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By taking the limit that Newton’s gravitational constant tends to zero, the weak coupling loop quantum
gravity can be formulated as aUð1Þ3 gauge theory instead of the original SUð2Þ gauge theory. In this paper,
a parametrization of the SUð2Þ holonomy-flux variables by the Uð1Þ3 holonomy-flux variables is
introduced, and the Hamiltonian operator based on this parametrization is obtained for the weak coupling
loop quantum gravity. It is shown that the effective dynamics obtained from the coherent state path integrals
in Uð1Þ3 and SUð2Þ loop quantum gravity respectively are consistent to each other in the weak coupling
limit, provided that the expectation values of the Hamiltonian operators on the coherent states in these two
theories coincide with their classical expressions respectively.
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I. INTRODUCTION

Loop quantum gravity (LQG) opens a convincing
approach to achieve the unification of general relativity
(GR) and quantum mechanics [1–5]. The distinguished
feature of LQG is its nonperturbative and background-
independent construction, which predicts the discretization
of spatial geometry. An interesting research topic in the
field is the weak coupling limit LQG, which is given by
taking the limit that the Newton’s gravitational constant κ
tends to 0. This idea was firstly proposed by Smolin and
further studied by Tomlin and Varadarian [6,7]. The
resulting weak coupling LQG is a Uð1Þ3 gauge theory
instead of the original SUð2Þ gauge theory. This Uð1Þ3
LQG theory inherits some of the core characters of the
original SUð2Þ LQG, such as the discrete spatial geometry
and the polymerlike quantization scheme. It has been used
as a toy model to study the faithful LQG-like representation
of the constraint algebra in the weak coupling limit of
Euclidean GR [8]. The theoretical framework of the weak
coupling Uð1Þ3 LQG model is also used to study the
quantum field theory on the curved spacetime limit of
LQG [9,10].
Although the Uð1Þ3 theory has been used as a toy model

of LQG, whether the predictions of the model would
coincide with those of LQG is still uncertain due to the
following difficulties. First, the geometric meaning of the
holonomy-flux variables in the Uð1Þ3 weak coupling LQG
is not clear, and hence it is hard to reveal the physical

meaning of this theory. Second, the weak coupling limit of
the scalar constraint in the Uð1Þ3 theory only represents
certain dynamics of Euclidean gravity, which could diverge
from that of the original SUð2Þ theory of LQG, since the
higher order terms of κ have been neglected in the former.
Hence, the dynamics of the weak coupling limit of LQG is
still an open issue. In this paper, we will concentrate on this
problem and try to construct the effective dynamics from a
coherent state path integral of the weak coupling LQG.
To study the effective dynamics, we will first define a

Hamiltonian constraint in the weak coupling Uð1Þ3 LQG.
Then the effective dynamics will be constructed from the
Uð1Þ3 coherent state path integral. More specifically, to
define the Hamiltonian constraint, a parametrization of
SUð2Þ holonomy-flux variables by Uð1Þ3 holonomy-flux
variables will be constructed. It will be shown that the
SUð2Þ holonomy-flux algebra can be reproduced in the
Uð1Þ3 holonomy-flux phase space based on this para-
metrization in the weak coupling limit. Then, the
Hamiltonian constraint in the weak coupling Uð1Þ3 LQG
can be given by replacing the SUð2Þ holonomy-flux
variables in the Hamiltonian constraint of the SUð2Þ
LQG with the corresponding reparametrization variables
in the Uð1Þ3 holonomy-flux phase space. Also, this para-
metrization endows a geometric meaning to the Uð1Þ3
holonomy-flux variables. Such a parametrization is
inspired by the definition of the Hamiltonian of a
Fermion field in the weak coupling Uð1Þ3 LQG back-
ground, in which the Uð1Þ3 holonomies are used to
construct SUð2Þ holonomies to give the transportation of
the SUð2Þ spinors [9,10]. With the Hamiltonian constraint
in the weak coupling Uð1Þ3 LQG and the Uð1Þ3 com-
plexifier coherent states, the effective dynamics will be

*Corresponding author.
mayg@bnu.edu.cn

†201731140005@mail.bnu.edu.cn
‡mayg@bnu.edu.cn

PHYSICAL REVIEW D 105, 044043 (2022)

2470-0010=2022=105(4)=044043(14) 044043-1 © 2022 American Physical Society

https://orcid.org/0000-0002-0270-762X
https://orcid.org/0000-0002-9453-4446
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.044043&domain=pdf&date_stamp=2022-02-22
https://doi.org/10.1103/PhysRevD.105.044043
https://doi.org/10.1103/PhysRevD.105.044043
https://doi.org/10.1103/PhysRevD.105.044043
https://doi.org/10.1103/PhysRevD.105.044043


derived following the standard coherent state functional
integral method. We will show that the equations of motion
(EOMs) given by the effective dynamics of the Uð1Þ3 LQG
is consistent with that of SUð2Þ LQG in the weak coupling
limit up to higher order corrections of t ¼ κℏ=a2 with a
being a chosen unit length.

II. ELEMENTS OF LQG

A. The basic structures

The (1þ 3)-dimensional Lorentzian LQG is constructed
by canonically quantizing GR based on the Yang-Mills
phase space with the nonvanishing Poisson bracket

fAi
aðxÞ; Eb

j ðyÞg ¼ κβδbaδ
i
jδ

ð3Þðx − yÞ; ð1Þ

where the configuration and momentum are respectively
the suð2Þ-valued connection field Ai

a and densitized triad
field Eb

j on a three-dimensional spatial manifold Σ, and κ
and β represent the gravitational constant and Babero-
Immirze parameter respectively. Here we use i; j; k;… for
the internal suð2Þ index and a; b; c;… for the spatial index.
Let qab ¼ eiaebi be the spatial metric on Σ. The densitized
triad is related to the triad eai by Ea

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

eai , where
detðqÞ denotes the determinant of qab. The connection can
be expressed as Ai

a ¼ Γi
a þ βKi

a, where Γi
a is the Levi-

Civita connection of eia and Ki
a is related to the extrinsic

curvature Kab by Ki
a ¼ Kabebjδ

ji. The dynamics is gov-
erned by the following Gaussian, vector and scalar con-
straints respectively,

G ≔ ∂aEai þ AajEa
kϵ

ijk ¼ 0; ð2Þ

Ca ≔ Eb
i F

i
ab ¼ 0; ð3Þ

and

C ≔
Ea
i E

b
j

detðEÞ ðϵ
ij
kFk

ab − 2ð1þ β2ÞKi
½aK

j
b�Þ ¼ 0; ð4Þ

where Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b is the curvature of
Ai
a. As a totally constrained system, the physical time

evolution in the Hamiltonian formulation of GR can be
constructed by several deparametrization models [11–13].
In these models, the resulting physical Hamiltonian H can
be written as H ¼ R

Σ dx
3h with the densitized scalar field

h ¼ hðC; CaÞ taking different formulations for different
deparametrization models. For instance, in the Gaussian
dust deparametrization model one has h ¼ C [12,14].
The loop quantization of the SUð2Þ connection formu-

lation of GR leads to a kinematical Hilbert space H, which

can be regarded as a union of the Hilbert spaces Hγ ¼
L2ððSUð2ÞÞjEðγÞj; dμjEðγÞjHaar Þ on all possible finite graphs γ,
where jEðγÞj denotes the number of independent edges of γ

and dμjEðγÞjHaar denote the product of the Haar measure on
SUð2Þ. In this sense, on each given γ there is a discrete
phase space ðT�SUð2ÞÞjEðγÞj, which is coordinatized by the
basic discrete variables—holonomies and fluxes. The
holonomy of Ai

a along an edge e ∈ γ is defined by

he½A� ≔ P exp

�Z
e
A

�
¼ 1þ

X∞
n¼1

Z
1

0

dtn

Z
tn

0

dtn−1…
Z

t2

0

dt1Aðt1Þ…AðtnÞ; ð5Þ

where AðtÞ ¼ Ai
aðtÞ_eaðtÞτi, and τi ¼ − i

2
σi with σi being the Pauli matrices. There are two versions for the gauge

covariant flux of Eb
j through the 2-face dual to edge e ∈ EðγÞ [15,16]. The flux in the perspective of the source point of e is

defined by

FiðeÞ ≔ 2

β
tr

�
τi
Z
Se

ϵabchðρseðσÞÞEcjðσÞτjhðρseðσÞ−1Þ
�
; ð6Þ

where Se is the 2-face in the dual lattice γ� of γ, ρsðσÞ∶½0; 1� → Σ is a path connecting the source point se ∈ e to σ ∈ Se such
that ρseðσÞ∶½0; 12� → e and ρseðσÞ∶½12 ; 1� → Se. Similarly, the corresponding flux in the perspective of the target point of e is
defined by

