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We consider a fðRÞ gravity theory in (2þ 1)-dimensions with a self-interacting scalar field non-
minimally coupled to gravity. Without specifying the form of the fðRÞ function, solving the field equations
we find that the Ricci scalar receives a nonlinear correction term which breaks the conformal invariance and
leads to a massless black hole solution. When the nonlinear term decouples, we get a well-known hairy
black hole solution with the scalar field conformally coupled to gravity. We also find that the entropy of our
black hole may be higher than the corresponding conformal black hole which indicates that our solution
may be thermodynamically preferred.
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I. INTRODUCTION

In (2þ 1)-dimensions one of the first exact black hole
solutions of general relativity (GR) is the Bañados,
Teitelboim, and Zanelli (BTZ) black hole [1,2]. It is known
that in (2þ 1)-dimensions, the Weyl tensor vanishes by
definition and in the absence of matter we have Rμν ¼ 0,
therefore we cannot have a black hole solution. To evade
this problem, a negative cosmological constant was intro-
duced in the theory allowing black hole solutions to exist in
a spacetime with negative constant curvature. Introducing a
linear Maxwell field, a black hole solution can also be
obtained with a dynamical Ricci scalar, while a confor-
mally invariant nonlinear electromagnetic field ðFμνFμνÞ3=4
gives a black hole solution with constant Ricci scalar [3].
After the discovery of the BTZ black hole, several

(2þ 1)-dimensional black hole solutions have been
obtained coupled to a scalar field. In [4,5] black holes with
an everywhere regular scalar field have been investigated.
Then more (2þ 1)-dimensional hairy black hole solutions
were discussed [6–13]. In [14] asymptotically anti–de Sitter
(AdS) (2þ 1)-dimensional black hole solutions with con-
formally coupled scalar and Abelian gauge fields were
found. In [15,16] (2þ 1)-dimensional charged black holes
with scalar hair were derived, where the scalar potential is
not fixed ad hoc but instead derived from Einstein’s

equations. In [17] exact (2þ 1)-dimensional black holes
with a nonminimally coupled scalar field were discussed,
where the arbitrary coupling constant breaks the conformal
invariance. In [18,19], static black holes in (2þ 1)-dimen-
sional dilaton gravity and modifications of the BTZ black
hole by a dilaton/scalar were investigated. Recently, regular
black hole solutions with a real scalar field coupled to the
Maxwell field via a duality transformation were constructed
[20] and (2þ 1)-dimensional regular black holes with
nonlinear electrodynamics were studied in [21–23].
In four dimensions one of the first hairy black holes was

derived by Bocharova, Bronnikov, and Melnikov and
independently by Bekenstein, called the BBMB black hole
[24]. The BBMB action consists of GR and a conformally
coupled scalar field. The metric has the form of an extremal
Reissner-Nordström spacetime, however the scalar field is
divergent at the horizon and it is found to be unstable under
scalar perturbations [25]. A cosmological constant can make
the scalar field regular at horizon [26] but the solution is still
unstable [27]. Later the Martinez, Troncoso, Zanelli (MTZ)
black holewas considered with a scalar potential [28], where
the scalar field is finite at the horizon and the spacetime is
hyperbolic. Interestingly, a charged black hole solution with
a scalar field minimally coupled to gravity was found [29],
in which the mass of the black hole is zero due to the
cancellation of the contributions of the scalar field and the
gravitational field. In this solution the self-interacting
potential of the scalar field breaks the conformal invariance
of theMTZ black hole. A new class of exact hairy black hole
solutions was discussed in [30,31]. In [32,33] neutral and
charged black holes with a minimally coupled scalar field
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have also been found. In [34–36] black holes with non-
minimal derivative coupling were studied. Black holes in
biscalar extensions of Horndeski theories were found in
[37], hairy black hole solutions with time dependent scalar
field were discussed in [38] and in [39] hairy black holes in
disformal scalar-tensor gravity theories were discussed. The
stability of black holes with nonminimally coupled scalar
hair was studied in [40].
ThefðRÞ theoriesweremainly introduced in cosmology in

an attempt to describe the early and late cosmological history
of our Universe [41,42]. The consistency with GR imposed
constraints on the choices of the fðRÞ models [43]. In these
theories black hole solutions were found, that deviate from
the GR black holes or they possess new properties that are
distinguishable from the known GR solutions. Static and
spherically symmetric black hole solutions were derived in
(3þ 1)-dimensions and (2þ 1)-dimensions [44–48], while
in [49–58] charged and rotating solutions were found and
thin-shells surrounding fðRÞ black holes with dynamical
scalar curvature were discussed [59]. Static and spherically
symmetric black hole solutions were investigated with
constant curvature, with and without electric charge and
cosmological constant in [60–62]. Scalar fields have been
recently introduced as matter fields in the context of fðRÞ,
exact black hole solutions have been found and the corre-
sponding physical properties have been investigated in [63–
65], while the stability of fðRÞ black holes was also
considered in [66]. The possibility of dressing the black hole
with a gravitational hair has also been discussed in [67,68].
In this work, we generalize the (2þ 1)-dimensional

