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I. INTRODUCTION

Since the golden days of classical thermodynamics,
entropy has been viewed as a unique, universal, and
fundamental quantity playing one of the most important
roles in physics. However, with the development of
quantum physics, quantum field theory, quantum gravity,
and nonextensive thermodynamics, it progressively became
clear that entropy is not unique and is not as fundamental.
Somehow, it depends on the physical system under con-
sideration and it changes across physical theories.
Eventually, this property implies that we do not funda-
mentally understand what physical entropy is and that the
basic principles underlying its construction should be
revisited from a critical point of view.
Over the years, we have witnessed the appearance of a

variety of entropies in many classical and quantum systems.
Some of these entropy concepts were introduced starting
from very different points of view, each one of which is
certainly valid on its own, originating a legitimate proposal
in the context in which it was conceived. These entropies
highlight different aspects of natural phenomena or differ-
ent approaches to physical theories. This proliferation of
entropy notions makes it clear that entropy may not be a
uniquely defined concept and that there may exist even
more entropies than those already proposed.
One of the main surprises of theoretical physics in

the 1970s was that black holes are not cold objects but
have entropy and temperature. Bekenstein’s association of

entropy with black holes, proportional to the black hole
horizon area [1], remained odd and inconclusive until
Hawking discovered that the Schwarzschild black hole
(and, by extension, all black holes) radiate quanta of
quantum fields living on that spacetime, emitting a black-
body spectrum at a temperature TH ¼ 1

8πGM, whereM is the
black hole mass [2]. The discovery of the Hawking
temperature made sense of Bekenstein’s black hole entropy
and paved the way for the development of black hole
thermodynamics ([3], see [4,5] for reviews).
One puzzling feature of the Bekenstein-Hawking

entropy was, from its beginnings, that it is not proportional
to the black hole volume, as familiar in classical thermo-
dynamics, but rather it is proportional to the black hole
horizon area. In classical thermodynamics, the entropy of a
system is proportional to its mass and its volume and is an
extensive and additive quantity; the fundamental reason
why black hole entropy is instead nonextensive remains
shrouded in mystery [6]. Given the elusive nature of the
origin of this entropy, it is not surprising that recent
literature [6–23] contemplates alternatives, replacing the
Bekenstein-Hawking entropy with other constructs based
on nonextensive statistics, including the Rényi [24] and
Tsallis [25] nonextensive entropies (a better terminology
would “nonadditive” entropies). Other notable notions of
entropy which have been studied recently are the Barrow
entropy arising from the attempt to take into account the
quantum spacetime foam [26], and the Sharma-Mittal [27]
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and Kaniadakis [28,29] proposals. Since entropy, temper-
ature, internal energy, and heat transferred are related by the
first law of thermodynamics, changing the notion of
entropy entails changes in these other quantities, usually
jeopardizing the first law, as discussed in [30].
What is more, horizons are not a prerogative of

black holes but appear also in cosmology, hence horizon
thermodynamics was extended to cosmological horizons.
Incidentally, realistic black holes live in the universe and
are not asymptotically flat: the simple addition of a
cosmological constant to the Einstein equations change
their black hole solutions and their thermodynamics
becomes richer. However, cosmology itself poses several
interesting questions, one of the most important being how
to explain the present acceleration of the cosmic expansion
discovered in 1998 with type Ia supernovae. For this
purpose, many scenarios of dark energy and modified
gravity have been proposed and are being tested and/or
constrained as newer cosmological observations become
available. Among the many scenarios advanced in the
cosmology literature, the holographic dark energy proposal
[31–64]) is directly related to entropy. Therefore, replacing
the notion of entropy used in physics has a direct impact on
this scenario.
Beginning from the realization that the various entropies

alternative to the Bekenstein-Hawking one proposed in the
literature share certain properties, including the fact that
they reduce to the Bekenstein-Hawking entropy in a certain
limit, we investigate two new generalized entropies that
contain all these previous proposals as special cases. The
first of these new entropies features six parameters, but we
provide also a simplified version containing only three
parameters, which we then apply to black holes and to
holographic dark energy in cosmology. Already the sim-
plified proposal has the potential of generating two vastly
different energy scales associated with inflation or with the
present acceleration.
In the next section, we review various entropies studied

in the recent literature and introduce the generalized
entropy that reproduces them for special parameter values.
A simplified version of this generalized entropy is then
applied to black holes in Sec. III and to holographic dark
energy in Sec. IV. We mostly follow the notation of
Ref. [65], using units in which the speed of light c, the
Boltzmann constant KB, and the reduced Planck constant ℏ
are unity, G is Newton’s constant, κ2 ≡ 8πG, while the
metric signature is ð−þþþÞ.

