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In this work, we analyze some judiciously chosen solutions of Kerr black holes with scalar hair
(KBHsSH) of special interest for gravitational wave events originated from extreme mass ratio inspirals
(EMRIs). Because of the off-center distribution of energy density, these spacetimes are warped in such a
way that not all metric functions behave monotonically on the equatorial plane as in the exterior region of
Kerr black holes (KBHs). This has great impact on the orbital parameters, which in turn affect the imprints
on signals descendant from EMRIs in an adiabatic evolution. By investigating circular obit parameters, we
unveil what qualitative features could be present in the signals that are new and distinct compared to KBHs,
and we evolve some inspirals by employing the usual quadrupole formula approximation. We show that the
frequencies of the emitted signals behave nonmonotonically, i.e., they can backward chirp, and for some
particular cases they can become arbitrarily small, falling below LISA’s sensibility range. Finally, we
present two sets of waveforms produced by a noncircular EMRI in which the compact object follows a type
of geodesic motion typically present in spacetimes with a static ring, in which the compact object is
periodically momentarily at rest.
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I. INTRODUCTION

Since the first detection of gravitational waves (GW) in
2015 [1], the Advanced LIGO and advanced VIRGO GW
detectors have reported dozens of coalescing events, open-
ing a new window that allows us to observe the last stages
of life of binary black holes, binary neutron stars and more
recently neutron-star black hole binary systems [2,3]. The
ultimate success of this mission fueled further confidence
in the future Laser Interferometer Space Antenna (LISA),
designed to detect GW signals of much lower frequencies
than ground based observatories are capable of. LISA is
therefore expected to open windows to many different
astrophyiscal phenomena so far inaccessible to us, among
which are extreme mass ratio inspirals (EMRIs) [4]. These
comprehend a compact object (CO) inspiraling and

eventually being swallowed by a black hole, or an exotic
object, a few orders of magnitude more massive than it.
While the fluxes are solely due the orbiting CO, the
observed signal will fundamentally be characterized by
the central object and the orbital path followed by the CO.
Thus, it is of utmost importance to understand what kind of
imprints to expect from each massive body candidate in
order to tell them apart.
There exist in the literature different approaches to

investigating EMRIs. The most sophisticated one involves
solving the Teukolsky equation, which gives accurate
enough results to build templates for LISA. This, however,
is not only notoriously expensive computationally and
time-wise, but also thus far limited to Kerr spacetimes.
A more robust technique is the hybrid formalism which
combines exact strong-field geodesics with weak-field
radiation reaction formulas, which has been applied for
general motion around Kerr and quasi-Kerr spacetimes
[5–10], and spherically symmetric boson stars (BSs) [11].
In [12,13], background perturbations of a point particle
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inspiraling down a BS have been taken into account in the
overall multipolar fluxes revealing the existence of resonant
frequencies. The study of EMRIs around spinning central
objects of only numerical know solutions is still very
scarce. Recently, the imprint of surface reflectivity on
waveforms was investigated by considering rotating stars
of exterior Kerr vacuum, by employing the Teukolsky
formalism [14].
One of the major goals of LISA will be to probe the

nature of the supermassive CO in the center of the galaxies
through observations of EMRIs that will be ultimately a test
of our understanding of the strong field regime of gravity.
Different beyond-Kerr black hole alternatives were pro-
posed in certain extensions of Einstein’s theory (see, e.g.,
[15]). As particular cases of quadratic theories of gravity,
dynamical-Chern-Simons (dCS) and Einstein-scalar-
Gauss-Bonnet (EsGB) theories deviate from general rela-
tivity as the respective curvature invariants are coupled to a
dynamical scalar field allowing the growth of black hole
hair. Several EMRI investigations have been done in order
to probe these theories, both with post-Newtonian expan-
sions and the hybrid formalism. See [16–18] for EMRIs
within dCS theories, and [19] for both. In the work [20]
further applications than EMRIs, such as similar stellar
mass mergers is analyzed in both theories, while [21]
reported radiative effects in general quadratic theories.
More recently, the presence of a gravitational scalar charge
in the inspiraling CO has been considered in [22,23], and its
imprints in the observed signal can be strong even if the
central more massive object is a Kerr black hole.
An entirely different type of hairy black hole which

deserves attention is the Kerr black holes with synchron-
ized scalar hair (KBHsSH) first reported in the novel paper
of Herdeiro-Radu a few years ago [24,25]. These are
rotating black holes with solitonic hair, whose parameter
space continuously connects KBHs to BSs, thus sharing
features of both types of object. Still within the context of
general relativity, the discovery of such solutions amuses
for it evades the Kerr hypothesis and the no-hair theorems
thanks to the matter field not sharing the same isometries of
the spacetime, and the presence of superradiant instability
for sufficiently fast rotating black hole. The KBHsSH
resembles up to a certain extent a configuration that consist
of a central black hole surrounded by a boson star. Spinning
BSs, though, have a topology different from S2. In
particular, for the most fundamental mode of rotation,
the scalar field contour lines have a toroidal shape,
producing an off-center energy density distribution which
in turn causes the metric potentials to bear local extremes in
a similar fashion. This feature is also present in a large
portion of KBHsSH as well, whose spacetimes greatly
depart from those of Kerr BHs. Hence, it is natural to expect
large deviations also in astrophysical phenomena around
these objects, and to that end there has been studies on
their shadows [26,27], thin accretion disks [28], polish

