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Effective dynamics of weak coupling loop quantum gravity
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By taking the limit that Newton’s gravitational constant tends to zero, the weak coupling loop quantum

gravity can be formulated as a U(1)? gauge theory instead of the original SU(2) gauge theory. In this paper,
a parametrization of the SU(2) holonomy-flux variables by the U(1)® holonomy-flux variables is
introduced, and the Hamiltonian operator based on this parametrization is obtained for the weak coupling
loop quantum gravity. It is shown that the effective dynamics obtained from the coherent state path integrals
in U(1)? and SU(2) loop quantum gravity respectively are consistent to each other in the weak coupling
limit, provided that the expectation values of the Hamiltonian operators on the coherent states in these two
theories coincide with their classical expressions respectively.
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I. INTRODUCTION

Loop quantum gravity (LQG) opens a convincing
approach to achieve the unification of general relativity
(GR) and quantum mechanics [1-5]. The distinguished
feature of LQG is its nonperturbative and background-
independent construction, which predicts the discretization
of spatial geometry. An interesting research topic in the
field is the weak coupling limit LQG, which is given by
taking the limit that the Newton’s gravitational constant
tends to 0. This idea was firstly proposed by Smolin and
further studied by Tomlin and Varadarian [6,7]. The
resulting weak coupling LQG is a U(1)® gauge theory
instead of the original SU(2) gauge theory. This U(1)?
LQG theory inherits some of the core characters of the
original SU(2) LQG, such as the discrete spatial geometry
and the polymerlike quantization scheme. It has been used
as a toy model to study the faithful LQG-like representation
of the constraint algebra in the weak coupling limit of
Euclidean GR [8]. The theoretical framework of the weak
coupling U(1)? LQG model is also used to study the
quantum field theory on the curved spacetime limit of
LQG [9,10].

Although the U(1)? theory has been used as a toy model
of LQG, whether the predictions of the model would
coincide with those of LQG is still uncertain due to the
following difficulties. First, the geometric meaning of the
holonomy-flux variables in the U(1)* weak coupling LQG
is not clear, and hence it is hard to reveal the physical
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meaning of this theory. Second, the weak coupling limit of
the scalar constraint in the U(1)? theory only represents
certain dynamics of Euclidean gravity, which could diverge
from that of the original SU(2) theory of LQG, since the
higher order terms of k have been neglected in the former.
Hence, the dynamics of the weak coupling limit of LQG is
still an open issue. In this paper, we will concentrate on this
problem and try to construct the effective dynamics from a
coherent state path integral of the weak coupling LQG.
To study the effective dynamics, we will first define a
Hamiltonian constraint in the weak coupling U(1)* LQG.
Then the effective dynamics will be constructed from the
U(1) coherent state path integral. More specifically, to
define the Hamiltonian constraint, a parametrization of
SU(2) holonomy-flux variables by U(1)* holonomy-flux
variables will be constructed. It will be shown that the
SU(2) holonomy-flux algebra can be reproduced in the
U(1)* holonomy-flux phase space based on this para-
metrization in the weak coupling limit. Then, the
Hamiltonian constraint in the weak coupling U(1)* LQG
can be given by replacing the SU(2) holonomy-flux
variables in the Hamiltonian constraint of the SU(2)
LQG with the corresponding reparametrization variables
in the U(1)? holonomy-flux phase space. Also, this para-
metrization endows a geometric meaning to the U(1)?
holonomy-flux variables. Such a parametrization is
inspired by the definition of the Hamiltonian of a
Fermion field in the weak coupling U(1)* LQG back-
ground, in which the U(1)? holonomies are used to
construct SU(2) holonomies to give the transportation of
the SU(2) spinors [9,10]. With the Hamiltonian constraint
in the weak coupling U(1)® LQG and the U(1)* com-
plexifier coherent states, the effective dynamics will be

© 2022 American Physical Society
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derived following the standard coherent state functional
integral method. We will show that the equations of motion
(EOMs) given by the effective dynamics of the U(1)* LQG
is consistent with that of SU(2) LQG in the weak coupling
limit up to higher order corrections of ¢ = k7/a® with a
being a chosen unit length.

II. ELEMENTS OF LQG

A. The basic structures

The (1 4 3)-dimensional Lorentzian LQG is constructed
by canonically quantizing GR based on the Yang-Mills
phase space with the nonvanishing Poisson bracket

{AL(x), ES(v)} = kp55556) (x = y), (1)

where the configuration and momentum are respectively
the su(2)-valued connection field A, and densitized triad
field Ej? on a three-dimensional spatial manifold X, and x
and S represent the gravitational constant and Babero-
Immirze parameter respectively. Here we use i, j, k, ... for
the internal su(2) index and a, b, c, ... for the spatial index.
Let q,, = €'e,; be the spatial metric on X. The densitized
triad is related to the triad ef by E¢ = \/det(g)e?, where
det(q) denotes the determinant of g,;,. The connection can
be expressed as Al = I'\, + BK', where '} is the Levi-
Civita connection of ¢/, and K, is related to the extrinsic
curvature K, by K = K,,e?6/". The dynamics is gov-
erned by the following Gaussian, vector and scalar con-
straints respectively,

|

i pess( [ )

G = 0,E + A ELe =0, (2)
Co = E}F}, =0, (3)
and
C = EIE] (e F5, —2(1 + p)KL K1) =0, (4)
det(E) a la™ ]

where Fi, = 0,A} — 0,Al, + €;3ALAL is the curvature of
Al As a totally constrained system, the physical time
evolution in the Hamiltonian formulation of GR can be
constructed by several deparametrization models [11-13].
In these models, the resulting physical Hamiltonian H can
be written as H = [ dx*h with the densitized scalar field
h=h(C,C,) taking different formulations for different
deparametrization models. For instance, in the Gaussian
dust deparametrization model one has & = C [12,14].
The loop quantization of the SU(2) connection formu-
lation of GR leads to a kinematical Hilbert space H, which

can be regarded as a union of the Hilbert spaces H, =

L2((SU(2))E dul=Dly on all possible finite graphs 7,
where |E(y)| denotes the number of independent edges of y

and dy‘HEgr) | denote the product of the Haar measure on

SU(2). In this sense, on each given y there is a discrete
phase space (T*SU(2))/E%)I, which is coordinatized by the
basic discrete variables—holonomies and fluxes. The
holonomy of A’ along an edge e € y is defined by

