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We study the influence of higher curvature effects on stellar structure and conclude that the properties
of stars are greatly impacted when such terms are dynamic. In particular, the surface gravitational redshift,
which is connected to the equation of state and also the mass-radius ratio, differs greatly from the
corresponding values in general relativity as evidenced through our empirical comparisons. A model
of a superdense star with strange star equation of state is constructed within the framework of the Einstein-
Gauss-Bonnet theory. Under these assumptions large classes of solutions are admitted by the field
equations. We isolate a particular class with the ansatz of the Vaidya-Tikekar superdense star spatial
gravitational potential. The model is found to satisfy elementary requirements for physical applicability and
stability. The parameter values chosen are consistent with observed star models. A significant effect of the
higher curvature terms is to reduce the speed of sound and to drastically reduce the values of the surface
gravitational redshift compared to the Einstein counterpart. These latter results have implications for
interpretations of observations in relativistic astrophysics which are often made against the background of
the standard general theory of relativity. Additionally, our results suggest a value for the Gauss-Bonnet
coupling of the order of 103 in the context of strange stars.
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I. INTRODUCTION

Alternate or extended theories of gravity have aroused
considerable interest recently in view of difficulties with the
general theory of relativity to explain anomalous behavior
of gravitational phenomena such as the late-time acceler-
ated expansion of the universe [1,2]. One attempt at
resolving the problem involves conjecturing the existence
of exotic matter fields such as dark matter, dark energy,
phantom fields and quintessence fields to name a few. To
date there exists no experimental support for these ideas,
however a number of experiments are ongoing. In order to
explain dark energy and dark matter, de Rham [3] suggests
that the graviton is not massless but actually carries a small
mass. This itself has a number of ramifications for physics
which has been dealt with elsewhere in the literature. An
alternative approach is to reexamine the geometrical side of

the field equations. Higher curvature effects may have a
role to play. In particular, Einstein-Gauss-Bonnet (EGB)
theory has proved promising in this regard, and therefore is
extensively studied. Note that EGB belongs to a more
general class of theories called the Lovelock polynomial
Lagrangians which constitute the most general tensor
theory generating at most second order equations of
motion. If the Lagrangian is allowed to involve both tensor
and scalar fields then the most general such theory is due to
Horndeski [4]. A further strong motivation for EGB theory
is that the Gauss-Bonnet Lagrangian appears in a natural
way in the effective action of heterotic string theory in the
low energy limit [5]. The causal structure of the singular-
ities is different from general relativity for inhomogeneous
distributions of dust and null dust [6]. The question we are
probing is whether the addition of higher curvature gravi-
tational effects play a significant role in the evolution of
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stars. Indeed most of our understanding of observations in
relativistic astrophysics are made on the basis of Einstein’s
theory of general relativity (GR). However, if GR is to be
superseded by a higher curvature theory which preserves
second order equations of motion and which reduces to GR
in the solar system scale limit, then it is natural to ask what
effect the higher curvature contributions have on stellar
structure.
Granted five dimensional stars are not physically acces-

sible however their existence has not been ruled out. The
earliest work on higher dimensional gravity originated with
Kaluza and Klein [7,8] who considered a 5 dimensional
manifold and ascribed the behavior of the electrodynamical
field to four components of the metric tensor, ten to the
usual four dimensional spacetime manifold and an extra
dimension to a scalar field. Subsequently modern works on
brane world gravity necessitating higher dimensions also
proceeded. A comprehensive review was compiled by
Maartens and Koyama [9]. The customary explanation
for extra dimensions is that these are topologically curled
and of very small size. Note that the Large Hadron Collider
experiment also searched for extra dimensions but of large
scale, but did not detect any. This however, does not
eliminate the existence of extra dimensions at microscopic
scale. Indeed, spacetime dimensions of the size of 10 and
11 are essential in string theory and its generalization
M-theory. While their magnitude is small, their effect on
aspects of the gravitational field may be of immense
importance as we show in this article.
Black holes in the context of EGB theory have been

rigorously studied in the literature. The higher dimensional
Einstein models of Tangherlini and Myers [10,11] were
generalized to the EGB regime of higher curvature gravity
in the classic paper of Boulware and Deser [12]. Further
treatments of black holes in EGB may be found in [13–15].
Maeda [16] investigated the inhomogeneous collapse of
dust however the exact solutions for the five dimensional
case by Jhingan and Ghosh [17] revealed that the collapse
led to the formation of a massive but weak timelike
singularity in contrast with general relativity. The configu-
ration of an incompressible (constant density) hypersphere
was considered by Dadhich [18] who showed that the usual
Schwarzschild interior solution of four dimensional gravity
still holds in the higher dimensional and higher curva-
ture arena.
The universality of the Schwarzschild solution by

Dadhich [18] constituted the first nontrivial perfect fluid
stellar model in EGB gravity. However, like its four
dimensional counterpart, the solution continues to inherit
the pathology of an infinite speed of sound rendering the
metric physically unreasonable. Kang et al. [19] devised a
static model of a star however there were two problems
with the construction. First, the solution still required a
further integration to be completed in order to unlock the
full flavor of the metric. This arose primarily because the

continuity equation was being used and in the standard
theory such an excursion almost certainly ends up requiring
numerical integration. Second, in view of the incomplete
solution, it was not possible to match the solution with the
exterior Boulware-Deser metric. Notwithstanding these
matters, it is indeed interesting that Kang et al. [19]
were able to obtain the Boulware-Deser solution in the
limit of vanishing pressure and energy density. It should
be observed that boundary conditions for EGB gravity
were derived in general form by [20] and the conse-
quences are expected to be different from general
relativity. For example, it is still not known if the
matching of the first and second fundamental forms is
equivalent to the existence of a vanishing pressure-free
hypersurface as is the case in general relativity. Variable
density spherically symmetric exact solutions to the EGB
field equations were first obtained by [21–23] and shown
to be consistent with the usual elementary expectations of
astrophysical models.
Local anisotropy in self-gravitating systems has been

