to verify these finding, we provide an explicit
example of a form factor that gives rise to non-negative
energy density and the fulfillment of SEC. Let us consider
the following form factor:

Fð□Þ ¼ C − Ce−l
2ð□−ζ2Þ; ð4:17Þ

for which we have f0 ¼ C − Cel
2ζ2 . This form factor has

been constructed to recover the local limit, i.e., Fð□Þ ¼ 0,
for l → 0. First, let us note that the function (4.17) obeys
the convergence conditions (4.8) and (4.10) with L� ¼ 0
and L ¼ 0, respectively. Next, we notice that it quickly
approaches a constant value. To ensure that FðxÞ is almost
constant for x > α2, we propose

el
2ðζ2−α2Þ < ϵ; ð4:18Þ

where ϵ > 0 is a sufficiently small number. Finally, we
make f0 negative enough according to (4.16),

el
2ζ2 >

3

4

�
ϰ−1

8α2C
þ 3

�
: ð4:19Þ

For a given constant α, we can always find the values ofC, l,
and ζ so that the constraints (4.18) and (4.19) are satisfied to
a prescribed value of ϵ. The graph of the functions ρ and
ρþ 3p computed numerically from (4.11) are plotted in
Fig. 1 in dimensionless quantities.We can see that the energy
density is positive, and SEC is satisfied everywhere. Hence,
in this nonlocal modification, one can obtain a bouncing
cosmology sourced by a physically relevant perfect fluid.
Finally, it is interesting to note that for this particular form
factor (4.17), we recover the R − βR2 gravity for large αl,
which we have rendered as an unphysical theory due to its
instabilities. In order to have a nonlocal behavior that fulfills
SEC, we need to choose l to be of the same order as α, as

can be seen in Fig. 1. This means that the nonlocality scale
should be of the same order as the de Sitter radius rdS,
because rdS ¼

ffiffiffiffiffiffiffiffiffi
3=Λ

p ¼ 3
2
α−1. Finally, it is interesting to

note that the effects of nonlocality are only appreciable
around the bounce, and that GR is recovered as one distances
from it.

V. CONCLUSIONS

In this paper, we found a new cosmological bouncing
geometry for which the field equations can be evaluated
using the spectral decomposition with respect to the
eigenfunctions of the wave operator. Furthermore, depend-
ence of the resulting energy-momentum tensor (3.22) on
the form factor is much stronger than for the previous
solutions available in the literature. Since the new solution
does not satisfy the recursive ansatz, □R ¼ r1Rþ r2, the
Ricci scalar (after a constant shift) is no longer an
eigenfunction on its own, but it still admits eigenfunction
decompositions. The geometry we choose is rather special
in the sense that the eigenvalue problem of the wave
operator in this background is exactly solvable, and the
corresponding eigenfunctions are rather simple.
We showed that due to stronger dependence of the

energy momentum on the form factor Fð□Þ one can tune
it in such a way that the following occur: (i) The integrals
appearing in the formula for the energy-momentum tensor
converge. (ii) The solution is sourced by a perfect fluid with
non-negative energy density. (iii) The perfect fluid satisfies
SEC. One of the simplest form factors satisfying (i)–(iii)
can be constructed rather straightforwardly by taking FðxÞ
to be sufficiently negative at x ¼ 0 and almost constant and
positive in the domain of integration. We have also shown
that the effects of nonlocality are only relevant around the
bounce, and that GR is recovered at late times.
A natural extension of this work is to find other types

of form factors satisfying i)–iii) [especially those for
which Fð0Þ ≥ 0]. Another interesting but rather involved
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FIG. 1. Graphs of the dimensionless quantities ϰρ=α2 (left) and the quantity ϰðρþ 3pÞ=α2 (right) of the perfect fluid that sources the
bouncing cosmology for the form factor given in (4.17), for three different values of αl. We have chosen Cα2 ¼ 1.3225 and
ζ=α ¼ 0.3887, which satisfy (4.18) and (4.19) with ϵ ¼ 0.034.
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problem is the perturbative stability of the solution, which
may put further restrictions on the form factor. It will also
be worth exploring more general solutions for which the
eigenvalue problem of the d’Alembertian operator can be
solved.
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KOLÁŘ, TORRALBA, and MAZUMDAR PHYS. REV. D 105, 044045 (2022)

