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Simpson-Visser (SV) spacetimes are the simplest globally regular modifications of the Schwarzschild,
Reissner-Nordsröm and other black hole solutions of general relativity. They smoothly interpolate between
these black holes and traversable wormholes. After a brief presentation of the Schwarzschild-like and
Reissner-Nordsröm-like SV geometries, including their Carter-Penrose diagrams, we show that any static,
spherically symmetric SV metric can be obtained as an exact solution to the Einstein field equations
sourced by a combination of a minimally coupled phantom scalar field with a nonzero potential VðϕÞ and a
magnetic field in the framework of nonlinear electrodynamics with the Lagrangian LðFÞ, F ¼ FμνFμν

(in standard notations). Explicit forms of VðϕÞ and LðFÞ are presented for the cases of Schwarzschild-like
and Reissner-Nordsröm-like SV metrics.
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I. INTRODUCTION

According to general relativity, under regular initial
conditions, a sufficiently massive matter distribution must
undergo a complete gravitational collapse, forming a zero
proper volume end state with a curvature singularity, from
which even light cannot escape [1,2]. At the singularity,
physical quantities such as the spacetime curvature, tidal
forces, energy density, and pressure, tend to infinity thus
indicating a pathology of the classical theory of gravity.
Since a singularity is an undesirable feature of the theory,
there emerge strategies to conceal it from an observer. The
cosmic censorship conjecture suggests that spacetime
singularities are necessarily enclosed within a null hyper-
surface, causally disconnecting the interior from the
exterior, known as horizons [3]. Such an end state is
known as a black hole. However, under generalized initial
conditions for varieties of matter fields, a number of
possible end states have been reported where singularities
are observable from null infinity, being called naked
singularities [4–9].
Another way to avoid singularities while remaining in

the framework of classical gravity is to find regular black
hole models with finite spacetime curvature at the center
(e.g., [10–15], and many others). One of the most popular

classes of such regular black holes are those sourced by
nonlinear electrodynamics (NED), see, e.g., [12,16–18]
and references therein. Singularity-free regular end states
without a horizon are also possible, for example, in
conformally flat collapsing star models of fðRÞ gravity
[19] or with the nonminimally coupled Gauss-Bonnet
invariant [20]. Such solitonlike configurations also emerge
with NED sources.
Quite a different kind of model shows pathways con-

necting distant parts of the same universe or two different
universes—these are wormholes and certain classes of
regular black holes. Among the latter, there are black holes
containing an expanding cosmology beyond a horizon, the
so-called black universes [21,22]. Such models are natu-
rally obtained if one considers local concentrations of dark
energy in the form of a phantom matter field as well as in
some modified gravity theories [22–26]. Thus, globally
regular static, spherically symmetric solutions with a
magnetic field, describing both wormholes with flat or
anti–de Sitter asymptotics and black universes, were
obtained [27,28].
A discussion of wormhole geometries can be traced back

to the papers by Flamm [29] and Einstein and Rosen [30],
though the “tunnels” they describe only exist in some
spatial sections of spacetime and are not traversable. As
became clear much later [31,32], maintaining a static
wormhole throat needs an amount of exotic matter that
violates the null energy condition (NEC). Ellis [33] and
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Bronnikov [34] discussed such a static traversable worm-
hole on the basis of a solution of Einstein gravity coupled
to a free phantom scalar field, and quite a lot of other
wormhole solutions with various kinds of phantom matter
were obtained and discussed afterwards. One can note that
although phantom fields have always been a source of
debate due to their negative kinetic energy, they are a strong
candidate for dark energy and lead to some unique and
interesting spacetimes [35,36]. Furthermore, phantom
fields also appear in string theory in the form of negative
tension branes, which play an important role in string
dualities [37,38]. Interestingly, a minimally coupled scalar
field can smoothly pass on from canonical to phantom form
without creating any spacetime singularities leading to the
“trapped ghost” concept [24,39,40]. Quite recently, exam-
ples of static, spherically symmetric wormhole models
were obtained using classical spinor field sources [41–45],
which can thus acquire exotic properties.
Concerning black holes, one simple approach to regu-

larize a static, spherically symmetric geometry with a
curvature singularity at r ¼ 0 is to simply replace r withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
(and dr with dx) [46], where x is a new radial