II. POSSIBLE GENERALIZATIONS OF KNOWN
ENTROPIES

Let us begin with the standard thermodynamical entropy
of black hole physics, one of the most far-reaching
applications of entropy that led to the development of
black hole thermodynamics [3–5]. The Bekenstein-
Hawking entropy is [1,2]

S ¼ A
4G

; ð1Þ

where A≡ 4πrh2 is the area of the horizon and rh is
the horizon radius (using the areal radius as the radial
coordinate). This proposal, however, is not unique. Indeed,
depending on the system under consideration, different
entropies may be introduced. Let us recall some of the
entropy concepts proposed thus far.

(i) The Tsallis entropy [25] (see also [20,66]) appears in
the study of nonextensive statistics for systems with
long range interactions, in which the partition
function diverges and the standard Boltzmann-Gibbs
entropy becomes inadequate; it is

ST ¼ A0

4G

�
A
A0

�
δ

; ð2Þ

where A0 is a constant with the dimensions of an
area and δ is a dimensionless parameter that quan-
tifies the nonextensivity. The standard Bekenstein-
Hawking entropy (1) is recovered for δ ¼ 1.

(ii) The Rényi entropy ([24], see also [11,17–19]) is
defined as

SR ¼ 1

α
lnð1þ αSÞ ð3Þ

where S is identified with the Bekenstein-Hawking
entropy (1), and contains a parameter α. The Rényi
entropy was proposed as an index specifying the
amount of information and, originally, had no
relation with the statistics of physical systems.

(iii) The Sharma-Mittal entropy is [27]

SSM ¼ 1

R
½ð1þ δSTÞR=δ − 1� ð4Þ

where ST is the Tsallis entropy, while R and δ are
free phenomenological parameters to be determined
by the best-fitting of experimental data. The Sharma-
Mittal entropy can be seen as a combination of the
Rényi and Tsallis entropies.

(iv) The Barrow entropy is [26]

SB ¼
�

A
APl

�
1þΔ=2

; ð5Þ

here A is the usual black hole horizon area and
APl ≡ 4G is the Planck area. Formally, the Barrow
entropy resembles the Tsallis nonextensive entropy
but the physical principles underlying its introduc-
tion are radically different. The Barrow entropy was
proposed as a toy model for the possible effects of
quantum gravitational spacetime foam. The quan-
tum-gravitational deformation is quantified by the
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new exponent Δ. The Barrow entropy reduces to
the standard Bekenstein-Hawking entropy in the
limit Δ → 0, while Δ ¼ 1 corresponds to maximal
deformation.

(v) The Kaniadakis entropy [28,29]

SK ¼ 1

K
sinh ðKSÞ; ð6Þ

reproduces the Bekenstein-Hawking entropy in the
limit K → 0 of its parameter K. It can be regarded as
a generalization of the Boltzmann-Gibbs entropy
arising in relativistic statistical systems [28,29].

(vi) Non-extensive statistical mechanics in loop quantum
gravity gives the entropy [11,67–69]

Sq ¼
1

1 − q
½eð1−qÞΛðγ0ÞS − 1�; ð7Þ

where the entropic index q quantifies how the
probability of frequent events is enhanced relatively
to infrequent ones,

Λðγ0Þ ¼
ln 2ffiffiffi
3

p
πγ0

; ð8Þ

and γ0 is the Barbero-Immirzi parameter, which is
usually assumed to take one of the two values ln 2

π
ffiffi
3

p or
ln 3
2π

ffiffi
2

p , depending on the gauge group used in loop

quantum gravity. However, γ0 is a free parameter in
scale-invariant gravity [70–72]. With the first choice
of γ0, Λðγ0Þ becomes unity and the entropy (7)
reduces to the Bekenstein-Hawking one in the limit
q → 1, which corresponds to extensive statistical
mechanics. This loop quantum gravity entropy (7)
was applied to black holes in [11,67,68] and to
cosmology in [69].

The above entropies share the following properties:
(1) Generalized third law: All these entropies vanish

when the Bekenstein-Hawking entropy vanishes. In
the third law of standard thermodynamics for closed
systems in thermodynamic equilibrium, the quantity
eS expresses the number of states, or the volume of
these states, and therefore the entropy S vanishes
when the temperature does because the ground
(vacuum) state should be unique. By contrast, the
Bekenstein-Hawking entropy S diverges when the
temperature T vanishes and it goes to zero at infinite
temperature. However, requiring any generalized
entropy to vanish when the Bekenstein-Hawking
entropy S vanishes could be a natural requirement.