extensively studied within the framework of classical
general relativity [24–27]. The inclusion of pressure
anisotropy in the study of compact objects such as pulsars,
neutrons stars and quark stars in 4-D gravity has led to
physically viable stellar models. Analyses of the physical
attributes of these models such as density profiles, pressure
profiles, compactness and surface redshift agree with
observed data within experimental error. The anisotropy
parameter Δ ¼ pT − pR, where pT refers to the tangential
pressure and pR is the radial pressure, can either be positive
or negative at each interior point of the matter configura-
tion. When pT > pR the force due to local anisotropy is
repulsive which may lead to more massive and stable
configurations. Bowers and Liang [28] demonstrated that
the surface redshift can be arbitrarily large in the presence
of pressure anisotropy. They were able to show that if the
fractional anisotropy, pT−pR

p > 0, then the associated surface
redshift is greater than its isotropic counterpart. The
enhancement of the surface redshift is comparable to the
magnitude of the anisotropy incorporated into the model.
The role of anisotropy during dissipative collapse has
yielded many interesting results [29]. Herrera and cowork-
ers have shown that the anisotropy affects the dynamical
instability of the star undergoing collapse [30–33]. The
stability factor Γ in both the Newtonian and post-
Newtonian approximations deviate from the well-known
result ðΓ > 4

3
Þ first derived by Chandrasekhar [34]. The sign

of the anisotropic factor leads to a further deviation from
the classical case. The presence of anisotropic stresses
within the collapsing core can either advance or delay the
formation of the horizon. From a thermodynamical point of
view, it has been shown that pressure anisotropy leads to
higher core temperatures. This effect is enhanced during the
late stages of collapse when the differences in the aniso-
tropic stresses are much larger [35].
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As pointed out above, isotropic stellar models of perfect
fluids suitable for modeling EGB stars have recently been
found. Such models, obtained on mathematical grounds,
lack a basic ingredient of astrophysical models namely an
equation of state. It should be noted that even in the simpler
case of Einstein’s general relativity, no exact nontrivial
isotropic models of stars involving an equation of state have
been found analytically except for the overdetermined
isothermal model of Saslaw et al. [36]. Even in this case,
the model has cosmological application since a surface of
zero pressure is not admissible. All other explorations of
isotropic models with an equation of state have been
undertaken numerically, for example see [37,38], thereby
introducing the prospects of approximation errors which
are bound to be significant at the scale of stellar objects.
Needless to say, equations of state when introduced into
the more formidable EGB equations also lead to a math-
ematically intractable situation. On the other hand, to
analyze the impact of equations of state, a relaxation in
the condition of isotropy is required. The concomitant
effect of sacrificing isotropy is that the system of equations
become four in six unknowns. Even after prescribing an
equation of state, there still remains a further choice to be
made to close the equations. In this work we invoke a
strange star equation of state. This avenue, for EGB stars,
does not appear to have been pursued in the literature to
date. The equation of state contributes a genuine physical
constraint on the model and augmenting this with the well-
studied superdense star potential ansatz, enhances the
physical viability of the model.
Our intention in this paper is to solve the nonlinear EGB

equations for a static spherically symmetric matter distri-
bution with anisotropic stresses and with a strange star
equation of state. Recently Panotopoulos and Rincon [39]
studied isotropic deconfined quark star matter in the
context of Einstein-Gauss-Bonnet theory. They concluded
that the compactness of stars increases with the increase of
the Gauss-Bonnet coupling parameter (of the order of
unity) and suggested that this was significant in heavy
stars. The distinguishing feature of our analysis is that we
show how exact solutions of the field equations may be
obtained for anisotropic matter with a generalized quark
star equation of state. Exact solutions, unlike their numeri-
cal counterparts, do not suffer the constraints of the
magnitude of approximations. Additionally, we study
GB parameters of the order of 103 and make conclusions
on the very significant effects of the higher curvature terms
on the surface gravitational redshift and the sound speed
value. In Sec. II we briefly outline the basic equations in
EGB gravity. The field equations in 5-dimensional EGB
gravity are presented for a spherically symmetric metric,
and they are then transformed to an equivalent form
through a coordinate redefinition which helps in finding
exact solutions. In Sec. III the generalized Vaidya-Tikekar
superdense star ansatz [40] is examined and a number of

well-known special cases are considered. In Sec. IV the
physical features of the Finch-Skea model are investigated
with the help of graphical plots and a comparison with the 5
dimensional Einstein counterpart is made. We make use of
data associated with the x-ray pulsar LMC X–4 in order to
determine the values of constants in the problem and from
the plots we deduce that the model displays the necessary
qualitative features expected of such astrophysical objects.
Some concluding remarks are made in Sec. V.