coordinate, and a is some positive constant. The result is a
globally regular spacetime where the spherical (areal)
radius r always remains positive, while the singularity at
r ¼ 0 turns into a regular minimum of r, a sphere of radius
a. Due to regularity at x ¼ 0, the metric can be extended to
x < 0. Depending on the nature of the hypersurface x ¼ 0,
the resulting metric describes different geometries of
interest: a timelike throat x ¼ 0 corresponds to a reflec-
tion-symmetric traversable wormhole, while a spacelike
hypersurface x ¼ 0 corresponds to a bounce in the time-
dependent quantity r, which is in fact one of the scale
factors of a Kantowski-Sachs cosmological model inside a
black hole. This phenomenon was named a black bounce
[46]. (In fact, a black bounce is also a necessary feature of
all black-universe models.) The intermediate case, a null
throat, corresponds to what can be called a one-way
wormhole but actually possesses black hole properties
since there is a horizon.
Simpson and Visser (SV) [46] considered such a metric

on the basis of the Schwarzschild one, and the result is a
family of metrics that seamlessly interpolates between a
Schwarzschild black hole, a black-bounce geometry, and a
traversable wormhole. The SV metric is interesting in the
sense that it is a minimal one-parameter extension of the
Schwarzschild metric. In the same spirit, a black-bounce
extension of the Reissner-Nordström spacetime was also
reported [47]. The resulting SV metric generalizes the
Schwarzschild-SV spacetime and interpolates between a
Reissner-Nordsröm black hole and a wormhole. Lobo et al.
[48] used this approach to construct a large family of
globally regular black-bounce spacetimes that generalize
the original SV model. Owing to their rich features,
SV spacetimes have been a subject of great interest over

recent years, and their rotating extensions have also been
obtained [49–51]. Interestingly, the rotating SV metric
belongs to a special case of the parametrized non-Kerr
metric constructed by Johannsen [52]. The geometric
properties of black hole/black-bounce spacetimes are stud-
ied by using gravitational wave echo signals [12,53,54].
Their optical appearance has been investigated, including
the effects of a surrounding accretion disk and strong
gravitational lensing [55–61].
It should be noted that Lagrangian formulations for SV-

like black bounce spacetimes seem to be still lacking. In
this paper, we show that both uncharged and charged SV
metrics as well as their possible modifications and exten-
sions can be obtained as exact solutions to Einstein’s field
equations minimally coupled with a self-interacting phan-
tom scalar field combined with a NED field. It is shown that
a scalar field and NED taken separately cannot create an SV
black bounce spacetime. The need for a phantom scalar
field was expected due to the presence of a wormhole as a
solution to the field equations, while a NED ingredient
accounts for adjusting the stress-energy tensor (SET) to a
form relevant to particular SV spacetimes.
The paper is organized as follows. In Sec. II we discuss

the general properties of uncharged and charged SV
spacetimes, including their global features characterized
by Carter-Penrose diagrams. In Sec. III we present the
scalar-NED fields model for SV spacetimes. Our conclud-
ing remarks are contained in Sec. IV. We adopt the metric
signature ðþ;−;−;−Þ and work in the geometrized
units 8πG ¼ c ¼ 1.

II. SIMPSON-VISSER SPACETIMES

The SV spacetime metric [46] is a one-parameter
modification of the Schwarzschild metric (to be called
the Schwarzschild-SV, or S-SV metric), in which the
spherical radius r is replaced by the expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
, where x ∈ R is a new radial coordinate, and

a ¼ const > 0 is a new parameter, so that the metric has the
form

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − r2ðxÞðdθ2 þ sin2θdφ2Þ;

rðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
; ð1Þ

with AðxÞ ¼ 1–2M=rðxÞ, and M > 0 has the meaning of
the Schwarzschild mass. Unlike the Schwarzschild metric
(restored in the case a ¼ 0), at a > 0 this metric is
manifestly globally regular and twice (as x → �∞) asymp-
totically flat. The new parameter a controls interpolation
between the Schwarzschild black hole metric and that of a
Morris-Thorne-like traversable wormhole, see Fig. 1, left
panel. Thus we obtain the following spacetime geometries:

(i) 2M > a: a regular black hole with two horizons at
x�h ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
(curve 1 in Fig. 1).
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(ii) 2M ¼ a: a regular black hole with a single extremal
(double) horizon at x ¼ 0 (curve 2).