conformal black hole solution [4] in fðRÞ gravity.
Although our study shows that the conformal invariance
has to be broken due to the nonlinear term of the fðRÞ
model, an exact black hole solution can be solved analyti-
cally, while the fðRÞ theory can be obtained asymptotically.
When the nonlinear term of the fðRÞ model decouples, the
solution reduces to the conformally dressed black hole with
fðRÞ ¼ Rþ 2l−2 [the abbreviation “GR black hole/solu-
tion/case” will always refer to the conformally dressed
(2þ 1)-dimensional black hole [4]]. Besides, the entropy
of the fðRÞ black hole may be higher than the correspond-
ing conformal black hole, which indicates our solution may
be thermodynamically preferred.
The paper is organized as follows. In Sec. II we review

the known conformally dressed black hole solution [4] for
comparison. In Sec. III we generalize the conformally
dressed black hole in fðRÞ gravity. An exact black hole
solution is obtained with the fðRÞ function being solved
from the equations asymptotically, while the conformal
invariance is broken due to the nonlinear term of the fðRÞ
model. We show that the fðRÞ model is free of ghosts
and tachyonic instabilities. In Sec. IV we study the
thermodynamics of the solution and find that the solution
is thermodynamically preferred for most cases. Finally, in
Sec. V we conclude.

II. CONFORMAL (2 + 1)-DIMENSIONAL
BLACK HOLE

We begin with a brief review of the conformally dressed
black hole derived in [4]. The action of the theory consists
of the Ricci scalar, a negative cosmological constant, and a
conformally coupled scalar field, namely

S ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 2l−2

κ
− ∂μϕ∂μϕ −

1

8
Rϕ2

�
; ð1Þ

where we will use κ ¼ 8πG ¼ 1 for simplicity throughout
the paper. By variation one can obtain the Einstein equation
and the Klein-Gordon equation

Gμν − gμνl−2 ¼ Tμν; ð2Þ

□ϕ −
1

8
Rϕ ¼ 0; ð3Þ

where Gμν ≡ Rμν − 1
2
gμνR and the energy-momentum ten-

sor is given by

Tμν¼∂μϕ∂νϕ−
1

2
gμν∂αϕ∂αϕþ

1

8
ðgμν□−∇μ∇νþGμνÞϕ2:

ð4Þ
One can prove that by virtue of Eq. (3) the energy-
momentum tensor is traceless so that we have a constant
Ricci scalar

R ¼ −
6

l2
: ð5Þ

We assume the metric ansatz with gttgrr ¼ −1

ds2 ¼ −bðrÞdt2 þ bðrÞ−1dr2 þ r2dθ2; ð6Þ
where bðrÞ is the only degree of freedom and it can be
obtained from the Ricci scalar (5)

bðrÞ ¼ r2

l2
−
c1
r
þ c2; ð7Þ

while from the tt and rr components of the Einstein
equation we can get the scalar field

ϕðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3rþ c4

p : ð8Þ

Substituting them into the θθ component of the Einstein
equation and together with theKlein-Gordon Eq. (3) we have

bðrÞ ¼ r2

l2
þ B2ð−2B − 3rÞ

l2r
; ð9Þ

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8B

rþ B

r
; ð10Þ

where B ¼ c4=c3 > 0.
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This solution is regular for any positive r, except for a
singularity at the origin r ¼ 0, as can be seen from the
divergence of the Kretschmann scalar K ≡ RμνσρRμνσρ.
The metric function bðrÞ has only one root which gives
the radius of the event horizon rh ¼ 2B. The scalar field
does not diverge at the event horizon rh like the BBMB
black hole [24] because of the presence of a negative
cosmological constant.
The Hawking temperature [69] is given by the Euclidean

trick (t → −iτ)

TH ¼ b0ðrhÞ
4π

¼ 9B
8πl2

: ð11Þ

Using Wald’s formula [70], the entropy at the event horizon
can also be obtained as