(2) Monotonically increasing functions: All the above
entropies are monotonically increasing functions of
the Bekenstein-Hawking entropy S.

(3) Positivity: All the above entropies are positive, as is
the Bekenstein-Hawking entropy (1). This is natural
because eS corresponds to the number of states (or
to the volume of these states), which is greater
than unity.

(4) Bekenstein-Hawking limit: All the above entropies
reduce to the Bekenstein-Hawking entropy (1) in an
appropriate limit.

In the preceding expressions, all entropies are functions
of the Bekenstein-Hawking entropy (1). In this sense, the
most general entropy SG would be a function of the
Bekenstein-Hawking entropy S,

SG ¼ SGðSÞ; ð9Þ

subject to certain natural requirements: we require the
general entropy SG to possess the above properties.
An example of such an entropy construct containing six

parameters ðα�; β�; γ�Þ could be

SGðα�; β�; γ�Þ ¼
1

αþ þ α−

��
1þ αþ

βþ
Sγþ

�
βþ

−
�
1þ α−

β−
Sγ−

�
−β−

�
; ð10Þ

where we assume all the parameters ðα�; β�; γ�Þ to be
positive. First, we show that the entropy SGðα�; β�; γ�Þ
reduces to the entropies (2), (3), (4), (5), (6), and (7) already
presented for appropriate choices of the parameter values.

(i) In the limit αþ ¼ α− → 0, the choice γþ ¼ γ− ≡ γ
gives

SGðα� → 0; β�; γÞ → Sγ: ð11Þ

If we further choose γ ¼ δ or γ ¼ 1þ Δ=2, the
Tsallis entropy (2) or the Barrow entropy (5) are
reproduced, respectively.

(ii) The parameter choice α− ¼ 0 yields

SGðαþ; α− ¼ 0; β�; γþ ¼ 1; γ−Þ

¼ 1

αþ

��
1þ αþ

βþ
Sγþ

�
βþ

− 1

�
: ð12Þ

Then, writing αþ ¼ R, βþ ¼ R=δ, and γþ ¼ δ,
one obtains the Sharma-Mittal entropy (4).

(iii) In Eq. (12), if we further take the limit αþ → 0
simultaneously with βþ → 0 keeping α≡ αþ=βþ
finite, and we choose γþ ¼ 1, we obtain
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SG

�
αþ → 0; α− ¼ 0; βþ → 0; β−; γþ ¼ 1; γ−; α≡ αþ

βþ
finite

�

→
1

αþ
½eβþ ln ð1þαþ

βþSÞ − 1� ≃ 1

αþ

�
1þ βþ ln

�
1þ αþ

βþ
S
�
− 1

�
¼ βþ

αþ
ln

�
1þ αþ

βþ
S
�

≡ 1

α
ln ð1þ αSÞ; ð13Þ

which reproduces the Rényi entropy (3).
(iv) Taking the limit β� → 0, choosing γ� ¼ 1, and

writing α� ¼ K, the general entropy (10) reduces
to the Kaniadakis one (6),

SGðα� ¼ K; β� → 0; γ� ¼ 1Þ

→
1

2K
ðeKS − e−KSÞ ¼ 1

K
sinh ðKSÞ: ð14Þ

(v) Finally, taking α− ¼ 0 and γþ ¼ 1 in the generalized
entropy (10), one obtains

SG ¼ 1

αþ
½eβþ ln ð1þαþ

βþSÞ − 1� ð15Þ

and the further limit βþ → þ∞ in conjunction with
α ¼ 1 − q yields

SG ≈
1

1 − q
½eð1−qÞS − 1� ð16Þ

corresponding to Λðγ0Þ ¼ 1 in the loop quantum
gravity entropy (7), and which reduces to the
Bekenstein-Hawking entropy S as q → 1.

It is straightforward to check that the entropy
SGðα�; β�; γ�Þ in Eq. (10) satisfies the generalized third
law, that is, SGðα�; β�; γ�Þ → 0 when S → 0. The entropy
SGðα�; β�; γ�Þ is a monotonically increasing function of S
because both ð1þ αþ

βþ
SγþÞβþ and −ð1þ α−

β−
Sγ−Þ−β− are

monotonically increasing functions of S, given that all
the parameters ðα�; β�; γ�Þ are assumed to be positive, and
their sum is also monotonically increasing. Positivity is
satisfied because SGðα�; β�; γ�Þ ¼ 0 when S ¼ 0 and
SGðα�; β�; γ�Þ is a strictly increasing function of S.
It is clear that there exists a limit of SGðα�; β�; γ�Þ to the