(iii) 2M < a: a symmetric traversable wormhole with a
throat at x ¼ 0 (curve 3). In particular, at M ¼ 0 we
obtain the Ellis wormhole, free from static gravita-
tional forces as well as tidal forces [33,34].

Thus the SV geometries are not only globally regular
but are also richer in their causal structure than the
Schwarzschild geometry, as can be illustrated by their
Carter-Penrose diagrams, see Fig. 2. A regular minimum
of the spherical radius rðxÞ occurring in a nonstatic
(AðxÞ < 0) spacetime region, also often called a T region,
was named a “black bounce” [46]. One can note that
geometries containing a black bounce, described by sol-
utions to the Einstein equations with phantom scalar fields,
were considered earlier, in particular, in [21–24,27,28], and

in many cases led to so-called “black universes” [21,22],
i.e., geometries where the T region of a black hole
ultimately evolves into a de Sitter-like expanding universe.
In the case 2M ¼ a, such that the minimum of r

coincides with a single horizon separating two R regions,
the geometry has also been called “a one-way wormhole”
[46], but it has definitely a black hole nature and looks from
outside quite similarly to an extremal Reissner-Nordsröm
black hole. A proper name for such a horizon may be a
“black throat.”
Later on, Franzin et al. [47] considered more general

black-bounce spacetimes on the basis of the Reissner-
Nordström metric in the same minimal manner, leading to a
number of geometries including regular black holes and
traversable wormholes. The RN-SV metric has the form (1)
with
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FIG. 1. The metric function AðxÞ of the SV metric (1), with a ¼ 1 taken as the length scale. Left panel: AðxÞ ¼ 1–2M=rðxÞ,
curves 1–3 correspond to M ¼ 0.75, 0.5, 0.3, respectively. Right panel: AðxÞ ¼ 1–2M=rðxÞ þQ2=r2ðxÞ, curves 4–8 correspond to
M ¼ 2 and Q ¼ 1.6, 1.732, 1.85, 2.008, 2.1, respectively.

FIG. 2. Carter-Penrose diagrams (a) for the Schwarzschild geometry (for comparison) and (b),(c),(d) for S-SV geometries. Over the
diagrams, the corresponding behavior ofAðxÞ is schematically shown.All tilted boundary lines in the diagrams correspond to r ¼ ∞, all tilted
internal lines depict horizons.The lettersRandTmarkRandTregions, enumeratedwhere necessary,x1 andx2mark thepositionsofhorizons.
The black bounce at x ¼ 0 is shown by dashed lines in the T region. The diagrams (c) and (d) are infinitely continued upward and downward.
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AðxÞ ¼ 1 −
2M
rðxÞ þ

Q2

r2ðxÞ≡ 1 −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p þ Q2

x2 þ a2
; ð2Þ

whereQ is the electric charge parameter, such that atQ ¼ 0
we return to the S-SV metric. At a ¼ Q ¼ 0, the RN-SV
metric reduces to the Schwarzschild metric, while at a ≠ 0
it describes a regular black hole or a traversable wormhole.

At a ≠ 0, the RN-SV metric is manifestly globally
regular since all metric coefficients are finite and
smooth, hence all its curvature invariants are finite in
the whole range x ∈ R. For example, the Ricci
scalar R, the quadratic Ricci invariant RμνRμν and the
Kretschmann scalar K ¼ RμνρσRμνρσ have the following
values at x ¼ 0:

R ¼ 2ð−3aM þ a2 þQ2Þ
a4

;

RμνRμν ¼ 2ð2a4 þ a2ð9M2 þ 2Q2Þ − 2aMð3a2 þ 4Q2Þ þ 2Q4Þ
a8

;

K ¼ 4ð3a4 þ a2ð9M2 þ 4Q2Þ − 2aMð4a2 þ 5Q2Þ þ 3Q4Þ
a8

: ð3Þ

All these expressions diverge as a → 0. The curvature
scalars are shown in Fig. 3.
The causal structures of RN-SV spacetimes are more

diverse than those of the Reissner-Nordsröm geometries.
Depending on the values of a, M and Q, the following
kinds of geometry are obtained:

