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In terms of the complex angular momentum method, we compute the absorption cross section by
analyzing a massless test scalar field around conformally related black holes. First, we investigate circular
null geodesics and thereby prove a precondition for calculating the absorption cross section in the context
of conformally related black holes. Then we use the WKB approximation method to derive the analytic
expression of Regge frequency and the oscillation part of absorption cross sections. We find that this
oscillation part depends on the scale factor of conformal transformations. By taking the conformally related
Schwarzschild-Tangherlini black hole as an example, we show that this regular black hole has substantially
distinctive absorption behavior compared with singular black holes. Our result provides a new approach to
distinguish a regular black hole from a singular one.
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I. INTRODUCTION

Searching for a gravitational theory beyond general
relativity (GR) has never stopped since GR was realized
to be imperfect as a theory of gravitation. A serious defect
is that the black hole (BH) spacetimes in GR include
singularities, which is not an honest reflection of astro-
physical objects. Many gravitational theories have been
proposed to solve this problem, among which the con-
formal gravity is a promising attempt [1–3]. Among various
kinds of conformal gravitational theories that have been
constructed so far, we focus on the conformal gravity from
the scalar-tensor theory [4,5]. The reason is that some BH
solutions of GR belong to the family of solutions of the
scalar-tensor conformal gravitational theory. This is quite
interesting. When a gravitational theory has a conformal
invariance, one can obtain its metric by multiplying the
metric of GR by a scale factor. As a consequence, the
metric of the scalar-tensor conformal gravitational theory is
composed of a GR metric multiplied by a scale factor. The
black hole family obtained in this way is called conformally
related black holes (CR BHs) and is usually a kind of
regular black holes if a suitable scale factor is chosen.
The influence of scale factors is nontrivial. Significantly,

the singularity located at the center of a BH can be removed
[5,6] with a proper choice of scale factors, namely, CR BHs
are usually regular. Besides the removing of spacetime
singularities, various properties of CR BHs have been
studied, including the quasinormal modes (QNMs) and

dynamic stability [6–8], thermodynamics and phase tran-
sitions [6,9,10], and the violation of energy conditions in
CR BH spacetimes [11].
At present, the absorption property of CR BHs remains

to be investigated. The absorption cross section (ACS) of a
BH describes the interaction between the BH and the matter
around it, which reflects the essential property of the BH.
Some previous studies show [12–16] that the ACSs of
regular BHs associated with nonlinear electrodynamics
(NED) are not very different from those of the Reissner-
Nordström BH. With fine tuning of parameters, the ACSs
of the two kinds of BHs can even be the same. Because the
Reissner-Nordström BH is singular, this phenomenon turns
off the feasibility to distinguish the regular BHs associated
with NED from singular ones by their ACSs. Nevertheless,
the studies about the QNMs of CR BHs are inspiring,
which indicates that this dynamic property is greatly
distinct from that of singular BHs, depending on the choice
of a scale factor. Therefore, it is of considerable value to
investigate the ACSs of CR BHs from the perspective on
distinguishing a regular BH from a singular one.
We adopt the complex angular momentum (CAM)

method to derive the analytic expression of ACSs. The
CAMmethod was originally applied to scattering problems
in quantum mechanics. The pioneering progress was made
by Watson [17], see the monographs by Newton [18] and
Nussenzveig [19] for the details. The first application of the
CAM method to a gravitational theory was accomplished
by Chandrasekhar and Ferrari [20], followed by Andersson
and Thylwe [21,22] who applied this technique to the
Schwarzschild BH. Later, the connection between surface
waves and QNMs was established [23] in terms of the
CAM method, where the QNMs were regarded as the
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resonance modes of surface waves. Moreover, the related
progress was made [24–29], which provided a general
proposal to derive the analytic expression of Regge
frequency and thereby to work out ACSs. Incidentally,
one method rather than the CAMwas once proposed [30] to
calculate the Regge frequency. In this paper, we follow the
way suggested in Refs. [23–29] but generalize it for dealing
with CR BHs.
The outline of this paper is as follows. We briefly review

the scalar-tensor conformal gravity in Sec. II A and then the
BH scattering/absorption theory in Sec. II B. In Sec. III, we
prove a precondition for calculating Regge frequency in the
context of CR BHs. We derive in Sec. IV the analytic
expression of Regge frequency by using the third-order
WKB method and apply the formula to the models of
conformally related Schwarzschild-Tangherlini black holes
(CRST BHs). In Sec. V, we give the general expression of
ACSs and show its dependence on scale factors. We
illustrate our results by taking the models of CRST BHs
as examples. Finally, we present our conclusions in Sec. VI.

II. GENERAL FORMALISM

A. Conformal gravity

The conformal gravitational theory we consider is
described [4,5,7] by the action,

IC ¼ 1

2

Z
dDx

ffiffiffiffiffiffi
−g

p
ϕ

�
1

4

D − 2

D − 1
Rϕ −□ϕ

�
; ð1Þ

where ϕ is a massless scalar field, R the Ricci scalar, and
□≡ gμν∇μ∇ν the covariant d’Alembertian. Equation (1) is
invariant under the conformal transformations of gμν and ϕ
as follows:

gμν → SðxÞgμν; ð2Þ

ϕ →½SðxÞ�ð2−DÞ=4ϕ; ð3Þ

where SðxÞ denotes the scale factor.
There are many solutions of action Eq. (1). In general,

gμν and ϕ depend on time. Here we focus on static solu-

tions. In particular, if we choose ϕ ¼ 2
ffiffiffiffiffiffiffi
D−1
D−2

q
, the con-

formal gravity reduces to the Einstein gravity. Therefore,
there is a family of solutions in conformal gravity Eq. (1).
This family of solutions is conformally related to the
specific solution in the Einstein gravity through the
conformal transformations Eqs. (2) and (3). Based on
the metric of a spherically symmetric BH in the Einstein
gravity, one can write [4,5,7] the metric of the family of
conformally related BHs,

ds2 ¼ SðrÞ
�
−fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩD−2

�
; ð4Þ

where fðrÞ is the lapse function in the Einstein gravity.
Equation (4) is asymptotically flat in the D-dimensional
spacetime because both SðrÞ and fðrÞ equal one in the limit
of r → ∞. With special choices of the scale factor, the
spacetime singularity of Eq. (4) can be removed, which can
be verified [4,6,8] by finite curvature invariants and
complete geodesics in the spacetime.

B. Review of scattering/absorption theory

To study the dynamics of spacetime [Eq. (4)], one can
investigate the simplest case; the minimally coupled mass-
less scalar field. The dynamics of this test scalar field is
described by the Klein-Gordon equation,

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
gμν∂νΦ ¼ 0: ð5Þ

The decomposition of Φ in the background of Eq. (4) has
been introduced [6],

Φ¼
X
l;m

1

rðD−2Þ=2½SðrÞ�ðD−2Þ=4 e
−iωtψlðrÞYlmðθ1;…;θD−2Þ;

ð6Þ

where Ylmðθ1;…; θD−2Þ stands for the spherical harmonics
of D − 2 angular coordinates, 0 ≤ ðθ1; θ2;…; θD−3Þ ≤ π,
and 0 ≤ θD−2 ≤ 2π. With the help of Eqs. (5) and (6), one
can obtain the Schrödinger-like equation,

∂2
r�ψl þ ðω2 − VlÞψl ¼ 0; ð7Þ

with the effective potential,

Vl¼fðrÞ
�
lðlþD−3Þ

r2
þðfðrÞðrðD−2Þ=2½SðrÞ�ðD−2Þ=4Þ0Þ0

½SðrÞ�ðD−2Þ=4rðD−2Þ=2

�
;