S ¼ A
4

�
1 −

1

8
ϕðrhÞ2

�
¼ πrh

3
¼ 2πB

3
; ð12Þ

where A ¼ 2πrh is the horizon area.
The entropy acquires another term, besides the GR one,

that depends on the scalar field, which comes from the
nonminimal coupling between matter and curvature. As a
result, the entropy is smaller than the corresponding BTZ
black hole entropy [1] which is πrh=2, but is positive and
finite, while the entropy of the BBMB black hole is infinite
due to the divergence of the scalar field at the event horizon.
The conserved black hole mass can be obtained by using
the first law of thermodynamics

dM¼TdS→M¼
Z

TðrhÞS0ðrhÞdrh¼
3r2h
32l2

¼3B2

8l2
: ð13Þ

All thermodynamic quantities grow with the increase of the
scalar charge B (or rh), in agreement with those obtained
from the Hamiltonian formalism [4].
The scalar field dresses the black hole with a secondary

scalar hair, since its charge B is not an independent

conserved quantity, as it is related to the conserved mass
of the black hole.

III. f ðRÞ GRAVITY BLACK HOLE SOLUTION

In this section we extend the conformal black hole
solution [4] described in the previous section in fðRÞ
gravity by replacing the Einstein-Hilbert term R with the
fðRÞ function and endowing the scalar field with a self-
interacting potential VðϕÞ in the action

S ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p �
fðRÞ − ∂μϕ∂μϕ −

1

8
Rϕ2 − 2VðϕÞ

�
:

ð14Þ

The field equations that arise from this action are

Iμν≡fRRμν−
1

2
gμνfðRÞþgμν□fR−∇μ∇νfR¼Tμν; ð15Þ

□ϕ −
1

8
Rϕ − V 0ðϕÞ ¼ 0; ð16Þ

where fR ≡ dfðRÞ
dR and the energy momentum tensor

becomes

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν∂αϕ∂αϕ

þ 1

8
ðgμν□ −∇μ∇ν þ GμνÞϕ2 − gμνVðϕÞ: ð17Þ

The trace of the Einstein Eq. (15) gives

Iμμ ≡ 2fRR − 3fðRÞ þ 4□fR ¼ ϕ□ϕ − Rϕ2=8 − 6VðϕÞ:
ð18Þ

Assuming the same metric ansatz (6), the tt, rr, and θθ
components of the Einstein equation and the Klein-Gordon
equation take the form

tt∶ 2rðb0ðϕϕ0 − 4f0RÞ þ 4fRb00 − 2bð4f00R þ ϕ02 − ϕϕ00Þ þ 4f − 8VÞ þ b0ð8fR þ ϕ2Þ − 16bf0R þ 4bϕϕ0 ¼ 0; ð19Þ
rr∶ 2rðb0ðϕϕ0 − 4f0RÞ þ 4fRb00 þ 4bϕ02 þ 4f − 8VÞ þ b0ð8fR þ ϕ2Þ − 16bf0R þ 4bϕϕ0 ¼ 0; ð20Þ

θθ∶ rð4b0ðϕϕ0 − 4f0RÞ þ ϕ2b00 − 4bð4f00R þ ϕ02 − ϕϕ00Þ þ 8f − 16VÞ þ 16fRb0 ¼ 0; ð21Þ

KG∶ b0ðrÞϕ0ðrÞ þ ϕðrÞð2b0ðrÞ þ rb00ðrÞÞ
8r

þ bðrÞϕ0ðrÞ
r

þ bðrÞϕ00ðrÞ − V 0ðrÞ
ϕ0ðrÞ ¼ 0: ð22Þ

Also, the trace (18) becomes

Iμμ≡−32rb0f0Rþ32fRb0 þ16rfRb00 þ8rϕb0ϕ0 þ2ϕ2b0 þrϕ2b00−32bf0R−32rbf00Rþ8bϕϕ0 þ8rbϕϕ00 þ24rf−48rV¼0:

ð23Þ
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The Klein-Gordon equation can be obtained by taking
the covariant derivative of Einstein’s equation [64].
Therefore, we have a system of three independent equa-
tions with four unknown functions; the fðRÞ function, the
potential VðϕÞ, the scalar field ϕðrÞ, and the metric
function bðrÞ. We will leave the potential undetermined
and solve it from the field equations. Wewill then check the
trace of the energy-momentum tensor. A vanishing trace
will indicate that the matter field is conformally coupled to
gravity and a scale (if any) is counterbalanced in the action.
From Eqs. (19) and (20) we can obtain the relation between
the gravitational function fRðrÞ and the scalar field ϕðrÞ