044045-10

https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1038/s42254-019-0137-0
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1016/j.crhy.2012.04.008
https://doi.org/10.1016/j.physrep.2008.04.006
https://doi.org/10.1023/A:1018801101244
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1967.0164
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevD.20.377
https://doi.org/10.1016/0375-9601(79)90117-8
https://doi.org/10.1016/S0370-2693(99)00469-4
https://doi.org/10.1088/0264-9381/22/23/001
https://doi.org/10.1088/0264-9381/22/23/001
https://doi.org/10.1016/j.physrep.2017.06.001
https://doi.org/10.1007/BF01017588
https://doi.org/10.1007/BF01017588
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1103/PhysRevLett.108.031101
https://doi.org/10.1007/978-3-319-31299-6_5
https://doi.org/10.1007/978-3-319-31299-6_5
https://arXiv.org/abs/hep-th/9702146
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1103/PhysRevD.86.044005
https://doi.org/10.1088/0264-9381/32/21/215017
https://doi.org/10.1088/0264-9381/32/21/215017
https://doi.org/10.1007/JHEP07(2019)090
https://doi.org/10.1007/JHEP01(2020)003
https://doi.org/10.1007/JHEP01(2020)003
https://doi.org/10.1103/PhysRevD.98.084009
https://doi.org/10.1103/PhysRevD.98.084009
https://doi.org/10.1103/PhysRevD.93.064048
https://doi.org/10.1103/PhysRevD.93.064048
https://doi.org/10.1103/PhysRevD.97.084021
https://doi.org/10.1103/PhysRevD.97.084021
https://doi.org/10.1103/PhysRevD.98.084041
https://doi.org/10.1103/PhysRevD.98.084041


[31] I. Kolář and A. Mazumdar, NUT charge in linearized infinite
derivative gravity, Phys. Rev. D 101, 124005 (2020).

[32] J. Boos, J. Pinedo Soto, and V. P. Frolov, Ultrarelativistic
spinning objects in nonlocal ghost-free gravity, Phys. Rev. D
101, 124065 (2020).

[33] I. Kolář and J. Boos, Retarded field of a uniformly
accelerated source in nonlocal scalar field theory, Phys.
Rev. D 103, 105004 (2021).

[34] V. P. Frolov, A. Zelnikov, and T. de Paula Netto, Spherical
collapse of small masses in the ghost-free gravity, J. High
Energy Phys. 06 (2015) 107.

[35] V. P. Frolov, Mass-Gap for Black Hole Formation in Higher
Derivative and Ghost Free Gravity, Phys. Rev. Lett. 115,
051102 (2015).

[36] A. S. Koshelev and A. Mazumdar, Do massive compact
objects without event horizon exist in infinite derivative
gravity?, Phys. Rev. D 96, 084069 (2017).

[37] L. Buoninfante and A. Mazumdar, Nonlocal star as a
blackhole mimicker, Phys. Rev. D 100, 024031 (2019).

[38] E. Kilicarslan, pp-waves as exact solutions to ghost-free
infinite derivative gravity, Phys. Rev. D 99, 124048
(2019).

[39] S. Dengiz, E. Kilicarslan, I. Kolář, and A. Mazumdar,
Impulsive waves in ghost free infinite derivative gravity in
anti-de Sitter spacetime, Phys. Rev. D 102, 044016
(2020).

[40] I. Kolář, T. Málek, and A. Mazumdar, Exact solutions of
nonlocal gravity in a class of almost universal spacetimes,
Phys. Rev. D 103, 124067 (2021).

[41] I. Kolář, T. Málek, S. Dengiz, and E. Kilicarslan, Exact
gyratons in higher and infinite derivative gravity, Phys. Rev.
D 105, 044018 (2022).

[42] A. S. Koshelev, K. S. Kumar, and A. A. Starobinsky, R2

inflation to probe non-perturbative quantum gravity, J. High
Energy Phys. 03 (2018) 071.

[43] K. S. Kumar and L.Modesto, Non-local Starobinsky inflation
in the light of future CMB, arXiv:1810.02345.

[44] A. S. Koshelev, K. S. Kumar, A. Mazumdar, and A. A.
Starobinsky, Non-Gaussianities and tensor-to-scalar ratio
in non-local R2-like inflation, J. High Energy Phys. 06
(2020) 152.

[45] A. S. Koshelev, K. S. Kumar, and A. A. Starobinsky, Ana-
lytic infinite derivative gravity, R2-like inflation, quantum
gravity and CMB, Int. J. Mod. Phys. D 29, 2043018
(2020).

[46] T. Biswas, T. Koivisto, and A. Mazumdar, Towards a
resolution of the cosmological singularity in non-local
higher derivative theories of gravity, J. Cosmol. Astropart.
Phys. 11 (2010) 008.

[47] A. S. Koshelev and S. Y. Vernov, On bouncing solutions in
non-local gravity, Phys. Part. Nucl. 43, 666 (2012).