Bekenstein-Hawking entropy because SG reduces to
the entropies (2), (3), (4), (5), (6), and (7), which have
the required limiting behavior. More explicitly, we have

lim
α�→0

SGðα�; β�; γ�Þ ¼ S: ð17Þ

We may also consider the three-parameter entropy-like
quantity

SGðα; β; γÞ ¼
1

γ

��
1þ α

β
S
�

β

− 1

�
; ð18Þ

where we assume again the parameters ðα; β; γÞ to be
positive. When γ and α coincide, the expression (18)
reduces to the Sharma-Mittal entropy (4) with ST ¼ S,
that is, δ ¼ 1. By writing γ ¼ ðα=βÞβ, the limit α → ∞
yields

lim
α→∞

SG

�
α; β; γ ¼

�
α

β

�
β
�

¼ Sβ: ð19Þ

The choices β ¼ δ and β ¼ 1þ Δ=2 give the Tsallis
entropy (2) and the Barrow entropy (5), respectively. If,
instead, we consider the limit in which α → 0 and β → 0
simultaneously while keeping α=β finite, as in Eq. (13), we
obtain the Rényi entropy (3) by replacing α=β with α and
choosing γ ¼ α,

SG

�
α → 0; β → 0; γ;

α

β
finite

�

→
1

γ
ln

�
1þ α

β
S
�

¼ 1

α
ln ð1þ αSÞ: ð20Þ

Another possibility consists of taking the limit β → ∞ in
conjunction with γ ¼ α, which leads to the new type of
expression

SGðα; β → ∞; γÞ → 1

γ
ðeαS − 1Þ: ð21Þ

It is again straightforward to check that (18) satisfies
all the conditions characterizing the generalized third
law: monotonically increasing function of S, positivity,
and Bekenstein-Hawking limit.
To recap, we have proposed two new examples of

entropy that may be valid for the description of certain
physical systems, which we have not yet discussed.
Eventually, several additional proposals for even more
general entropies can be conceived. However, we still lack
a physical principle selecting an entropy as unique and
universal, perhaps containing many parameters depending
on various quantities.
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III. BLACK HOLE THERMODYNAMICS WITH
3-PARAMETER GENERALIZED ENTROPY

It is interesting to see what happens when the generalized
entropy (9) is ascribed to the prototypical black hole, given
by the Schwarzschild geometry [65]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
ð2Þ; fðrÞ ¼ 1−

2GM
r

;

ð22Þ

where M is the black hole mass and dΩ2
ð2Þ ¼ dϑ2 þ

sin2ϑdφ2 is the line element on the unit two-sphere. The
black hole event horizon is located at the Schwarzschild
radius

rH ¼ 2GM: ð23Þ

Studying quantum field theory on the spacetime with this
horizon, Hawking discovered that the Schwarzschild
black hole radiates with a blackbody spectrum at the
temperature [2]

TH ¼ 1

8πGM
: ð24Þ

In Ref. [30] we attempted to identify the Tsallis entropy (2)
or the Rényi entropy (3) with the black hole entropy. As
explained in general below, if we assume that the mass M
coincides with the thermodynamical energy, then the
temperature obtained from the thermodynamical law is
different from the Hawking temperature, a contradiction for
observers detecting Hawking radiation. Alternatively, if the
Hawking temperature TH is identified with the physical
black hole temperature, the obtained thermodynamical
energy differs from the Schwarzschild mass M even for
the Tsallis entropy or the Rényi entropy, which seems to
imply a breakdown of energy conservation. Below, we
follow the same procedure employed in Ref. [30].
If the mass M coincides with the thermodynamical

energy E of the system due to energy conservation, as
in [11,17–19], in order for this system to be consistent with
the thermodynamical equation dSG ¼ dE=T one needs to
define the generalized temperature TG as

1

TG
≡ dSG

dM
ð25Þ

which is, in general, different from the Hawking tempera-
ture TH. For example, in the case of the entropy (18), one
has

1

TG
¼ α

γ

�
1þ α

β
S
�

β−1 dS
dM

¼ α

γ

�
1þ α

β
S
�

β−1 1

TH
; ð26Þ

where

S ¼ A
4G

¼ 4πGM2 ¼ 1

16πGTH
2
: ð27Þ

Because α
γ ð1þ α

β SÞβ−1 ≠ 1, it is necessarily TG ≠ TH.
Since the Hawking temperature (24) is the temperature
perceived by observers detecting Hawking radiation, the
generalized temperature TG in (26) cannot be a physically
meaningful temperature.
In Eq. (25), assuming that the thermodynamical energy