ð8Þ

where the “tortoise” coordinate r� is defined as dr� ≡
dr=fðrÞ and the prime means the derivative with respect to
the radial coordinate. The scalar wave is purely ingoing
at the event horizon and outgoing at the spatial infinity.
Under these boundary conditions, the eigenvalues ω
of the master equation [Eq. (7)] are discrete. Therefore,
one obtains [31–34] eigenmodes, i.e., the QNMs as
well as the complex quasinormal frequencies (QNFs),
ω ¼ ωln − iΓln, where ωln represents the oscillation
and Γln the inverse of a damping time scale.
The dynamics of the test scalar field can also be

understood in the perspective of BH scattering. The
boundary conditions can be written explicitly as follows:
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(a) At the event horizon, the partial wave ψlðrÞ is purely
ingoing without reflection,

ψlðrÞ ∼ e−iωr� ; r� → −∞; ð9Þ

(b) At the spatial infinity, ψlðrÞ is asymptotically free,

ψlðrÞ ∼
1

TlðωÞ
e−iωr�þiðlþD−3

2
Þπ
2
−iπ

4

−
SlðωÞ
TlðωÞ

eþiωr�−iðlþD−3
2
Þπ
2
þiπ

4; r� → þ∞:

ð10Þ
Note that 1=TlðωÞ is the reflective coefficient, SlðωÞ
is the element of diagonalized scattering matrix, and
SlðωÞ=TlðωÞ is the transmitted coefficient. The terms
�iðlþ D−3

2
Þ π
2
∓ i π

4
on the exponentials are relative

phase differences between the reflective and trans-
mitted waves.

According to the boundary conditions, the scalar wave is
asymptotically free at the spatial infinity, and thus it does
not encounter any potential barriers. Therefore, the reflec-
tive coefficient in Eq. (10) should vanish, while the trans-
mitted coefficient should survive. This implies that the
boundary conditions pick the poles of the scattering matrix,
at which both TlðωÞ and SlðωÞ are infinite, but the ratio
SlðωÞ=TlðωÞ is finite. As SlðωÞ is a function of both l and
ω, the poles can be interpreted in two perspectives.
In the first perspective, SlðωÞ is analytically continued

to the complex ω-plane (ω ∈ C), while l ∈ N remains
unchanged. In this case, the poles of the scattering matrix
correspond to the QNFs. As a consequence, on the
complex-ω plane, the scattering matrix SlðωÞ can be
expanded in the vicinity of QNFs,

SlðωÞ ∝
Γln

2ðω − ωln þ iΓlnÞ
; ð11Þ

which is the Breit-Wigner type of resonances; see
Appendix A of Ref. [25] for the details.
In the second perspective we adopt in this paper, SlðωÞ is

analytically continued to the complex λ-plane (CAM plane)
by defining λ≡ lþ ðD − 3Þ=2 first and then analytically
continuing λ to be complex, while ω ∈ R remains
unchanged. In this case, the poles of the scattering matrix
correspond to the Regge poles. Conventionally, the nota-
tion λnðωÞ, n ¼ 1; 2;…, is used to distinguish different
Regge poles.
As suggested in Refs. [23–29], one can interpret reso-

nances as the surface waves traveling around a photon
sphere and damping simultaneously. ReλnðωÞ denotes the
speed of circumnavigation of surface waves and ImλnðωÞ
the damping of surface waves. In fact, the QNFs are closely
related to the Regge poles. When the resonances happen,
i.e., the real part of Regge poles satisfies

Re λnðωlnÞ ¼ lþD − 3

2
; l ∈ N; ð12Þ

one can solve the real part of QNFs. In addition, the minus
imaginary part of QNFs can be determined by the Regge
poles,

Γln ¼
ImλnðωÞ d

dωReλnðωÞ
½ ddωReλnðωÞ�2 þ ½ ddω ImλnðωÞ�2

				
ω¼ωln

: ð13Þ

III. PROOF OF A PRECONDITION FOR
CONFORMALLY RELATED BLACK HOLES

In this section, our main purpose is to prove a precon-
dition used in the calculation of Regge frequency for
CR BHs.
The location of a photon sphere of a static spherically

symmetric BH is determined [35,36] by the following
formulas for the trivial scale factor, SðrÞ ¼ 1,

f0ðrcÞ −
2

rc
fðrcÞ ¼ 0; ð14Þ

f00ðrcÞ −
2

r2c
fðrcÞ < 0: ð15Þ

In fact, according to Ref. [25], one can approximatively
obtain r0 ≈ rc in the large-l limit, where r0 stands for the
peak of the effective potential Vl [Eq. (8)]. We need this
approximate result in CR BHs with the nontrivial SðrÞ. Our
way to prove is straightforward: If rc and r0 are indepen-
dent of SðrÞ in the large-l limit, the approximate result
holds for CR BHs. This is what we call the precondition.

A. rc independent of SðrÞ
We start with the line element Eq. (4) and restrict our

discussion, without loss of generality, to the circular
geodesic orbits within the equatorial plane. As shown by
Chandrasekhar [35] and Cardoso [36], the Lagrangian of a
particle moving along one of such obits is1

2L ¼ −SðrÞfðrÞ_t2 þ SðrÞ
fðrÞ _r

2 þ SðrÞr2 _φ2; ð16Þ

where the dot denotes the derivative with respect to the
affine parameter τ, and φ stands for the azimuthal angular
coordinate. The generalized momenta then take the forms,

pt ¼ −SðrÞfðrÞ_t≡ −E; ð17aÞ

pφ ¼ SðrÞr2 _φ≡ L; ð17bÞ

1Due to the different sign conventions, Eq. (16) is different
from the Lagrangian in Ref. [36] by a minus sign.
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pr ¼
SðrÞ
fðrÞ _r; ð17cÞ

where E and L are conserved energy and angular momen-
tum of the moving particle, respectively. Solving Eq. (17)
for _t and _φ, we obtain

_t ¼ E
SðrÞfðrÞ ; ð18Þ

_φ ¼ L
SðrÞr2 ; ð19Þ

and thus give the conserved Hamiltonian,

2H ¼ 2ðpt_tþ pφ _φþ pr _r − LÞ

¼ −SðrÞfðrÞ_t2 þ SðrÞ
fðrÞ _r

2 þ SðrÞr2 _φ2

¼ −
E2

SðrÞfðrÞ þ
SðrÞ
fðrÞ _r

2 þ L2

SðrÞr2
≡ δ1; ð20Þ

where δ1 ¼ 0 stands for null geodesics, while δ1 ¼ −1 for
timelike ones. Equation (20) can be recast into

_r2 ¼ Vr; ð21Þ

with

Vr ¼
fðrÞ
SðrÞ

�
δ1 −

L2

SðrÞr2 þ
E2

SðrÞfðrÞ
�
; ð22Þ

where Vr denotes the geometric potential of particles. We
note that Vr is different from the effective scattering
potential Vl.
The photon sphere consists of circular null geodesics at

r ¼ rc, and these null geodesics are unstable orbits such
that

Vrjr¼rc ¼ 0 ¼ V 0
rjr¼rc ; ð23Þ

and

V 00
r jr¼rc < 0: ð24Þ

Equation (23) determines the value of rc, while Eq. (24)
shows the instability of orbits. We can write Eq. (23)
explicitly,

Vrjr¼rc ¼ 0 ⇒
E2

fc
−
L2

r2c
¼ 0; ð25Þ

and

V 0
rjr¼rc ¼ 0 ⇒

�
E2

½SðrÞ�2 −
L2fðrÞ
r2SðrÞ

�0				
r¼rc

¼ 0; ð26Þ

where fc means fðrcÞ. The similar notation is also applied
to the scale factor, i.e., Sc ≡ SðrcÞ, S0c ≡ S0ðrcÞ, etc., in the
following contexts. Equation (26) yields

2S0crcðfcL2 − E2r2cÞ − L2Scð2fc − rcf0cÞ ¼ 0: ð27Þ
Note that none of rc, Sc, S0c, and L equal zero. Substituting
Eq. (25) into Eq. (27), we exactly obtain Eq. (14) which is
associated with the trivial scale factor, SðrÞ ¼ 1. Hence, we
prove that rc is independent of SðrÞ. In general, it is
reasonable that the scale factor does not alter the location of
photon spheres, since the equation of motion of null
geodesics is conformally invariant.