(i) a regular black hole with two horizons (curves 1 and
4 in Fig. 1);

(ii) a regular black hole with a single extremal (double)
horizon at x ¼ 0 (curve 2 in Fig. 1), such geometries
exist with both zero and nonzero Q;

(iii) a regular black hole with two simple horizons and an
extremal (double) horizon separating two T-regions
(curve 5 in Fig. 1);

(iv) a regular black hole with four horizons (curve 6
in Fig. 1);

(v) a regular black hole with two extremal (double)
horizons separating R regions (curve 7 in Fig. 1);

(vi) a traversable wormhole (curves 3 and 8).
One can verify that this list exhausts all possible horizon
allocations at a > 0,M > 0 and any values of Q. In Figs. 4
and 5,we have depicted theCarter-Penrose diagrams for RN-
SV spacetimeswith two, three or four horizons. The horizons
are located at regular zeros of the function AðxÞ, hence at

x ¼ xh ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2 − a2 −Q2 � 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

pq
: ð4Þ

As is clear from (1) with a > 0 (to be called general SV
spacetimes), we have everywhere r ≥ a with a minimum at
x ¼ 0, which is a throat if Að0Þ ≥ 0, a black throat in the
case Að0Þ ¼ 0, and a black bounce if Að0Þ < 0. In all cases,
spacetimes with the metric (1) have no center.1

Thus regular black hole spacetimes with the metric (1)
are basically different from the great number of well-known
regular black holes which contain either Minkowsky [62]
or de Sitter regular centers [11–16,18], see also references
therein. Other regular spherically symmetric black holes
without a center were obtained in [63] as examples of
vacuum brane-world configurations and in [21,22,27] as
black-universe spacetimes.
Assuming the validity of Einstein’s field equations Gν

μ ¼
−Tν

μ for SV spacetimes, let us calculate the components of
the corresponding SET (the prime stands for d=dx):

Tt
t ¼−Gt

t¼
1

r2
½1−Að2rr00 þ r02ÞÞþA0rr0�

¼−
1

r7
½a2ðrð2Q2þx2Þ−4Mx2Þ−Q2x2rþa4ðr−4MÞ�;

ð5Þ

Tx
x ¼ −Gx

x ¼ −
1

r2
½1 − A0rr0 − Ar02�

¼ 1

r4
½a4 þ x2ða2 þQ2Þ�; ð6Þ

Tθ
θ ¼−Gθ

θ ¼−
1

r
½Ar00 þ rA00=2þA0r0�

¼−
1

r7
½a2x2ðr−MÞþQ2x2rþa4ðr−MÞ� ¼Tφ

φ: ð7Þ

Here, we first present the general form of nonzero Gν
μ for

the metric (1) with arbitrary rðxÞ and AðxÞ, and only then
give particular expressions for Tν

μ with r≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
and

AðxÞ given by (2).
There is an important subtle point about Tν

μ, not always
correctly taken into account in descriptions of black-hole
studies. The point is that Tt

t ¼ ρ, the energy density, and
−Tx

x ¼ Pr, the radial pressure, only under the condition
A > 0, in other words, in static regions (R regions).

1Acenter is understoodasa location inspacewhere thecoordinate
spheres shrink to a point, hence, it means r ¼ 0 while A > 0. Note
that in a region whereA < 0, that is, in a T region, the parameter r is
only time dependent, and a possible limit r → 0 is actually a
cosmological singularity occurring at a particular time instant. This
happens, for example, at the Schwarzschild singularity r → 0.
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In regions where A < 0 (T regions), x is a temporal
coordinate, t is a spatial one, therefore, it is Tx

x that should
be identified as ρ whereas Tt

t ¼ −Pr.
Concerning the NEC that in all cases requires ρþPr≥0,

we can notice that ρþ Pr ¼ ðTt
t − Tx

xÞsignAðxÞ. On the
other hand, due to the Einstein equations we have the
relation