E is the black hole massM leads to an unphysical result. As
an alternative, assume that the thermodynamical tempera-
ture T coincides with the Hawking temperature TH instead
of assuming E ¼ M. This assumption leads to

dEG ¼ THdSG ¼ dSG

dS
dSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGS

p ð28Þ

which, in the case of Eq. (18), yields

dEG¼
α

γ

�
1þα

β
S
�

β−1 dSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGS

p

¼ α

γ
ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
�
S−1=2þαðβ−1Þ

β
S1=2þOðS3=2Þ

�
: ð29Þ

The integration of Eq. (29) gives

EG ¼ α

γ
ffiffiffiffiffiffiffiffiffiffiffi
16πG

p
�
2S1=2 þ 2αðβ − 1Þ

3β
S3=2 þOðS5=2Þ

�

¼ α

γ

�
M þ 4πGαðβ − 1Þ

3β
M3 þOðM5Þ

�
; ð30Þ

where the integration constant is determined by the con-
dition that EG ¼ 0 when M ¼ 0. Even when α ¼ γ, due
to the correction 4πGαðβ−1Þ

3β M3, the expression (30) of the
thermodynamical energy ER obtained differs from the
black hole mass M, EG ≠ E, which seems unphysical. In
Einstein gravity, we always find E ¼ M for the
Schwarzschild black hole. We may consider a process in
which the Schwarzschild black hole forms from the
collapse of a sufficiently large spherically symmetric shell
of dust with mass M. In this process, the thermodynamical
energy E should initially be equal to the massM of the dust,
E ¼ M. In Einstein gravity, the Jebsen-Birkhoff theorem
[65] forces the spacetime outside the shell to be the
Schwarzschild one (22), where M in Eq. (22) is the shell
mass. Inside this shell, spacetime is empty and flat, due
again to the Jebsen-Birkhoff theorem [65]. A black hole is
formed by the collapse of the shell when the radius of the
latter becomes smaller than its Schwarzschild radius (23). If
energy is conserved because the geometry outside the shell
is not changed, the thermodynamical energy E must be
equal to M after the formation of the black hole event
horizon. In general, the Jebsen-Birkhoff theorem does not
hold in theories of gravity extending general relativity
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[73,74], hence the geometry outside the shell is not always
forced to be the Schwarzschild one and there might be
emission of energy through the radiation of scalar modes.
Therefore, E ≠ M might signal a theory of gravity beyond
Einstein gravity.
One can verify that the six-parameter generalized

entropy (10), as well, seems inconsistent with the descrip-
tion of black hole thermodynamics.

IV. HOLOGRAPHIC COSMOLOGY WITH
GENERALIZED ENTROPY

Dark energy models motivated by holography have been
the subject of a considerable amount of literature (e.g., [31–
60,75,76]). As a special case, a generalized (but still second
order) Gauss-Bonnet gravity discussed in [75] and applied
to inflation in [76] produces modified Friedmann equations
not too dissimilar from those appearing in this section.
The density of the holographic dark energy (HDE) is

proportional to the square of the inverse holographic cutoff
LIR,

ρhol ¼
3C2

κ2LIR
2
; ð31Þ

where C is a free parameter. The holographic cutoff LIR is
usually assumed to be the same as the particle horizon Lp or
the future horizon Lf . No compelling argument has been
proposed thus far for choosing this quantity, hence the most
general cutoff was proposed in Ref. [37]. In this proposal,
the cutoff is assumed to depend upon LIR ¼ LIRðLp; _Lp;
L̈p;…; Lf ; _Lf ;…; aÞ, which in turn leads to the generalized
version of HDE known as “generalized HDE” [37,77,78].
In the spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) universe described by the line element

ds2 ¼ −dt2 þ a2ðtÞ
X3
i¼1

ðdxiÞ2 ð32Þ

with scale factor aðtÞ in comoving coordinates ðt; x; y; zÞ,
one might speculate that the generalized HDE originates
from one of several kinds of entropies associated with the
cosmological horizon. In the FLRW spacetime (32), the
particle horizon Lp and the future event horizon Lf are
defined as

Lp ≡ aðtÞ
Z

t

0

dt0

aðt0Þ ; Lf ≡ aðtÞ
Z

∞

t

dt0

aðt0Þ ; ð33Þ

respectively, when these integrals converge. Differentiating
both sides of these definitions leads to the expressions of
the Hubble function in terms of Lp, _Lp or of Lf , _Lf (where
an overdot denotes differentiation with respect to the
comoving time t)