°° 1 t, t
1+ [ an, | Mdty. | dnA). LA, (5)
“—Jo 0 0

where A(t) = Al(1)e*(t)t;, and 7; = —1o; with o, being the Pauli matrices. There are two versions for the gauge

2

covariant flux of Ef through the 2-face dual to edge e € E(y) [15,16]. The flux in the perspective of the source point of e is

defined by

Fo) =50 ( / emh@z<a>>Eff<a>rjh<pz<o>-1>), (6)

where S, is the 2-face in the dual lattice y* of y, p*(c) : [0, 1] = X is a path connecting the source point s, € e to ¢ € S, such
that p$(0):[0,3] — e and pi(c):[3.1] — S,. Similarly, the corresponding flux in the perspective of the target point of e is
defined by

Fi(e) = —%tr(f / asch(p1(0)) EH(0)1h(pt (o)), 7)

Se

where p'(5):[0,1] > £ is a path connecting the target point 7, Ee to o €S, such that p.(s):[0,4] - ¢ and
pi(0):[3.1] = S,. It is easy to see that one has the relation

Fi(e)t; = —h;'Fi(e)t;h,. (8)
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The nonvanishing Poisson brackets among the holonomy and fluxes read
{he[A]’ Fi’} = 5e,e’Khe[A]Ti’
{Fi,F} = =5, gKel FF,. 9)

{he[A]’ Fi’} = _5e.e’K7ihe [A]’
{Fé, Fi/} = _5e,e’K€iij];f,

The basic operators in H, are given by promoting the basic discrete variables as operators. The resulting holonomy and
flux operators act on cylindrical functions f,(A) = f,(h,[A]..... h.,  [A]) in K, as

h JAlf,(A) = R [AIf,(A), (10)
Fi(e)f,(he, (A, ..o B [A]. ... by [A] = irch%fy(hel YRy Y R N 1) (11)
F'(e)f (ho (AL ... B [A]. ..ok, [A] — —ixh— fy( AL o h Al oy, [A). (12)

Two spatial geometric operators in H, are worth men-
tioning here. The first one is the oriented area operator

defined as pFi(e) [or /)’127 i(e)], whose module length
|BF(e)| := \/*F(e)F;(e) represents the area of the
2-face dual to e and direction represents the ingoing normal
direction of S, in the perspective of the source (or target)

Spec(pFi(e)) = {ﬁth|mef}, Vi=12.73. (14

The second important spatial geometric operator is the
volume operator of a compact region R C X, which is
defined as

point of e. As a remarkable prediction of LQG, the module
length and the components of the oriented area operator .
take respectively the following discrete spectrum [1,3]:

{ﬁthlje } (13)

Z \/|? (15)

veV(y)NR veV(y

Spec(|pE(e)
where V(y) denotes the set of vertices of y, and
|

e;Ne;Nex=uv
B Z €ijk€
{er.es.ex}CE(y)
where €//K = sgn[det(e; A e; A ex)], Fi(v,e) = Fi(e) if s(¢) = v and F'(v,e) = —I%i(e) if t(e) = v.
The Gaussian constraint operator can be well defined in H, as well as in 7, which generates SU(2) gauge
transformations of the cylindrical functions. However, there is no operator in either H, or H corresponding to the vector

constraint. To solve the diffeomorphism constraint at quantum level, one has to use the group-averaging procedure on H to
achieve a diffeomorphism invariant Hilbert space [1,3]. We now consider the operator in H, corresponding to the scalar

IJKFi(v,el)Fj(v,ej)Fk(U,f«’K)’ (16)

constraint. The quantum scalar constraint is constituted by the so-called Euclidean part Cj; [N] and Lorentzian part C, [N] as
= Ce[N] + (1 + F)CLIN), (17)

where N is the smearing function. The Euclidean part is defined as

C[N]

e;Ne;Neg=v

Z Z eKtr(hy, he,

LGV {e,.e,,eK}CE

V.. h2)]). (18)

where e}, e;, ex have been reoriented to be outgoing at v, €/’ = sgn[det(e; A e; A ex)], ay is the minimal loop around a
plaquette containing e¢; and e; [17,18], which begins at » via e; and gets back to v through e;. With the same notations, the
Lorentzian part is given by

eNe;Neg=v

@L[N] 21ﬁ7 Kkh) 2if7 (kh)> Z Z

vEV(y {elvej;eK}CE(y)

A

Vo Callng) Theg. Vo)) (19)

ek’

€”Ktr< [h [V@ ’ CEHheI [h

ey
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B. Effective dynamics from coherent state path integral

The dynamics of LQG can be defined by the physical
Hamiltonian which is introduced by the deparametrization
of GR. In the deparametrization models with certain dust
fields, the scalar and diffeomorphism constraints are solved
classically so that the theory can be described in terms of
Dirac observables, since the dust reference frame provides
the physical spatial coordinates and time z. Then, the
physical time evolution is generated by the physical
Hamiltonian with respect to the dust field [12,14]. In the
Gaussian dust deparametrization model [12], the (non-
graph-changing) physical Hamiltonian operator H deter-
mining the quantum dynamics in H, can be given as

A

= (@0 + eny) (20)
This operator is manifestly Hermitian and therefore admits
a self-adjoint extension. Based on this Hamiltonian oper-
ator, the effective dynamics from the coherent state path
integral has been studied for a cubic graph y in [14,17]. We
now give a brief review of this effective dynamics.