doughnuts [29], Kα Iron lines [30], geodesic properties
[31] and their frequencies’ implications in accretion phe-
nomena [32], but nothing on GW emission yet. The
stability, and therefore the astrophysical relevance, of such
objects throughout its whole domain of existence is still an
open question. All KBHsSH contain ergoregions and are
thus prone to harmful superradiant instabilities similar to
those that grant their hypothetical existence. Mode stabil-
ities derived from linear perturbations indicate that these
solutions are unstable, but highly sensitive to their energy
scale and with instability timescales that grow with the
amount of hair [33,34], so that for the correct parameter
values the decaying time surpasses the age of the Universe.
We emphasize that we are interested in solutions that share
most features from rotating BSs and are therefore very
hairy.
In this work, we select KBHsSH solutions whose metric

functions are of particular interest, and we employ the
quadrupole hybrid formalism to orbits on the equatorial
plane of KBHsSH. These comprehend spacetimes endowed
with, or on the verge of developing a SR as described in
[35], and another with a Saturnlike ergoregion. By analyz-
ing their orbital parameters, we anticipate what traits to
expect during the inspiral which we evolve for the circular
case. Furthermore, a class of noncircular orbits nonexistent
around Kerr BHs is considered for producing waveforms,
which we qualitatively scrutinize.
In Sec. II we do a short review on KBHsSH, circular

geodesics and the quadrupole formula approximation. We
then combine them in Sec. III where we present the results
of this study. Finally, we summarize in Sec. IV. Throughout
this paper we assume G ¼ c ¼ 1, and restore to physical
units when convenient. In our notation, ∂μ ≡ ∂=∂xμ, and
the overdot is a total derivative with respect to the
coordinate time _x≡ dx=dt.

II. THEORY

A. Kerr black holes with scalar hair

The system consists of a compound configuration of
black hole with gravitating solitonic hair in the context of
general relativity and is described by the following action

S ¼
Z �

R
2
− gμν∂μΦ�∂νΦ − 2UðΦÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where R is the Ricci curvature, g is the metric determinant
and Φ is a complex scalar field whose mass and self-
interaction are determined by the potential U. In this work
we shall restrict our analysis to a massive scalar field, i.e.,
U ¼ mbΦΦ�=2. This action also describes pure BSs, i.e.,
with no null hypersurface, as well as bald black holes when
the field becomes trivial. Hairy black holes, nevertheless,
are only possible for rotating spacetimes.
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In adapted spherical coordinates ft; r; θ;φg, we employ
the following metric Ansatz

ds2 ¼ −N e2F0dt2 þ e2F1

�
dr2

N
þ dθ2

�

þ e2F2r2 sin2 θðdφ − ωdtÞ2; ð2Þ

where N ≡ 1 − rH=r, rH is the horizon radius and
fF0; F1; F2;ωg are the metric functions we need to solve
for, all dependent on both r and θ, that completely describe
the spacetime geometry. This spacetime is axisymmetric
and stationary, and possesses therefore two Killing vectors

associated with these isometries, ξμ ¼ ∂⃗t and χμ ¼ ∂⃗φ.
Note that the usual Kerr solution in Boyer-Lindquist
coordinates has a different parametrization since its radial
coordinate r̄ is not the same, but related via

r̄ ¼ rþ a2

r̄H
; r̄H ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð3Þ

Upon comparing hairy and bald solutions we shall use r
since it is possible to write KBHs in this form, but not
KBHsSH. The reason is that we can have overspinning
KBHsSH with a > M, and furthermore there is no unique-
ness for a fixed pair of fM; ag [24].
The underlying scalar field theory is endowed with a

Noether symmetry, since the global Uð1Þ transformation
Φ → eiαΦ leaves the system invariant. The associated
conserved current and charge are given by,

jμ ¼ −iðΦ�∂μΦ −Φ∂μΦ�Þ; Q ¼
Z
ΣnH

jμnμdV; ð4Þ

where Σ is the three-space hypersurface, H is the horizon
volume, dV is the volume element, nμ is the unit timelike
vector orthogonal to Σ, such that nμ ¼ ð−eF0

ffiffiffiffiffi
N

p
; 0; 0; 0Þ.

Bound state configurations of the scalar field theory at
hand have their stability properties intrinsically connected
to the conserved charge above. It is straightforward to see
that the static field possesses zero net charge, and hence the
scalar field must be time dependent. Similarly, rotating
solitons need also to be dependent on the axial coordinate
in order to have nontrivial momentum in this direction. This
is the case for solitons in flat spacetime, as well as for
gravitating solitons potentially combined with a black hole
[24,36–41]. Thus, the scalar field depends on all four
spacetime coordinates, but since the metric is stationary and
axisymmetric, this dependence must be explicitly harmoni-
cally in t and φ for consistency, as

Φ ¼ ϕðr; θÞeiðωstþmφÞ; ð5Þ

wherem is the integer winding number and ωs is its natural
frequency.