HðLp; _LpÞ ¼
_Lp

Lp
−

1

Lp
; HðLf ; _LfÞ ¼

_Lf

Lf
þ 1

Lf
; ð34Þ

where the Hubble rate is H ≡ _a=a.
As argued, e.g., in Ref. [79], the standard Einstein-

Friedmann equations can be derived from the Bekenstein-
Hawking entropy (1). The physical radius of the
cosmological horizon in spatially flat FLRW universes is

rH ¼ 1

H
; ð35Þ

which tells us that the entropy inside this horizon can be
given by the Bekenstein-Hawking entropy (1) with the
identification A≡ 4πrh2 ¼ 4πrH2. Because the incremen-
tal change of the energy E, or the increase of the heat Q,
contained in this region is given by

dQ ¼ −dE ¼ −
4π

3
r3H _ρdt ¼ −

4π

3H3
_ρdt ¼ 4π

H2
ðρþ PÞdt

ð36Þ

(where we used the conservation law _ρþ 3Hðρþ PÞ ¼ 0),
by using the Gibbons-Hawking temperature [80]

T ¼ 1

2πrH
¼ H

2π
ð37Þ

and the first law of thermodynamics TdS ¼ dQ, we obtain

_H ¼ −4πGðρþ PÞ: ð38Þ

The integration of Eq. (38) leads to the Friedmann equation

H2 ¼ 8πG
3

ρþ Λ
3
; ð39Þ

where the integration constant corresponds to the cosmo-
logical constant Λ.
It is possible to derive the black hole entropy from

holography. As shown below, if we replace the Bekenstein-
Hawking entropy (1) with another entropy and we apply
the procedure illustrated between Eqs. (36) and (39), the
Friedmann equation (39) is modified and extra contribu-
tions, which can be seen as holographic dark energy, arise
from the nonstandard entropy. For example, if we use the
Tsallis entropy (2) instead of the Bekenstein-Hawking
entropy (1), Eq. (38) is modified to

δ

�
H
H1

�
2ð1−δÞ

_H ¼ −4πGðρþ PÞ; ð40Þ

where H1
2 ≡ 4π=A0. The integration of Eq. (40) yields
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H2 ¼ 8πG
3

ðρþ ρTÞ þ
Λ
3
;

ρT ¼ 3

8πG

�
H2 −

δ

2 − δ
H2

1

�
H
H1

�
2ð2−δÞ�

: ð41Þ

If we interpret ρT as the holographic dark energy due to the
holographic infrared cutoff LIR;T, ρT ¼ 3C2

κ2LIR;T
2, then the

holographic infrared cutoff LIR;T can be identified with

LIR;T ¼ 1

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − δ

2−δH
2
1ðHH1

Þ2ð2−δÞ
q

¼ 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _Lp

Lp
− 1

Lp
Þ2 − δ

2−δH
2
1ð

_Lp
Lp
− 1
Lp

H1
Þ
2ð2−δÞr

¼ 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _Lf
Lf
þ 1

Lf
Þ2 − δ

2−δH
2
1ð

_Lf
Lf
þ 1

Lf
H1

Þ
2ð2−δÞ

r : ð42Þ

Equivalently, such a FLRW equation can always be
rewritten in terms of a generalized cosmological dark fluid
(see [81] for a review). A similar procedure for the Rényi
entropy (3) gives

ρR ¼ 3πα

8G2
ln

�
1þ GH2

πα

�
: ð43Þ

In the case of the Sharma-Mittal entropy (4), if we
simplify the situation by replacing the Tsallis entropy ST in
Eq. (4) with the Bekenstein-Hawking entropy S in (1)
contained in it as a limit, we obtain

ρSM ¼ 3

8πG

�
H2 −

π

Gð2 − R=δÞ
�
GH2

π

�
2−R=δ

× 2F1

�
1 −

R
δ
; 2 −

R
δ
; 3 −

R
δ
;−

GH2

π

��
; ð44Þ

where 2F1ða; b; c; zÞ is the hypergeometric function. For
the Barrow entropy (5), one obtains instead

ρB¼
3

8πG

�
H2−

�
1þΔ=2
1−Δ=2

�
16πG
A2
Pl

�
H2

4πAPl

�
1−Δ=2�

: ð45Þ

The three-parameter entropy (18) gives

ρG ¼ 3

8πG

�
H2 −

πα

Gβγð1 − βÞ
�
GβH2

πα

�
2−β

× 2F1

�
1 − β; 2 − β; 3 − β;−

GβH2

πα

��
; ð46Þ

which is expressed in terms of the particle horizon Lp or the
future event horizon Lf by