The method of coherent state path integral has been
successfully applied to derive the effective dynamics in
both LQG and its cosmological models [19,20]. There are
several proposals for constructing coherent states in LQG
[21-25]. The most widely used one is the so-called
complexifier coherent state constructed based on the heat-
kernel coherent state of SU(2) [15,26,27]. For a graph 7,
the complexifier coherent state is given by

=11 ‘P’E (21)

e€E(y

with
¥ (h,) = Z (2j, + V)e~teleUet N2y (g, 71,
Je€(Z./2)00

(22)

where g = {g.}eer) 1= {hetecr()> 2 1 the SU(2)
character with spin j and 7 € R" 1s a semiclassicality
parameter. As a function of the holonomies /&, = e, the
coherent state is labeled by the complex coordinates g, €
T*SU(2) = SL(2,C) of the discrete holonomy-flux phase
space of LQG. For an edge e, the coordinate is the
complexified holonomy

g = e meder pile),die) €RP(23)

where e parametrizes the classical holonomy variable

and pi(e) = % is the dimensionless flux with a being a
constant with the dimension of length related to the
semiclassicality parameter by t = x#/a®. The gauge invari-
ant coherent state is labeled by a gauge equivalent class of
gle) ~g"(e) = Hy ;) 9(e)h,, for all e € E(y). The semi-
classical limit is given by ¢ — 0 or £p < a. Thanks to the
overcompleteness and semiclassical properties of the
coherent states, the transition amplitude between gauge
invariant coherent states can be written as the following
discrete path integral formula [14]:

i . N N+1
gy = [ aweer e a) ) 1w ) = w09, ) [ an T doslsiess (24)

where the integral is taken over N + 1 intermediate states labeled by g, € SL(2, C)'EW with gy = ¢, gnio = g, the gauge

transformation elements 7' = {/}},cy(,) € SU (2)V@

| are added to ensure the SU(2) gauge invariance, v[g] is a path

integral measure, ||V} || is the module of the state ¥} ,(%), and S[g, /'] can be regarded as the effective action for LQG
extracted from the path integral. In the continuous time limit, this action can be written as [16,17]

Slg. W= l;r/r;vﬁOS[g,h]
—i/ dTLEZE: Xi(z e)_ﬁ2< (LT >]
<t ] 3 w0 - vt oo o) 23

where <Tf, o) |H|‘I’;,g(1)>

= H[p(z), ¢(2)] + O@1), p = {Pe}ee,

— {pi’}eey’ ¢ = {¢€}e€y - {¢é}eey and
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Xé = Gij(¢e)Pjé- (26)

Here the 3 x 3 real matrix G;;(¢) is given by

(i +(5+43) sin())

4)3
¢¢3(COS(¢)—1)—§51 ba(p=sin(¢))
¢

_ (¢1¢3(¢—sin(¢))t¢¢z(605(¢)—1))

_ (t/u¢z(¢—sin(¢))+3¢¢s(008(t/))—1))
¢
(¢p3+ (3 +43) sin(¢))

(¢2p3(5in(¢) =)+ (cos($)—1))

(¢1¢ (Sin(d’)—lf))t(/)(/’z (cos(#)—1))
¢‘

_ (¢2¢3(¢—Si“(¢);+3¢¢1 (cos(¢)=1)) (27)
_ (@3 +(#i+43) sin(4))

P

¢3

where ¢;, = @i, and ¢ = \/@p.p; . Also, the inherent Poisson algebra of the basic variables in this effective action is

{¢i. 9.} = {Xi. X} =0,

which is equivalent to the Poisson algebra

{pi.d)} =0,

originated from the holonomy-flux algebra, where
U(@)G(h)" = G(@)"U($) = ~13,5 with G(¢)" repre-
senting the matrix transposition of G(¢). The variations
of the action (25) with respect to ¢, and X! give the
Hamiltonian equations [up to O(¢)]

k OH

d¢i, « oH dXi
G

dr  a*oXi,’ dr

(30)

The variation of the action (25) with respect to A’ restricts
the boundary state ‘I’; o) by requiring that the classical

discrete closure condition

=3 P+ Y plle)e ettt =0 (31)

e,s(e)=v et(e)=v

holds for g = {g,}.e,- This condition is preserved by the
dynamical equations (30).

The effective EOMs (30) represent the dynamics of full
SU(2) LQG at the semiclassical level. We can follow this
approach to explore the effective dynamics of the weak
coupling U(1)*> LQG. To ensure that the U(1)® LQG
reveals the full SU(2) LQG exactly at effective level in the
weak coupling limit, one needs to show that the effective
EOM s given by the U(1)? LQG coincide with Egs. (30) in
the weak coupling limit, by suitably relating the basic
variables in the U(1)? LQG to those of SU(2) LQG. In the
following two sections, we will introduce a parametrization
of the SU(2) holonomy-flux variables by the U(1)?
holonomy-flux variables and define a Hamiltonian operator
for the weak coupling U(1)? LQG. We will show that, by
identifying the geometrical meaning of the basic variables
in the two versions of the parametrization, the coherent

. ; K .
{ple/v gbé’} = _zée,e’U;'(¢)’
a

{60 X0} = 56, 000, (28)
a

. . K ..
{ri.pl} =~ A 0ee” KDk (29)

|

state path integrals in the U(1)* LQG and SU(2) LQG can
give a consistent effective dynamical description of the
spacetime geometry in the weak coupling limit.