B. r0 independent of SðrÞ
Now we analyze Vl for l ≫ 1. Vl has the following

behavior in large-l regimes for the CR BHs described by
Eq. (4),

Vl ∼
l2fðrÞ
r2

; l ≫ 1; ð28Þ

which can simply be verified when l ≫ 1 is applied to
Eq. (8) and the terms proportional to l0 and l1 are omitted.
Note that Eq. (28) is exactly same as Eq. (44) of Ref. [36].
Therefore, the peak r0 of Vl in large-l regimes is also
independent of SðrÞ.
As a summary of Sec. III, the approximate result, r0 ≈ rc

for l ≫ 1, still holds for CR BHs with the nontrivial SðrÞ
because both r0 and rc are not altered by SðrÞ in the large-l
limit. Incidentally, this implies that the geometric ACS,
which will be discussed in detail in Sec. V, is independent
of SðrÞ.

IV. REGGE FREQUENCY OF CONFORMALLY
RELATED STATIC SPHERICALLY SYMMETRIC

BLACK HOLES: WKB METHOD

In this section we calculate the Regge frequencies for CR
BHs in terms of the third-order WKB method, which is the
basis for us to investigate ACSs in the next section.

A. Regge frequency: General expression

Now we derive the analytic expression of Regge
frequency via the third-order WKB method. Originally,
the WKB method was used to derive the eigenvalues of
Schrödinger equation in quantum mechanics; see Ref. [37]
for a pedagogical introduction. Then it was introduced into
BH perturbation theory for the calculation of QNMs,
because the master equations of perturbative fields have
the Schrödinger-like form and the QNMs correspond to the
eigenvalues of Schrödinger-like equations. The first-order
WKB method was applied by Schutz and Will [38], the
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third-order one by Iyer andWill [39], the sixth-order one by
Konoplya [40], and the higher-order one by Konoplya et al.
[41,42]. Recently, the WKB method has also been used to
calculate the Regge frequency in BH perturbation theory;
see Ref. [23–25] for the details.
Here we resort to the third-order WKB method. As

pointed out in Ref. [25], although the higher-order WKB

method has higher precision, the complexity of calculations
also grows greatly, which gives rise to a too complicated
analytic expression. As a primary application to CR BHs,
the third-order WKB is good enough, which can be seen in
the following discussions.
We start with the third-order WKB equation [39] in

which the QNFs satisfy

ω2 ¼ ½V0ðλÞ þ ½−2Vð2Þ
0 ðλÞ�1=2Λ̄ðλ; nÞ� − iαðnÞ½−2Vð2Þ

0 ðλÞ�1=2½1þ Ω̄ðλ; nÞ�; ð29Þ

where ω ∈ Rþ, λ is Regge frequency, λ ∈ C, n is overtone number, n ∈ Nþ, and αðnÞ≡ n − 1=2. In Eq. (29) the two
factors, Λ̄ and Ω̄ take the forms,

Λ̄ðλ; nÞ ¼ 1

½−2Vð2Þ
0 ðλÞ�1=2

�
1

8

Vð4Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�
1

4
þ ½αðnÞ�2

�
−

1

288

�
Vð3Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�2

ð7þ 60½αðnÞ�2Þ
�
; ð30Þ

and

Ω̄ðλ; nÞ ¼ 1

½−2Vð2Þ
0 ðλÞ�

�
5

6912

�
Vð3Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�4

ð77þ 188½αðnÞ�2Þ

−
1

384

�½Vð3Þ
0 ðλÞ�2Vð4Þ

0 ðλÞ
½Vð2Þ

0 ðλÞ�3
�
ð51þ 100½αðnÞ�2Þ þ 1

2304

�
Vð4Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�2

ð67þ 68½αðnÞ�2Þ

þ 1

288

�
Vð3Þ
0 ðλÞVð5Þ

0 ðλÞ
½Vð2Þ

0 ðλÞ�2
�
ð19þ 28½αðnÞ�2Þ − 1

288

�
Vð6Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�
ð5þ 4½αðnÞ�2Þ

�
: ð31Þ

Moreover, the notation VðpÞ
0 ðλÞ stands for the derivatives of

Vλ−D−3
2
ðrÞ with respect to the tortoise coordinate at the peak

of the potential,

VðpÞ
0 ðλÞ ¼ dp

dr�p
Vλ−D−3

2
ðr�Þ

				
r�¼ðr�Þ0

; ð32Þ

where Vλ−D−3
2
ðrÞ corresponds to VlðrÞ that is now regarded

as a function of complex λ after the analytic continuation of
l. We shall solve Eq. (29) approximatively by assuming
jλj ≫ 1 and jReλj ≫ jImλj. Such an assumption is just the
precondition r0 ≈ rc for l ≫ 1 that we just proved in the

above section. So we evaluate VðpÞ
0 ðλÞ at rc rather than at r0.

As done in Ref. [25], we also adopt ηc in order to simplify
the formulas of Regge frequency,

ηc ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fc − 2r2cf

ð2Þ
c

q
: ð33Þ

Again taking Eqs. (8), (32), and (33) into consideration,
we compute the coefficients in Eqs. (29), (30), and (31).

These coefficients are related to VðpÞ
0 ðλÞ and put in

Appendix A.

Now it is ready to solve Eq. (29). By using Eqs. (30)–
(32) together with Appendix A, we derive the general
formula of the Regge frequency of CR BHs,

λnðωÞ ≈
�
r2c
fc

ω2 þ an þ 2η2c½αðnÞ�2εnðωÞ
�
1=2

þ iηcαðnÞ½1þ εnðωÞ�; ð34Þ
where

εnðωÞ ¼
bn

ðr2c=fcÞω2 þ an þ η2c½αðnÞ�2
: ð35Þ

Note that the formula has a similar form to that in Ref. [25],
but the coefficients an and bn are different from those in
Ref. [25]. The condition, jλj ≫ 1 and jReλj ≫ jImλj, leads
to ω ≫ 1. Thus we can further expand λnðωÞ in series of ω,

λnðωÞ ¼
�
rcffiffiffiffiffi
fc

p ωþ an
ð2rc=

ffiffiffiffiffi
fc

p Þ
1

ω

�

þ iηcαðnÞ
�
1þ bn

ðr2c=fcÞ
1

ω2

�
þ O

ω→þ∞

�
1

ω3

�
: ð36Þ

Here an and bn depend on Sc and its derivatives SðpÞc , and
they encode nontrivial corrections to the Regge frequency
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via the scale factor. Such nontrivial corrections show the
major difference between the conformally related BHs and
nonconformal ones. The expressions of an and bn are
presented in Appendix B. According to Eq. (36), the
influence of SðrÞ is efficiently suppressed in large-ω
regimes. As a consequence, in high-frequency regimes,
λnðωÞ ≈ rc=

ffiffiffiffiffi
fc

p
ωþ iηcαðnÞ, i.e., the Regge frequency

becomes independent of the scale factor, which is con-
sistent with the result of nonconformal BHs.