[48] A. S. Koshelev, Stable analytic bounce in non-local
Einstein-Gauss-Bonnet cosmology, Classical Quantum
Gravity 30, 155001 (2013).

[49] T. Biswas, A. S. Koshelev, A. Mazumdar, and S. Y. Vernov,
Stable bounce and inflation in non-local higher derivative
cosmology, J. Cosmol. Astropart. Phys. 08 (2012) 024.

[50] K. S. Kumar, S. Maheshwari, A. Mazumdar, and J. Peng,
Stable, nonsingular bouncing universe with only a scalar
mode, Phys. Rev. D 102, 024080 (2020).

[51] K. S. Kumar, S. Maheshwari, A. Mazumdar, and J. Peng, An
anisotropic bouncing universe in non-local gravity, J. Cosmol.
Astropart. Phys. 07 (2021) 025.

[52] K. S. Kumar, S. Maheshwari, A. Mazumdar, and J. Peng, An
anisotropic bouncing universe in non-local gravity, J. Cosmol.
Astropart. Phys. 07 (2021) 025.

[53] V. P. Frolov and A. Zelnikov, Bouncing cosmology in the
limiting curvature theory of gravity, Phys. Rev. D 104,
104060 (2021).

[54] T. Biswas, A. Conroy, A. S. Koshelev, and A. Mazumdar,
Generalized ghost-free quadratic curvature gravity,
Classical Quantum Gravity 31, 015022 (2014); 31,
159501(E) (2014).

[55] A. D. Dolgov and M. Kawasaki, Can modified gravity
explain accelerated cosmic expansion?, Phys. Lett. B
573, 1 (2003).

[56] V. Faraoni, Matter instability in modified gravity, Phys. Rev.
D 74, 104017 (2006).

[57] J. W. Goodman, Introduction to Fourier Optics. 2005
(Roberts and Company, Englewood, Colorado, 2008).

[58] S. R. Ghorpade and B. V. Limaye, A Course in Multi-
variable Calculus and Analysis (Springer, New York, 2010).

NEW NONSINGULAR COSMOLOGICAL SOLUTION OF NONLOCAL … PHYS. REV. D 105, 044045 (2022)

044045-11

https://doi.org/10.1103/PhysRevD.101.124005
https://doi.org/10.1103/PhysRevD.101.124065
https://doi.org/10.1103/PhysRevD.101.124065
https://doi.org/10.1103/PhysRevD.103.105004
https://doi.org/10.1103/PhysRevD.103.105004
https://doi.org/10.1007/JHEP06(2015)107
https://doi.org/10.1007/JHEP06(2015)107
https://doi.org/10.1103/PhysRevLett.115.051102
https://doi.org/10.1103/PhysRevLett.115.051102
https://doi.org/10.1103/PhysRevD.96.084069
https://doi.org/10.1103/PhysRevD.100.024031
https://doi.org/10.1103/PhysRevD.99.124048
https://doi.org/10.1103/PhysRevD.99.124048
https://doi.org/10.1103/PhysRevD.102.044016
https://doi.org/10.1103/PhysRevD.102.044016
https://doi.org/10.1103/PhysRevD.103.124067
https://doi.org/10.1103/PhysRevD.105.044018
https://doi.org/10.1103/PhysRevD.105.044018
https://doi.org/10.1007/JHEP03(2018)071
https://doi.org/10.1007/JHEP03(2018)071
https://arXiv.org/abs/1810.02345
https://doi.org/10.1007/JHEP06(2020)152
https://doi.org/10.1007/JHEP06(2020)152
https://doi.org/10.1142/S021827182043018X
https://doi.org/10.1142/S021827182043018X
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1134/S106377961205019X
https://doi.org/10.1088/0264-9381/30/15/155001
https://doi.org/10.1088/0264-9381/30/15/155001
https://doi.org/10.1088/1475-7516/2012/08/024
https://doi.org/10.1103/PhysRevD.102.024080
https://doi.org/10.1088/1475-7516/2021/07/025
https://doi.org/10.1088/1475-7516/2021/07/025
https://doi.org/10.1088/1475-7516/2021/07/025
https://doi.org/10.1088/1475-7516/2021/07/025
https://doi.org/10.1103/PhysRevD.104.104060
https://doi.org/10.1103/PhysRevD.104.104060
https://doi.org/10.1088/0264-9381/31/1/015022
https://doi.org/10.1088/0264-9381/31/15/159501
https://doi.org/10.1088/0264-9381/31/15/159501
https://doi.org/10.1016/j.physletb.2003.08.039
https://doi.org/10.1016/j.physletb.2003.08.039
https://doi.org/10.1103/PhysRevD.74.104017
https://doi.org/10.1103/PhysRevD.74.104017