ρG ¼ 3

8πG

�� _Lp

Lp
−

1

Lp

�2

−
πα

Gβγð1− βÞ
�Gβð _Lp

Lp
− 1

Lp
Þ2

πα

�2−β

×2F1

�
1− β;2− β;3− β;−

Gβð _Lp

Lp
− 1

Lp
Þ2

πα

��

¼ 3

8πG

��
_Lf

Lf
þ 1

Lf

�2

−
πα

Gβγð1− βÞ
�Gβð _Lf

Lf
þ 1

Lf
Þ2

πα

�2−β

×2F1

�
1− β;2− β;3− β;−

Gβð _Lf
Lf
þ 1

Lf
Þ2

πα

��
; ð47Þ

where the hypergeometric series terminates and reduces to
a polynomial if β is an integer m ≥ 1. One can define the
pressure of the holographic dark energy PG by means of the
covariant conservation law

_ρG þ 3HðρG þ PGÞ ¼ 0; ð48Þ

the equation of state parameter wG can then be written as

wG ≡ PG

ρG
¼ −1 −

_ρG
3HρG

¼ −1 −
2

3
_H

�
H2 −

πα

Gβγð1 − βÞ
�
GβH2

πα

�
2−β

2F1

�
1 − β; 2 − β; 3 − β;−

GβH2

πα

��−1

×

�
1 −

2 − β

γð1 − βÞ
�
GβH2

πα

�
1−β

2F1

�
1 − β; 2 − β; 3 − β;−

GβH2

πα

�

þ 2 − β

γð3 − βÞ
�
GβH2

πα

�
2−β

2F1

�
2 − β; 3 − β; 4 − β;−

GβH2

πα

��
: ð49Þ

When the matter contribution is negligible and the cos-
mological constant vanishes, the Friedmann equation reads

H2 ¼ 8πG
3

ρG ð50Þ

and then Eq. (46) gives

2F1

�
1 − β; 2 − β; 3 − β;−

GβH2

πα

�
¼ 0: ð51Þ
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Therefore, the zeros Zi of the hypergeometric function

2F1ð1 − β; 2 − β; 3 − β; zÞ correspond to de Sitter universes
with Hubble constant H given by

Zi ¼ −
GβH2

πα
: ð52Þ

Then, in spite of the absence of a true cosmological
constant Λ, Eq. (52) gives the effective cosmological
constant

Λeff ¼
3παZi

Gβ
: ð53Þ

Since H is constant ( _H ¼ 0), if H is given by Eq. (52) the
equation of state parameter wG in (49) is almost −1,
wG ∼ −1. If Λeff in (53) is large, this effective cosmological
constant may describe inflation. On the other hand, ifΛeff is
sufficiently small, the effective cosmological constant may
describe the accelerated expansion of the present universe.
If the effective cosmological constant is slightly larger than
the present dark energy, this effective constant could
potentially solve the Hubble tension problem.
Let us first consider the case in which Zi (which we now

write as Z1 for i ¼ 1) is sufficiently small. When GβH2

πα
is small, the hypergeometric function 2F1ð1 − β; 2 − β;

3 − β;− GβH2

πα Þ is expanded as

2F1

�
1−β;2−β;3−β;−

GβH2

πα

�

¼1−
ð1−βÞð2−βÞ

3−β

GβH2

πα

þð1−βÞð2−βÞ2
4−β

�
GβH2

πα

�
2

þO
��

GβH2

πα

�
3
�
: ð54Þ

Therefore, if we neglect the terms of order OððGβH2

πα Þ2Þ in
Eq. (54) when H is small, Eqs. (54) and (51) give

Z1 ¼ −
GβH2

πα
∼ −

ð3 − βÞ
ð1 − βÞð2 − βÞ ; ð55Þ

that is,

H2 ∼
ð3 − βÞπα

ð1 − βÞð2 − βÞGβ ð56Þ

which becomes small when β ≲ 3 and the terms of order

OððGβH2

πα Þ2Þ in Eq. (54) can be dropped. This conclusion
hints at the idea that the solution (56) could explain dark
energy in the present universe. We may assume

3 − β ∼Oð10−2nÞ; α ∼Oð10−2mÞ; ð57Þ

and then Eq. (56) gives

H2 ∼ ð10−n−mþ28 eVÞ2; ð58Þ

therefore, if nþm ¼ 61, it is H ∼ 10−33 eV, which repro-
duces the present energy scale of the dark energy. If another
zero Z2 exists with absolute value slightly smaller than Z1,
the effective cosmological constant can potentially solve
the Hubble tension problem, i.e., the recent observational
tension between the value of the Hubble constant inferred
from small redshifts (as in the observations of Type Ia
supernova calibrated by Cepheids [82]) and that from large
redshifts inferred from the cosmic microwave background
(CMB) [83]. This problem might be solved, or at least
alleviated, if there is effectively dark energy just after the
CMB was emitted. Our model admitting two zeros Z1;2

with jZ2j slightly larger than jZ1j might play the role of the
effective dark energy just after the CMB.
In general, the hypergeometric function can have several

or even an infinite number of zeros. If there are a root of
order unity or a large and negative root Zi of the equation