Tt
t − Tx

x ¼ −2Ar00=r ð8Þ

for the general metric (1) with any AðxÞ and rðxÞ. We see
that with both positive and negative AðxÞ it holds
ρþ Pr ∝ −r00=r. But we have necessarily r00 > 0 near a
minimum of r, be it a wormhole throat or a black bounce.
An important conclusion for all static, spherically sym-
metric spacetimes is that [48,64].
The NEC is necessarily violated in a neighborhood of

any wormhole throat or any black bounce.
With rðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
we have r00=r ¼ a2=r4 > 0,

hence the NEC is violated in the whole spacetime (except
for horizons where Tt

t − Tx
x ¼ 0 due to A ¼ 0). The weak

energy condition (it requires ρ ≥ 0 in addition to the NEC)
is thus also violated. The strong and dominant energy
conditions are in such cases most often but not necessarily
violated.
Another NEC requirement, ρþ P⊥ ≥ 0 (where P⊥ ¼

−Tθ
θ ¼ −Tφ

φ), does not lead to equally crucial conditions.
For the RN-SV metric we have

ρþ P⊥ ¼ 3a2M
r5

−
2Q2ða2 − x2Þ

r6
: ð9Þ

III. FIELD SOURCES OF THE SV METRICS

Let us consider the possible sources of SV geometries
in the framework of general relativity, in the form of an
uncharged scalar field ϕðxÞ and a nonlinear electromag-
netic field with the LagrangianLðF Þ, minimally coupled to
gravity, so that the action may be written in the form

S¼
Z ffiffiffiffiffiffi

−g
p

d4xðRþ2ϵgμν∂μϕ∂νϕ−2VðϕÞ−LðF ÞÞ; ð10Þ

where ϵ ¼ �1, so that ϵ ¼ þ1 corresponds to a canonical
scalar field with positive kinetic energy, and ϵ ¼ −1 to a
phantom scalar field with negative kinetic energy;
LðF Þ is a gauge-invariant NED Lagrangian density with
F ¼ FμνFμν, Fμν being the electromagnetic field tensor.
Varying the action (10) with respect to the metric gμν leads
to the Einstein equations

Gν
μ ¼ −Tν

μ½ϕ� − Tν
μ½F�; ð11Þ

where Tν
μ½ϕ� and Tν

μ½F� are the SETs of the scalar and
electromagnetic fields:

Tν
μ½ϕ� ¼ 2ϵ∂μϕ∂νϕ − δνμðϵgρσ∂ρϕ∂σϕ − VðϕÞÞ; ð12Þ

Tν
μ½F� ¼ −2LFFμσFνσ þ 1

2
δνμLðF Þ; ð13Þ

where LF ¼ dL=dF ; further on, varying the action in ϕ
and Fμν, we obtain the field equations

2ϵ∇μ∇μϕþ dVðϕÞ=dϕ ¼ 0; ð14Þ

∇μðLFFμνÞ ¼ 0: ð15Þ

Considering the static, spherically symmetric metric (1),
the corresponding assumptions for the scalar and
electromagnetic fields are ϕ ¼ ϕðxÞ and possible nonzero
Fμν components: Ftx ¼ −Fxt (a radial electric field) and
Fθφ ¼ −Fφθ (a radial magnetic field). We will assume the
existence of a magnetic field only, such that Fθφ ¼ q sin θ,
where q is the magnetic monopole charge. Equation (15) is
then trivially satisfied. The Faraday electromagnetic invari-
ant takes the form F ¼ 2q2=r4 ≡ 2q2=ða2 þ x2Þ2. Under
these assumptions, the SETs (12) and (13) take the form

Tν
μ½ϕ� ¼ ϵAðxÞϕ02diagð1;−1; 1; 1Þ þ δνμVðϕÞ; ð16Þ

Tν
μ½F� ¼

1

2
diag

�
L;L;L −

4q2

r4
LF ;L −

4q2

r4
LF ;

�
: ð17Þ

Let us now explain why a scalar field alone cannot be a
source of SV metrics. To begin with, according to the most
universal of the so-called global structure theorems [64,65],
an asymptotically flat static, spherically symmetric
Einstein-scalar configuration cannot contain more than
one horizon, while the SV metrics with proper parameters
contain at least two. But more specifically, the scalar field
SET has the property Tt

t½ϕ� ¼ Tθ
θ½ϕ�, and this is clearly not

the case for (5) and (7), the SET components needed for SV
metrics.
On the other hand, NED alone also cannot provide a

source for SV metrics since, for the latter, the SET
components (5) and (6) are not equal, whereas by
Eq. (17), Tt

t½F� ¼ Tx
x½F�. Moreover, an attempt to use a

scalar field combined with a Maxwell field (which is a
special case of NED corresponding to L ¼ F ) would also
be a failure since for a Maxwell field Tt

t − Tθ
θ ¼ 4q2=r4,

while the corresponding difference for the SV metrics
exhibits another x dependence.
It can, however, be shown that a combination of a scalar

field and NED can provide a source for any SV metric (1)
with an arbitrary function AðxÞ and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
.