Hairy solutions do not occur for any values of the input
parameters frH;ωs; mg, for they are consequence of a
superradiance phenomenon. In the linearized regime, i.e.,
solving the Klein-Gordon equation on a Kerr background, a
transition to superradiance instability happens when the
horizon angular velocity matches the angular velocity of
the scalar field, ωH ¼ ωs=m. In the full nonlinear regime,
this relation arises as a regularity condition at the horizon.
Hence, the hair is synchronized with the hole.
BSs have the particular trait that their angular momen-

tum is quantized, and KBHsSH feature the same property
for the angular momentum stored in their hair, JΦ ¼ mQ.
Since the total angular momentum is the sum of the
contributions from the hole and the hair J ¼ JH þ JΦ, a
natural way of assessing how hairy a solution is given by
the dimensionless normalized charge q≡ JΦ=J, so that
q ¼ 0 for KBHs and q ¼ 1 for BSs.
All solutions used in this work are in their fundamental

mode of rotation, so m ¼ 1. The boson mass, mb, is
absorbed by the radial coordinate and the field’s frequency
such that the following quantities rescale as

r → rmb; ωs → ωs=mb; M → Mmb: ð6Þ

The domain of existence of KBHsSH is shown in Fig. 1
in an ωs vs. M diagram, together with the particular
solutions we work with in the next section. The domain
is bounded by three curves of solutions, each with its
specific properties. In blue we have the probe limit, i.e.,
Kerr BHs with nonbackreacting scalar clouds (q ¼ 0), in
red are the BS solutions (q ¼ 1; rH ¼ 0), and in green
extremal KBHsSH (rH ¼ 0).

B. Orbits on the equatorial plane

The orbits here considered are restricted to motion on the
equatorial plane, dθ ¼ 0. Stationarity and axisymmetry
grant two first integrals of motion for an orbiting particle or
CO around the black hole, namely the energy E ¼ −ut and

FIG. 1. Domain of existence of KBHsSH, which is bounded by
Kerr BHs with scalar cloud (blue), BSs (red) and extremal
KBHsSH (green). Orange dots with associated letters indicate
the solutions which are used in Sec. III.
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angular momentum L ¼ uφ, respectively, where we nor-
malized with respect to the mass of the orbiting object. The
equation of motion in the radial direction is taken from the
norm of the normalized four-velocity uμuμ ¼ −1,

Veff ≡ grr

�
dr
dτ

�
2

¼ gφφ
g2tφ − gttgφφ

ðE − VþÞðE − V−Þ; ð7Þ

where we defined and effective potential, an

V� ≡ L
gtφ
gϕϕ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðg2tφ − gttgφφÞ

q
gϕϕ

: ð8Þ

The angular velocity is defined as Ω≡ uφ=ut ¼ _φ. For
circular orbits, Veff ¼ dr=dτ ¼ d2r=dτ2 ¼ 0, Then the
orbital parameters, fE;L;Ωg are given in general form by

E ¼ −
gtt þ gtφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtφΩ − gφφΩ2
q ; ð9Þ

L ¼ gtφ þ gφφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtφΩ − gφφΩ2

q ; ð10Þ

Ω� ¼
−∂rgtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtφÞ2 − ∂rgtt∂rgφφ

q
∂rgφφ

: ð11Þ

The innermost circular orbit (ISCO) dwells at the
smallest radius for which the orbit is marginally stable,
meaning ∂2

rVeff ¼ 0. Thus, it is found for the smallest
radius r ¼ rISCO that satisfies the following equality,

E2∂2
rgφφþ2EL∂2

rgtφþL2∂2
rgtt−∂2

rðg2tφ−gttgφφÞ¼0: ð12Þ

We remark that unlike circular geodesics on the equa-
torial plane of Kerr BHs, for several KBHsSH there exists
more than one region of stable and unstable orbits [28,31].
Hence, we define the outermost unstable circular orbit
(OUCO) as the one with the largest radius to satisfy
Eq. (12).
Some of these spacetimes are endowed with a SR, i.e., a

ring of points where an orbiting particle is permanently at
rest with respect to a zero angular momentum observer at
infinity, or a fiducial observer. It is simple to see, from
Eq. (11) that the necessary condition to form the appro-
priate stage for it is the presence of a local extreme in the gtt
component of the metric outside of an ergoregion, so that
Ω− ¼ 0. Most solutions for which this happens contain in
reality two distinct SRs due to the presence of a local
minimum and a local maximum. In the region delimited by
the SRs, Ω− > 0 and therefore both orbits therein are
prograde but of different magnitudes for the orbital veloc-
ity, and furthermore both might be stable. Thus, it is

senseless to directly associate Ωþ and Ω− with corotating
and counterrotating orbits respectively.
Noncircular geodesics are found by solving Eq. (7) with

the appropriate initial conditions. In particular, we are
interested in a class of orbits absent around KBHs, in which
the particle or CO is periodically instantaneously at rest.
This is always possible if the spacetime features a SR.
A particle initially at rest at a radius beyond the one that
defines the SR rsr will counterrotate with respect to the
black hole in an orbit called pointy-petal due to the motion
it describes. If, however, it starts initially at rest between the
hole and rsr, it will corotate in a semi-orbit [35,42,43].