F̃iðeÞ ≔ −
2

β
trðτi

Z
Se

ϵabchðρteðσÞÞEcjðσÞτjhðρteðσÞ−1ÞÞ; ð7Þ

where ρtðσÞ∶½0; 1� → Σ is a path connecting the target point te ∈ e to σ ∈ Se such that ρteðσÞ∶½0; 12� → e and
ρteðσÞ∶½12 ; 1� → Se. It is easy to see that one has the relation

F̃iðeÞτi ¼ −h−1e FiðeÞτihe: ð8Þ
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The nonvanishing Poisson brackets among the holonomy and fluxes read

fhe½A�; Fi
e0 g ¼ −δe;e0κτihe½A�; fhe½A�; F̃i

e0 g ¼ δe;e0κhe½A�τi;
fFi

e; F
j
e0 g ¼ −δe;e0κϵijkFk

e0 ; fF̃i
e; F̃

j
e0 g ¼ −δe;e0κϵijkF̃k

e0 : ð9Þ
The basic operators in Hγ are given by promoting the basic discrete variables as operators. The resulting holonomy and

flux operators act on cylindrical functions fγðAÞ ¼ fγðhe1 ½A�;…; hejEðγÞj ½A�Þ in Hγ as

ĥe½A�fγðAÞ ¼ he½A�fγðAÞ; ð10Þ

F̂iðeÞfγðhe1 ½A�;…; he½A�;…; hejEðγÞj ½A� ¼ iκℏ
d
dλ

fγðhe1 ½A�;…; eλτ
i
he½A�;…; hejEðγÞj ½A�; ð11Þ

ˆ̃F
iðeÞfγðhe1 ½A�;…; he½A�;…; hejEðγÞj ½A� ¼ −iκℏ

d
dλ

fγðhe1 ½A�;…; he½A�eλτi ;…; hejEðγÞj ½A�: ð12Þ

Two spatial geometric operators in Hγ are worth men-
tioning here. The first one is the oriented area operator

defined as βF̂iðeÞ [or β ˆ̃F
iðeÞ], whose module length

jβF̂ðeÞj ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2F̂iðeÞF̂iðeÞ

q
represents the area of the

2-face dual to e and direction represents the ingoing normal
direction of Se in the perspective of the source (or target)
point of e. As a remarkable prediction of LQG, the module
length and the components of the oriented area operator
take respectively the following discrete spectrum [1,3]:

SpecðjβF̂ðeÞjÞ ¼
�
βκℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
jj ∈ N

2

�
; ð13Þ

SpecðβF̂iðeÞÞ ¼
�
βκℏmjm ∈

Z
2

�
; ∀ i ¼ 1; 2; 3: ð14Þ

The second important spatial geometric operator is the
volume operator of a compact region R ⊂ Σ, which is
defined as

V̂R ≔
X

v∈VðγÞ∩R
V̂v ¼

X
v∈VðγÞ∩R

ffiffiffiffiffiffiffiffiffi
jQ̂vj

q
; ð15Þ

where VðγÞ denotes the set of vertices of γ, and

Q̂v ≔
1

8
ðβÞ3

XeI∩eJ∩eK¼v

feI ;eJ;eKg⊂EðγÞ
ϵijkϵ

IJKF̂iðv; eIÞF̂jðv; eJÞF̂kðv; eKÞ; ð16Þ

where ϵIJK ¼ sgn½detðeI ∧ eJ ∧ eKÞ�, F̂iðv; eÞ ¼ F̂iðeÞ if sðeÞ ¼ v and F̂iðv; eÞ ¼ − ˆ̃F
iðeÞ if tðeÞ ¼ v.

The Gaussian constraint operator can be well defined in Hγ as well as in H, which generates SUð2Þ gauge
transformations of the cylindrical functions. However, there is no operator in either Hγ or H corresponding to the vector
constraint. To solve the diffeomorphism constraint at quantum level, one has to use the group-averaging procedure onH to
achieve a diffeomorphism invariant Hilbert space [1,3]. We now consider the operator in Hγ corresponding to the scalar

constraint. The quantum scalar constraint is constituted by the so-called Euclidean part ĈE½N� and Lorentzian part ĈL½N� as
Ĉ½N� ¼ ĈE½N� þ ð1þ β2ÞĈL½N�; ð17Þ

where N is the smearing function. The Euclidean part is defined as

ĈE½N� ¼ 1

iβκℏ

X
v∈VðγÞ

NðvÞ
XeI∩eJ∩eK¼v

feI;eJ;eKg⊂EðγÞ
ϵIJKtrðhαIJheK ½V̂v; h−1eK �Þ; ð18Þ

where eI, eJ, eK have been reoriented to be outgoing at v, ϵIJK ¼ sgn½detðeI ∧ eJ ∧ eKÞ�, αIJ is the minimal loop around a
plaquette containing eI and eJ [17,18], which begins at v via eI and gets back to v through eJ. With the same notations, the
Lorentzian part is given by

ĈL½N� ¼ −1
2iβ7ðκℏÞ5

X
v∈VðγÞ

NðvÞ
XeI∩eJ∩eK¼v

feI;eJ;eKg⊂EðγÞ
ϵIJKtrð½heI ; ½V̂v; ĈE��h−1eI ½heJ ; ½V̂v; ĈE��h−1eJ ½heK ; V̂v�h−1eK Þ: ð19Þ
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B. Effective dynamics from coherent state path integral

The dynamics of LQG can be defined by the physical
Hamiltonian which is introduced by the deparametrization
of GR. In the deparametrization models with certain dust
fields, the scalar and diffeomorphism constraints are solved
classically so that the theory can be described in terms of
Dirac observables, since the dust reference frame provides
the physical spatial coordinates and time τ. Then, the
physical time evolution is generated by the physical
Hamiltonian with respect to the dust field [12,14]. In the
Gaussian dust deparametrization model [12], the (non-
graph-changing) physical Hamiltonian operator Ĥ deter-
mining the quantum dynamics in Hγ can be given as

Ĥ ¼ 1

2
ðĈ½1� þ Ĉ½1�†Þ: ð20Þ

This operator is manifestly Hermitian and therefore admits
a self-adjoint extension. Based on this Hamiltonian oper-
ator, the effective dynamics from the coherent state path
integral has been studied for a cubic graph γ in [14,17]. We
now give a brief review of this effective dynamics.
The method of coherent state path integral has been

successfully applied to derive the effective dynamics in
both LQG and its cosmological models [19,20]. There are
several proposals for constructing coherent states in LQG
[21–25]. The most widely used one is the so-called
complexifier coherent state constructed based on the heat-
kernel coherent state of SUð2Þ [15,26,27]. For a graph γ,
the complexifier coherent state is given by

Ψt
γ;gðhÞ ¼

Y
e∈EðγÞ

Ψt
geðheÞ ð21Þ

with

Ψt
geðheÞ ≔

X
je∈ðZþ=2Þ∪0

ð2je þ 1Þe−tejeðjeþ1Þ=2χjeðgeh−1e Þ;