II. EINSTEIN-GAUSS-BONNET GRAVITY

The action

S ¼ 1

2κ

Z
R

ffiffiffiffiffiffi
−g

p
d4x ð1Þ

is the standard Einstein-Hilbert action of general relativity
in 4 spacetime dimensions. Here g ¼ detðgabÞ is the
determinant of the metric tensor gab, R is the Ricci scalar
and κ ¼ 8πGc−4 where G is the Newton’s gravitational
constant and c is the speed of light in vacuum. The
Lovelock tensor in d dimensions may be written as

Gab ¼
X½ðd−1Þ=2�

n¼0

αnGn
ab ð2Þ

where Gn
ab represents each term of the Lovelock tensor

and is given by Gn
ab ¼ − 1

2nþ1 gacδ
ca1…a2n
bb1…b2n

Ra1a2
b1b2 � � �

Ra2n−1a2n
b2n−1b2n . Note that the quantities αn are coupling

constants that have the dimensions of ðlengthÞ2n−d.
Specifically α0, α1, α2 correspond to the cosmological
constant, Einstein gravity and Einstein-Gauss-Bonnet
gravity respectively. The Lovelock Lagrangian [41,42]
has the form

L ¼
Xd
n¼0

αnRn ð3Þ

whereRn ¼ 1
2n
δc1d1…cndn
a1b1…anbn

Πn
r¼1R

arbr
crdr

and Rab
cd is the Riemann

or curvature tensor. Also δc1d1…cndn
a1b1…anbn

¼ 1
n! δ

c1
½a1δ

d1
b1
…δcnanδ

dn
bn� is

the required Kronecker delta. The quantity [v] refers to the
greatest integer value satisfying ½v� ≤ v. Note that Gab is
obtained by suitable contractions on a tensor product of n
copies of the Riemann tensor that trivially vanish whenever
n > ½ðd − 1Þ=2�. In the event that d ¼ 3, 4, Gn

ab vanishes
for all n > 1. The Lovelock terms become a total derivative
or a topological invariant for d ¼ 3, 4 and hence do not
contribute to the dynamics. Moreover, each term Rn in L
represents the dimensional extension of the Euler density in
2n dimensions and contribute to the field equations only if
n < d=2. For this reason, the critical spacetime dimensions
of Lovelock gravity are d ¼ 2nþ 1 and d ¼ 2nþ 2. In the
case of EGB gravity n ¼ 2 so the critical dimensions are
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d ¼ 5, 6. For n ¼ 3, the salient dimensions are 7,8 and so
on. A detailed treatment of this aspect may be found in the
works of [43–45].
The Lovelock action (3) may be expanded as

L ¼ ffiffiffiffiffiffi
−g

p ðα0 þ α1Rþ α2ðR2 þ RabcdRabcd − 4RcdRcdÞ
þ α3OðR3ÞÞ

in general. Up to second order of the Lovelock polynomial
we define the Gauss-Bonnet (GB) term as

R2 ¼ R2 þ RabcdRabcd − 4RcdRcd

often denoted as LGB. This term arises in the low energy
effective action of heterotic string theory [5].
The EGB field equations may be written as

Gab þ αHab ¼ Tab; ð4Þ

where we have adopted the metric signature ð−þþþþÞ
for a 5-dimensional spacetime manifold and where Gab is
the usual Einstein tensor. The Lanczos tensor is given by

Hab ¼ 2ðRRab − 2RacRc
b − 2RcdRacbd þ Rcde

a RbcdeÞ

−
1

2
gabLGB: ð5Þ

Now varying the action against the metric generate the
Einstein-Gauss-Bonnet equations of motion.

III. FIELD EQUATIONS

Customarily the five dimensional metric for static spheri-
cally symmetric spacetimes is taken as

ds2 ¼ −e2νdt2 þ e2λdr2

þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð6Þ

where νðrÞ and λðrÞ are the gravitational potentials. The
energy-momentum tensor for anisotropic matter may be
expressed as

Tab ¼ ðρþ pRÞuaub þ pTgab þ ðpR − pTÞχaχb; ð7Þ

where ρ, pR and pT are the energy density, radial and
transverse pressures respectively. We define the norma-

lized 4-velocity vector ua ¼
ffiffiffiffi
−1
gtt

q
δat and the unit spacelike

vector χa ¼
ffiffiffiffi
1
grr

q
δar along r provided gabuaub ¼ −1 and

gabχaχb ¼ 1 respectively. The EGB field equations (4) may
then be written as the system

ρ ¼ 3

e4λr3
ð4αλ0 þ re2λ − re4λ − r2e2λλ0 − 4αe2λλ0Þ; ð8Þ

pR ¼ 3

e4λr3
ð−re4λ þ ðr2ν0 þ rþ 4αν0Þe2λ − 3αν0Þ; ð9Þ

pT ¼ 1

e4λr2
ð−e4λ − 4αν00 þ 12αν0λ0 − 4αðν0Þ2Þ

þ 1

e2λr2
ð1 − r2ν0λ0 þ 2rν0 − 2rλ0 þ r2ðν0Þ2Þ

þ 1

e2λr2
ðr2ν00 − 4αν0λ0 þ 4αðν0Þ2 þ 4αν00Þ: ð10Þ

where the subscripts R and T refer to the radial and
transverse components respectively. Equations (8)–(10)
constitute a system of three differential equations in five
variables namely, the density, radial pressure, tangential
pressure and two gravitational potentials ν and λ. In this
form it is easy to see that any arbitrary metric solves
the system which is underdetermined. This approach is
however unlikely to yield exact models that conform to
the elementary tests for physical viability. Accordingly
inserting some constraints of physical importance will
likely give solutions that may be used to model compact
stars. In this work, we prescribe a strange star equation of
state and this immediately increases the mathematical
complexity. However, there remains one more prescription
to make to close the system. We shall specify one of the
metric potentials which has been associated with super-
dense star models and is likely to yield physically reason-
able solutions. Observe that the vacuum metric describing
the gravitational field exterior to the 5-dimensional static
perfect fluid may be described by the Boulware-Deser
spacetime [12] as

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ
þ r2ðdθ2 þ sin2θdϕ2 þ sin2θsin2ϕdψ2Þ; ð11Þ

where

FðrÞ ¼ 1þ r2

4α

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8mα

r4

r �
:

In the above m is associated with the gravitational mass of
the hypersphere. The exterior solution is unique up to
branch cuts, however, there appears to be no equivalent of
the Birkhoff theorem of the 4-dimensional Einstein gravity
case.Bogdanoset al. [46]have investigated the6-dimensional
case in EGB and demonstrated that Birkhoff’s theorem holds
for particular assumptions. At this point we also note that the
Buchdahl compactness limit [47] for a perfect fluid sphere
M
R ¼ 4

9
was recently improved to the case of 5-dimensional

EGB [48] but the results depend on the sign of the coupling
constant α.
To enhance our chances of locating exact solutions, we

make the following change of variables e2ν ¼ y2ðxÞ,

HANSRAJ, GOVENDER, MOODLY, and SINGH PHYS. REV. D 105, 044030 (2022)

044030-4



e−2λ ¼ ZðxÞ and x ¼ Cr2 (C being an arbitrary constant).
This set of transformations has proved particularly useful in
the case of isotropic fluids since the isotropy equation may
bewritten as linear differential equations in either variable y
or Z in Einstein gravity. In EGB, the same equation is linear
in y but nonlinear in Z. For applications of this approach to
charged anisotropic relativistic matter see the recent works
of [49,50] in four dimensional Einstein theory. The field
equations (8)–(10) may now be expressed as

−3 _Z −
3ðZ − 1Þð1 − β _ZÞ

x
¼ ρ

C
; ð12Þ

3ðZ − 1Þ
x

þ 6Z _y
y

−
6βðZ − 1ÞZ _y

xy
¼ pR

C
; ð13Þ

4Z½βð1 − ZÞ þ x� ÿ
y
þ
�
2βZð1 − ZÞ

x
þ 2ðxþ βÞ _Z

þ 6Zð1 − β _Z

�
_y
y
þ
�
Z − 1

x
þ 2 _Z

�
¼ pT

C
; ð14Þ

where we have introduced the constant β ¼ 4αC containing
the EGB coupling constant.
We now utilize a physically important equation of state

relating the density and pressure. The prescription pR ¼
γρ − ξ is understood to be valid for strange star material or
quark stars which have a higher density and larger rotation
than neutron stars. The special case γ ¼ 1

3
corresponds to

the well studied MIT bag model in four dimensions where
quarks are considered as free particles and their thermo-
dynamic properties are generated by treating them as a
Fermi (ideal) gas. Panotopoulos and Rincón [39] show
from standard thermodynamics that for five dimensional
spacetime, the deconfined quark star matter with the
applicable MIT bag model equation of state modifies as
p ¼ 1

4
ðρ − 5BÞ where B is the bag constant. We have

elected to retain the bag coefficient as 1
3
and introduced a

generic constant ξ for strange matter not necessarily
representing deconfined quark matter. With this equation
of state, (12) and (13) together yield

_y
y
¼

�
6Z −

6βðZ − 1ÞZ
x

�
−1

×

�
3γ _Z þ 3ðZ − 1Þðγ − 1 − βγZÞ

x
− ξ

�
ð15Þ

where γ and β ≥ 0 are constants. Equation (15) integrates as

y ¼ C1 exp

�Z
3γx _Z þ 3ðZ − 1Þðγ − 1 − βγZÞ − ξx

6xZ − 6βðZ − 1ÞZ dx

�

ð16Þ
where C1 is an integration constant. It now remains to
detect forms for Z that will permit the complete integration
of (16).

IV. VAIDYA-TIKEKAR SUPERDENSE
STAR ANSATZ

Equation (16) admits a large number of potentials Z for
which an exact solution exists. Therefore, it is prudent to
make a selection from well-studied models which are
known to be physically reliable. Expressed in terms of
our coordinates the generalized Vaidya-Tikekar potential
prescription, known to generate superdense stellar models
[40], is given by

Z ¼ 1þ ax
1þ bx

ð17Þ

where a and b are arbitrary real numbers related to the
spheroidal parameter. The Vaidya-Tikekar spatial potential
ansatz has been used by various researchers in different
contexts and the reader may consult [51–54] and the
references therein. Note that specifying the spatial metric
potential is tantamount to determining the law of variation
of the density profile. The special case b ¼ 0 corresponds
to the constant density Schwarzschild interior solution in
both Einstein and Einstein-Gauss-Bonnet gravity and is
moreover independent of spacetime dimension. These
results were first reported by Dadhich [18] and more
thoroughly discussed by Hansraj et al. [55] who obtained
all static conformally flat solutions in EGB. It turned out
from this analysis that the traditional Schwarzschild interior
metric was one of two possible solutions for conformal
flatness in EGB whereas it is the unique conformally flat
solution in Einstein gravity. In both cases the incompress-
ible Schwarzschild metric arises from the potential
Z ¼ 1þ ax. The case a ¼ 0 is the Finch-Skea ansatz
[56] first proposed by [57]. An exact solution for spheroi-
dally distributed matter was examined in the case a ¼ −1
and b ¼ 2 by Vaidya and Tikekar [40] and shown to admit
models with surface densities 2 × 1014 g=cm3 with masses
of about 4 times the solar mass. The choice b ¼ 1 was
studied by Buchdahl [47,58] and recently Molina et al. [59]
used this ansatz to find models of stars in pure Gauss-
Bonnet gravity. The general integral of (16) has the form

y ¼ ð−aβ þ bðβ þ xÞ þ 1Þa2
ð1þ axÞa1 exp

�
−
bξx
a

�
ð18Þ

where we have defined a1 ¼ a2ð6γ−3Þ−að3bðγ−1ÞþξÞþbξ
6a2ðaβ−1Þ

and a2 ¼ −3a2β2γþaβðbð3ðβþ1Þγ−βξ−3Þþ3γÞþbðbβðβξ−3γþ3Þ−3ðβ−1ÞγÞ
6bðaβ−1Þ .