C. EMRIs

The most prominent contribution for GW produced in an
EMRI comes from the l ¼ 2 mode. Neglecting higher
modes, the mass moments reduce to the quadrupole
moment tensor [44]

I ij ¼
�Z

ρxixjd3x

�
STF

; ð13Þ

where STF means we cast the tensor in a symmetric trace-
free form and ρ ¼ μδ3ðx − xCOÞ and μ is the CO’s mass
normalized by the central object’s mass. This tensor is
evaluated in flat-space such that

x1 ¼ x¼ rcosφ; x2 ¼ y¼ rsinφ; x3 ¼ z¼ 0; ð14Þ

and we recall that the motion is restricted to the equatorial
plane. The fluxes are then given by,

μ _E ¼ 1

5
I
…

ijI
…

ij; ð15Þ

μ _Lk ¼
2

5
ϵkijÏ ijI

…

ij: ð16Þ

For circular orbits, Eqs. (15), (16) together with (13)
obviously yield the same results as taking the time
derivative of Eqs. (9) and (10),

μ _E ¼ 32

5
μ2r4Ω6; μ _Lk ¼

1

Ω
dðμEÞ
dt

: ð17Þ

Note that these are the fluxes measured at infinity and
therefore the loss of energy and angular momentum by the
CO should be minus these quantities.
The gravitational wave field is then given simply by

hij ¼
2

D
Ï ij; ð18Þ

whereD is the distance between the compact object and the
observer. However, the observable part is given by the
transverse traceless (TT) part of this tensor,
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hTTij ¼ PikhklPlj −
1

2
PijPklhkl; ð19Þ

for which Pij ¼ δij − ninj is the projection operator and ni
is the unit vector pointing from the observer to the source.
The polarization tensors Hþ

ij and H×
ij read

Hþ
ij ¼ pipj − qiqj; H×

ij ¼ piqj þ qipj; ð20Þ

in terms of the unit vectors

pi ≡ ϵijknjLk

jϵijknjLkj
; qi ≡ ϵijknjpk: ð21Þ

The GW field can thus be expanded into the polarization
modes, such as

hTTij ¼ AþðtÞHþ
ij þ A×ðtÞH×

ij; ð22Þ

and the wave’s amplitudes can be expressed by

AþðtÞ ¼
1

2
Hþ

ijh
TT
ij ; A×ðtÞ ¼

1

2
H×

ijh
TT
ij ; ð23Þ

which for orbits on the equatorial plane become

Aþ ¼ 2μ

D

��
Ω2r2 cos ð2φÞ þ 1

2
ð4Ω_rþ _ΩrÞr sin ð2φÞ

�
ð1þ cos2ΘÞ þ ð̈rrþ _r2Þ½sin2φ − cos2φcos2Θ�

�
; ð24Þ

A× ¼ 2μ cosΘ
D

½ð̈rrþ _r2 − 2Ω2r2Þ sin ð2φÞ þ ð4Ω_rþ _ΩrÞr cos ð2φÞ�; ð25Þ

where Θ is the inclination of the equatorial plane with
respect to the observer and ϕ0 is simply a phase constant.
Such approach is quite simplified in the sense that it

ignores the fluxes across the horizon and also higher
modes. Nevertheless, it catches the most prominent features
of an EMRI which can then be used as guidelines for
choosing specific solutions to be used with more sophis-
ticated methods. These methods, such as solving the
corresponding Teukolsky equation, are not only extremely
expensive computationally but currently pose notorious
difficulties when applied to rotating spacetimes which are
only prescribed numerically. So far we are yet to see a
breakthrough in the field that will allow us to build GW
templates for EMRIs in more general spacetimes. However,
for face-on configuration (Θ ¼ 0), simulations in KBHs
show a good agreement between the waveforms produced
with the quadrupole formula approximation and the
Teukolsky approach, mainly presenting differences in the
phase and amplitude factor. Hence, in what follows we
shall consider strictly this configuration. The evolution of
the norm of the amplitudes over a large timespan all the
way to the plunging, on the other hand, shows even
different qualitative behaviors for KBHs near extremality
when performed with these two methods.