ð22Þ

where g ¼ fgege∈EðγÞ, h ¼ fhege∈EðγÞ, χj is the SUð2Þ
character with spin j and t ∈ Rþ is a semiclassicality
parameter. As a function of the holonomies he ¼ eθ

i
eτi , the

coherent state is labeled by the complex coordinates ge ∈
T�SUð2Þ ≅ SLð2;CÞ of the discrete holonomy-flux phase
space of LQG. For an edge e, the coordinate is the
complexified holonomy

ge ¼ e−ip
iðeÞτieϕiðeÞτi ; piðeÞ;ϕiðeÞ ∈ R3 ð23Þ

where eϕ
i
eτi parametrizes the classical holonomy variable

and piðeÞ ¼ FiðeÞ
a2 is the dimensionless flux with a being a

constant with the dimension of length related to the
semiclassicality parameter by t ¼ κℏ=a2. The gauge invari-
ant coherent state is labeled by a gauge equivalent class of
gðeÞ ∼ gh

0 ðeÞ ≔ h0−1sðeÞgðeÞh0tðeÞ for all e ∈ EðγÞ. The semi-

classical limit is given by t → 0 or lP ≪ a. Thanks to the
overcompleteness and semiclassical properties of the
coherent states, the transition amplitude between gauge
invariant coherent states can be written as the following
discrete path integral formula [14]:

Ag;g0 ¼
Z

dh0hΨt
γ;gj

�
exp

�
−
i
ℏ
ΔτĤ

��
N
jΨt

γ;g0h0
i ¼ kΨt

γ;gkkΨt
γ;g0k

Z
dh0

YNþ1

{¼1

dg{ν½g�eS½g;h0�=t; ð24Þ

where the integral is taken over N þ 1 intermediate states labeled by g{ ∈ SLð2;CÞjEðγÞj with g0 ¼ g0h0 ; gNþ2 ¼ g, the gauge
transformation elements h0 ¼ fh0vgv∈VðγÞ ∈ SUð2ÞjVðγÞj are added to ensure the SUð2Þ gauge invariance, ν½g� is a path
integral measure, kΨt

γ;gk is the module of the state Ψt
γ;gðhÞ, and S½g; h0� can be regarded as the effective action for LQG

extracted from the path integral. In the continuous time limit, this action can be written as [16,17]

S½g; h0� ¼ lim
Δτ¼T=N→0

S½g; h0�

¼ i
Z

T

0

dτ

� X
e∈EðγÞ

Xiðτ; eÞ dϕ
iðτ; eÞ
dτ

−
κ

a2
hΨt

γ;gðτÞjĤjΨt
γ;gðτÞi

�

¼ i
Z

T

0

dτ
� X
e∈EðγÞ

Xiðτ; eÞ dϕ
iðτ; eÞ
dτ

−
κ

a2
ðH½pðτÞ;ϕðτÞ� þOðtÞÞ

�
; ð25Þ

where hΨt
γ;gðτÞjĤjΨt

γ;gðτÞi ¼ H½pðτÞ;ϕðτÞ� þOðtÞ, p ¼ fpege∈γ ¼ fpi
ege∈γ , ϕ ¼ fϕege∈γ ¼ fϕi

ege∈γ and
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Xi
e ¼ GijðϕeÞpj

e: ð26Þ

Here the 3 × 3 real matrix GijðϕÞ is given by

0
BBB@

− ðϕϕ2
1
þðϕ2

2
þϕ2

3
Þ sinðϕÞÞ

ϕ3 − ðϕ1ϕ2ðϕ−sinðϕÞÞþϕϕ3ðcosðϕÞ−1ÞÞ
ϕ3

ðϕ1ϕ3ðsinðϕÞ−ϕÞþϕϕ2ðcosðϕÞ−1ÞÞ
ϕ3

ϕϕ3ðcosðϕÞ−1Þ−ϕ1ϕ2ðϕ−sinðϕÞÞ
ϕ3 − ðϕϕ2

2
þðϕ2

1
þϕ2

3
Þ sinðϕÞÞ

ϕ3 − ðϕ2ϕ3ðϕ−sinðϕÞÞþϕϕ1ðcosðϕÞ−1ÞÞ
ϕ3

− ðϕ1ϕ3ðϕ−sinðϕÞÞþϕϕ2ðcosðϕÞ−1ÞÞ
ϕ3

ðϕ2ϕ3ðsinðϕÞ−ϕÞþϕϕ1ðcosðϕÞ−1ÞÞ
ϕ3 − ðϕϕ2

3
þðϕ2

1
þϕ2

2
Þ sinðϕÞÞ

ϕ3

1
CCCA ð27Þ

where ϕi;e ≡ ϕi
e and ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ϕi
eϕi;e

p
. Also, the inherent Poisson algebra of the basic variables in this effective action is

fϕi
e;ϕ

j
e0 g ¼ fXi

e; X
j
e0 g ¼ 0; fϕi

e; X
j
e0g ¼ κ

a2
δe;e0δ

ij; ð28Þ

which is equivalent to the Poisson algebra

fϕi
e;ϕ

j
e0g ¼ 0; fpi

e0 ;ϕ
j
eg ¼ κ

a2
δe;e0Ui

jðϕÞ; fpi
e; p

j
e0 g ¼ −

κ

a2
δe;e0ϵ

ij
kpk

e ð29Þ

originated from the holonomy-flux algebra, where
UðϕÞGðϕÞT ¼ GðϕÞTUðϕÞ ¼ −13×3 with GðϕÞT repre-
senting the matrix transposition of GðϕÞ. The variations
of the action (25) with respect to ϕi

e and Xi
e give the

Hamiltonian equations [up to OðtÞ]

dϕi
e

dτ
¼ κ

a2
∂H
∂Xi

e
;

dXi
e

dτ
¼ −

κ

a2
∂H
∂ϕi

e
: ð30Þ

The variation of the action (25) with respect to h0 restricts
the boundary state Ψt

γ;gðτÞ by requiring that the classical
discrete closure condition

−
X

e;sðeÞ¼v

piðeÞτi þ
X

e;tðeÞ¼v

piðeÞe−ϕj
eτjτieϕ

k
eτk ¼ 0 ð31Þ

holds for g ¼ fgege∈γ. This condition is preserved by the
dynamical equations (30).
The effective EOMs (30) represent the dynamics of full

SUð2Þ LQG at the semiclassical level. We can follow this
approach to explore the effective dynamics of the weak
coupling Uð1Þ3 LQG. To ensure that the Uð1Þ3 LQG
reveals the full SUð2Þ LQG exactly at effective level in the
weak coupling limit, one needs to show that the effective
EOMs given by the Uð1Þ3 LQG coincide with Eqs. (30) in
the weak coupling limit, by suitably relating the basic
variables in the Uð1Þ3 LQG to those of SUð2Þ LQG. In the
following two sections, we will introduce a parametrization
of the SUð2Þ holonomy-flux variables by the Uð1Þ3
holonomy-flux variables and define a Hamiltonian operator
for the weak coupling Uð1Þ3 LQG. We will show that, by
identifying the geometrical meaning of the basic variables
in the two versions of the parametrization, the coherent

state path integrals in the Uð1Þ3 LQG and SUð2Þ LQG can
give a consistent effective dynamical description of the
spacetime geometry in the weak coupling limit.