B. Regge frequency: The conformally related
Schwarzschild-Tangherlini black hole

As an application of the result obtained in the above
subsection, we give the expression of Regge frequency for
conformally related Schwarzschild-Tangherlini black holes
(CRST BHs) in the D-dimensional spacetime.
When SðrÞ ¼ 1, CRST BHs return to ST BHs. For the

two types of BHs, the lapse function is of the following
form,

fðrÞ ¼ 1 −
�
rh
r

�
D−3

; ð37Þ

with

rD−3
h ¼ 16πM

ðD − 2ÞAD−2
; AD−2 ¼

2πðD−1Þ=2

Γ½ðD − 1Þ=2� ; ð38Þ

where M is the mass, rh is the radius of event horizons,
AD−2 is the area of unit sphere SD−2, and Γ½x� is the Gamma
function. Using Eqs. (14), (33), (37), and (38), we compute
the parameters, rc and ηc,

rc ¼ rh

�
D − 1

2

�
1=ðD−3Þ

; ð39aÞ

ηc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

p
: ð39bÞ

For illustration, we derive the Regge frequencies for the
CRST BHs in four-, five-, and six-dimensional spacetimes,
respectively, by using Eq. (36) together with Appendix B.
(a) D ¼ 4 For the four-dimensional spacetime, consider-

ing Eqs. (37), (39a), and (39b), we have

rc ¼
3

2
rh ¼ 3M; ð40aÞ

ηc ¼ 1; ð40bÞ

rcffiffiffiffiffi
fc

p ¼ 3
ffiffiffi
3

p
M: ð40cÞ

Thus, we obtain the Regge frequency from Eq. (36)
and Appendix B,

λnðωÞ ¼
�
3

ffiffiffi
3

p
Mωþ

ffiffiffi
3

p
an

18Mω

�
þ iαðnÞ

�
1þ bn

27M2ω2

�
þ O

ω→þ∞

�
1

ω3

�
; ð41Þ

with

an ¼ −
29

216
þ 1

4S2c
½3M2ðSð1Þc Þ2 − 6M2ScS

ð2Þ
c − 8MScS

ð1Þ
c � þ 5½αðnÞ�2

18
; ð42aÞ

bn ¼ −
371

15552
−

1

8S4c
fS3c½9M4Sð4Þc þ 42M3Sð3Þc þ 28M2Sð2Þc − 4MSð1Þc �

− 3S2c½6M4ðSð2Þc Þ2 þ 9M4Sð1Þc Sð3Þc þ 32M3Sð1Þc Sð2Þc þ 8M2ðSð1Þc Þ2�

− 27M4ðSð1Þc Þ4 þ 9M2ScðSð1Þc Þ2½7M2Sð2Þc þ 6MSð1Þc �g − 305½αðnÞ�2
3888

: ð42bÞ

(b) D ¼ 5 Similarly, for the five-dimensional spacetime, we have

rc ¼
ffiffiffi
2

p
rh ¼ 4

ffiffiffiffiffiffi
M
3π

r
; ð43aÞ

ηc ¼
ffiffiffi
2

p
; ð43bÞ

rcffiffiffiffiffi
fc

p ¼ 4

ffiffiffiffiffiffiffi
2M
3π

r
: ð43cÞ
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The corresponding Regge frequency reads

λnðωÞ ¼
� ffiffiffi

2
p

rcωþ an
2

ffiffiffi
2

p
rcω

�
þ i

ffiffiffi
2

p
αðnÞ

�
1þ bn

2r2cω2

�
þ O

ω→þ∞

�
1

ω3

�
; ð44Þ

with

an ¼ −
5

16
þ 1

2πS2c
½MðSð1Þc Þ2 − 4MScS

ð2Þ
c − 5

ffiffiffiffiffiffi
3π

p ffiffiffiffiffi
M

p
ScS

ð1Þ
c � þ 3½αðnÞ�2

4
; ð45aÞ

bn ¼ −
101

512
−

1

24π2S4c
fS3c½16M2Sð4Þc þ 60

ffiffiffiffiffiffi
3π

p
M3=2Sð3Þc þ 84πMSð2Þc − 21

ffiffiffi
3

p
π3=2

ffiffiffiffiffi
M

p
Sð1Þc �

− S2c½40M4Sð1Þc Sð3Þc þ 120
ffiffiffiffiffiffi
3π

p
M3=2Sð1Þc Sð2Þc þ 24M2ðSð2Þc Þ2 þ 75πMðSð1Þc Þ2�

− 24M2ðSð1Þc Þ4 þ 12MScðSð1Þc Þ2½5
ffiffiffiffiffiffiffiffiffiffi
3πM

p
Sð1Þc þ 6MSð2Þc �g − 31½αðnÞ�2

128
: ð45bÞ

(c) D ¼ 6 As done in the above two cases, for the six-dimensional spacetime, we have

rc ¼
�
5

2

�
1=3

rh ¼
ffiffiffiffiffiffiffiffiffiffi
15M3

p

22=3
ffiffiffi
π3

p ; ð46aÞ

ηc ¼
ffiffiffi
3

p
; ð46bÞ

rcffiffiffiffiffi
fc

p ¼ 55=6
ffiffiffiffiffi
M3

p

22=3
ffiffiffiffiffiffiffi
3π26

p ; ð46cÞ

and write the corresponding Regge frequency,

λnðωÞ ¼
� ffiffiffi

5

3

r
rcωþ an

2
ffiffiffiffiffiffiffiffi
5=3

p
rcω

�
þ i

ffiffiffi
3

p
αðnÞ

�
1þ bn

ð5=3Þr2cω2

�
þ O

ω→þ∞

�
1

ω3

�
; ð47Þ

with

an ¼ −
31

60
−

3

20π2=3Sc
½ð30MÞ2=3Sð2Þc þ 12

ffiffiffiffiffiffiffiffiffiffiffiffi
30πM3

p
Sð1Þc � þ 7½αðnÞ�2

5
; ð48aÞ

bn ¼ −
409

720
−

3

800π4=3S3c
fS2c½15

ffiffiffiffiffi
30

3
p

M4=3Sð4Þc þ 480
ffiffiffi
π3

p
MSð3Þc

þ 56ð30πÞ2=3M2=3Sð2Þc − 192
ffiffiffiffiffi
30

3
p

π
ffiffiffiffiffi
M3

p
Sð1Þc �

− Sc½15
ffiffiffiffiffi
30

3
p

MðSð2Þc Þ2 þ 30
ffiffiffiffiffi
30

3
p

MSð1Þc Sð3Þc

þ 840
ffiffiffi
π3

p
M2=3Sð1Þc Sð2Þc þ 56ð30πÞ2=3

ffiffiffiffiffi
M3

p
ðSð1Þc Þ2�

þ 30M2=3ðSð1Þc Þ2½12 ffiffiffi
π3

p
M1=3Sð1Þc þ

ffiffiffiffiffi
30

3
p

M2=3Sð2Þc �g − 91½αðnÞ�2
180

: ð48bÞ
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From the above Regge frequencies of CRST BHs, we

find that an and bn depend on M, Sc, and SðpÞc in a subtle
way. In the second terms of an and bn, the combination of

M, Sc and SðpÞc is balanced such that the dimensions of all
subterms in these second terms offset precisely with one
another, which makes an and bn exactly dimensionless. The
powers of M in an and bn are not uniform in different
dimensional spacetimes because the dimension of mass
changes with spacetime dimensions as shown in Eq. (38).