Indeed, the difference of Eqs. (5) and (7) is free from the
scalar field and leads to

1

r4
½2 − 2AðxÞ þ r2A00ðxÞ� ¼ 2q2

r4
LF : ð18Þ
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The left-hand side of this equation is, by our assumptions,
a known function of x, and since we have F ¼
2q2=r4 ≡ 2q2=ða2 þ x2Þ2, it is easy to express dL=dx ¼
LFdF=dx in terms of x. Integrating, we then obtain F as a
function of x and consequently of F .
Next, the difference of (5) and (6) is free from a NED

contribution and leads to

ϕ02 ¼ −ϵ
a2

x2 þ a2
¼ a2

x2 þ a2

⇒ ϕ ¼ � arctan
x
a
þ ϕ0; ϕ0 ¼ const: ð19Þ

It is evident here that the scalar field should be phantom,
ϵ ¼ −1, and without loss of generality we can put ϕ0 ¼ 0.

Then, using the already known expressions for
L and ϕ02 as functions of x, we can use Eq. (6) to calculate
the potential V as a function of x and consequently
of ϕ:

VðxÞ ¼ −Aϕ02 −
1

2
L − Gx

x: ð20Þ

This completes the calculation. The scalar field equation (14)
is a consequence of the Einstein equations, and it is not
necessary to consider it, but it can be used in order to verify
the correctness of the results.
Using this algorithm for the function AðxÞ given by (2)

(the RN-SV metric), we obtain

FIG. 3. The Ricci scalar, quadratic Ricci invariant and Kretschmann scalar behavior with differentQ and a. It is straightforward to see
that the spacetime has no singularity if a ≠ 0.

FIG. 4. Carter-Penrose diagrams for the Reissner-Nordsröm geometries (a),(b),(c), for comparison, and the RN-SV geometry with two
extremal horizons (d). The corresponding behavior of AðxÞ is shown over the diagrams. All tilted boundary lines in the diagrams
correspond to r ¼ ∞, all tilted internal lines to horizons. The letters R and T mark R and T regions, enumerated where necessary, x1 and
x2 mark the positions of horizons. The dashed line in (d) shows the throat x ¼ 0 in the region R2. The diagrams (b),(c),(d) are infinitely
continued upward and downward.
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LðF Þ ¼ 12

5

Ma2

ðx2 þ a2Þ5=2 þ
2Q2ð3x2 − a2Þ
3ðx2 þ a2Þ3

¼ 12Ma2

5ð2q2=F Þ5=4 þ
2Q2½3ð2q2=F Þ1=2 − 4a2�

3ð2q2=F Þ3=2 ; ð21Þ

VðϕÞ ¼ 2a2½6M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2

p
− 5Q2�

15ðx2 þ a2Þ3

¼ 2cos6ϕ
15a4

ð6Ma secϕ − 5Q2Þ: ð22Þ
At Q ¼ 0, we obtain the corresponding results for the

S-SV spacetime.

We notice a curious feature of the sources for RN-SV
geometry. The metric itself contains the charge parameter
Q, associated in the original Reissner-Nordsröm metric
with an electric or magnetic charge in Maxwell’s electro-
dynamics. We have found, however, that our source of the
RN-SV solution does not contain any Maxwell field but,
instead, is sourced by a magnetic field obeying NED;
moreover, according to Eq. (21), for a given value of the
parameter Q in the metric, the source also contains a
separate free parameter q, the NED magnetic charge, and
the corresponding Lagrangian function LðF Þ depends on
both. In Fig. 6, the behavior of NED field Lagrangian