III. THE WEAK COUPLING Uð1Þ3 LQG

A. Basic structures

The weak coupling theory of LQG is given by redefining
the connection asAai ≔ κ−1Aai and taking the limit κ → 0,
so that only the leading order terms with respect to κ remain
in the Gaussian, vector, and scalar constraints [6–8]. The
resulting theory is still a gauge theory with the conjugate
pair Ai

a and Eb
j satisfying

fAi
aðxÞ; Eb

j ðyÞg ¼ βδbaδ
i
jδ

ð3Þðx − yÞ: ð32Þ

The Gaussian constraint reduces to Gi ≔ ∂aEai, which
generates the Abelian Uð1Þ3 transformations. The reduced
vector and scalar constraints are given by [7,8]

Ca ≔ κEb
i F

i
ab ð33Þ

and

C ≔ κ
Ea
i E

b
j

detðEÞ ϵ
ij
kFk

ab ð34Þ

respectively, where Fi
ab ¼ ∂aAi

b − ∂bAi
a is the curvature of

Ai
a. Here we note that the scalar constraint only contains

the Euclidean part as the treatments in [7,8].
The kinematic Hilbert space K of the weak coupling

theory follows from the representation of the holonomy-
flux algebra as in the standard LQG. Now, the holonomy is
defined with an oriented curve e ∈ Σ as
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hie½A�≡ eiκ
R
e
Ai

adxa : ð35Þ

Oneway to identify a basis of the kinematic Hilbert space is
to define the so-called charged holonomy he;q⃗½A� with a
triple of integer charges fqig≡ q⃗ as

he;q⃗½A�≡ eiκqi
R
e
Ai

adxa : ð36Þ
Given a closed, oriented graph γ consisting of a set of edges
feIg meeting only at their end points, called the vertices,
one may assign fq⃗Ig to the edge eI ∈ γ and thereby define
the graph holonomy hγ;fq⃗Ig as

hγ;fq⃗Ig½A�≡Y
I

heI;q⃗I ½A�: ð37Þ

Note that, as in SUð2Þ LQG, the kinematical Hilbert space
K can be regarded as a union of the graph-dependent

Hilbert spaces Kγ ≡ L2ððUð1Þ3ÞjEðγÞj; dμjEðγÞjHaar Þ on all pos-
sible graphs γ with each Uð1Þ3 associated with an edge
being thought of as its holonomies. Here L2ððUð1Þ3ÞjEðγÞjÞ
is the space of square-integrable functions on ðUð1Þ3ÞjEðγÞj,
and dμjEðγÞjHaar denotes the product of the Haar measure on
Uð1Þ3. A graph holonomy (37) is local Uð1Þ3 invariant and
thus a solution to the Gaussian constraint, if and only if the
full set of edges feIvg sharing any vertex v ∈ γ always
satisfies the charge neutrality

X
Iv

sgnIvq
i
Iv
¼ 0 ð38Þ

for all i, where sgniv is a positive or negative sign if the
edge eIv is outgoing or ingoing for v. We now define a
locally Uð1Þ3 invariant charge network state, denoted as
c≡ cðγ; fq⃗IgÞ, to be a kinematic quantum state with a wave
functional hc given by its associated graph holonomy
satisfying (38). TheUð1Þ3 invariant kinematic Hilbert space
Kinv ≡ Spanfjcig is spanned by the basis of all the distinct
charge network states and equipped with the inner product

hcjc0i ¼ δc;c0 : ð39Þ

Note that the labeling ðγ; fq⃗IgÞ to the charge network states is
not unique, since one can always artificially change γ into γ0
by adding trivial vertices and edges. To avoid this redun-
dancy we will always label a charge network state by the
corresponding oriented graph with the minimal number of
edges. The Uð1Þ3 invariant flux variables for Eai is defined
over an oriented 2-surface. In the case that the 2-surface Se is
dual to an edge e of γ, the flux is given by

FiðeÞ≡ 1

β

Z
Se

ϵabcEaidσb ∧ dσc: ð40Þ

The holonomy-flux Poisson bracket reads

fhγ;fq⃗Ig; FiðeÞg ¼
X

e0∈γðSeÞ

iκ
2
ϵðe0; SeÞqie0hγ;fq⃗Ig; ð41Þ

where ϵðe0; SeÞ is the sign of the relative orientation between
the given e0 and S if they are dual to each other, and is zero
otherwise; γðSeÞ has been adapted to Se by adding pseudo-
vertices such that they only intersect at the vertices of the
former. In theHilbert spaceKγ, a holonomyoperator acts as a
multiplicative operator. A flux operator then acts as a
differential operator such that

F̂iðeÞ · hγ;fq⃗Ig½A� ¼
X

e0∈γðSeÞ
ℏ
κ

2
ϵðe0; SeÞqie0hγ;fq⃗Ig½A�: ð42Þ

The Hilbert space K of this Uð1Þ3 theory also has a
coherent state basis. For the given graph γ, the heat kernel
coherent states in this theory are given by

Ψt
γ;gðhÞ ¼

Y
e∈γ

Ψt
gðeÞðhðeÞÞ ð43Þ

where h ≔ fhðeÞje ∈ γg, and g ≔ fgðeÞje ∈ γg coordina-

tizes the holonomy-flux phase space ðT�Uð1Þ3ÞjEðγÞj, and
Ψt

gðeÞðhðeÞÞ denotes the heat kernel coherent states for

Uð1Þ3 defined by

Ψt
gðeÞðhðeÞÞ ≔

Y
i∈f1;2;3g

X∞
ni¼−∞

e−
t
2
n2i einiðϕi

ðeÞ−θiðeÞÞe−niXiðeÞ

ð44Þ

such that hðeÞ ¼ ei
P

i
θiðeÞ and gðeÞ ¼ ei

P
i
ðϕ

i
ðeÞþiXiðeÞÞ

with XiðeÞ ≔ FiðeÞ
a2 being the dimensionless flux in the

Uð1Þ3 theory.

B. The issue of geometric interpretation

The weak coupling Uð1Þ3 LQG theory captures the core
characters of the full SUð2Þ LQG with the polymer
quantization scheme. The oriented area operator in the
weak coupling Uð1Þ3 LQG can be defined by the flux
operators similarly to that in full SUð2Þ LQG. Then it is
easy to see that this area operator jβF̂ðeÞj takes the discrete
eigenvalues as

SpecðjβF̂ðeÞjÞ ≔ Spec
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2F̂iðeÞF̂iðeÞ
q 


¼
(
βκℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈f1;2;3g

n2i

s
jni ∈ N

)
; ð45Þ

due to
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SpecðβF̂iðeÞÞ ¼ fβκℏmjm ∈ Zg; ∀ i ¼ 1; 2; 3: ð46Þ

Note that the fluxes FiðeÞ and F̃iðeÞ represent the oriented
areas of the 2-faces dual to e in the perspective of the source
or target point of e respectively. Recall that, in full SUð2Þ
LQG, the holonomy along an edge e parallel transports the
flux from the source point to the target point of e as
Fe ¼ −heF̃eh−1e . Following the twisted geometric explan-
ation, the Levi-Civita connection Γe in the expression of the
SUð2Þ connection contributes two degrees of freedom to he
which transform F̃e, and the extrinsic curvature one-form
Ke contributes one degree of freedom to he which keeps F̃e

invariant [28]. However, in the weak coupling Uð1Þ3 LQG,
the Uð1Þ3 holonomy along an edge e, which still contains
3 degrees of freedom, does not generate any transportation
of the flux along e. Thus, the three degrees of freedom in
Uð1Þ3 holonomy cannot be interpreted as a combination of
the intrinsic and extrinsic curvature. In fact, the trans-
portation of the flux along an edge in full SUð2Þ LQG is
related to the next leading order term with respect to κ in
the original Gaussian constraint Gi ¼ ∂aEai þ κϵijkA

j
aEak,

which is neglected in the weak coupling Uð1Þ3 theory by
taking the limit κ → 0. This limit indicates that the original
suð2Þ-valued connection Aai ¼ κAai is small so that the
corresponding SUð2Þ holonomy is almost identity and
which leads to Fe ¼ −F̃e. This indicates that the weak
coupling Uð1Þ3 LQG would correspond to the almost
vanishing spatial curvature case of full SUð2Þ LQG.
Whether there are higher order terms with respect to κ