V. ABSORPTION CROSS SECTION

Based on the Regge frequency performed above, we are
now ready to compute the ACSs for CR BHs. This section
is divided into two subsections, where one focuses on the
analytic expression of ACSs and the other to the illustration
of ACSs in the models of CRST BHs.

A. Analytic expression of absorption cross sections

As shown in Refs. [26,43], the ACS of a D-dimensional
static spherically symmetric BH reads2

σabsðωÞ ¼
πðD−2Þ=2

Γ½ðD − 2Þ=2�ωD−2

Xþ∞

l¼0

Γ½lþD − 4�
Γ½l�

× ð2lþD − 3ÞΓlðωÞ; ð49Þ

where ΓlðωÞ denotes the graybody factor.3 Further, based
on a modified version of Sommerfeld-Watson transforma-
tion [18], σabs can be analytically continued [26] such that
lþ ðD − 3Þ=2≡ λ ∈ C. After these performances, one
can rewrite σabs which consists of three parts,

σabsðωÞ ¼
2πðD−2Þ=2

Γ½ðD − 2Þ=2�ωD−2

Z þ∞

0

Γ½λþ ðD − 3Þ=2�
Γ½λ − ðD − 5Þ=2� λΓλ−D−3

2
ðωÞdλ

−
4πD=2

Γ½ðD − 2Þ=2�ωD−2 Re
�Xþ∞

n¼1

Γ½λnðωÞ þ ðD − 3Þ=2�
Γ½λnðωÞ − ðD − 5Þ=2�

eiπ½λnðωÞ−ðD−3Þ=2�λnðωÞγnðωÞ
sin½πðλnðωÞ − ðD − 3Þ=2Þ�

�

þ πðD−2Þ=2

Γ½ðD − 2Þ=2�ωD−2

Z þi∞

0

�
i
Γ½λþ ðD − 3Þ=2�
Γ½λ − ðD − 5Þ=2�

eiπ½λ−ðD−3Þ=2�λΓλ−D−3
2
ðωÞ

sin½πðλ − ðD − 3Þ=2Þ�

þ i
Γ½−λþ ðD − 3Þ=2�
Γ½−λ − ðD − 5Þ=2�

eiπ½λþðD−3Þ=2�λΓ−λ−D−3
2
ðωÞ

sin½πðλþ ðD − 3Þ=2Þ�
�
dλ; ð50Þ

where γnðωÞ is the residue of graybody factors at the nth
Regge pole,

γnðωÞ≡ Res½Γλ−D−3
2
ðωÞ�j

λ¼λnðωÞ
: ð51Þ

The three terms in Eq. (50) play different roles. Let us give
a detailed explanation.
The first term corresponds to the geometric absorption

cross section, σgeo, which has the following form [26],

σgeo ¼
πðD−2Þ=2bD−2

c

Γ½D=2� ; ð52Þ

where bc ≡ rc=
ffiffiffiffiffi
fc

p
is independent of SðrÞ. As a result,

σgeo is independent of SðrÞ, which indicates that the first
term of Eq. (50) is out of our central concern.
We shall see that the third term of Eq. (50) is also out of

our central concern. The reason is as follows. The inte-
gration with respect to λ leads to an overall factor. By
definition, the graybody factor is the modulus square of
transmission coefficients, so it is not larger than 1, namely,
Γλ−D−3

2
ðωÞ ≤ 1. Therefore, we know that the overall factor

has an upper bound, which can be obtained by setting
Γλ−D−3

2
ðωÞ ¼ 1 in the third term of Eq. (50),

Z þi∞

0

�
i
Γ½λþ D−3

2
�

Γ½λ − D−5
2
�

eiπðλ−D−3
2
Þλ

sin½πðλ − D−3
2
Þ� þ i

Γ½−λþ D−3
2
�

Γ½−λ − D−5
2
�

eiπðλþD−3
2
Þλ

sin½πðλþ D−3
2
Þ�
�
dλ: ð53Þ

2This formula is valid for any effective potentials that are the function of radial coordinate only, so it is also valid in the CR BHs with a
nontrivial scale factor. See also Ref. [44].

3Note to distinguish this factor from the Gamma function, Γ½x�.
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By means of numerical integration of Eq. (53), we find that
the effect of the third term of Eq. (50) is quite small if
compared to that of the second term. In fact, within the
intermediate frequency region that we concern most, the
third term just contributes a minor correction to the total
ACS. This will be further illustrated intuitively in Sec. V B.
The second term of Eq. (50) represents the contribution

from the Regge poles. It manifests the oscillation behavior
of ACSs with respect to ω, therefore it does contain the
characteristic information of CR BHs. For this reason, the
second term is our concern.
Now let us introduce the method we shall use for

calculation of the second term of Eq. (50). Gamma
functions have the property,

Γðzþ aÞ
Γðzþ bÞ ∼

�
1

z

�
−aþb

; if jzj → þ∞ and j arg zj < π:

ð54Þ

Moreover, the sine function can approximately be
reduced to

sinðπ½λnðωÞ − ðD − 3Þ=2�Þ

¼ 1

2i
½eiπ½λnðωÞ−ðD−3Þ=2� − e−iπ½λnðωÞ−ðD−3Þ=2��

¼ 1

2i
½eπImλnðωÞðeiπ½ReλnðωÞ−ðD−3Þ=2�e−2πImλnðωÞ

− e−iπ½ReλnðωÞ−ðD−3Þ=2�Þ�

≈ −
1

2i
½eπImλnðωÞe−iπ½ReλnðωÞ−ðD−3Þ=2��; ð55Þ

where we have omitted the term, eiπ½ReλnðωÞ−ðD−3Þ=2�×
e−2πImλnðωÞ, because it is greatly suppressed by the factor
e−2πImλnðωÞ. It is obvious to see that the leading order
of e−2πImλnðωÞ approximately equals 0.043 when D ¼ 4 and
n ¼ 1 and it is even smaller when D > 4 and n > 1. By
using Eqs. (54) and (55), we obtain the second term of
Eq. (50) approximately as follows:

σRPabsðωÞ ≈
8πD=2

Γ½ðD − 2Þ=2�ωD−2 Re

�Xþ∞

n¼1

ie2iπ½ReλnðωÞ−ðD−3Þ=2�

× e−2πImλnðωÞ½λnðωÞ�D−3γnðωÞ
�
: ð56Þ

The graybody factor can be written [26] as

Γλ−D−3
2
ðωÞ ¼

�
1þ exp

�
−2π

ω2 − V0ðλÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0 ðλÞ
q

��−1
: ð57Þ

Substituting Eq. (57) into Eq. (51), we compute γnðωÞ.
Further substituting γnðωÞ into Eq. (56), we finally obtain
the explicit form of σRPabsðωÞ.
In the following we focus on the CRST BH. Although

the derivations are straightforward, the residues of gray-
body factors in D-dimensional spacetimes are not listed
here except for those in the four-, five-, and six-dimensional
spacetimes as a sample for CRST BHs.