FIG. 5. Carter-Penrose diagrams for theRN-SVgeometrieswith three (a) and four (b) horizons,with the qualitative behavior ofAðxÞ shown
at the top. All thick lines in the diagrams correspond to r ¼ ∞, all tilted thin lines to horizons.Dashed thick linesmean that the corresponding
spatial infinity is placed on the lower, “directly invisible” layer of the diagram, under anoverlapping horizon.The lettersR andTmarkR andT
regions with appropriate numbers. Numbers of the horizons (x1; x2;…) are easily determined according to regions they separate; some of
them are shown as examples. The sphere x ¼ 0 coincides with the horizon x2 between the regions T1 and T2 in the left diagram; in the right
one, it is a throat in R2, shown by thin dashed lines. Each of these diagrams occupies the whole plane plus a countable set of overlappings.

FIG. 6. The NED Lagrangian density LðF Þ and the field potential VðϕÞ behavior with different Q and a.
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density and the scalar field potential is shown with varying
Q and a. As expected, LðF Þ does not diverge at the
point x ¼ 0.
A certain shortcoming of this construction is that the

function LðF Þ in (21) contains fractional powers of F ,
which makes meaningless negative values of F . This, in
particular, explains why we use magnetic fields withF > 0
rather than electric ones implying F < 0. An attempt to
create a similar construction with electric fields also leads
to fractional powers ofF . If we try to employ jF j instead of
F , the function LðF Þ still loses analyticity at F ¼ 0.

IV. CONCLUDING REMARKS

Simpson and Visser [46] have considered a very simple
and theoretically appealing spherically symmetric black
bounce spacetime (SV spacetime), which modifies the
Schwarzschild black hole metric in a precisely controlled
and minimal manner and interpolates between regular black
holes and traversable wormholes. The new length scale
parameter a is responsible for the curvature singularity
regularization and can potentially mimic the quantum
gravity effects at a small-length scale. Further on, the
charged (RN-SV) and rotating SV spacetimes have also
been proposed. All of them are globally regular, and in
particular, in S-SV and RN-SV regular black holes, their
r ¼ 0 singularities are replaced by a black bounce that
ultimately leads to another asymptotically flat universe.
This class of spacetimes generalizes and broadens the well-
known variety of regular black holes and seems to be very
intriguing owing to its simplicity and a unified treatment of
distinct kinds of geometries.
As we saw in the present paper, these spacetimes

have in general multiple horizons and complex global
causal structures. Depending on the values of a, the x ¼ 0
hypersurface can have a different nature: a wormhole
throat, a black bounce, or a black throat in the intermediate
case. The RN-SV spacetime as a whole describes a variety
of geometries including traversable wormholes and differ-
ent kinds of regular black holes.
With the radius rðxÞ having a minimum, the correspond-

ing SET, as expected, violates the NEC and other energy
conditions. While canonical scalar fields cannot lead to

wormhole or regular black hole geometries [65], it is
possible with phantom scalar fields [21,27]. Still we have
seen here that SV-like geometries cannot be sourced by a
scalar field or NED taken separately. However, we have
shown that the RN-SV and S-SV spacetimes are exact
solutions of the Einstein field equations with a combination
of these two sources. This work is important in the light that
it uplifts the status of SV-like space-times from ad-hoc
mathematical models to a class of exact solution of
gravitational field equations.
Let us also stress that the algorithm we have used makes

it possible to find a similar combination of field sources for
any static, spherically symmetric SV geometry with the
metric (1). These can include, for example, the proper
modifications of Reissner-Nordsröm-de Sitter space-times,
with AðxÞ ¼ 1–2M=rþQ2=r2 − Λr2=3, which will then
possess up to six horizons and accordingly very complex
causal structures. The sources of black-bounce spacetimes
proposed in [48] can also be easily calculated. A task of
interest for a future study can be to find a source for SV-like
geometries with rotation [49–51,66].
Another issue of importance is the stability of SV

spacetimes, which problem cannot be formulated until
we know their precise dynamic context. In this regard, it
can also be of interest to find possible alternative sources of
the same SV spacetimes, because the stability properties
of the same geometry may be different in the presence of
different sources of this geometry. This problem was, in
particular, discussed in [67,68] using as an example the
simplest Ellis wormhole [33,34].
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