III. CASE STUDIES

In what follows, we present three distinct solutions of
special interest to investigate their circular orbit structure
and evolve the fluxes when convenient. In the strong field,
these solutions—which are highlighted in Fig. 1—depart
considerably from Kerr and possess very different proper-
ties which are directly linked to their gtt component as

explained below. Since one solution can be continuously
deformed into another, it is more instructive to focus on
these cases to highlight what peculiar traits this region of
the parameter space might hold, rather than blindly
exhausting the full set of solutions. As mentioned in the
Introduction, we choose one solution which is very close to
developing a SR (Ω− gets very close to zero in a certain
region), one with the same horizon radius that contains a
pair of SRs and another one with two different ergoregions
on the equatorial plane. In order to compare each hairy
black hole with a Kerr black hole, we shall fix the mass and
horizon radius. Contrary to the usual approach of fixing the
mass and angular momentum, rendering solutions of equal
spin parameter, this is better suited to compare distances
from the hole. The spin parameter for the Kerr counterpart,
aK is then given by

aKerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − r2H

p
2

: ð26Þ

In Table I we present the parameters that define each of
the solutions used, together with the corresponding Kerr
spin parameter.
The gtt component of the metric of each solution is

drawn in Fig. 2 together with their Kerr counterparts.

TABLE I. Parameters defining each solution case.

rH M J ωs q aKerr aKerr=M

Case A 0.07 1.25 1.25 0.76 0.9992 1.25 0.99961
Case B 0.02 0.96 0.83 0.67 0.9996 0.96 0.99995
Case C 0.07 1.20 1.17 0.72 0.9984 1.20 0.99957

EQUATORIAL EXTREME-MASS-RATIO INSPIRALS IN Kerr … PHYS. REV. D 105, 044036 (2022)

044036-5



The vertical solid black line indicates the location of the
horizon. We note that for large distances, there is an
effective exterior region for the hairy solutions where the
metric approaches that of Kerr very quickly. Inside the
solitonic hair, however, the solution departs drastically
from that of a bald black hole. Case A almost forms a
saddle point in the gtt profile, which in turn will result in
retrograde orbits with very small absolute orbital velocity
around these points. Case B, on the other hand, features a
local maximum and a local minimum for this metric
function, where the retrograde orbital velocity would
become zero, forming a SR. However, the maximum is
located within an ergoregion and the local minimum hosts
an unstable orbit. Case C is depicted in the lower panel of
the figure and it features both a local maximum and
minimum out of an ergoregion, forming two SRs.

A. Case A

This solution dwells very close in the parameter space to
solutions containing a SR. As we have shown above, its gtt
component almost forms a saddle point. Even though its
profile still varies monotonically, that is not true for the
circular orbital velocities. In Fig. 3 we show the behavior of
Ωþ and Ω− (which here indeed correspond to prograde and
retrograde orbits) with respect to the radial coordinate. In
both cases, as one approaches the hole, there is a region of

counter chirping, i.e., where the absolute value of the
orbital velocity decreases, as opposed to what happens
around bald Kerr black holes. In the prograde case, all of
the circular orbits are stable after the ISCO, but in the
retrograde case there are two regions of instability. As one
decreases the radius, the orbits of hairy and bald black holes
become unstable at very nearby points, rOUCO ¼ 9.86 and
rISCO ¼ 10.0, respectively. Thereon, timelike circular orbits
soon cease to exist in the Kerr case, which has an
ergosurface of much larger radius than the hairy black
hole. Near this point, stability is regained in the KBHsSH
case and the counter chirping begins, with the absolute
value of the orbital velocity reaching a maximum very close
to zero. We shall point out that although our solution set is
discrete, they are continuously connected, and there should
be therefore solutions that come arbitrarily close to forming
a SR. As we keep decreasing r after the maximum of Ω−, it
decreases monotonically until the ISCO.
The energy profiles for the orbits discussed above are

shown in Fig. 4. We note that for both hairy and bald
solutions, the instabilities arise when the energy starts
growing with decreasing r, although this is not always the
case for KBHsSH. This illustrates well the plunging
phenomenon after the ISCO, for if the compact object
were to keep approaching the hole within circular orbits it
would need to gain energy.

FIG. 2. The gtt component of the metric against the radial coordinate for the three particular hairy solutions and their bald counterparts
of same ðM; rHÞ parameter pair. The vertical black line indicates the event horizon position. Top left: Case A. Top right: Case B. Bottom:
Case C.
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B. Case B

In Case B, the main differences arise for orbits charac-
terized by the Ω− eigenvalue. In Fig. 5 we depict the orbital
velocities as before, for both Ωþ and Ω−. Nonetheless,
whileΩþ always corresponds to prograde orbits,Ω− can be
both retrograde or prograde, depending on the radius of the
orbit. Overall, the same counter chirping behavior can be
seen in both types of orbits as before, and the main
difference in the Ωþ case lies on the fact that the orbital
velocity would start to grow again with decreasing radius
right at the ISCO. This hairy solution contains two
disconnected regions where gtt > 0, forming a Saturnlike
ergoregion. In the figure, the dot-dashed blue vertical line
indicates the inner surface of the outer ergoregion, and
gtt < 0 between the first dotted line and the dot-dashed one.
As before, there are two regions of unstable orbits for the
hairy solution. In between, we find both a region with no
timelike circular orbits and one of stable ones entirely
inside an ergoregion where Ω− > 0. The outer ergosurface
almost superposes that of the Kerr solution. For larger radii
we enter the effective exterior region where the geometry
negligibly deviates from Kerr and the orbital parameters
differ minimally. For instance, the ISCO of Kerr almost