IIl. THE WEAK COUPLING U(1)? LQG

A. Basic structures

The weak coupling theory of LQG is given by redefining
the connection as A,; := k~'A,; and taking the limit x — 0,
so that only the leading order terms with respect to k remain
in the Gaussian, vector, and scalar constraints [6—8]. The
resulting theory is still a gauge theory with the conjugate
pair A}, and E? satisfying

{AL(x). E ()} = p8i5i6) (x = y). (32)

The Gaussian constraint reduces to G':= d,E*, which

generates the Abelian U(1)3 transformations. The reduced
vector and scalar constraints are given by [7,8]

C, = KEVF, (33)
and
BE
Q = KmeukEab (34)

respectively, where F', = 0, A, — 0, Al is the curvature of
Al Here we note that the scalar constraint only contains
the Euclidean part as the treatments in [7,8].

The kinematic Hilbert space K of the weak coupling
theory follows from the representation of the holonomy-
flux algebra as in the standard LQG. Now, the holonomy is
defined with an oriented curve e € X as

044043-5
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B[ = A (35)
One way to identify a basis of the kinematic Hilbert space is
to define the so-called charged holonomy #, ;[A] with a

triple of integer charges {q'} = g as

heﬁ[A] = equ,-fe.Ai,dxa‘ (36)
Given a closed, oriented graph y consisting of a set of edges
{e;} meeting only at their end points, called the vertices,
one may assign {g; } to the edge e; € y and thereby define
the graph holonomy £, (7, as

Hhe, i (37)

—/ {[11

Note that, as in SU(2) LQG, the kinematical Hilbert space
IC can be regarded as a union of the graph-dependent

Hilbert spaces K, = L?((U(1)?)IE¥)] d,u‘E(ar‘) on all pos-

sible graphs y with each U(1)? associated with an edge

being thought of as its holonomies. Here L>((U(1)3)F®))

is the space of square-integrable functions on (U(1)?)/E%)
E(r)

and dyHaar‘ denotes the product of the Haar measure on
U(1)3. A graph holonomy (37) is local U(1)? invariant and
thus a solution to the Gaussian constraint, if and only if the
full set of edges {e, } sharing any vertex v € y always
satisfies the charge neutrality

> sengq) =0 (38)
1,

for all i, where sgn; is a positive or negative sign if the
edge ¢; is outgoing or ingoing for ». We now define a
locally U(1)? invariant charge network state, denoted as
¢ =c(y,{q;}), to be akinematic quantum state with a wave
functional A, given by its associated graph holonomy
satisfying (38). The U(1)? invariant kinematic Hilbert space
Kiny = Span{|c)} is spanned by the basis of all the distinct
charge network states and equipped with the inner product

{c|c") = bc.en (39)

Note that the labeling (7, {g; } ) to the charge network states is
not unique, since one can always artificially change y into y’
by adding trivial vertices and edges. To avoid this redun-
dancy we will always label a charge network state by the
corresponding oriented graph with the minimal number of
edges. The U(1)? invariant flux variables for E* is defined
over an oriented 2-surface. In the case that the 2-surface S, is
dual to an edge e of y, the flux is given by

. 1 .
Fi(e) EB/ €apc EYdc” A dot. (40)

e

The holonomy-flux Poisson bracket reads

. ix .
B} = > Fel@ S)auh@).  (41)

6167(Se)

where ¢(¢’, S, ) is the sign of the relative orientation between
the given ¢’ and S if they are dual to each other, and is zero
otherwise; y(S,) has been adapted to S, by adding pseudo-
vertices such that they only intersect at the vertices of the
former. In the Hilbert space K,, a holonomy operator acts as a
multiplicative operator. A flux operator then acts as a
differential operator such that

Fie) by gy lAl = ) 7’26(6 Syl gyl Al (42)

eey(S,)

The Hilbert space K of this U(1)* theory also has a
coherent state basis. For the given graph y, the heat kernel
coherent states in this theory are given by

W (h) = [ [¥. (h(e)) (43)

egy

where == {h(e)|e € v}, and g := {g(e)|e € y} coordina-

tizes the holonomy-flux phase space (7*U(1)?)IF%), and
v (e)(h(e)) denotes the heat kernel coherent states for

U(1)3 defined by

W (h(e) = [ Y eriem bl i

i€{1.2,3} nj=—o0
(44)

iZiQi(e) and g( )—e'z e)+iX;(

such that A(e)
E being the dimensionless flux in the

with X;(e) =
U(1)? theory.

(

N

B. The issue of geometric interpretation

The weak coupling U(1)? LQG theory captures the core
characters of the full SU(2) LQG with the polymer
quantization scheme. The oriented area operator in the
weak coupling U(1)? LQG can be defined by the flux
operators similarly to that in full SU(2) LQG. Then it is

easy to see that this area operator |3F(e)| takes the discrete
eigenvalues as

Spec(|BE(e)]) = Spec(\/2E (e)i(e))

_{ﬁm Zn$|n,-eN}, (45)

i€{1,2,3}

due to

044043-6



EFFECTIVE DYNAMICS OF WEAK COUPLING LOOP QUANTUM ...

PHYS. REV. D 105, 044043 (2022)