4f00RðrÞ þ 3ϕ0ðrÞ2 − ϕðrÞϕ00ðrÞ ¼ 0: ð24Þ

We can immediately integrate this equation for fRðrÞ

fRðrÞ¼ sþαrþ
ZZ

1

4
ðϕðrÞϕ00ðrÞ−3ϕ0ðrÞ2Þdrdr; ð25Þ

where s and α are constants of integration. The constant s is
the coefficient of the Einstein-Hilbert term, α is related to
geometric corrections to Einstein gravity that are encoded
in fðRÞ theories and the last term is generated from the
scalar field. It shows that the scalar field gives an immediate
modification to the fðRÞ model if the integrand does not
equal zero. To simplify the equations we consider the
integrand to be vanishing, i.e., f00RðrÞ ¼ 0, which gives the
profile of the scalar field as ϕðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ðrþ BÞp
and

fRðrÞ ¼ sþ αr. Also, in order to make it comparable with
the GR case [4] we use A ¼ 8B and s ¼ 1, then the scalar
field becomes the same as (10) and

fRðrÞ ¼ 1þ αr: ð26Þ

We can immediately integrate fRðrÞ with respect to Ricci
scalar to obtain the general form of the fðRÞ theory

fRðrÞ ¼ 1þ αr → fðRÞ ¼ Rþ α

Z
R
rðRÞdRþ C; ð27Þ

where C is an integration constant with the unit ½L�−2,
related to the cosmological constant. This expression shows
that a geometric correction term appears in addition to the
Einstein-Hilbert term, while the scalar field does not appear
immediately in the fðRÞ model as happens in [65].
Then we can solve the metric function as

bðrÞ ¼ −
3B2

l2ðαBþ 1Þ2 −
2B3

l2rðαBþ 1Þ þ
6αB2r

l2ðαBþ 1Þ3

þ r2
�
1

l2
þ 6α2B2

l2ðαBþ 1Þ4 ln
�

r
αlðBþ rÞ þ l

��
; ð28Þ

where l is the AdS radius that appears as an integration
constant. We can see that the metric function is well
behaved for any r > 0 if we constrain the parameters B,
and α to be positive. For this reason we will impose that
α; B > 0. At large distances, the metric function asymp-
totes to

bðr → ∞Þ ∼ −Λeffr2 −
2B2

αl2r
þOðr−2Þ; ð29Þ

where the effective cosmological constant that the fðRÞ
theory and the nonminimal coupling generate is given by

Λeff ¼ −
�
1

l2
−
6α2B2 lnðαlÞ
l2ðαBþ 1Þ4

�
: ð30Þ

For vanishing scalar charge B, we obtain pure AdS
spacetime and we will also consider that 1 − 6α2B2 lnðαlÞ=
ðαBþ 1Þ4 > 0 in order to have an asymptotically AdS
spacetime, so we can compare our solution with [4].
Now, we can obtain the potential from the Klein-Gordon
equation

VðrÞ ¼ B3

l2ðαBþ 1Þ4
�
6α2ðB2 þ αðBþ rÞ3Þ

ðBþ rÞ3 ln

�
r

αlðBþ rÞ þ l

�
þ 3ðα2 − α4B2Þ

Bþ r
þ 3α3ðαBþ 1Þ2

αðBþ rÞ þ 1

þ 6α2BðαBþ 1Þ
ðBþ rÞ2 þ αBðαBþ 1ÞðαBðαBþ 5Þ − 2Þ

ðBþ rÞ3 þ 6α3 ln αl

�
; ð31Þ

which vanishes at spatial infinity and as a function of ϕ reads

VðϕÞ ¼ αB
512l2ðαBþ 1Þ4ð8αBþ ϕ2Þ

�
ϕ2ðαBþ 1Þð3072α2B2 þ ϕ6ðαBðαBþ 5Þ − 2Þ þ 8αBϕ4ðαBþ 1ÞðαBþ 4Þ

þ 192αBϕ2ðαBþ 1ÞÞ þ 6αBð8αBþ ϕ2Þ
�
ð512αBþ ϕ6Þ ln

�
Bð−ϕ2 þ 8Þ
lð8αBþ ϕ2Þ

�
þ 512αB ln ðαlÞ

��
: ð32Þ
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The Ricci scalar can be obtained from the metric function

RðrÞ ¼ −
6

l2
−
6αB2ðαð2αB2 þ 9αBrþ 4Bþ 6αr2 þ 9rÞ þ 2Þ

l2rðαBþ 1Þ3ðαðBþ rÞ þ 1Þ2 −
36α2B2

l2ðαBþ 1Þ4 ln
�

r
αlðBþ rÞ þ l

�
; ð33Þ

while the function fðrÞ yields

fðrÞ ¼ −
4

l2
þ 6αB2ðαðαB2ð3αr − 2Þ þ Bðαrð2αr − 3Þ − 4Þ − 2rð2αrþ 3ÞÞ − 2Þ

l2rðαBþ 1Þ3ðαðBþ rÞ þ 1Þ2

þ 12α2B2

l2ðαBþ 1Þ4
�
ðαB − 2Þ ln

�
r

αlðBþ rÞ þ l

�
þ αB lnðαlÞ

�
; ð34Þ

The Ricci scalar is divergent at origin and related to the
AdS scale at infinity. The Kretschmann scalar behaves as