coincides with the OUCO of the hairy solution, rISCO ¼
7.66 and rOUCO ¼ 7.44.
The energy of the orbiting particle, or compact object is

displayed in Fig. 6. Similarly as before, for the strictly
prograde case the instabilities arise once the energy starts
increasing as we approach the hole. The Ω− eigenvalue
case, shown in the right panel as before, unveils that most of
the stable orbits within the ergoregion are characterized by
negative energy states. In this particular case, at the ISCO
the energy is positive but still small, E ¼ 0.15, as KBHsSH
are remarkably efficient in energy conversion. The boost
this particle has with respect to a ZAMO at this point is less
than 0.12c, meaning some KBHsSH are also great sources
for energy extraction via the Penrose process, in contrast to
Kerr BHs that require boosts of over half the speed of light,
less likely to happen in astrophysical scenarios.

C. Evolution for A and B

The circular EMRI evolution within the quadrupole
approximation is performed for Cases A and B for both
Kerr and KBHsSH in the strictly prograde case with the
same initial conditions, where the compact object starts
from a distance large enough from the hole so that the

FIG. 4. Circular orbital energies for Case A. Left: Ωþ. Right: Ω−. The black vertical line represents the horizon while the dotted
vertical lines correspond to the ergosurfaces.

FIG. 3. Circular orbital velocities for Case A. Left: Ωþ. Right: Ω−. The black vertical line represents the horizon while the dotted
vertical lines correspond to the ergosurfaces.
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differences between both spacetimes in the same case can
be negligible. We also evolve the system for retrograde
orbits around the hairy black hole of Case A in order to
show that the dynamical time can become arbitrarily large,
and similarly the signal frequency arbitrarily small. In all
the cases, we assume a mass ratio of μ ¼ 10−6, and keep all
quantities of interest normalized by the BH’s mass.
Orbits characterized by the Ω− eigenvalue feature an

ISCO which is much closer to the hole in the hairy case
than for bald Kerr BHs. In the strictly prograde scenario the
roles are interchanged, as seen above. The CO reaches
much smaller radii around Kerr before plunging in than
around a hairy hole. However, the orbital velocity increases
monotonically around Kerr, while it can decrease during
the approach around a KBHSH, so that at the end of the
inspiral it is much less than the one around Kerr. Due to this
effect, the inspiraling time can be twice as much in the
hairy case.
Fig. 7 shows how r decreases with time for prograde

inspirals in Case A (left) and Case B (right), with their

respective bald Kerr counterpart. The ISCO for Kerr is
much closer to the horizon than it is for hairy BHs in Case
A, which the CO reaches in roughly half the time due to the
steady increase in the gtt profile. At very late times, we
notice an abrupt acceleration increment in the hairy case,
right before plunging, which is absent in Case B. This is a
consequence of the orbital velocities’ behavior and the
location of the ISCO, which happens right at the local
minimum of Ωþ in case B, but right after the velocity starts
increasing again in case A.
The observable frequency evolutions throughout the

inspirals are depicted in Fig. 8. As we anticipated from
the profile of the orbital velocities, these KBHsSH feature a
backward chirping as the CO moves inwards through the
scalar hair. Because these solutions are quite hairy, most of
the mass and angular momentum are stored in hair rather
than in hole and the frequencies slightly drop once the CO
leaves behind the region of highest energy density. For
similar reasons, they grow fairly smaller than those of CO
orbiting Kerr BHs of same ðrH;MÞ parameters. During the

FIG. 5. Circular orbital velocities for Case B. Left: Ωþ. Right: Ω−. The black vertical line represents the horizon while the dotted
vertical lines correspond to the ergosurfaces. The ergoregion of the hairy solution is of the Saturn type, meaning there are two
disconnected regions. The dot-dashed vertical line corresponds to the innersurface of the outer ergoregion, and the world line of fiducial
observers between the innermost dotted blue line and the dot-dashed one are thus timelike. Within the exterior ergoregion there are both
stable and unstable orbits for Ω−, which is positive in this region, and there are therefore two types of prograde circular orbits within an
interval of r.

FIG. 6. Circular orbital energies for Case B. Left: Ωþ. Right: Ω−. The vertical lines are the same as in the figure above. Within the
exterior ergoregion there are stable circular orbits with negative energy.
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last part of the evolution before plunging, we note a
transition to forward chirping in case A which is absent
in case B.
The retrograde evolution in Case A is displayed in Fig. 9

for illustration purposes only. We emphasize that the
solutions deform continuously through the set, i.e., con-
necting cases A and C, and therefore one might find
KBHsSH arbitrarily close to forming a SR. Once this

happens, taking only the quadrupole mode into account as
in this approximation of circular orbits inspirals, the
evolution stops entirely as the fluxes disappear when
Ω− ¼ 0. Hence, a CO initially at a radius r > rsr will
evolve until the SR, with decreasing orbital velocity until it
reaches this point and stops, never to plunge into the hole.
In this particular case example, the plunging occurs, but as
the CO approaches the region of almost zero slope in the gtt

FIG. 7. Time evolution of the radial coordinate of the prograde inspiraling compact object. Left: Case A. Right: Case B.