Spec(pFi(e)) = {pxhmlm € Z}, Y i=1,2,3. (46)
Note that the fluxes F'(e) and F(e) represent the oriented
areas of the 2-faces dual to e in the perspective of the source
or target point of e respectively. Recall that, in full SU(2)
LQG, the holonomy along an edge e parallel transports the
flux from the source point to the target point of e as
F, = —h,F,h;"'. Following the twisted geometric explan-
ation, the Levi-Civita connection I', in the expression of the
SU(2) connection contributes two degrees of freedom to £,
which transform F,, and the extrinsic curvature one-form
K, contributes one degree of freedom to %, which keeps F,
invariant [28]. However, in the weak coupling U(1)? LQG,
the U(1)? holonomy along an edge e, which still contains
3 degrees of freedom, does not generate any transportation
of the flux along e. Thus, the three degrees of freedom in
U(1)? holonomy cannot be interpreted as a combination of
the intrinsic and extrinsic curvature. In fact, the trans-
portation of the flux along an edge in full SU(2) LQG is
related to the next leading order term with respect to « in
the original Gaussian constraint G' = 9,E* + ke ALE™,
which is neglected in the weak coupling U(1)? theory by
taking the limit x — 0. This limit indicates that the original
su(2)-valued connection A,; = kA, is small so that the
corresponding SU(2) holonomy is almost identity and
which leads to F, = —F,. This indicates that the weak
coupling U(1)* LQG would correspond to the almost
vanishing spatial curvature case of full SU(2) LQG.
Whether there are higher order terms with respect to x
may lead to a difference in the dynamics. In the weak
coupling U(1)? theory, one proposal to construct the scalar
constraint operator is to regularize and quantize the scalar
constraint (34), so that it adds some nondegenerate vertices
to the charge network state [7], rather than attach small
loops based at the original vertices as in the usual
construction of full SU(2) LQG [1,3]. However, there is
no guarantee that such dynamical construction of the weak
coupling U(1)* LQG can be generalized to that of full
SU(2) LQG. To employ the weak coupling U(1)? theory as
a toy model to study the dynamical construction of the full
SU(2) LQG, one treatment is to replace the SU(2)
holonomy-flux operators in the scalar constraint operator

he[Al = he[A]l: b A] =

X, pl:

piti = pit; = —h[A)2zh;!

of SU(2) LQG by the corresponding U(1)?* holonomy-flux
operators [18,29]. However, sucha scheme is only valid for
the Euclidean part of the constraint but not for the
Lorentzian part. Actually, to study the weak coupling limit
of the dynamics of full SU(2) theory, one should not use
the weak coupling limit of the constraints, since the higher-
order terms with respect to x in those constraints may
become lower-order after taking the Poisson brackets with
the basic variables in the U(1)? theory. Rather, the weak
coupling limit theory at the dynamical level should be given
by taking the weak coupling limit of the Poisson brackets of
the constraints and basic variables in the original SU(2)
theory.

To deal with the above issues in the weak coupling U(1)?
LQG, we are going to relate the full SU(2) LQG theory and
the weak coupling U(1)? theory through reparametrizing
the SU(2) holonomy-flux variables by the U(1)* holon-
omy-flux variables. By such a parametrization, the U(1)?
holonomy-flux variables can be endowed with certain
geometric meanings. Also, the Gaussian constraint, vector
constraint, and scalar constraint in the weak coupling U(1)?
LQG can be obtained by replacing the corresponding
variables in the corresponding constraints of the SU(2)
theory.

C. Reparametrization

We will show in this subsection that a parametrization of
the SU(2) holonomy-flux variables by the U(1)* holon-
omy-flux variables can be realized by defining some new
variables in the U(1)? holonomy-flux phase space. By this
parametrization the Poisson structure of the SU(2) hol-
onomy-flux variables can be faithfully inherited in the weak
coupling limit, which is consistent with the original setting
of the U(1)? LQG.

For a given graph y, the discrete phase space T*SU(2)
and T*U(1)? of the SU(2) theory and U(1)? theory have
the same dimensionality. Hence it is reasonable to con-
struct a reparametrization of the SU(2) holonomy-flux
by the U(1)? holonomy-flux variables. Taking into account
the expressions (6) and (7) of the covariant fluxes, the
reparametrization can be given by

< LA e

Z A/z]Xl (47)

~ i —(ht -1 T .
with h,[A/2] = exp (Z G- A7) '), where exp denotes the exponential map of su(2). Then, by defining piz; =

4i

h;'[A/2]z;h,[A/2]X. in the weak coupling U(1)? theory, we have the relation similar to (8) for the two fluxes of different

perspectives as

f’iTi = —h;

[AlpLzih [A]. (48)
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Now let us check whether the Poisson algebra of the SU(2) holonomy and fluxes defined by (47) in the U(1)* phase space
coincides with that in the SU(2) phase space in a certain limit. With the Poisson bracket in the U(1)? theory, we obtain

{h[A]. ho[A]} = 0. (49)
(Bl AL pl) = 5,02 D CRIAL A A 4%k [j} (50)
~ Sl 2ik (r i 7 J E{A]
{h AL pl} = ~bee Zt B A/ 2]k [A)2]) B[ A ]5@[«4] (51)
and
{22’ Ei’} = _zae,e/tr(Ti{ﬁe_l [./4/2], B‘é}rkﬁe [~’4/2])X]eC - 25e,e’tr(7iﬁzl [A/2]Tk{ﬁe [A/zL E{;})X]ec
+ 28, otr(c iy [A/2)rch [A)2]) 2ur (/{7 [A/2]. X,k [A/2]) XL)
+ 26, ote(vh; [A/ 2]tk [A)2)) Ru(z i ' [A/ 2]z {h [A/2]. XE})XL), (52)
wherein
{hJAL. X} =6, %ﬁi [A] i%{j} (no summation over i). (53)

Thus, the Poisson algebra of the SU(2) holonomy and fluxes defined by (47) in the U(1)* phase space does not coincide
with that in the SU(2) phase space in general. Consider the U(1)? holonomy h(e) = % and the SU (2) holonomy
h(e) = e%%_ Then it is easy to check that in the weak coupling limit given by small @' = ¢, one has h,[A] = h,[A] at the
leading order of ﬂ = ¢'. Further, we have the Poisson algebras

{n.[A].py} = —ae,efgrf, {hJAL.DLY = 80 7"

{Phapl} = =Bow—selipls  {PLapl} = =0, 3elipl (54)
in SU(2) phase space and

{BAL LY = =Bow 57 {BJALBL) = 80 57

{pi.p} = aie b PPy = % ek (55)

in U(1)3 phase space at the leading order of Q’e = ¢.. Therefore, the Poisson algebra of the SU(2) holonomy and fluxes

defined by (47) in the U(1)? phase space does coincide with that in the SU(2) phase space in the weak coupling limit.
Moreover, the parametrization (47) is commutative with the reorientation of the edges as