may lead to a difference in the dynamics. In the weak
coupling Uð1Þ3 theory, one proposal to construct the scalar
constraint operator is to regularize and quantize the scalar
constraint (34), so that it adds some nondegenerate vertices
to the charge network state [7], rather than attach small
loops based at the original vertices as in the usual
construction of full SUð2Þ LQG [1,3]. However, there is
no guarantee that such dynamical construction of the weak
coupling Uð1Þ3 LQG can be generalized to that of full
SUð2Þ LQG. To employ the weak couplingUð1Þ3 theory as
a toy model to study the dynamical construction of the full
SUð2Þ LQG, one treatment is to replace the SUð2Þ
holonomy-flux operators in the scalar constraint operator

of SUð2Þ LQG by the corresponding Uð1Þ3 holonomy-flux
operators [18,29]. However, sucha scheme is only valid for
the Euclidean part of the constraint but not for the
Lorentzian part. Actually, to study the weak coupling limit
of the dynamics of full SUð2Þ theory, one should not use
the weak coupling limit of the constraints, since the higher-
order terms with respect to κ in those constraints may
become lower-order after taking the Poisson brackets with
the basic variables in the Uð1Þ3 theory. Rather, the weak
coupling limit theory at the dynamical level should be given
by taking the weak coupling limit of the Poisson brackets of
the constraints and basic variables in the original SUð2Þ
theory.
To deal with the above issues in the weak couplingUð1Þ3

LQG, we are going to relate the full SUð2Þ LQG theory and
the weak coupling Uð1Þ3 theory through reparametrizing
the SUð2Þ holonomy-flux variables by the Uð1Þ3 holon-
omy-flux variables. By such a parametrization, the Uð1Þ3
holonomy-flux variables can be endowed with certain
geometric meanings. Also, the Gaussian constraint, vector
constraint, and scalar constraint in the weak couplingUð1Þ3
LQG can be obtained by replacing the corresponding
variables in the corresponding constraints of the SUð2Þ
theory.

C. Reparametrization

We will show in this subsection that a parametrization of
the SUð2Þ holonomy-flux variables by the Uð1Þ3 holon-
omy-flux variables can be realized by defining some new
variables in the Uð1Þ3 holonomy-flux phase space. By this
parametrization the Poisson structure of the SUð2Þ hol-
onomy-flux variables can be faithfully inherited in the weak
coupling limit, which is consistent with the original setting
of the Uð1Þ3 LQG.
For a given graph γ, the discrete phase space T�SUð2Þ

and T�Uð1Þ3 of the SUð2Þ theory and Uð1Þ3 theory have
the same dimensionality. Hence it is reasonable to con-
struct a reparametrization of the SUð2Þ holonomy-flux
by the Uð1Þ3 holonomy-flux variables. Taking into account
the expressions (6) and (7) of the covariant fluxes, the
reparametrization can be given by

hie½A� ↦ he½A�∶ he½A�≡ h̃e½A� ≔ exp

�P
iðhie½A� − ðhie½A�Þ−1Þτi

2i

�
;

Xi
e ↦ pi

e∶ pi
eτi ≡ pi

e
τi ≔ −h̃e½A=2�τih̃−1e ½A=2�Xi

e ð47Þ

with h̃e½A=2� ≔ exp
	P

i
ðhie½A�−ðhie½A�Þ−1Þτi

4i



, where exp denotes the exponential map of suð2Þ. Then, by defining p̃i

e
τi ≔

h̃−1e ½A=2�τih̃e½A=2�Xi
e in the weak coupling Uð1Þ3 theory, we have the relation similar to (8) for the two fluxes of different

perspectives as

p̃i
e
τi ¼ −h̃−1e ½A�pi

e
τih̃e½A�: ð48Þ
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Now let us check whether the Poisson algebra of the SUð2Þ holonomy and fluxes defined by (47) in the Uð1Þ3 phase space
coincides with that in the SUð2Þ phase space in a certain limit. With the Poisson bracket in the Uð1Þ3 theory, we obtain

fh̃e½A�; h̃e0 ½A�g ¼ 0; ð49Þ

fh̃e½A�; pi
e0 g ¼ δe;e0

2iκ
a2

X
j

trðτih̃e½A=2�τjh̃−1e ½A=2�Þhje½A� δh̃e½A�
δhje½A� ; ð50Þ

fh̃e½A�; p̃i
e0g ¼ −δe;e0

2iκ
a2

X
j

trðτih̃−1e ½A=2�τjh̃e½A=2�Þhje½A� δh̃e½A�
δhje½A� ; ð51Þ

and

fp̃i
e
; p̃j

e0g ¼ −2δe;e0 trðτifh̃−1e ½A=2�; p̃j
e
gτkh̃e½A=2�ÞXk

e − 2δe;e0 trðτih̃−1e ½A=2�τkfh̃e½A=2�; p̃j
e
gÞXk

e

þ 2δe;e0 trðτih̃−1e ½A=2�τkh̃e½A=2�Þð2trðτjfh̃−1e ½A=2�; Xk
egτlh̃e½A=2�ÞXl

eÞ
þ 2δe;e0 trðτih̃−1e ½A=2�τkh̃e½A=2�Þð2trðτjh̃−1e ½A=2�τlfh̃e½A=2�; Xk

egÞXl
eÞ; ð52Þ

wherein

fh̃e½A�; Xi
e0 g ¼ δe;e0

iκ
a2

hie½A� δh̃e½A�
δhie½A� ðno summation over iÞ: ð53Þ

Thus, the Poisson algebra of the SUð2Þ holonomy and fluxes defined by (47) in the Uð1Þ3 phase space does not coincide
with that in the SUð2Þ phase space in general. Consider the Uð1Þ3 holonomy hiðeÞ ¼ eiϕ

i
e and the SUð2Þ holonomy

hðeÞ ¼ eϕ
i
eτi . Then it is easy to check that in the weak coupling limit given by small ϕi

e
¼ ϕi

e, one has he½A� ¼ h̃e½A� at the
leading order of ϕi

e
¼ ϕi

e. Further, we have the Poisson algebras

fhe½A�; pi
e0g ¼ −δe;e0

κ

a2
τi; fhe½A�; p̃i

e0 g ¼ δe;e0
κ

a2
τi;

fpi
e; p

j
e0g ¼ −δe;e0

κ

a2
ϵijkpk

e0 ; fp̃i
e; p̃

j
e0 g ¼ −δe;e0

κ

a2
ϵijkp̃k

e0 ð54Þ

in SUð2Þ phase space and

fh̃e½A�; pi
e0g ¼ −δe;e0

κ

a2
τi; fh̃e½A�; p̃i

e0 g ¼ δe;e0
κ

a2
τi;

fpi
e
; pj

e0g ¼ −δe;e0
κ

a2
ϵijkpk

e0 ; fp̃i
e
; p̃j

e0 g ¼ −δe;e0
κ

a2
ϵijkp̃k

e0 ð55Þ

in Uð1Þ3 phase space at the leading order of ϕi
e
¼ ϕi

e. Therefore, the Poisson algebra of the SUð2Þ holonomy and fluxes
defined by (47) in the Uð1Þ3 phase space does coincide with that in the SUð2Þ phase space in the weak coupling limit.
Moreover, the parametrization (47) is commutative with the reorientation of the edges as

h̃−1e ½A� ¼ h̃e−1 ½A�; p̃i
e−1

¼ pi
e
; pi

e−1
¼ p̃i

e
: ð56Þ

Thus, the variables h̃e½A�, pi
e
and p̃i

e
in Uð1Þ3 theory inherit the explicit structure of the corresponding variables

of SUð2Þ LQG.
By construction, the variables h̃e½A�, pi

e
, and p̃i

e
in Uð1Þ3 theory can be directly quantized as

ˆ̃he½A� ≔ exp

�
1

2i

X
i

ðĥie½A� − ðĥie½A�Þ−1Þτi
�
;

p̂j
e
≔ trðτj ˆ̃he½A=2�τi ˆ̃h−1e ½A=2�ÞX̂i

e þ X̂i
etrðτj ˆ̃he½A=2�τi ˆ̃h−1e ½A=2�Þ;