2F1ð1 − β; 2 − β; 3 − β;ZiÞ ¼ 0, then Eq. (52) can give the
large Hubble rate H corresponding to the inflationary
epoch. The Hubble rate H and the effective cosmological
constant Λeff are given by Eqs. (52) and (53), respectively.
If, for the sake of illustration, we retain the first three terms
in Eq. (54), the latter assumes the form

1−
ð1− βÞð2− βÞ

3− β

GβH2

πα
þ ð1− βÞð2− βÞ2

4− β

�
GβH2

πα

�
2

¼ 0

ð59Þ

with solutions

GβH2

πα
¼ Z� ≡ −

ð1−βÞð2−βÞ
3−β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−βÞ2ð2−βÞ2

ð3−βÞ2 − 4
ð1−βÞð2−βÞ2

4−β

q
2ð1−βÞð2−βÞ2

4−β

¼ −
4 − β

2ð2 − βÞð3 − βÞ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ð3 − βÞ2
ð4 − βÞð1 − βÞ

s �
:

ð60Þ

As in Eqs. (57) and (58) we assume β ≲ 3, obtaining

Zþ¼−
4−β

2ð2−βÞð3−βÞ; Z−¼−
3−β

2ð1−βÞð2−βÞ ð61Þ

[here Z− corresponds to Z1 in Eq. (55)]. Therefore, if one
writes α and β as in Eq. (57) and chooses nþm ¼ 61 as
done below Eq. (58), one finds again a Hubble constant H
that reproduces the present value of the dark energy scale.

If, instead, GβH2

πα ¼ Zþ, one finds

NOJIRI, ODINTSOV, and FARAONI PHYS. REV. D 105, 044042 (2022)

044042-8



H2 ∼ ð10n−mþ28 eVÞ2 ð62Þ

and the choice nþm ¼ 61 gives

H2 ∼ ð10−2mþ89 eVÞ2: ð63Þ

Assuming GUT scale ð∼1016 GeV ¼ 1025 eVÞ inflation
H ∼ 102×25−28 eV ¼ 1022 eV, we obtain m ∼ 33 or 34.
Therefore Zþ may produce the inflationary epoch of the
early universe.
Similarly, one can consider generalized HDE coming

from our six-parameter entropy (10): then, there are many
more possibilities to realize realistic cosmic histories by
choosing appropriately the corresponding parameters.

V. CONCLUSIONS

New and old definitions of entropy abound in the
literature, mostly arising from nonextensive statistical
mechanics and thermodynamics or from quantum gravity,
and varying according to the physical theory or the physical
systems considered. Not surprisingly, a recurrent feature is
the presence of long-range forces, due to which the
partition function diverges and the Boltzman-Gibbs
entropy fails. Here we have discussed black holes and
the holographic universe as physical systems and we have
proposed two generalized entropies that satisfy certain
basic requirements: each of these generalized entropies
SG must vanish when S vanishes, must be positive-definite,
and must reduce to the Bekenstein-Hawking entropy (1) in
some limit. It is clear that some requirements must be
imposed on generalized entropies to restrict the range of
possible proposals, and the three conditions we impose

seem minimal requirements. It is quite possible that the
spectrum of generalized entropies that they allow is still too
wide and that is should be restricted further. In the mean-
time, we adopt two proposals for generalized entropies
[given by Eqs. (10) and (18)], which are very general yet
directly linked to the physics explored in many recent
works. (One could add extra terms to (10), but that would
mean adding extra parameters and these terms would have
to be set to zero anyway to reproduce, e.g., the Kaniadakis
entropy (6).)
Both generalized entropies (10) and (18) satisfy the three

criteria above and reproduce a variety of entropy notions
introduced in the literature, including the Rényi [24],
Tsallis [25], Sharma-Mittal [27], Kaniadakis [28,29],
Barrow [26], and Majhi’s loop quantum gravity [11,67–69]
entropy proposals. Although we have restricted our atten-
tion to gravitational systems such as black holes and
cosmology, our prescriptions are potentially much more
general and could be applied to many other systems of
interest in statistical mechanics, information theory, and
other areas of physics in which long-range interactions are
present, but not only. These applications will be the subject
of future research.
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