(a) D ¼ 4

γnðωÞ ¼ −
1

2π
− i

αðnÞ
6

ffiffiffi
3

p
πMω

þ 1

23328πM2S4cω2
f486M3ScðSð1Þc Þ2½7MSð2Þc þ 6Sð1Þc � − 151S4c − 1458M4ðSð1Þc Þ4

− 162M2S2c½6M2ðSð2Þc Þ2 þ 9M2Sð1Þc Sð3Þc þ 32MSð1Þc Sð2Þc þ 8ðSð1Þc Þ2�

þ 54MS3c½9M3Sð4Þc þ 42M2Sð3Þc þ 28MSð2Þc − 4Sð1Þc � − 276½αðnÞ�2S4cg þ O
ω→þ∞

�
1

ω3

�
: ð58Þ

(b) D ¼ 5

γnðωÞ ¼ −
1ffiffiffi
2

p
π
− i

ffiffiffi
3

p
αðnÞ

4
ffiffiffiffiffiffiffiffiffiffi
2πM

p
ω
þ 1

2048
ffiffiffi
2

p
π2MS4cω2

f96M3=2ScðSð1Þc Þ2½5
ffiffiffiffiffiffi
3π

p
Sð1Þc þ 6

ffiffiffiffiffi
M

p
Sð2Þc �

− 192M2ðSð1Þc Þ4 − 111π2S4c − 8MS2c½24MðSð2Þc Þ2 þ 40MSð1Þc Sð3Þc þ 120
ffiffiffiffiffiffi
3π

p ffiffiffiffiffi
M

p
Sð1Þc Sð2Þc þ 75πðSð1Þc Þ2�

þ 8
ffiffiffiffiffi
M

p
S3c½16M3=2Sð4Þc þ 60M

ffiffiffiffiffiffi
3π

p
Sð3Þc þ 84

ffiffiffiffiffi
M

p
πSð2Þc − 21

ffiffiffi
3

p
π3=2Sð1Þc �g

−
33½αðnÞ�2

256
ffiffiffi
2

p
Mω2

þ O
ω→þ∞

�
1

ω3

�
: ð59Þ
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(c) D ¼ 6

γnðωÞ ¼ −
ffiffiffi
3

p

2π
− i

3
ffiffiffi
36

p
αðnÞffiffiffi

23
p

55=6π2=3
ffiffiffiffiffi
M3

p
ω
þ 1

20000
ffiffiffi
3

p
π5=3M2=3S3cω2

f270MðSð1Þc Þ2½12
ffiffiffiffiffiffiffiffi
30π3

p
ðSð1Þc Þ þ 302=3M1=3Sð2Þc �

− 1468
ffiffiffiffiffi
30

3
p

π4=3S3c − 135M
2
3Sc½ð30MÞ23ðSð2Þc Þ2 þ 2ð30MÞ2=3Sð1Þc Sð3Þc

þ 56
ffiffiffiffiffiffiffiffi
30π3

p
M

1
3Sð1Þc Sð2Þc þ 112π

2
3ðSð1Þc Þ2� þ 27

ffiffiffiffiffi
M3

p
S2c½5ð302=3ÞMSð4Þc

þ 160
ffiffiffiffiffiffiffiffi
30π3

p
M2=3Sð3Þc þ 560π2=3M1=3Sð2Þc − 64ð302=3ÞπSð1Þc �g

−
11ð35=6Þ ffiffiffi

23
p ½αðnÞ�2

25ð52=3Þ ffiffiffi
π3

p
M2=3ω2

þ O
ω→þ∞

�
1

ω3

�
: ð60Þ

In the final part of this subsection,we derive the analytic expressions of σRPabsðωÞ for theCRSTBHs.Weomit all contributions
from the Regge poles of higher excitations, i.e., those with n > 1. The reason is same as that explained above, that is, all these
contributions are suppressed by the exponential function e−2πImλnðωÞ, where ImλnðωÞ ¼ ηcαðnÞ þOð1=ω2Þ ¼
ηcðn − 1=2Þ þOð1=ω2Þ; see Eq. (36). Here we list the results in the four-, five-, and six-dimensional spacetimes.
(a) D ¼ 4

σRPabsðωÞ ¼ −8e−π
�
3

ffiffiffi
3

p
Mπ sin ð6 ffiffiffi

3
p

πMωÞ
2ω

−
π cos ð6 ffiffiffi

3
p

πMωÞ
2ω2

−
π sin ð6 ffiffiffi

3
p

πMωÞ
1296

ffiffiffi
3

p
MS2cω3

ð162M2ScS
ð2Þ
c − 81M2ðSð1Þc Þ2 þ 216MScS

ð1Þ
c þ 61S2cÞ

�
þ O

ω→þ∞

�
1

ω4

�
: ð61Þ

(b) D ¼ 5

σRPabsðωÞ ¼ 8e−
ffiffi
2

p
π

�
32

ffiffiffi
2

p
M sin ½ð8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πM=3
p Þω�

3π2ω
−
4

ffiffiffiffiffiffiffi
6M

p
cos ½ð8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πM=3
p Þω�

π3=2ω2

−
sin ½ð8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πM=3
p Þω�

4
ffiffiffi
2

p
π2S2cω3

ð16MScS
ð2Þ
c − 4MðSð1Þc Þ2 þ 20

ffiffiffiffiffiffiffiffiffiffi
3πM

p
ScS

ð1Þ
c þ 13πS2cÞ

�
þ O

ω→þ∞

�
1

ω4

�
: ð62Þ

(c) D ¼ 6

σRPabsðωÞ ¼−8e−
ffiffi
3

p
π

�
25

ffiffiffi
5

p
M sin ½ð55=6π2=3 ffiffiffiffiffiffiffi

2M3
p

=
ffiffiffi
36

p Þω�
8π2ω

−
5ð152=3ÞM2=3 cos ½ð55=6π2=3 ffiffiffiffiffiffiffi

2M3
p

=
ffiffiffi
36

p Þω�
2

ffiffiffi
23

p
π5=3ω2

−
ffiffiffiffiffiffiffi
3M3

p
sin ½ð55=6π2=3 ffiffiffiffiffiffiffi

2M3
p

=
ffiffiffi
36

p Þω�
16

ffiffiffi
56

p
π2Scω3

ð9ð15MÞ2=3Sð2Þc þ54
ffiffiffiffiffiffiffiffiffiffiffiffi
60πM3

p
Sð1Þc þ 95

ffiffiffi
2

3
p

π2=3ScÞ
�
þ O

ω→þ∞

�
1

ω4

�
: ð63Þ

B. Graphs of σRP
absðωÞ for CRST BHs

Now we present the above results more intuitively in
graphs. We restrict our attention onto the (CR)ST BHs and
plot the behavior of σRPabsðωÞ with respect to ω. The
dimensionless quantities, σRPabsðωÞ=Ah and rhω, are adopted,
where Ah ≡AD−2rD−2

h is the area of event horizon of a
(D − 2)-dimensional sphere. For simplicity, we refer to
σRPabsðωÞ as the “oscillation” in the context.
First, in order to justify the correctness of our results, we

show that our results are consistent with the Sinc results
obtained in Ref. [26], where the latter is based on the model

of nonconformal Schwarzschild-Tangherlini BHs. Thus we
set SðrÞ ¼ 1 and choose the lapse function to be that of the
Schwarzschild-Tangherlini BH in our results. We plot the
comparison in Fig. 1, where the red and green curves agree
with each other over a wide range. Only when the
frequency is extremely low, does the disagreement appear
slightly. The reason is that our results include Oð1=ω3Þ
corrections to σRPabsðωÞ, while the Sinc results only include
the order of Oð1=ωÞ. Figure 1 manifests the consistency of
our results with the Sinc’s. Moreover, this figure also
justifies that the third term of Eq. (50) indeed contributes
a minor correction to the total ACS; see the blue curves.
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FIG. 1. The red curves stand for our results, the green curves for the Sinc ones in Ref. [26], and the blue curves for the upper bound of
the third term in Eq. (50).