ˆ̃pj
e
≔ −trðτj ˆ̃h−1e ½A=2�τi ˆ̃he½A=2�ÞX̂i

e − X̂i
etrðτj ˆ̃h−1e ½A=2�τi ˆ̃he½A=2�Þ: ð57Þ
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The operators p̂j
e
and ˆ̃pj

e
are symmetric and hence admit

self-adjoint extensions. Based on the parametrization (47),
we can replace the basic operators in the SUð2Þ LQG by
those of the Uð1Þ3 theory in the weak coupling limit as

ĥe½A� ↔ ˆ̃he½A�; p̂i
e ↔ p̂i

e
; ˆ̃pi

e ↔ ˆ̃pi
e
: ð58Þ

For instance, the corresponding volume operator V̂R in the
Uð1Þ3 theory can be easily constructed by replacing p̂i

e and
ˆ̃pi
e by p̂i

e
and ˆ̃pi

e
respectively in the definition (15) of V̂R

in LQG.
Recall that the discrete version of the Gaussian constraint

in SUð2Þ LQG readsX
e;sðeÞ¼v

p̂i
e þ

X
e;tðeÞ¼v

ˆ̃pi
e ¼ 0: ð59Þ

Then, the corresponding discrete “Gaussian constraint” in
the weak coupling Uð1Þ3 LQG can be given directly asX

e;sðeÞ¼v

p̂i
e
þ

X
e;tðeÞ¼v

ˆ̃pi
e
¼ 0; ð60Þ

though this “Gaussian constraint” does not generate the
Uð1Þ3 gauge transformations. In fact, it is just the closure
condition for the 3-polyhedra described by its oriented
areas [28,30–32]. Similarly, the quantum scalar constraint
Ĉ½N� in the weak coupling theory corresponding to (17) is
also constituted by the Euclidean part ĈE½N� and Lorentzian
part ĈL½N� as

Ĉ½N� ¼ ĈE½N� þ ð1þ β2ÞĈL½N�: ð61Þ

By acting on a cylindrical function over γ, one version of
the Euclidean scalar constraint can be written as

ĈE½N� ¼ 1

iβκℏ

X
v∈VðγÞ

NðvÞ
X

eI;eJ;eK at v

ϵIJKtrðhαIJheK ½V̂v; h−1eK �Þ;

ð62Þ

where eI , eJ, eK are reoriented to be outgoing at v,
ϵIJK ¼ sgn½detðeI ∧ eJ ∧ eKÞ�, and αIJ is the minimal loop
around a plaquette containing eI and eJ, which begins at v
via eI and gets back to v through eJ. With the same
notations, the Lorentzian part ĈL½N� is given by

ĈL½N� ¼ −1
2iβ7ðκℏÞ5

X
v

NðvÞ
X

eI;eJ;eK at v

ϵIJKtrð½heI ; ½V̂v; ĈE��h−1eI ½heJ ; ½V̂v; ĈE��h−1eJ ½heK ; V̂v�h−1eK Þ: ð63Þ

In the deparametrization formalism, the physical Hamiltonian corresponding to (20) reads Ĥ ¼ 1
2
ðĈ½1� þ Ĉ½1�†Þ in the weak

coupling theory. Thus, it is manifestly Hermitian and therefore admits a self-adjoint extension. Such a physical Hamiltonian
operator in the weak coupling Uð1Þ3 LQG keeps the full expression of the original physical Hamiltonian in full SUð2Þ
LQG. It is reasonable to expect that Ĥ determines the evolution which represents that of the full SUð2Þ LQG in the weak
coupling limit.

IV. COHERENT STATE PATH INTEGRAL OF Uð1Þ3 LQG

A. Effective action and equations of motion

With the physical Hamiltonian operator Ĥ in weak coupling Uð1Þ3 LQG, we may derive its effective dynamics based on
the coherent state path integral. The heat kernel coherent state for Uð1Þ3 gauge theory can be written as [15,26]

Ψt
gðeÞðhðeÞÞ ≔

Y
i∈f1;2;3g

X∞
ni¼−∞

e−
t
2
n2i einiðϕi

ðeÞ−θiðeÞÞe−niXiðeÞ ð64Þ

at every edge e. Its normalized version reads

Ψ̃t
gðeÞðhðeÞÞ ¼

Ψt
gðeÞðhðeÞÞ
kΨt

gðeÞk
: ð65Þ

It is important that the normalized coherent states form an overcomplete basis in HðeÞ ¼ L2ðUð1Þ3Þ as
Z
GC

dgðeÞjΨ̃t
gðeÞihΨ̃t

gðeÞj ¼ 1HðeÞ; ð66Þ
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where

dgðeÞ ¼ c
t3
Y
i

dθiðeÞdXiðeÞ; with c ¼ 1þOðt∞Þ: ð67Þ

The overlap amplitude between two coherent states reads

hΨ̃t
g
2
ðeÞ; Ψ̃

t
g
1
ðeÞi ¼

Y
i∈f1;2;3g

e−
1
2
ðϕi

2
ðeÞ−ϕi

1
ðeÞÞ2

2t e−
1
2
ðXi

2
ðeÞ−Xi

1
ðeÞÞ2

2t e
iðϕi

2
ðeÞ−ϕi

1
ðeÞÞðXi

2
ðeÞþXi

1
ðeÞÞ

2t
P

nfnðϕi
2
ðeÞ;ϕi

1
ðeÞ; Xi

2ðeÞ; Xi
1ðeÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dt
Xi
2
ðeÞD

t
Xi
1
ðeÞ

q ð68Þ

where Dt
X ¼ P

n e
−πn2−2iπnX

t and fnðϕi
2
;ϕi

1
; Xi

2; X
i
1Þ ¼ e−

2π2n2−2iπnðXi
2
þXi

1
Þ−2πnðϕi

2
−ϕi

1
Þ

2t . Note that there exist constants Kt, K̃t, and K̃0
t

[independent of g
1
ðeÞ and g

2
ðeÞ], decaying exponentially fast to 0 as t → 0, such that 1þ Kt ≥ jDt

XðeÞj ≥ 1 − Kt and

ð1þ K̃tÞ ≤ j
X
n

fnðϕi
2
ðeÞ;ϕi

1
ðeÞ; Xi

2ðeÞ; Xi
1ðeÞÞj ≤ ð1þ K̃0

tÞ; for jϕi
2
ðeÞ − ϕi

1
ðeÞj ≪ 1: ð69Þ

Also, the factor e−
1
2
ðϕi

2
ðeÞ−ϕi

1
ðeÞÞ2

2t in (68) indicates that this overlap amplitude is only nonvanishing for jϕi
2
ðeÞ − ϕi