FIG. 8. Time evolution of the GW frequency of the prograde inspiraling compact object. Left: Case A. Right: Case B.

FIG. 9. Retrograde evolution for Case A. Left: orbital radius against time. Right: GW frequency against time. Assuming the central
object to be as massive as Sagittarius A*, the dashed interval of the curve falls below LISA’s sensitivity range. The whole evolution
shown happens over a timespan roughly ten times the age of the Universe for a central object whose mass is comparable to that of
Sagittarius A* and this is due to the fact that the BH in Case A is taken to be very close to developing a SR.
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component, the orbital velocity becomes extremely small,
reflecting the backwards chirping we see in the plotted
frequency, which falls out of the observable range of LISA.
Once this region is finally overcome, the evolution assumes
a more intuitive behavior, and the frequency grows until the
plunging. If the central object has a mass comparable
to Sagittarius A*, the evolution we considered (from
r0 ∼ 2.4M) would take roughly ten times the age of the
Universe. This, of course, highly dependents on how close
to the formation of a SR the hairy black hole is since at a SR
the evolution practically stops as explained above.
Furthermore, for a good part of the evolution, the signal
falls below LISA’s threshold frequency of detectability of
0.1 mHz as indicated by the dashed pattern in the figure,
with a minimum frequency of 7.2 μHz. All other hairy
cases here presented have signal frequencies of the same
order of magnitude as their Kerr counterpart, and therefore
fall within LISA’s range for the same range of BH’s masses.

D. Case C

The third solution we consider features two SRs, and
therefore a CO approaching from beyond the outermost one
would stop at it as described above. Performing an
evolution scheme would provide no more information than
can be inferred from the orbital parameters. Nevertheless,
we would like to draw attention to another exclusive feature
of spacetimes containing these rings, namely a possible
outspiral. In Fig. 10 we show the circular orbiting CO’s
energy against the radial coordinate. Within the shown
region there are three local extrema for the energy. The
innermost coincides with the ISCO and hence a change in
orbital stability. The other two (maximum in the middle and
minimum for the outermost) correspond to the SRs.
Remarkably, for this particular solution those are both
within the stable interval. If a CO in a initially eccentric
orbit manages to reach the region within the rings and

circularizes there, radiating energy via the fluxes would
cause it to move away from the hole, outspiraling until it
reaches the outermost ring, where the fluxes stop.
The existence of both in- and outspirals ensures that the

spacetime also hosts floating orbits from different flavors.
In the present work, we assumed that all emissions come
solely from the CO. In such case, there is a floating orbit at
each static ring. If one is to consider background pertur-
bations, the orbiting CO would induce a loss in the
black hole mass that could equal its own emission, as first
pointed out by Misner [45], creating a balanced system in
which both radiation effects cancel out and the orbit
does not shrink. For KBHsSH, the hole’s flux would be
of order

_EH ∼
ðr2ΩÞ5
ωs −Ω

; ð27Þ

which actually overcomes the quadrupole flux from the CO
in certain regions of the spacetime of several solutions. In
particular as Ω decreases in absolute value with decreasing
r. A much more meticulous analysis is required in order to
weight out the contributions of the influxes through the
event horizon. Moreover, one needs to consider scalar
perturbations due to the hair, which should cause further
surperradiant phenomenon, as discussed in detail in [46].
Note, however, that for KBHsSH the scalar field couples
only minimally to gravity.
A peculiar class of orbits found in spacetimes warped by

rotating BSs [35,42,43] is also present in KBHsSH con-
taining SRs. They are characterized by orbits where the
particle (or CO in our case) periodically finds itself
momentarily at rest and come in two kinds, discerned by
the location where the rest points occur. Orbits for which
the particle is at rest at the perastrons are called semi orbits,
while those for which it comes to a halt at the apoastrons
are called pointy-petal orbits, due to the curve they draw in

FIG. 11. Two peculiar types of orbits on the equatorial plane,
typical of spacetimes containing a static ring. The pointy-petal
orbit is retrograde, and the CO is periodically momentarily at rest
at a radius larger than rsr. The semiorbit is prograde and the CO is
periodically instantaneously at rest at a radius smaller than rsr.