B Al = hei[A, plo=pl pl=Pl (56)

Thus, the variables EE[A], Ei and E’e in U(1)? theory inherit the explicit structure of the corresponding variables
of SU(2) LQG.
By construction, the variables &, [A], Bi , and B’e in U(1)? theory can be directly quantized as

M=o (5 Z(ﬁ;w - ) ).
B = te(dh A2k, [A)2) K+ Kiw(eh,[A/2)ch [A/2),

A

Bl = —te(eh, [A/2)eh, [ A2 KL - Kite(Th, [A/2)th,[A/2). (57)

|
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The operators éﬁ and éﬁ are symmetric and hence admit
self-adjoint extensions. Based on the parametrization (47),
we can replace the basic operators in the SU(2) LQG by
those of the U(1)? theory in the weak coupling limit as
hJAl o BJAL  piepi. pLepl (58)

For instance, the corresponding volume operator V in the
U(1)? theory can be easily constructed by replacing p, and
Pl by é’e and é’e respectively in the definition (15) of Vg
in LQG.

Recall that the discrete version of the Gaussian constraint
in SU(2) LQG reads

S oopi+ ) pi=0. (59)

e.s(e)=v et(e)=v

Then, the corresponding discrete “Gaussian constraint” in

though this “Gaussian constraint” does not generate the
U(1)? gauge transformations. In fact, it is just the closure
condition for the 3-polyhedra described by its oriented
areas [28,30-32]. Similarly, the quantum scalar constraint

C [N] in the weak coupling theory corresponding to (17) is
also constituted by the Euclidean part Cj; [N] and Lorentzian
part C;[N] as

CIN] = Cx[N] + (1 + *)C,[N]. (61)

By acting on a cylindrical function over y, one version of
the Euclidean scalar constraint can be written as

o 1
QE[N} = ipxh

D N > e Kie(hg, he [V, D),

yev(y) ep.eyegatv

(62)

where e;, e;, ex are reoriented to be outgoing at v,

the weak coupling U(1)* LQG can be given directly as

D> b+ > B0 (60)

e.s(e)=v et(e)=v

ek = sgn[det(e; A e; A eg)], and ay; is the minimal loop
around a plaquette containing e¢; and e, which begins at v
via e; and gets back to v through e;. With the same

notations, the Lorentzian part C; [N] is given by

Z GIJKtr([he, s [Yy ’ QE]]he_ll [he, ’ [zm QEHhe_Jl [ﬁe,{ s zzf]he_Kl ) (63)

er,eyexgatv

N . |
CLIN] = WZN(U)

In the deparametrization formalism, the physical Hamiltonian corresponding to (20) reads H = 1 (C[1] + C[1]7) in the weak
coupling theory. Thus, it is manifestly Hermitian and therefore admits a self-adjoint extension. Such a physical Hamiltonian
operator in the weak coupling U(1)? LQG keeps the full expression of the original physical Hamiltonian in full SU(2)
LQG. It is reasonable to expect that H determines the evolution which represents that of the full SU(2) LQG in the weak
coupling limit.

IV. COHERENT STATE PATH INTEGRAL OF U(1)} LQG
A. Effective action and equations of motion

With the physical Hamiltonian operator H in weak coupling U (1)? LQG, we may derive its effective dynamics based on
the coherent state path integral. The heat kernel coherent state for U(1)* gauge theory can be written as [15,26]

(o]

W (he) = J] Y0 et b emnxi (64)
ie{1,2,3} nj=—c0
at every edge e. Its normalized version reads
@ (h E[g(e)(ﬁ(e)) 65
_g(e)(—(e)) = W' (65)

It is important that the normalized coherent states form an overcomplete basis in H(e) = L*(U(1)3) as

[ o)y @y | = 1 (66)
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where

dg(e) = %Hdﬁi(e)d&(e), with ¢ =1+ 0(). (67)

The overlap amplitude between two coherent states reads

Hh@-gi (@) S ()-XI () i(h ()= ()(Xh(e)+Xi (¢) ; xi ;
A e e e 7 Zizfn(¢2(e) P (e). X5(e). X (e))
(@) 0 ¥ (o)) = ——— (68)
ie{1.2,3} Xi(e) Xl (e)
mzz—2im1X . . . 2”2”2_2”"(&;*52)_2””@é_f’i) . ~ =
where Dy = >, 7 and f,(¢), L . X5, X)) =e B . Note that there exist constants K,, K,, and K]

[independent of g, (e) and g, (e)], decaying exponentially fast to 0 as # — 0, such that 1 4+ K, > [D} | > 1 - K, and

(1+K) <[ faldie). ¢i(e). X(e). X (e))| < (1+K)).  for |4 (e) — ¢i(e)] < 1. (69)

Ligi (o)l 2

3l

(€)=} () . 4
Also, the factor e~ 2 — in (68) indicates that this overlap amplitude is only nonvanishing for |9 (e) — ¢ (e)| < 1
when ¢ becomes very small. Hence for small ¢ one has

<£22 ‘P’ )> eK(9,(e)-9,(e)/1 (70)
where
Lig ’e Lixito)=Xi(eN2  i(di(e) —ai(e i(e tie
K(g,(e).g,(e)) = { 2 (95 ()2¢()) 2(X2()2X1( ) (#3(e) Q]U)z(&(HX())}
ie{123}
_ igy(e) + Xa(e) id(e) ~X1(e)\2 _ (Xi(e))® _(Xi(e)]] 7
ie§3}{( 2 2 ) 2 2 ] 70