1
ðeÞj ≪ 1

when t becomes very small. Hence for small t one has

hΨ̃t
g
2
ðeÞ; Ψ̃

t
g
1
ðeÞi ≃ eKðg2ðeÞ;g1ðeÞÞ=t; ð70Þ

where

Kðg
2
ðeÞ; g

1
ðeÞÞ ¼

X
i∈f1;2;3g

�
−

1
2
ðϕi

2
ðeÞ − ϕi

1
ðeÞÞ2

2
−

1
2
ðXi

2ðeÞ − Xi
1ðeÞÞ2

2
þ iðϕi

2
ðeÞ − ϕi

1
ðeÞÞðXi

2ðeÞ þ Xi
1ðeÞÞ

2

�

¼
X

i∈f1;2;3g

��
iϕi

2
ðeÞ þ Xi

2ðeÞ
2

−
iϕi

1
ðeÞ − Xi

1ðeÞ
2

�
2

−
ðXi

2ðeÞÞ2
2

−
ðXi

1ðeÞÞ2
2

�
: ð71Þ

For simplicity, we consider topological simple graphs γ such as the cubic graph and focus on the transition amplitude Ag;g0

defined by the nongraph-changing physical Hamiltonian Ĥ as

Ag;g0 ≔ hΨt
gjUðTÞjΨt

g0 i; with UðTÞ ≔ exp

�
−
i
ℏ
TĤ

�
; ð72Þ

where Ψt
gðhÞ ¼

Q
e∈γ Ψt

gðeÞðhðeÞÞ, g ¼ fgðeÞ ¼ ei
P

i
ðϕiðeÞþiXiðeÞÞge∈γ , and h ¼ fhðeÞ ¼ ei

P
i
ðθiðeÞÞge∈γ. Following the

standard coherent state functional integral method, we discretize the time T into N steps, where N can be arbitrarily large,
thus that each step Δτ ¼ T=N is arbitrarily small. Then the amplitude Ag;g0 can be written as a discrete path integral with an

effective action S½g� by the approximation (70):

Ag;g0 ¼ kΨt
gkkΨt

g0 k
Z YNþ1

{¼1

dg{e
S½g�=t; ð73Þ

where the effective action is given by

S½g� ¼
XNþ1

{¼0

Kðg
{þ1

; g
{
Þ − iκ

a2
XN
{¼1

Δτ
�hΨt

g
{þ1
jĤjΨt

g
i
i

hΨt
g
{þ1
jΨt

g
i
i þ iε̃{þ1;{

�
Δτ
ℏ

��
; g

0
¼ g0; g

Nþ2
¼ g; ð74Þ

with
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Kðg
{þ1

; g
{
Þ ¼

X
e∈γ

X
i∈f1;2;3g

�
−
�
ϕi
{þ1

ðeÞ − iXi
{þ1ðeÞ

2
−
ϕi
{
ðeÞ þ iXi

{ðeÞ
2

�
2

þ ðiXi
{þ1ðeÞÞ2
2

þ ðiXi
{ðeÞÞ2
2

�
; ð75Þ

and ε̃{þ1;{ðΔτℏ Þ satisfying limΔτ→0 ε̃{þ1;{ðΔτℏ Þ ¼ 0.

Denoting gε
{
ðeÞ ¼ g

{
ðeÞei

P
i
εi{ , for i ¼ 1;…; N, the variations of the action (74) with respect to εi{ and their complex

conjugate ε̄i{ can give the EOMs. For i ¼ 1;…; N, the variation with respect to εi{ðeÞ gives

ϕi
{þ1

ðeÞ − iXi
{þ1ðeÞ

2
−
ϕi
{
ðeÞ − iXi

{ðeÞ
2

¼ iκ
a2

Δτ
δ

δεi{ðeÞ
�hΨt

g
{þ1
jĤjΨt

gε
{
i

hΨt
g
{þ1
jΨt

gε
{
i
�
ε⃗¼0

: ð76Þ

For { ¼ N þ 1, the variation with respect to εiNþ1ðeÞ gives

ϕi
Nþ2

ðeÞ − iXi
Nþ2ðeÞ

2
−
ϕi
Nþ1

ðeÞ − iXi
Nþ1ðeÞ

2
¼ 0: ð77Þ

For { ¼ 2;…; N þ 1, the variation with respect to ε̄i{ðeÞ gives

−
ϕi
{
ðeÞ þ iXi

{ðeÞ
2

þ ϕi
{−1ðeÞ þ iXi

{−1ðeÞ
2

¼ iκ
a2

Δτ
δ

δε̄i{ðeÞ
�hΨt

gε
{
jĤjΨt

g
{−1
i

hΨt
gε
{
jΨt

g
{−1
i
�
ε⃗¼0

: ð78Þ

For { ¼ 1, the variation with respect to ε̄i1ðeÞ gives

ϕi
1
ðeÞ þ iXi

1ðeÞ
2

−
ϕi
0
ðeÞ − iXi

0ðeÞ
2

¼ 0: ð79Þ

We can approximate solutions of EOMs in the continuum limit (in the time direction) as Δτ → 0. This leads to g
{
→ g

{þ1
.

In this limit, the matrix elements of Ĥ in the right-hand sides of Eqs. (76) and (78) reduce to the expectation value of Ĥ
as follows.
Lemma 1.—

lim
g
i
→g

iþ1
≡g

∂
∂εi{ðeÞ

�hΨt
g
{þ1
jĤjΨt

gε
{
i

hΨt
g
{þ1
jΨt

gε
{
i
�
ε⃗¼0

¼
∂hΨ̃t

gε jĤjΨ̃t
gεi

∂εiðeÞ
����
ε⃗¼0

; ð80Þ

lim
g
{−1

→g
{
≡g

∂
∂ε̄i{ðeÞ

�hΨt
gε
{
jĤjΨt

g
{−1
i

hΨt
gε
{
jΨt

g
{−1
i
�
ε⃗¼0

¼
∂hΨ̃t

gε jĤjΨ̃t
gεi

∂ε̄iðeÞ
����
ε⃗¼0

: ð81Þ

Similar to the case of Lemma 4.2 in Ref. [14], this lemma can be proved based on the following identities:

∂
∂εiðeÞ hΨ

t
gε jĤjΨt

gεi ¼
∂

∂εiðeÞ
Z

dh ðĤ†Ψt
gεÞðhÞΨt

gεðhÞ ¼
Z

dh ðĤ†Ψt
gεÞðhÞ

∂
∂εiðeÞΨ

t
gεðhÞ ð82Þ

where the integral is taken over a compact space and ðĤ†ϕt
gεÞðhÞ depends on εiðeÞ antiholomorphically, and

∂
∂εiðeÞΨ

t
gεðhÞjε⃗¼0

¼ −V̂i
eΨt

gðhÞ ð83Þ

with V̂i
e being the vector field on Uð1Þ3 defined by V̂ifðhÞ ¼ d

dεi jε⃗¼0
fðheiεiÞ.

Lemma 1 implies that the EOMs with continuous time τ involve only the expectation value of Ĥ. We assume that Ĥ has
the correct semiclassical limit, in the sense that hΨt

gε jĤjΨt
gεi can reproduce the classical HamiltonianH as a function on the
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Uð1Þ3 holonomy-flux phase space in the semiclassical
limit as

hΨt
gε jĤjΨt

gεi ¼ H½gε� þOðtÞ: ð84Þ

Notice that the (nongraph-changing) physical Hamiltonian
Ĥ is just a combination of the basic Uð1Þ3 holonomy and
flux operators. Thus it is reasonable to assume that Eq. (84)
holds based on the simple Gaussian damping formulation
and the peakedness properties of the Uð1Þ3 coherent states
[26,27]. Therefore, all of the expectation value hΨt

gε jĤjΨt
gεi

can be replaced by the classical Hamiltonian H½gε� in
EOMs by taking t → 0. Then, the effective action in the
time continuous limit, S½g� ¼ limΔτ→0 S½g�, reads

S½g� ¼ i
Z

T

0

dτ

�X
e∈γ

X
i∈f1;2;3g

Xi
e

dϕi
e

dτ
−

κ

a2
H½g� þOðtÞ

�
:

ð85Þ

The inherent Poisson algebra of this effective action is

fϕi
e
;ϕj

e0 g ¼ fXi
e;X

j
e0g ¼ 0; fϕi

e
;Xj

e0 g ¼
κ

a2
δe;e0δ

ij: ð86Þ

It is easy to see that this algebra is equivalent to the original
Poisson algebra (41) for Uð1Þ3 LQG. The corresponding
EOMs can be reduced to the following form:

dXi
e

dτ
¼ −

κ

a2
∂H½g�
∂ϕi

e

;

dϕi
e

dτ
¼ κ

a2
∂H½g�
∂Xi

e
; ð87Þ

in the limits Δτ → 0 and t → 0.