V. FINCH-SKEA SPATIAL POTENTIAL

The Finch-Skea potential Z ¼ 1
1þx ¼ 1

1þCr2 was used to
model four dimensional static stars with behaviors con-
sistent with the astrophysical theory of Walecka [60]. It is
also well known that for regular stars, that is models that are
singularity-free, it is necessary that the spatial potential has
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the form 1þOðr2Þ. This proves to be useful in this higher
curvature analysis as well, and it will be observed that all
physical quantities are free of the defect of being singular
somewhere within the distribution. For the Finch-Skea
prescription the potential (17) assumes the simplified form

y ¼ C1ðβ þ w1Þa1e− 1
12
ða2þξxÞðβþw1Þ ð19Þ

where we make the substitutions a1 ¼ 1
6
ð3βγ − βðβξ−

3γ þ 3Þ − 3γÞ, a2 ¼ 6ξγ − 3ξβ þ ξ − 6, w1 ¼ 1þ x,

w2 ¼ 1þ xþ β and w3 ¼ 1þ 2xþ β to shorten the
lengthy expressions to follow. The associated dynamical
quantities have the form

ρ

C
¼ 3ðβ þ xðw1 þ 2Þ þ 2Þ

w3
1

ð20Þ

pR

C
¼ 12a1 − a2w2 − ξw2w3 − 6w1

2w2
1

ð21Þ

pT

C
¼

�
−6ξð3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1ÞxÞ − 36w1ðxþ 3Þ þ 2ξxw1w2w3

þ 144a21xw1

w2

ξ2 þ xw1w2w2
3 þ a2ða2xw1w2 − 6ð3β þ 2x2 þ 5xþ 3ÞÞ

�
=36w3

1 ð22Þ

while the measure of the pressure anisotropy Δ ¼ pT − pR is given by the expression

Δ
C
¼

�
72w1 − 6ξð−3β2 − 3βxþ xð2xþ 5Þ þ 3Þ þ ξ2w1w2w2

3

þ 144a21w1

w2

− 24a1ða2w1 þ ξw1w3 þ 9Þ

þ a2ða2w1w2 þ 2ξw1w2w3 þ 6ð3β þ xþ 1ÞÞ
�
=36w2

1 ð23Þ

Observe that a hypersurface of vanishing pressure exists when pR ¼ 0 demarcating the boundary of the fluid distribution at

x ¼ 1 − 2a1β − 2a1 − 2a2
2a1 − 1

ð24Þ

in terms of the constants associated with the strange star equation of state and Gauss-Bonnet coupling constant. The ratio of
the pressure to the energy density p

ρ is understood to give an indication of the equation of state of the model. In this case we
obtain

�
p
ρ

�
R
¼ w1ð12a1 − a2w2 − ξw2w3 − 6w1Þ

6ðβ þ xðxþ 3Þ þ 2Þ ð25Þ

�
p
ρ

�
T
¼

�
−36w1ðxþ 3Þ − 6ξð3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1ÞxÞ

þ 144a21xw1

β þ xþ 1
þ ξ2 þ xw1w2w2

3 − 24a1ða2xw1 þ ξxw1w3 − 9Þ

þ a2ða2xw1w2 − 6ð3β þ 2x2 þ 5xþ 3Þ þ 2ξxw1w2w3Þ
�
=108ðβ þ xðxþ 3Þ þ 2Þ ð26Þ

for the radial and transverse components.

VI. VIABILITY TESTS

In what follows, we analyze a variety of tests usually
imposed on stellar models to test their physical applicability.

A. Causality

The causal behavior of stars is studied by examining the

square of the sound speed given by the formula v2 ¼ dp
dρ.

This evaluates to
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v2R ¼ −
w1ða2ð2β þ xþ 1Þ − 24a1 þ ξð2β2 þ β þ 3βx − x − 1Þ þ 6w1Þ

6ð3β þ x2 þ 4xþ 3Þ ð27Þ

v2T ¼ −
�
36w1ðxþ 5Þ þ 6ξð9β2 þ 3β þ 6βxðxþ 3Þ − 2w1ð2xþ 3ÞÞ

þ ξ2w1w3ððβ þ 1Þ2 þ 4x3 þ 2ðβ þ 5Þx2 − ðβ − 7Þðβ þ 1ÞxÞ

−
144a21w1ð2x2 þ βðx − 1Þ þ x − 1Þ

w2
2

þ 24a1ða2ðx2 − 1Þ þ ξw1ðβðx − 1Þ − 3x − 1Þ − 27Þ
þ a2½2ξw1ððβ þ 1Þ2 þ 2x3 þ 6x2 − ðβ − 5Þðβ þ 1ÞxÞ þ 6ð9β þ 2xðxþ 3Þ þ 4Þ�

þ a22ðβ þ xð−βxþ xþ 2Þ þ 1Þ
�
=108ð3β þ x2 þ 4xþ 3Þ ð28Þ

and the expectation is that both these quantities should be constrained in the interval ð0; 1Þ to guarantee that the sound speed
remains subluminal. The possibility of superluminal behavior in ultrabaric matter in special relativity was discussed by
Vaporaso and Brecher [61] and ruled out.