FIG. 10. Energy of the CO against the radial coordinate in the
presence of two SRs. Three local extreme are found: the inner-
most occurs at the ISCO, and the following to at the SRs. Within
the last two the energy has a negative slope and therefore a
radiating CO in circular orbit in this region would outspiral until
reaching the outermost ring where the fluxes stop.
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a parametrized two dimensional space, as disclosed in
Fig. 11. The SR dwells between the rest points of each
orbit, and the pointy-petal is in retrograde motion while the
semiorbit in prograde (the sign of the eigenvalue Ω− flips
upon crossing the SR). No analogue class of orbits is found
in pure KBH spacetimes.
It is fairly reasonable to expect that a CO following such

exquisite orbits would leave imprints on its emitted GW
characteristic of the rest points, which could be used to
probe the existence of these BHs. Above, in Fig. 12 we
present the waveforms for each orbit over a whole cycle
around the central object by using Eqs. (24) and (25), but
neglecting the fluxes due to the narrowness of the timespan.
As these are not meant to be used as real templates for
future observations due to the limitation of this approach,
we do not perform any quantitative analysis on the out-
come, but rather entertain what strong features it unveils
that would in principle be present qualitatively also in the
real signal. In both cases, the signal from the second half
revolution (φ ∈ ½π; 2π�) is identical to the first (φ ∈ ½0; π�),
as expected from the location of the observer. Furthermore,
splitting the signal of each half revolution into two, the
second quarter mirrors the first one. The signals differ
considerably between each type of orbit, and in the case of
the pointy-petal one, we notice a localized change of

frequency that results in a bulgy signal in each quarter
revolution. As a consequence, the spectrum of the pointy-
petal is richer than the semiorbit, as shown in Fig. 13 where
we display the frequencies for both signals.

IV. CONCLUSIONS

In this work we have identified interesting inspiraling
and GWs properties of equatorial plane EMRIs in KBHsSH
spacetimes within the hybrid formalism, considering only
quadrupole moments contributions to the fluxes. By select-
ing particular solutions which share major features of
spacetimes warped by spinning solitons and BHs, we were
able to highlight specific traits of circular and noncircular
orbits which are absent in KBHs and that produce imprints
on the GW signal of an inspiraling CO.
In essence, when enough energy is stored in the solitonic

hair, its off-center distribution causes the metric functions to
portrait a nonmonotonic profile on the equatorial plane. In
turn, the circular orbit angular velocity also behaves non-
monotonically. This creates a backwards chirping in the GW
signal frequencyemittedby theCO,whichdoes not appear for
a CO circularly inspiraling towards a KBH.When comparing
KBHsSH with KBHs of same mass and horizon radius, the
signals emitted by a CO around Kerr present overall larger
frequencies than around KBHsSH, but those can be consid-
erably smaller for the early stages of the evolution.
If a static ring is present, within the quadrupole approxi-

mation, the fluxes become trivial at that point for a CO in
circular orbit with Ω− orbital velocity, and the evolution
stops, i.e., the CO remains at rest at this ring not emitting
any GW. On the other hand, solutions that get arbitrarily
close to forming a static ring serve as stage for COs that can
orbit the central object with Ω− arbitrarily close to zero and
the evolution timespan can be several times larger than the
age of the Universe for a KBHSH with Galactic center
proportions. In such case, part (but no all) of the emitted
signal can fall out of the LISA frequency range, as the
absolute value of Ω− becomes too small in an intermediate
region of the inspiral. As for the energy of the CO in
circular orbit, it can feature multiple local extrema. For

FIG. 12. Amplitudes calculated with the quadrupole approximation. Left: semiorbit. Right: pointy-petal orbits.

FIG. 13. Fast Fourier transform (FFT) of the GW signals of the
pointy-petal and semiorbit.
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example, for one of the selected solutions we consider
(Case C) two static rings are present and the energy profile
has a local maximum at the inner ring and a local minimum
at the outer one. If a sequence of events brings a CO to
circularize with orbital velocity Ω− in the region bounded
by these extrema, it would outspiral toward the outer ring
where once more the fluxes stop.
A particular class of equatorial noncircular orbits were

also analyzed, namely pointy-petal and semiorbits. These
are only realized in spacetimes containing static rings and
are characterized by the CO being periodically momen-
tarily at rest with respect to the fiducial observer. Without
considering radiation reaction, we constructed waveforms
for a whole revolution considering both orbits, again with
quadrupole approximation. In special for the pointy-petal
case, we note that periodic protuberances appear in the
signal, providing a richer spectrum of frequencies.
The current paper makes the first step in the investigation

on EMRIs in KBHsSH spacetimes. To our knowledge,
there is no work yet in the literature investigating EMRIs in
rotating spacetimes whose solutions are only known
numerically. The main purpose of this research was to
identify particular solutions of interest and pinpoint what

peculiarities they might reserve which could provide
significant imprints in the GW signals not present in the
Kerr case. In a future work, we intend to go further by using
more sophisticated and general approaches that will allow
us to check up to what extent the qualitative and quanti-
tative observations in the present paper remain true. In
particular, we will be interested whether eccentricities
could be developed quenching the stopping of the fluxes
and possibly the outspiral region. In another framework, by
adopting the generalized Teukolsky formalism, accurate
waveforms could be generated and the existence of floating
orbits could also be reliably probed.
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