B. Comparison with the SUð2Þ LQG

To compare the weak coupling limit of the effective
dynamics of the SUð2Þ LQG with that of Uð1Þ3 LQG, we
first recall the relation between the basic variables in these
two theories. Firstly, the reparametrization (47) implies that
in the weak coupling limit of small ϕi

e
, one has ϕi

e ¼ ϕi
e
and

Xi
e ¼ Xi

e up to higher order terms. Thus the ϕi
e
of Uð1Þ3

holonomy can parametrize the ϕi
e of SUð2Þ holonomy in

the weak coupling limit. Secondly, Eq. (55) implies that the
Poisson brackets among ðϕi

e; pi
e; p̃i

eÞ are consistent with
those of ðϕi

e
; pi

e
; p̃i

e
Þ in the weak coupling limit. SinceH½g�

(or H½g�) are functions of ðϕi
e; pi

e; p̃i
eÞ [or ðϕi

e
; pi

e
; p̃i

e
Þ] and

their Poisson brackets, we can immediately have the
relation

H½g� ¼ H½g� ð88Þ

at the weak coupling limit based on the reparametrization
(47). Further, we note that

δpi
e

δXi
e
¼ δpi

e

δXi
e
¼ −1;

δp̃i
e

δXi
e
¼ δp̃i

e

δXi
e
¼ 1; ð89Þ

at the weak coupling limit. Hence, Eqs. (88), (89) and the
reparametrization (47) ensure that the effective EOMs (87)
in Uð1Þ3 LQG are consistent with the effective EOMs (30)
in SUð2Þ LQG in the weak coupling limit up to higher order
corrections of t. This consistent result can be used to deal
with the “Gauss” constraint (closure condition) in the weak
coupling Uð1Þ3 LQG, which is neglected in the above
discussion. Notice that the Gaussian constraint in the
effective dynamics of SUð2Þ LQG can be satisfied by
the corresponding constraint on the labeling parameters of
the boundary coherent state [14], and the effective dynam-
ics preserves the constraint. Thus, the consistency between
the effective EOMs of Uð1Þ3 and SUð2Þ LQG in the weak
coupling limit implies that the “Gauss” constraint can also
be implemented in the effective dynamics of the weak
coupling Uð1Þ3 LQG.

V. CONCLUSION AND DISCUSSION

As discussed in Sec. III A, the weak coupling theory
which we considered is obtained by taking the limit κ → 0.
Then the Gaussian constraint in the connection formalism
of GR reduces to the constraint which generates Uð1Þ3
transformations. Hence one expects that the corresponding
Uð1Þ3 LQG to fit the SUð2Þ LQG in the weak coupling
limit. In order to relate the holonomy-flux algebra of SUð2Þ
LQG to that of Uð1Þ3 LQG, a parametrization of SUð2Þ
holonomy-flux variables by Uð1Þ3 holonomy-flux varia-
bles is constructed as Eqs. (47). It is shown in Sec. III C that
the Poisson algebra of the SUð2Þ holonomy-flux variables
can be reproduced in theUð1Þ3 holonomy-flux phase space
based on this parametrization in the weak coupling limit.
Thus, the Uð1Þ3 holonomy-flux variables can be endowed
with a certain specific geometric meaning of SUð2Þ
holonomy-flux variables in this limit. With this reparamet-
rization, the Hamiltonian constraint in the weak coupling
Uð1Þ3 LQG is introduced by replacing the SUð2Þ holon-
omy-flux variables in the Hamiltonian constraint of the
SUð2Þ LQG with the corresponding reparametrization
variables in the Uð1Þ3 holonomy-flux phase space.
Based on this Hamiltonian, the effective dynamics is

derived from the coherent state path integral of the weak
coupling Uð1Þ3 LQG. It is shown that the effective EOMs
obtained are consistent with those of SUð2Þ LQG in the
weak coupling limit, provided that the expectation values of
the Hamiltonian operators with respect to the coherent
states in these two theories coincide with the corresponding
classical Hamiltonians respectively. Hence, in the weak
coupling limit, we conclude that the Uð1Þ3 LQG reflects
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the main characters of the SUð2Þ LQG in the following
aspects:

(i) Similar to the SUð2Þ LQG, the Uð1Þ3 LQG is based
on the polymerlike quantization scheme, and the
discreteness of the spectrum of the basic spatial
geometric operators is retained in the Uð1Þ3 LQG
qualitatively, see Eqs. (13), (14), (45) and (46).

(ii) Since the SUð2Þ holonomy flux and its Poisson
algebra are reconstructed in the Uð1Þ3 holonomy-
flux phase space in the weak coupling limit, the
quantum holonomy-flux variables in Uð1Þ3 LQG
obtain their physical interpretation from that of
SUð2Þ LQG, and the algebraic properties of the
SUð2Þ holonomy-flux quantum algebra in the weak
coupling limit can be inherited in the corresponding
quantum algebra of Uð1Þ3 LQG.

(iii) The effective EOMs of the SUð2Þ LQG are repro-
duced in the Uð1Þ3 LQG quantitatively in the weak
coupling limit up to higher order corrections. Gen-
erally, the Uð1Þ3 LQG which corresponds to the
weak coupling limit of the classical connection
formulation of GR can reproduce the dynamics of
the SUð2Þ LQG at the effective level, while it is a
qualitatively toy model of the SUð2Þ LQG at the
quantum level.

Several interesting issues deserve further investigation
based on the theory of the weak couplingUð1Þ3 LQG. First,
it has been shown that the Hamiltonians of the matter fields
can be defined in the Uð1Þ3 LQG coupled with matter
[9,10]. One can employ the gravitational Hamiltonian
constraint (61) defined in this paper for the Uð1Þ3 theory
in the matter coupling theory and study its dynamics, since
the physical Hamiltonian corresponding to (61) can pro-
duce the same semiclassical effective dynamics of SUð2Þ
LQG in the weak coupling limit. Usually, in the case where
quantum field theory (QFT) on curved spacetimes is valid,
the spacetime curvature is not too big. Then, one can further
understand this weak field situation by assuming all of the
holonomies in LQG approach to identity such that the weak
coupling condition is satisfied. Moreover, only the effective

semiclassical geometry and its dynamics is concerned as
the background of QFT. Hence, the Uð1Þ3 LQG with much
simpler revelent calculations is a good alternative of the
SUð2Þ LQG for exploring whether QFT on curved space-
times could be obtained as a certain semiclassical limit
of LQG.
Second, it is expected to extend this weak coupling model

for SUð2Þ LQG in (1þ 3) dimensions to higher dimen-
sional LQG [32–34]. It has been shown that the (1þD)-
dimensional GR can be written as a SOðDþ 1Þ gauge
theory with extra Gaussian constraint and simplicity con-
straint in Hamiltonian formulation. These constraints
together with the diffeomorphsim and Hamiltonian con-
straints form a first-class constraint system in classical
theory [33]. However, in the current construction the algebra
of the quantum simplicity constraint on the vertices of the
spin network states in all dimensional LQG becomes
unclosed. This results in the so-called anomalous vertex
simplicity constraint [24,35,36]. Nevertheless, the analysis
below Eq. (32) could be generalized to the SOðDþ 1Þ
gauge theory directly, such that the Gaussian constraint

reduces to the constraint generating the Uð1ÞDðDþ1Þ
2 trans-

formations. Thus, one may also use a gauge theory with
Abelian gauge group to fit the SOðDþ 1Þ LQG in the weak
coupling limit. It should be noted that, while the simplicity
constraint is necessary for formulating the SOðDþ 1Þ
gauge theory [33], it might not be the case for the weak
coupling Abelian gauge theory. In the latter, there is a way
to solve the simplicity constraint classically and obtain a
gauge theory in the reduced phase space with respect to it
[37]. Thus the anomaly associated with simplicity constraint
could be avoided in the corresponding quantum theory.
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