FIG. 2. Comparison between CRST BHs and ST BHs, where L ¼ rc and N ¼ 25 are chosen for the convenience of plotting. The red
curves stand for the CRST BHs and the green curves for the ST BHs, where the vertical black lines mark the positions of “the minimum
amplitude” in the four-, five-, and six-dimensional spacetimes, respectively. The blue curves stand for the upper bound of the third term
in Eq. (50). Note that the blue curves are very close to the horizontal axes.
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The effect of blue curves decreases rapidly when the
frequency increases, such that it can be omitted in the
intermediate region of frequency.
Next, we investigate the influence of scale factor SðrÞ on

σRPabsðωÞ. This will be accomplished by studying the dis-
tinction between CRST BHs and ST BHs. We consider one
specific kind of scale factors,

SðrÞ ¼ 1þ
�
L
r

�
2N
; ð64Þ

where N is a dimensionless constant and L is a typical
length scale of CRST BHs, e.g., rh, or rc, or the Planck
length [4]. As long as N is large enough, the CRST BHs are
free of spacetime singularity. In fact, we can verify that the
Ricci scalar behaves as r2N−Dþ1 and the Kretschmann
scalar as r4N−2Dþ2 when r → 0 for the choice of Eq. (64). If
we take N ¼ 25 in the four-, five-, and six-dimensional
spacetimes in Fig. 2 and N ¼ 10, 25, 50, 100 in the four-
dimensional spacetime in Fig. 3, the corresponding CRST
BHs are regular.
We present the behavior of σRPabsðωÞ with respect to ω in

Fig. 2 by using Eqs. (61), (62), and (63), where the case of
CRST BHs with nontrivial scale factors and the case of ST

BHs with the trivial scale factor (N ¼ 0) are plotted. It is
quite interesting that the amplitude of σRPabsðωÞ of CRST
BHs always possesses a nonmonotonic behavior, unlike
that of ST BHs which is monotonic. To show this
phenomenon more clearly without loss of generality, we
have made an appropriate choice of parameters, such as
N ¼ 25 and L ¼ rc. For the CRST BHs, the amplitude of
σRPabsðωÞ is quite large in extremely low frequency regimes.
As ω increases, the amplitude of σRPabsðωÞ decreases almost
to zero at a certain value of ωwhich is called “the minimum
amplitude”, and then the amplitude increases. Compa-
ratively speaking, the amplitude of σRPabsðωÞ for the ST
BHs decreases monotonically. In large-ω regimes, the
oscillations of the two kinds of BHs go to the same value.
We note that the effect of the third term of Eq. (50) can also
be neglected; see the blue curves.
We further investigate the nonmonotonic behavior and

find that it exists universally for a wide range of parameter
N. To show this universality, we plot the results with
various values of N for the four-dimensional CRST BH in
Fig. 3. The situations for five- and six-dimensional models
are similar and thus not presented here. We note that the
effect of the third term of Eq. (50) can be neglected as
expected.

FIG. 3. Comparison between the CRST BHs and ST BHs in the four-dimensional spacetime, where L ¼ rc and N ¼ 10, 25, 50, 100
are set. The red curves stand for the CRST BHs and the green curves for the ST BHs, where the vertical black lines mark the positions of
“the minimum amplitude” in the cases of N ¼ 10, 25, 50, 100, respectively. The blue curves stand for the upper bound of the third term
in Eq. (50). Note that the blue curves are very close to the horizontal axes.
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We also find that the behavior of σRPabsðωÞ is not sensitive to
L. Only whenL is ridiculously large, e.g.,L > 2000rc in the
four-dimensional CRST BH with N ¼ 25, does the non-
monotonic behavior vanish according to our numerical
calculation. Note that N is the exponent in SðrÞ, while L
is a numerator of fraction. It is natural that the influence ofN
is more prominent than that of L. Furthermore, if the
astrophysical data are taken into consideration, the magni-
tude of L is not likely to be larger than the BH mass in the
geometric units [45]. As a result, the nonmonotonic behavior
always appears in a physically natural range of L and N.
We end this section with a summary of our results. After

some appropriate approximation, we obtain the analytic
expressions of σRPabsðωÞ for the four-, five-, and six-dimen-
sional CRST BHs. When CRST BHs are reduced to ST
BHs, our results agree with the Sinc’s [26]. With a specific
choice of the scale factor which regularizes the CRST BH
spacetimes, the amplitude of σRPabsðωÞ of CRST BHs is
nonmonotonic, which gives rise to our main conclusion;
The CR BHs are substantially different from their non-
conformal counterparts in the aspect of ACSs.

VI. CONCLUSION

We analyze the null geodesics of CR BHs and prove the
condition, r0 ≈ rc for l ≫ 1, that is, the location of photon
spheres is independent of scale factors in the large-l limit.
Then using the third-order WKB approximation together
with this condition, we obtain the Regge frequency and the
ACS of a massless scalar field absorbed by CR BHs. Our
analyses show that the ACSs of CR BHs depend on the
scale factor, which can be used to distinguish CR BHs from
nonconformal BHs.
To illustrate the distinction, we investigate a specific

class of CR BHs, the CRST BHs, and find that there is the
nonmonotonic behavior of ACS amplitudes in a wide range
of parameter N. This phenomenon manifests the character-
istic of CR BHs in the aspect of ACSs.
Significantly, it is possible to use the above mentioned

phenomenon to determine observationally the scale factor
of CR BHs if the CR BHs exist in our Universe. The scale
factor goes to unity asymptotically, so the CR BHs and the
nonconformal ones are similar at a large astronomical
distance. Nevertheless, we can still distinguish these two
kinds of BHs by their absorption spectra. In Ref. [11], the
authors concluded that a larger N causes a less violation to
the energy condition, which implies that a larger N seems
more reasonable and natural in our world. For a larger N,
“the minimum amplitude” of σRPabsðωÞ appears in the higher-
frequency regimes of absorption spectra, which is a more

prominent spectral indication of the scale factor. As for
astrophysical experiments, it is technically easier to observe
the high-energy rays and particles than the low-energy
ones. Therefore, it is feasible to distinguish a CR BH from a
nonconformal BH through the observations.
It is also feasible to search for regular BHs in this way.

According to the earlier studies [12–16], the ACSs of regular
NEDBHs do not possess any special spectral characteristics,
such as the nonmonotonic behavior. Therefore, the ACSs of
NED BHs are indistinguishable from those of singular BHs,
such as the Reissner-NordstromBH. However, this is not the
case for regular CR BHs. The distinction is prominent as we
have shown. Therefore, we provide a feasible approach for
searching for regular BHs.
Finally, we have an argument about theHawking radiation

of CR BHs. The ACSs are related to the energy flux of
Hawking radiation [46–48]. For example, the following
formula holds for the four-dimensional Schwarzschild BH,

d2EðωÞ
dωdt

∝
ω3σabsðωÞ

expð8πMωÞ − 1
; ð65Þ

which implies that the radiated energy per unit time and unit
frequency is proportional to the ACS of four-dimensional
Schwarzschild BHs. By integrating Eq. (65) with respect to t
and ω, we can obtain the loss of BH energy through the
radiation,ΔE. Obviously,ΔE is a function ofN and L. This
implies that the loss of BH energy does depend on the scale
factor SðrÞ although the Hawking temperature is indepen-
dent [4–6] of this factor. Such an inference is surprising
because it seems that there are unknown properties hidden in
the thermodynamics of CRBHs.We believe that the research
for the issue will improve our understanding of CR BHs
greatly.
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APPENDIX A: THE EXPRESSIONS OF THE
TERMS RELATED TO VðpÞ

0 ðλÞ
Here we give the asymptotic expansions of the coef-

ficients related to VðpÞ
0 ðλÞ in the limit of jλj → þ∞.