B. Cracking phenomenon

Herrera established the cracking concept applicable to local anisotropic stars [62]. According to this principle anisotropic
distributions are stable provided that 0 ≤ jv2t − v2Rj ≤ 1 is satisfied. The difference between the squares of the radial and
transverse sound speeds given by

v2R − v2T ¼
�
324w2

1½a2ð2β þ xþ 1Þ − 24a1 þ ξð2β2 þ β þ 3βx − x − 1Þ þ 6w1�2

− ½6ξð9β2 þ 3β þ 6βxðxþ 3Þ − 2w1ð2xþ 3ÞÞ þ 36w1ðxþ 5Þ
þ ξ2w1w3ððβ þ 1Þ2 þ 4x3 þ 2ðβ þ 5Þx2 − ðβ − 7Þðβ þ 1ÞxÞ

−
144a21w1ð2x2 þ βðx − 1Þ þ x − 1Þ

w2
2

þ 24a1ða2ðx2 − 1Þ þ ξw1ðβðx − 1Þ − 3x − 1Þ − 27Þ
þ a2ð2ξw1ððβ þ 1Þ2 þ 2x3 þ 6x2 − ðβ − 5Þðβ þ 1ÞxÞ þ 6ð9β þ 2xðxþ 3Þ þ 4ÞÞ

× a22ðβ þ xð−βxþ xþ 2Þ þ 1Þ�2
�
=11664ð3β þ x2 þ 4xþ 3Þ2 ð29Þ

provides an indication of the stability of the model. Graphical plots will be used to analyze these features.

C. Compactification ratio

The active gravitational mass is computed via the formula 1
3

R
ρrd−2dr where d is the spacetime dimension. In the five

dimensional case we obtain

MðrÞ ¼ k
3
þ 1

2C2

�
x −

β þ 2ðβ − 1Þx − 2

2w2
1

�
ð30Þ

and correspondingly the compactification parameter

MðrÞ
r

¼
�
k
3
þ 1

2C2

�
x −

β þ 2ðβ − 1Þx − 2

2w2
1

��
×

ffiffiffi
c
x

r
ð31Þ
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will be useful in determining whether the Buchdahl limit for the mass-radius ratio applicable to Einstein stars is still valid
when higher curvature effects are included.

D. Adiabatic stability of Chandrasekhar

Another indicator of stability devised by Chandrasekhar [34,63] is the adiabatic stability parameter Γ ¼ ðρþp
p Þ dpdρ which

assume the forms

ΓR ¼ ða2ð2β þ xþ 1Þ − 24a1 þ ξð2β2 þ β þ 3βx − x − 1Þ þ 6w1Þ
6ð3β þ x2 þ 4xþ 3Þða2w2 − 12a1 þ ξw2w3 þ 6w1Þ

×
ðw2ða2w1 þ ξw1w3 − 6Þ − 12a1w1Þ

6ð3β þ x2 þ 4xþ 3Þða2w2 − 12a1 þ ξw2w3 þ 6w1Þ
ð32Þ

ΓT ¼ −
�
36ð3β þ 2x2 þ 5xþ 3Þ − 6ξð3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1ÞxÞ

− 24a1ða2xw1 þ ξxw1w3 − 9Þ þ 144a21xw1

β þ xþ 1
þ ξ2 þ xw1w2w2

3

þ a2ða2xw1w2 − 6ð3β þ 2x2 þ 5xþ 3Þ þ 2ξxw1w2w3Þ
�

×

�
6ξð9β2 þ 3β þ 6βxðxþ 3Þ − 2w1ð2xþ 3ÞÞ þ 36w1ðxþ 5Þ

þ ξ2w1w3ððβ þ 1Þ2 þ 4x3 þ 2ðβ þ 5Þx2 − ðβ − 7Þðβ þ 1ÞxÞ
þ 24a1ða2ðx2 − 1Þ þ ξw1ðβðx − 1Þ − 3x − 1Þ − 27Þ

−
144a21w1ð2x2 þ βðx − 1Þ þ x − 1Þ

w2
2

þ a2½2ξw1ððβ þ 1Þ2 þ 2x3 þ 6x2 − ðβ − 5Þðβ þ 1ÞxÞ þ 6ð9β þ 2xðxþ 3Þ þ 4Þ�

þ a22ðβ þ xð−βxþ xþ 2Þ þ 1Þ
�
=

�
108ð3β þ x2 þ 4xþ 3Þ

× ½−6ξð3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1ÞxÞ − 36w1ðxþ 3Þ

þ 144a21xw1

β þ xþ 1
þ ξ2 þ xw1w2w2

3 − 24a1ða2xw1 þ ξxw1w3 − 9Þ

þa2ð2ξxw1w2w3 − 6ð3β þ 2x2 þ 5xþ 3ÞÞ þ a22xw1w2�
�

ð33Þ

for the anisotropic model under consideration. Adiabatic
stability occurs provided that Γ exceeds the critical value 4

3
.

For a recent study of this property in the context of neutron
stars see the work of [64].

E. Gravitational redshift

The gravitational surface redshift z obtained from the
formula z ¼ e−ν − 1 is given by

z ¼ 1

A
w−a1
2 e

1
12
w2ða2þξxÞ − 1 ð34Þ

for our model.