For simplicity, we consider topological simple graphs y such as the cubic graph and focus on the transition amplitude A, ,

defined by the nongraph-changing physical Hamiltonian H as

Qﬁ

= (Z|U(T)|¥y). with U(T) :=exp<—;lTH>, (72)

where Wi(h) = [Le, ¥, (h(e)). g={gle) = & 2L XDy _ and h = {h(e) = & 24¢ (D} . Following the

ey —g(e)
standard coherent state functional integral method, we discretize the time 7 into N steps, where N can be arbitrarily large,
thus that each step Az = T/ N is arbitrarily small. Then the amplitude A, , can be written as a discrete path integral with an

effective action S[g] by the approximation (70):

=99

N+l
ay = 120121 | [] e 73)

=1

where the effective action is given by
! A ) A
ix . 4
ZK(QPH,Q ZAT|: :+1 | > + 1€, (7)], Qo :QI,QN+2 =g (74)
=4

with
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Po(e)—iX',  (e) ¢i(e) +iXi(e iX, (e)?  (iXi(e))?
T [(fel T gl ) () OF

K =
—(glJrl’gt) 2 2 2 ’

e€y ie{1.23}
and g'H-l,t(g) Satleylng hmA‘r—»O €11, l( ) =0.

Denoting gj( e) = _l( e)e ‘ng’, for i = 1,..., N, the variations of the action (74) with respect to &/ and their complex
conjugate & can give the EOMs. For i = 1, ..., N, the variation with respect to &!(e) gives

P (e) =Xl (e) ¢ie) —iXi(e) ik, & [< L q 76)
— = —_— T -
2 2 a> Sel(e) <_g 1| )
For 1 = N + 1, the variation with respect to &y, (e) gives
N+2(€) N+2< ) _;\/+1 (6) - iX;VJrl (6) —o. (77)
2 2
For 1 =2,...,N + 1, the variation with respect to & (e) gives
di(e) +iXi(e) . gii(e) +iXii(e) ik, & [@;;IHIE;,_)] 78)
—_ = — T i
2 2 a’> " SE(e) (Wl ) 1
For 1 = 1, the variation with respect to & (e) gives
i(e) +iXi(e (e) —iXi (e

2 B 2
We can approximate solutions of EOMs in the continuum limit (in the time direction) as Az — 0. This leads to g — 9., I
In this limit, the matrix elements of H in the right-hand sides of Egs. (76) and (78) reduce to the expectation value of ﬂ
as follows.

Lemma 1.—
i A o0 ENE) 50
lm —_— ; s
i=adel(e) | (¥, [9) | T 060 e
(1Y, ) o (1]
lim DR s G 00 (81)
B (] R B = R A
Similar to the case of Lemma 4.2 in Ref. [14], this lemma can be proved based on the following identities:
A (e P / i (AW) (1) W, () = / dh (9 (1) —2— v () (82)
Oel(e) "L =797 9el(e) = T T Ol (e) T T
where the integral is taken over a compact space and (HT(]&’ )(h) depends on €'(e) antiholomorphically, and
0y ()|, =-Vi¥(h) (83)
Oe'(e)—4 " e=0 I

with Vi being the vector field on U(1)? defined by Vf(h) = 2l (hei€).
Lemma 1 implies that the EOMs with continuous time 7 involve only the expectation value of H. We assume that H has
the correct semiclassical limit, in the sense that <$; |ﬂ|£§) can reproduce the classical Hamiltonian H as a function on the
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U(1)* holonomy-flux phase space in the semiclassical
limit as

(¥ [A|¥,) = Hg] + O(). (84)

Notice that the (nongraph-changing) physical Hamiltonian
H is just a combination of the basic U(1)? holonomy and
flux operators. Thus it is reasonable to assume that Eq. (84)
holds based on the simple Gaussian damping formulation
and the peakedness properties of the U(1)3 coherent states
[26,27]. Therefore, all of the expectation value <$; |H|$;)

can be replaced by the classical Hamiltonian H[g"] in

EOMs by taking ¢t — 0. Then, the effective action in the
time continuous limit, S[g] = limy,_ S[g], reads

v iin K
sy =i [ d@{zs}x - S Hld + O0))

(85)

The inherent Poisson algebra of this effective action is
{04} ={XL. X[} =0, {$.X)}=256,087. (86)
—e = - a

It is easy to see that this algebra is equivalent to the original
Poisson algebra (41) for U(1)®> LQG. The corresponding
EOMs can be reduced to the following form:

dX,  «x OH[g]

dt a0t "
dgle K 8H[g]
w2 ox (87)

in the limits Az — 0 and ¢ — 0.

B. Comparison with the SU(2) LQG

To compare the weak coupling limit of the effective
dynamics of the SU(2) LQG with that of U(1)? LQG, we
first recall the relation between the basic variables in these
two theories. Firstly, the reparametrization (47) implies that
in the weak coupling limit of small ¢, one has ¢, = ¢' and
X. = X} up to higher order terms. Thus the ¢’ of U(1)?
holonomy can parametrize the ¢. of SU(2) holonomy in
the weak coupling limit. Secondly, Eq. (55) implies that the
Poisson brackets among (¢., p., p.) are consistent with
those of (¢', p', p!) in the weak coupling limit. Since H[g]

(or H[g]) are functions of (¢, p¢, pe) [or (¢, pl, p’)] and
their Poisson brackets, we can immediately have the
relation

H[g] = H[g] (88)

at the weak coupling limit based on the reparametrization
(47). Further, we note that

i i

ope _ e _ _y 9. L
oX, oX, B . &

=1, (89)

at the weak coupling limit. Hence, Egs. (88), (89) and the
reparametrization (47) ensure that the effective EOMs (87)
in U(1)? LQG are consistent with the effective EOMs (30)
in SU(2) LQG in the weak coupling limit up to higher order
corrections of ¢. This consistent result can be used to deal
with the “Gauss” constraint (closure condition) in the weak
coupling U(1)* LQG, which is neglected in the above
discussion. Notice that the Gaussian constraint in the
effective dynamics of SU(2) LQG can be satisfied by
the corresponding constraint on the labeling parameters of
the boundary coherent state [14], and the effective dynam-
ics preserves the constraint. Thus, the consistency between
the effective EOMs of U(1)? and SU(2) LQG in the weak
coupling limit implies that the “Gauss” constraint can also
be implemented in the effective dynamics of the weak
coupling U(1)* LQG.