RαβγδRαβγδðr → 0Þ ∼ 24B6

l4r6ðαBþ 1Þ2 þO
�
1

r4

�
; ð35Þ

near the origin, which is also divergent at r ¼ 0, indicating
a physical singularity. It is clear that we cannot invert the
Ricci scalar and solve it for r, to substitute back to the fðrÞ
function in order to obtain fðRÞ. However, we can use
asymptotics to have a feeling of the curvature model at the
origin and at infinity. The asymptotic expressions of the
Ricci scalar near the origin and at infinity are respectively

Rðr → 0Þ ∼ −
12αB2

l2rðαBþ 1Þ3 þOðlnðrÞÞ; ð36Þ

Rðr → ∞Þ ∼ 6Λeff −
3B2

α2l2r4
þOðr−5Þ; ð37Þ

so the fðRÞ function near the origin and at large distances
yields, respectively,

fðRðr → 0ÞÞ ∼ R −
12α2B2

l2ðαBþ 1Þ3 lnðRÞ; ð38Þ

fðRðr → ∞ÞÞ ∼ R −
4Bð6Λeff − RÞ3=4

33=4
ffiffiffiffiffiffiffiffi
αBl

p ; ð39Þ

up to a constant of integration. The argument of the ln term
is not dimensionless, but this expression is an approxima-
tion.
In Fig. 1 we plot fðRðrÞÞ as a function of RðrÞ to see how

our fðRÞ deviates from the GR case fðRÞ ¼ Rþ 2l−2. We
can see that for stronger α, our theory deviates more
from GR.
To check if the resultant fðR;ϕÞ theory is free of ghost

and tachyonic instabilities [41,71–74] we need to confirm if
the following relations hold,

fRtotal
>0→fRtotal

¼fRgravity
þfRmatter

¼1þαr−
1

8
ϕðrÞ2

¼þ1þαr−
B

Bþr
¼ r

�
αþ 1

Bþr

�
>0;

ð40Þ

fRRðrÞ > 0 → fRRðrÞ

¼ f0RðrÞtotal
R0ðrÞ

¼ l2r2ðαðBþ rÞ þ 1Þ3ðαðBþ rÞ2 þ BÞ
12αB2ðBþ rÞ2 > 0: ð41Þ

The two above relations hold for B > 0 and α > 0 and in
this case the resultant fðR;ϕÞ theory is free of ghosts and
avoids the tachyonic instability. The fact that fRtotal

> 0 also
ensures that the entropy is positive [75–78] and our
solutions may possess a higher entropy than the corre-
sponding GR counterpart [4] for a fixed horizon value,
meaning that the fðRÞ black holes may be thermodynami-
cally preferred over the GR one [4].
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FIG. 1. fðRðrÞÞ as a function of RðrÞ for different values of α,
where we have set B ¼ l ¼ 1.
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Expanding the metric function bðrÞ, fðrÞ, and RðrÞ near
α → 0 we find that

bðrÞ¼−3B2r−2B3þr3

l2r
þ2αð3B2r2þ3B3rþB4Þ

l2r
þOðα2Þ;

ð42Þ

fðrÞ ¼ −
4

l2
−
12αB2

l2r
þOðα2Þ; ð43Þ

RðrÞ ¼ −
6

l2
−
12αB2

l2r
þOðα2Þ; ð44Þ

where, as expected, at zeroth order we obtain the GR black
hole [4] and the curvature functions fðrÞ, RðrÞ become
dynamical due to the gravitational scale α. The trace of the
resultant energy-momentum tensor is dynamical

Tμ
μ ¼ −

3α2B3

2rðαBþ 1Þ4ðαlðBþ rÞ þ lÞ2
�
ðαBþ 1Þðαð2αB2 þ Bð9αrþ 4Þ þ 3rð2αrþ 3ÞÞ þ 2Þ

þ 6αrðαðBþ rÞ þ 1Þ2
�
ln

�
r

αlðBþ rÞ þ l

�
þ lnðαlÞ

��
; ð45Þ
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FIG. 2. The functions bðrÞ, VðrÞ, RðrÞ, fðrÞ, and Tμ
μðrÞ are plotted versus r with different values of α, while in the last panel, the

radius of the event horizon rh is plotted as a function of α. In all the figures we have set B ¼ l ¼ 1.