F. Energy conditions

The energy conditions for anisotropic matter may be
investigated with the help of the expressions ρ − p (weak
energy condition, ρþ p (strong energy condition and ρþ
3p the dominant energy condition. For the radial and
transverse directions we obtain

ρ−pR

C

¼w1ða2w2− 12a1þ ξw2w3þ 6w1Þþ 6ðβþ xðxþ 3Þþ 2Þ
2w3

1

ð35Þ
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ρ − pT

C
¼

�
36ð3β þ 4x2 þ 13xþ 9Þ þ 6ξ½3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1Þx�

− ξ2xw1w2w2
3 −

144a21xw1

β þ xþ 1
þ 24a1ða2xw1 þ ξxw1w3 − 9Þ − a22xw1w2

þ a2½18ðβ þ 1Þ − 2ξxw1w2w3 þ 6xð2xþ 5Þ�
�
=36w3

1 ð36Þ

ρþ pR

C
¼ 12a1w1 − w2ða2w1 þ ξw1w3 − 6Þ

2w3
1

ð37Þ

ρþ pT

C
¼

�
36ð3β þ 2x2 þ 5xþ 3Þ − 6ξ½3ðβ þ 1Þ2 þ 8x3 þ ð6β þ 20Þx2 þ 15ðβ þ 1Þx�

þ 144a21xw1

β þ xþ 1
þ ξ2 þ xw1w2w2

3 − 24a1ða2xw1 þ ξxw1w3 − 9Þ

þ a2½a2xw1w2 − 6ð3β þ 2x2 þ 5xþ 3Þ þ 2ξxw1w2w3�
�
=36w3

1 ð38Þ

ρþ pR þ 3pT

C
¼

�
3ξ½9ðβ þ 1Þ2 þ 22x3 þ ð21β þ 55Þx2 þ 3ðβ þ 1Þðβ þ 14Þx� þ 18½3ðβ þ 5Þ

þxð8xþ 23Þ� − ξ2xw1w2w2
3 −

144a21xw1

β þ xþ 1
þ 12a1ð2a2xw1 þ 2ξxw1w3 − 9ðxþ 3ÞÞ

þ a2½−a2w1xw2 þ 21x2 − 2ξw1xw2w3 þ 9βðxþ 3Þ þ 48xþ 27�
�
=18w3

1 ð39Þ

G. Matching

In order to study the matching problem in EGB, it is
necessary that the first and second fundamental forms
are continuous across a common boundary hypersurface.
The general approach was discussed by [20] however to
date no applicable scheme to implement has come forth
for EGB gravity. The matching conditions generate a set
of intractable field equations. In contrast, the problem
was adequately dealt with in general relativity by Israel
and Darmois [65,66] who went on to show that the
matching of the second fundamental forms is tanta-
mount to the vanishing of the radial pressure. In the area
of fðRÞ theory, a similar analysis by Goswami et al.
[67] generated a set of five conditions that must be
satisfied for a successful matching. The same authors
opined that these strong constraints render models of
collapsing stars in fðRÞ gravity unphysical. Additionally
Senovilla [68] considered the junction conditions relat-
ing to matter shells or branes in fðRÞ theory. In this
same context de la Cruz-Dombriz et al. [69] derived a
set of junction conditions by requiring that thin shells
do not form in the bulk equations of motion. Resco
et al. [70] examined the matching problem and utilized
a fourth order Runge-Kutta scheme for a perturbative
analysis. In order to execute the algorithm it was

assumed that the pressure vanishes on the boundary
and that the usual requirements of general relativity,
namely Minkowskian flatness at spatial infinity were
demanded. These results differ from general relativity in
general and if continuity of scalar torsion is satisfied
then the GR condition is regained. In the case of fðTÞ
gravity, where T refers to torsion, Velay-Vitow and
DeBenedictis [71] derive a set of junction conditions
from the variational principle in the covariant version of
the fðTÞ theory.
In our case we match the interior spacetime with

the exterior geometry. Note that there are only two
free constants to fix namely C and C1. The matching
entails writing all integration constants in terms of the
mass M and radius R of the star. For this purpose we set
r ¼ R and m ¼ M in (11) and where capital letters now
denote the values of the variables at the boundary
interface. The matching of the g00 component across
the boundary allows us to express the constant C in
the form

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 8αM

p
− R2

4αþ R2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 8αM

p ð40Þ

while the matching of the g11 component gives
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C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αþ R2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 8αM

pp
expð 1

12
ða2 þ ξCR2Þðβ þ 1þ CR2ÞÞ

2
ffiffiffi
α

p ðβ þ 1þ CR2Þa1 ð41Þ

as the form of the integration constant in terms ofM and R.
The matching is now complete. Observe that the matching
of the metric potentials is only the minimum criterion for
continuity across the boundary hypersurface. Additional
constraints may arise from the Davis conditions [20] once
these are explicitly known for spherically symmetric stars
in EGB.

VII. PHYSICAL ANALYSIS

In this section we discuss the physical plausibility of our
compact star model. In order to generate the plots we have
utilized mass and radius data associated with the pulsar
LMC X-4 which qualifies as a superdense star to determine
integration constants while other constants were assigned
special values through fine-tuning. Specifically we have
utilized values of the Gauss-Bonnet coupling α of the order
of 103 as these values generate physically pleasing plots.
The study does offer us an avenue to make qualitative
conclusions from the illustrative values of α and to contrast
with the Einstein scenario when α ¼ 0. Additionally it
should be noted that it is justifiable to use the data from
observed 4 dimensional objects in the five dimensional
scenario because the additional dimensions are angular and
historically extra dimensions have been understood to be
topologically hidden having very small values. This is the
case for Kaluza-Klein theory [7,8] and braneworld scenar-
ios. It is worthwhile recalling at this point that Gauss-
Bonnet higher curvature effects are only dynamical for
dimensions greater than 4. They do not contribute to the
stellar structure development in the usual 4 dimensions.
Since there is no available experimental data on five
dimensional stars, we must resort to the use of data on

known stars. This approach has also been followed by
[72–74].
Let us proceed with the analysis of the plots of the

physically relevant quantities. In Fig. 1 the density is shown
to be a smooth singularity-free monotonically decreasing
function of the radial coordinate. We observe that the
density decreases with an increase in magnitude of the
coupling constant. Figure 2 shows that the radial and
tangential pressures decrease monotonically outwards
toward the stellar surface. This is expected as the density
in the central regions of the star is much higher than the
surface density. It is interesting to note that the radial
pressure is greater than the tangential pressure for large
values of the coupling constant. This means that the force
due to the pressure anisotropy is attractive in this regime.
As the coupling constant decreases the tangential pressure
dominates the radial pressure leading to a repulsive con-
tribution from the anisotropy. Most importantly a hyper-
surface of vanishing radial pressure is clearly visible for a
radial value of approximately 8.3 km. The behavior of all
physical quantities should be studied within this radius. The
central pressure is well behaved displaying no singularities
for any value of the coupling constant α. Observations of
the adiabatic stability index Γ in Fig. 3 show that the fluid is
more stable for increasing α. This implies that higher order
corrections tend to make the compact object more stable
against perturbations. The critical lower bound of 4