V. CONCLUSION AND DISCUSSION

As discussed in Sec. III A, the weak coupling theory
which we considered is obtained by taking the limit x — 0.
Then the Gaussian constraint in the connection formalism
of GR reduces to the constraint which generates U(1)?
transformations. Hence one expects that the corresponding
U(1)? LQG to fit the SU(2) LQG in the weak coupling
limit. In order to relate the holonomy-flux algebra of SU(2)
LQG to that of U(1)? LQG, a parametrization of SU(2)
holonomy-flux variables by U(1)* holonomy-flux varia-
bles is constructed as Eqs. (47). It is shown in Sec. III C that
the Poisson algebra of the SU(2) holonomy-flux variables
can be reproduced in the U(1)? holonomy-flux phase space
based on this parametrization in the weak coupling limit.
Thus, the U(1)* holonomy-flux variables can be endowed
with a certain specific geometric meaning of SU(2)
holonomy-flux variables in this limit. With this reparamet-
rization, the Hamiltonian constraint in the weak coupling
U(1)? LQG is introduced by replacing the SU(2) holon-
omy-flux variables in the Hamiltonian constraint of the
SU(2) LQG with the corresponding reparametrization
variables in the U(1)* holonomy-flux phase space.

Based on this Hamiltonian, the effective dynamics is
derived from the coherent state path integral of the weak
coupling U(1)? LQG. It is shown that the effective EOMs
obtained are consistent with those of SU(2) LQG in the
weak coupling limit, provided that the expectation values of
the Hamiltonian operators with respect to the coherent
states in these two theories coincide with the corresponding
classical Hamiltonians respectively. Hence, in the weak
coupling limit, we conclude that the U(1)* LQG reflects
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the main characters of the SU(2) LQG in the following
aspects:

(i) Similar to the SU(2) LQG, the U(1)* LQG is based
on the polymerlike quantization scheme, and the
discreteness of the spectrum of the basic spatial
geometric operators is retained in the U(1)® LQG
qualitatively, see Eqgs. (13), (14), (45) and (46).

(i) Since the SU(2) holonomy flux and its Poisson
algebra are reconstructed in the U(1)* holonomy-
flux phase space in the weak coupling limit, the
quantum holonomy-flux variables in U(1)* LQG
obtain their physical interpretation from that of
SU(2) LQG, and the algebraic properties of the
SU(2) holonomy-flux quantum algebra in the weak
coupling limit can be inherited in the corresponding
quantum algebra of U(1)*® LQG.

(iii) The effective EOMs of the SU(2) LQG are repro-
duced in the U(1)? LQG quantitatively in the weak
coupling limit up to higher order corrections. Gen-
erally, the U(1)? LQG which corresponds to the
weak coupling limit of the classical connection
formulation of GR can reproduce the dynamics of
the SU(2) LQG at the effective level, while it is a
qualitatively toy model of the SU(2) LQG at the
quantum level.

Several interesting issues deserve further investigation
based on the theory of the weak coupling U(1)® LQG. First,
it has been shown that the Hamiltonians of the matter fields
can be defined in the U(1)* LQG coupled with matter
[9,10]. One can employ the gravitational Hamiltonian
constraint (61) defined in this paper for the U(1)3 theory
in the matter coupling theory and study its dynamics, since
the physical Hamiltonian corresponding to (61) can pro-
duce the same semiclassical effective dynamics of SU(2)
LQG in the weak coupling limit. Usually, in the case where
quantum field theory (QFT) on curved spacetimes is valid,
the spacetime curvature is not too big. Then, one can further
understand this weak field situation by assuming all of the
holonomies in LQG approach to identity such that the weak
coupling condition is satisfied. Moreover, only the effective

semiclassical geometry and its dynamics is concerned as
the background of QFT. Hence, the U(1)* LQG with much
simpler revelent calculations is a good alternative of the
SU(2) LQG for exploring whether QFT on curved space-
times could be obtained as a certain semiclassical limit
of LQG.

Second, it is expected to extend this weak coupling model
for SU(2) LQG in (1 + 3) dimensions to higher dimen-
sional LQG [32-34]. It has been shown that the (1 + D)-
dimensional GR can be written as a SO(D + 1) gauge
theory with extra Gaussian constraint and simplicity con-
straint in Hamiltonian formulation. These constraints
together with the diffeomorphsim and Hamiltonian con-
straints form a first-class constraint system in classical
theory [33]. However, in the current construction the algebra
of the quantum simplicity constraint on the vertices of the
spin network states in all dimensional LQG becomes
unclosed. This results in the so-called anomalous vertex
simplicity constraint [24,35,36]. Nevertheless, the analysis
below Eq. (32) could be generalized to the SO(D + 1)

gauge theory directly, such that the Gaussian constraint
. . D(D+1)
reduces to the constraint generating the U(1) T trans-

formations. Thus, one may also use a gauge theory with
Abelian gauge group to fit the SO(D + 1) LQG in the weak
coupling limit. It should be noted that, while the simplicity
constraint is necessary for formulating the SO(D + 1)
gauge theory [33], it might not be the case for the weak
coupling Abelian gauge theory. In the latter, there is a way
to solve the simplicity constraint classically and obtain a
gauge theory in the reduced phase space with respect to it
[37]. Thus the anomaly associated with simplicity constraint
could be avoided in the corresponding quantum theory.
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