KARAKASIS, PAPANTONOPOULOS, TANG, and WANG PHYS. REV. D 105, 044038 (2022)

044038-6



which indicates that the theory is not conformally invariant.
This scale is the geometric correction parameter α. For
vanishing α, the trace of the energy momentum tensor
vanishes as expected since α → 0 gives the GR case [4].
We present some plots of bðrÞ, RðrÞ, fðrÞ, VðrÞ, Tμ

μ in
Fig. 2, in order to better understand our solution alongside
the α ¼ 0 case which corresponds to GR [4]. We can see
that the modified gravity parameter affects the dynamics of
the curvature related functions, while the GR black hole [4]
admits a larger horizon radius in comparison with the
modified gravity one. We also plot the horizon radius as a
function of α. The fact that the larger the deviation from the
GR solution [4] is, the smaller the horizon radius becomes,
is in agreement with the (3þ 1)-dimensional case [64].
Next, we will briefly discuss scalar perturbations of the
obtained spacetime. For this reason, we consider a massless
test scalar field ϕ0 that satisfies its equation of motion [17],

□ϕ0 ¼ 0: ð46Þ

Transforming the scalar field as ϕ0 ¼ r−1=2φ0e−iω0t, the
Klein-Gordon equation takes the form of a Schrodinger-
like one

d2φ0

dr2�
þ ðω2

0 − VeffÞφ0 ¼ 0; ð47Þ

where we expressed this equation using the tortoise
coordinate r� ¼

R
drbðrÞ−1. The resulting effective poten-

tial is complicated, however its asymptotic expression is

Veffðr → ∞Þ ∼ 3Λ2
effr

2

4
þO

�
1

r2

�
; ð48Þ

meaning that there is an AdS boundary at infinity con-
straining the matter fields, regardless of the modified
gravity parameter α and the effect it has on Λeff . We
checked that, the inclusion of a mass term for the test scalar
field does not change the behavior of the resulting effective
potential at large distances. Also, no potential well is
formed near the horizon of the black hole for both the
massive and massless case, as can be confirmed from
Fig. 3, where we plot the effective potential of the massless
case, meaning that the test scalar particles are not trapped
near the black hole, so, as a result, the spacetime is stable
under massless and massive scalar perturbations.

IV. THERMODYNAMICS

In this section we will study the thermodynamics of the
extended black hole solution in fðRÞ gravity, including
Hawking temperature, entropy, and the conserved mass.

A. Hawking temperature

The Hawking temperature can be calculated as

TH ¼ b0ðrhÞ
4π

¼ 3B2ðBþ rhÞ
2πl2r2hðαBþ αrh þ 1Þ ; ð49Þ

where the relation bðrhÞ ¼ 0 has been used. As expected, it
can reduce to the Hawking temperature (11) in conformal
dressed black hole case [4] when α → 0.
In Fig. 4, we plot the Hawking temperature TH as a

function of α. With the increase of α, the Hawking
temperature of the black hole first decreases slightly, then
grows up to a maximum, finally descends until approaching
zero which can be seen from Eq. (49).

B. Entropy

Using Wald’s formula [70,79], we can calculate the
entropy of the black hole in fðRÞ gravity with a non-
minimal coupling as

S ¼ −
1

4

Z
dθ

ffiffiffiffiffi
r2h

q � ∂L
∂Rαβγδ

�����
r¼rh

ε̂αβε̂γδ; ð50Þ

where ε̂αβ is the binormal to the horizon surface [80], L is
the Lagrangian of the theory, and
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FIG. 3. The effective potential VeffðrÞ for the massless test
scalar particles as a function of r for different values of α, where
we have set B ¼ l ¼ 1.
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FIG. 4. The Hawking temperature is plotted as a function of α,
where we have set B ¼ l ¼ 1.
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∂L
∂Rαβγδ

����
r¼rh

¼ 1

2

�
fRðrhÞ

2
−

1

16
ϕðrhÞ2

�
ðgαγgβδ − gβγgαδÞ:

ð51Þ

Finally the formula of the entropy for our theory can be
obtained

S ¼ πrh

�
fRðrhÞ

2
−

1

16
ϕðrhÞ2

�
¼ A

4
fRtotal

ðrhÞ: ð52Þ

Substituting the explicit expression for fRtotal
, we have

S ¼ 1

2
πrh

�
1þ αrh −

B
Bþ rh

�
: ð53Þ

In fact, here rh is also changing with the choices of B, l, and
α. One might deduce that since α > 0, the fðRÞ black holes
have higher entropy than the conformal ones [4]. However,
we have to keep in mind that the conformal case [4] has a
larger radius for the event horizon as can be seen from the
metric function bðrÞ in Fig. 2. Using the relations (53) and
bðrhÞ ¼ 0, we can plot the entropy at the event horizon as a
function of α in Fig. 5.
With the increase of α, the entropy first decreases a little

bit to a minimum value, then increases always. Therefore,
for most values of α, the entropy of the fðRÞ black hole is
higher than the corresponding conformal (2þ 1)-dimen-
sional black hole [4], indicating that our solution is
thermodynamically preferred for most cases. It is worth
mentioning that the conformal case (α ¼ 0) is a local
maximum of the entropy with respect to α.

C. Conserved mass

For a D-dimensional spacetime manifold M, which is
topologically the product of a spacelike hypersurface and a
real line interval Σ × I , the total quasilocal energy is
defined as [81,82]

E ¼
Z
B
dD−2x

ffiffiffi
σ

p
ε; ð54Þ

where B≡ ∂Σ is the (D − 2)-dimensional boundary, σ is
the determinant of the induced metric σab on B, and ε is the
energy density.
The boundary ∂M consists of initial and final spacelike

hypersurfaces t0 and t00 respectively, and a timelike hyper-
surface T ¼ B × I joining them. The (D − 1)-metric γij on
T can be written according to the Arnowitt, Deser, Misner
(ADM) decomposition as

γijdxidxj¼−N2dt2þσabðdxaþVadtÞðdxbþVbdtÞ: ð55Þ

The conserved charge associated with a Killing vector field
ξi is defined as [81,82]

Qξ ¼
Z
B
dD−2x

ffiffiffi
σ

p ðεui þ jiÞξi; ð56Þ

where ui is the unit normal to spacelike hypersurfaces t0 or
t00, and ji is the momentum density.
We first calculate the quasilocal energy inside the

spacelike hypersurface r ¼ r0 ¼ const

E ¼
Z
B
dD−2x

ffiffiffi
σ

p
ε ¼

Z
B
dD−2x

ffiffiffi
σ

p ðk − ε0Þ; ð57Þ

where k ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
bðr0Þ

p
=r0 is the trace of the extrinsic

curvature and ϵ0 is the vacuum energy density.
For r0 → ∞, we have the global quasilocal energy

Eðr0Þ¼−
2πr0
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2B2 lnð 1αlÞ
ðαBþ1Þ4 þ1

s
−2πr0ε0ðr0ÞþO

�
1

r20

�
:

ð58Þ

To make it finite, the vacuum energy density has to be

ε0ðr0Þ ¼ −
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6α2B2 lnð 1αlÞ
ðαBþ 1Þ4 þ 1

s
; ð59Þ

then the global quasilocal energy becomes zero.
The conserved mass can be further calculated as

M ¼ −
Z
B
dD−2x

ffiffiffi
σ

p
εuiξi

¼ lim
r0→∞

Eðr0Þ
ffiffiffiffiffiffiffiffiffiffiffi
bðr0Þ

p
¼ lim

r0→∞

2πB2

αl2r0
−

3πB2

2r20α
2l2

þO
�
1

r40

�
¼ 0; ð60Þ

which, however, turns out to be zero.
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FIG. 5. The entropy S at the event horizon is plotted as a
function of α, where we have set B ¼ l ¼ 1.
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The fact that the conserved mass is zero has its root in the
fðRÞ theory. It is known that the conserved mass is related
to the constant term in the metric function that survives in
the asymptotic expansion at infinity when one is dealing
with (A)dS spacetime in (2þ 1) dimensions. We can split
the metric function in two parts. A part that is not
completely supported by the gravitational scale α denoted
by bðrÞGR;α;ϕ and a part that is completely supported by α,
i.e., when we turn off α these terms will vanish, denoted
bðrÞα;ϕ. We have bðrÞ ¼ bðrÞα;ϕ þ bðrÞGR;α;ϕ, where

bðrÞGR;α;ϕ ¼ −
3B2

l2ðαBþ 1Þ2 −
2B3

l2rðαBþ 1Þ þ
r2

l2
; ð61Þ

bðrÞα;ϕ¼
6αB2r

l2ðαBþ1Þ3þr2
6α2B2

l2ðαBþ1Þ4 ln
�

r
αlðBþrÞþ l

�
:

ð62Þ

It is clear that by setting α ¼ 0 in bðrÞα;ϕ, the term will
vanish, while bðrÞGR;α;ϕ will yield the conformal black hole
solution [4]. It can be seen that the bðrÞGR;α;ϕ part contains
a term that is related to the mass of the black hole