V0ðλÞ ¼
fc
r2c

λ2 þ fc
16r2cS2c

f4ðD − 2ÞrcSc½ðD − 2ÞfcSð1Þc þ fcrcS
ð2Þ
c þ 2fcS

ð1Þ
c �

þ ðD − 6ÞðD − 2Þfcr2cðSð1Þc Þ2 þ 4S2c½ðD − 2ÞDfc − ðD − 3Þ2�g þ O
jλj→þ∞

�
1

λ2

�
: ðA1Þ
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½−2Vð2Þ
0 ðλÞ�1=2 ¼ 2fcηc

r2c
λ −

1

16ηcr2cS4c

�
½8f2cS3cð2ðD − 2ÞfcrcSð1Þc − ScððD − 3Þ2 − 4ðD − 2ÞfcÞÞ�

þ 2fcrcS2c

�
S2c

�
4fc
rc

ð4ðD − 2Þfð2Þc r2c þ 3ðD − 3Þ2Þ

þ 1

rc
8ðD − 2Þð2d − 11Þf2c þ ðD − 3Þ2 − rcf

ð2Þ
c

�
þ 4ðD − 9ÞðD − 2Þf2crcðSð1Þc Þ2

þ 2ðD − 2ÞfcrcSc
�
2fc
rc

ð4ðD − 2ÞSð1Þc þ 7rcS
ð2Þ
c Þ þ 4fð2Þc rcS

ð1Þ
c

��

þ f2cScðD − 2Þr3cScSð1Þc

�
2fc
rc

ðð5D − 46ÞrcSð2Þc − 10ðD − 2ÞSð1Þc Þ þ ðD − 10Þfð2Þc rcS
ð1Þ
c

�

þ 4f2cScS3c½2ðD − 2Þð22 − 5DÞfc þ ðD − 6ÞðD − 2Þfð2Þc r2c þ ðD − 2Þ
þ fð3Þc r3c − 3ðD − 2Þ2 þ 6ðD − 2Þ − 3� þ 2f2cScð34 − 5DÞðD − 2Þfcr3cðSð1Þc Þ3

þ 2ðD − 2Þr2cf2cS3c
�
rcðSð1Þc ð2ðD − 2Þfð2Þc þ fð3Þc rcÞ þ 4fð2Þc rcS

ð2Þ
c Þ

þ 2fc
rc

ðrcð5ðD − 2ÞSð2Þc þ 6rcS
ð3Þ
c Þ − 5ðD − 2ÞSð1Þc Þ

�

þ ðD − 2Þf3c½r3cScðSð1Þc Þ2ðð24 − 5ðD − 2ÞÞrcSð2Þc þ 4ðD − 2ÞSð1Þc Þ þ 3ðD − 6Þr4cðSð1Þc Þ4 þ 12ðD − 4ÞS4c�
þ ðD − 2Þr2cf3cS2c½rcSð1Þc ððD − 10ÞrcSð3Þc − 6ðD − 2ÞSð2Þc Þ þ ðD − 8Þr2cðSð2Þc Þ2 þ 4ðD − 2ÞðSð1Þc Þ2�

þ 2ðD − 2Þrcf3cS3c½rcððD − 2ÞrcSð3Þc − 2ðD − 2ÞSð2Þc þ r2cS
ð4Þ
c Þ þ 2ðD − 2ÞSð1Þc �

�
1

λ
þ O

jλj→þ∞

�
1

λ2

�
:

ðA2Þ

Vð4Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

¼ −
fc

2η2cr2c
½16f2c − 16r2cfcf

ð2Þ
c þ 4r3cfcf

ð3Þ
c ðfð2Þc Þ2 þ r4cð4ðfð2Þc Þ2 þ fcf

ð4Þ
c Þ� þ O

jλj→þ∞

�
1

λ2

�
: ðA3Þ

�
Vð3Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

�2

¼ r4cf2cðfð3Þc Þ2
4η4c

þ O
jλj→þ∞

�
1

λ2

�
: ðA4Þ

½Vð3Þ
0 ðλÞ�2Vð4Þ

0 ðλÞ
½Vð2Þ

0 ðλÞ�3
¼ −

r2cf3cðfcð3ÞÞ2
8η6c

½16f2c − 16r2cfcf
ð2Þ
c þ 4r3cfcf

ð3Þ
c ðfð2Þc Þ2

þr4cð4ðfð2Þc Þ2 þ fcf
ð4Þ
c Þ� þ O

jλj→þ∞

�
1

λ2

�
: ðA5Þ

Vð3Þ
0 ðλÞVð5Þ

0 ðλÞ
½Vð2Þ

0 ðλÞ�2
¼ r2cf3cf

ð3Þ
c

4η4c
½−10fcfð3Þc þ 10rcfcf

ð4Þ
c þ r2cð15fð2Þc fð3Þc þ fcf

ð5Þ
c Þ� þ O

jλj→þ∞

�
1

λ2

�
: ðA6Þ

Vð6Þ
0 ðλÞ

Vð2Þ
0 ðλÞ

¼ −
f2c

2η2cr4c
½−272f3c þ 408r2cf2cf

ð2Þ
c − 88r3cf2cf

ð3Þ
c ðfð2Þc Þ2

þr4cfcð38fcfð4Þc − 204ðfð2Þc Þ2Þ þ r5cfcð104fð2Þc fð3Þc þ 18fcf
ð5Þ
c Þðfð2Þc Þ2

þr6cð34ðfð2Þc Þ3 þ 15fcðfð3Þc Þ2 þ 26fcf
ð2Þ
c fð4Þc þ f2cf

ð6Þ
c Þ� þ O

jλj→þ∞

�
1

λ2

�
: ðA7Þ

The expansions are kept to Oð1=λ2Þ in the limit of jλj → þ∞, where the scale factor only appears in V0ðλÞ and

½−2Vð2Þ
0 ðλÞ�1=2; see Eqs. (A1) and (A2).
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APPENDIX B: THE EXPRESSIONS OF an AND bn

We find that the terms proportional to ½αðnÞ�2 do not include Sc or SðpÞc in an and bn.

an ¼ −
1

1152η4c

�
−72f2cð4fc − 2r2cf

ð2Þ
c Þ − 7r6cfcðfð3Þc Þ2 − 36r3cfcf

ð3Þ
c ð2fc − r2cf

ð2Þ
c Þ

− 18ð4fc − 2r2cf
ð2Þ
c Þ½ðD − 3Þ2ð4fc − 2r2cf

ð2Þ
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þ 9fc
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c

þ 4DrcScS
ð1Þ
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ð2Þ
c þ ðD − 6Þr2cðSð1Þc Þ2 þ 4DS2c�

�

þ ½αðnÞ�2 r
3
cfc
96η4c

f24fcfð3Þc þ 6rcfcf
ð4Þ
c − 12r2cf

ð2Þ
c fð3Þc þ r3c½5ðfð3Þc Þ2 − 3fð2Þc fð4Þc �g: ðB1Þ

bn ¼
1

442368η10c

�
385r12c f2cðfð3Þc Þ4 þ 459r6cfcðfð3Þc Þ2ð4fc − 2fð2Þc r2cÞ
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ð3Þ
c ð2fc − r2cf

ð2Þ
c Þ2½10rcfcfð4Þc þ r2cfcf

ð5Þ
c − 10fcf
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