MGR;α;ϕ ¼ 3B2

l2ðαBþ 1Þ2 ; ð63Þ

while expanding the bðrÞα;ϕ term at infinity, we find that the
constant term will be related to the mass of the black hole
reads

Mα;ϕ ¼ −
3B2

l2ðαBþ 1Þ2 ; ð64Þ

which is the opposite of the mass term the bðrÞGR;α;ϕ term
generates. Hence the term that exists because of the fðRÞ
function in the metric (28), bðrÞα;ϕ yields a massless black
hole, and one can argue that the fðRÞ theory that satisfies
fRðrÞ ¼ sþ αr yields black holes with no mass. In fact, if
one ignores the scalar field and considers only

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
fðRÞ; ð65Þ

with our metric ansatz (6) the field equations will naturally
yieldfRðrÞ ¼ sþ αr,where a logarithmic term that depends
on α will cancel the mass the other terms generate yielding
massless black holes. For this reason, a more general metric
ansatz has to be considered that will yield different profiles
for fRðrÞ, as is indeed recently done in [57]. However, in our
case, since we are interested in comparing the fðRÞ black
holewith the GR one [4], we cannot consider a more general
metric ansatz, as the metric specifies the form of the scalar
field, which further specifies fRðrÞ as can be seen in (25).
The parameter α which provides a gravitational correc-

tion term to the Ricci scalar term in our fðRÞ theory, breaks

the conformal invariance of the GR case presented in [4]. In
the case of GR [4] the mass of the black hole depends on
the scalar charge B. In our theory in the metric function (6)
both the gravitational parameter and the scalar charge are
present and except for the mass term there is another term
which is proportional to r2 which appears in the metric
function because of the presence of both the scalar field
and the gravitational scale α. Considering the expansions
of bðrÞα;ϕ, bðrÞGR;α;ϕ at infinity in (61) and (62) we can say
that the massless black hole is a result of the cancellation
from the scalar field and the gravitational field contribu-
tions. A similar behavior was found in [29]. Breaking the
conformal invariance of the action of the MTZ black hole in
the Einstein frame through a particular scalar potential, a
massless black hole was found and this was attributed to the
cancellation of gravitational and scalar field contributions.

V. CONCLUSIONS

In this work, we considered fðRÞ gravity theory and
matter in the form of a self-interacting, nonminimally
coupled scalar field. Solving the field equations we found

that fRðrÞ ¼ dfðRÞ
dR ¼ 1þ αr where α is a nonlinear correc-

tion term of the Ricci scalar R, having dimensions of
inverse length. If α ¼ 0 we go back to GR recovering the
theory of a conformally coupled scalar field to gravity,
discussed in [4]. The parameter α introduces a gravitational
scale that breaks the conformal invariance. Calculating the
exact forms of the derivatives of fðRÞ function we deduced
that fRtotal

> 0 and fRR > 0 which makes our theory free of
ghost and tachyonic instabilities. We also calculated the
conserved mass of the black hole and interestingly we
found that the black hole is massless due to the cancellation
of gravitational and scalar field contributions to the mass
term. We attributed this effect to the breaking of the
conformal invariance due to the presence of the gravita-
tional parameter α.
We also studied the thermodynamics of the extended

black hole solution in fðRÞ gravity, including Hawking
temperature and the entropy. With the increase of α, the
Hawking temperature of the black hole first decreases
slightly, then grows up to a maximum, finally descends
until approaching zero, while the entropy first decreases to
a minimum value, then grows up with the increase of α.
Besides, the entropy of the black hole is higher than the
corresponding conformal (2þ 1)-dimensional black hole
[4] for most values of α, indicating that our solution is
thermodynamically preferred for most cases. We also
briefly discussed the stability of the obtained spacetime
under massive and massless scalar perturbations and
deduced that the obtained solution is stable under both
types of perturbations.
A possible extension of this work is to perform a

detailed thermodynamical analysis to examine the validity
of the first law of thermodynamics, as well as the
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thermodynamical stability and possible phase transitions of
the obtained black hole solution. One can also introduce a
linear Maxwell field in the action and study the interplay of
the gravitational parameter α and the charge Q on the
conformal invariance of the theory and see their effects on
the black hole solution. With the addition of electric charge
one can also study possible thermodynamical critical

behaviors, pointing out how the gravitational scale α affects
thermodynamics. Rotating solutions might also be consid-
ered. The properties of the resultant conformal field theory
could also be studied. The stability of the obtained
spacetime may be investigated, as well as the geodesic
motion of particles around the black hole solution and how
the gravitational parameter α affects the motion.
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