3
estab-

lished by Chandrasekhar for Einstein gravity is always
exceeded for both tangential and transverse directions.
Causality is obeyed throughout the fluid configuration as
exhibited in Fig. 4. Both the radial and tangential speeds of
sound lie within the bound (0,1). The equation of state

FIG. 1. Variation of density ρ with radial coordinate for LMC
X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.

FIG. 2. Variation of pressures p with radial coordinate for LMC
X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.
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parameter is an important indicator of the relationship
between the pressure and density at each interior point of
the star. From Fig. 5 we observe that the ratio of the
pressure to density increases with an increase in the

coupling constant. This implies that stronger contributions
from higher order corrections lead to more compact objects.
In Fig. 6 we observe that the anisotropy changes sign which
implies that the force associated with anisotropy can be

FIG. 3. Variation of adiabatic index Γ with radial coordinate for
LMC X-4 withM ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.

FIG. 4. Variation of sound speed with radial coordinate for
LMC X-4 withM ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.

FIG. 5. Variation of equation of state parameters with radial
coordinate for LMC X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and
γ ¼ 1=3 in EGB.

FIG. 6. Variation of anisotropy with radial coordinate for LMC
X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.

FIG. 7. Variation of energy conditions with radial coordinate
for LMC X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3
in EGB.

FIG. 8. Variation of metric potentials with radial coordinate for
LMC X-4 withM ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.
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repulsive (pT > pR) or attractive (pT < pR). Lower order
contributions (smaller values of α) lead to repulsive effects
due to anisotropy. All the energy conditions as displayed in
Fig. 7 are satisfied. The metric potentials are continuous
and well-behaved throughout the star as evidenced in
Fig. 8. The surface redshift is illustrated in Fig. 9. We
observe that the surface redshift is higher for smaller values
of α which supports our observation of the density
increasing with smaller values of the coupling constant
(Fig. 1). Figure 10 depicts the cracking stability condition
which is well behaved. The forces required for equilibrium
are illustrated in Fig. 11. In order to achieve equilibrium we
require that Fg þ Fh þ Fa ¼ 0where Fg, Fh and Fa are the
gravitational, hydrostatic and anisotropic forces respec-
tively. Figure 12 displays the variation of the mass with
respect to the radius. Clearly within the stellar radius

8.3 km there appears to be little difference in the mass
profile for various α values. If the gravitational field
admitted a higher radial value then it can be inferred from
the plot that a maximum mass is achieved and some
discrimination in values near this maximum occur.
The frames in Figs. 13–15 display the various physical

quantities of our compact model in the 5D classical
Einstein limit (ie., α ¼ 0). Radial quantities are in red
while transverse items are in black. We observe that the
respective quantities such as density, pressures, redshift and
anisotropy are all substantially higher than their EGB
counterparts hence the need for separate plots. Xian-
Feng and Huan-Yu [75] established through relativistic
mean field theory that the surface gravitational redshift of

FIG. 10. Variation of stability factor with radial coordinate for
LMC X-4 withM ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.

FIG. 11. Variation of forces in TOV-equation with radial
coordinate for LMC X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and
γ ¼ 1=3 in EGB.

FIG. 12. M − R graph assumingM ¼ 1.04 M⊙, R ¼ 8.3 km in
EGB.

FIG. 9. Variation of red-shift with radial coordinate for LMC
X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in EGB.
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the star PSR J0348þ 0432 is in the region of about 0.3473
to 0.4064 which was higher than the canonical mass
neutron star with a redshift of 0.226. Our 5D stellar model
(Fig. 14) displays a redshift in the range 0.15 to 0.22 within
the distribution. This is therefore comparable with a
neutron star. Note that when higher curvature terms are
present as depicted in Fig. 9, the surface redshift drops
dramatically to the range of order 0.0025 to 0.0050.
Figure 14 also demonstrates that the measure of anisotropy,

the energy conditions and the speed of sound are all within
the expected levels. The stability measures shown in Fig. 15
confirm that the 5D Einstein model is stable with a well
behaved mass profile. These stability features are not
disturbed by the introduction of higher curvature effects
due to the Gauss-Bonnet action. In Table I we exhibit a few
stellar models which fall in the range of the mass and radius
comparable to LMC X–4. This shows that our qualitative
results are consistent with a large number of known stars.

FIG. 13. Graphs of metric potentials, density, pressure and P=ρ for LMC X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in GR
limit α ¼ 0.

FIG. 14. Graphs of anisotropy, redshift, energy conditions and sound speeds for LMC X-4 with M ¼ 1.04 M⊙, R ¼ 8.3 km and
γ ¼ 1=3 in GR limit α ¼ 0.
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VIII. RESULTS AND CONCLUSION

In this work we have generated the equations governing
the dynamical evolution of astrophysical models in the
Einstein-Gauss-Bonnet gravity paradigm with anisotropic
stresses. After electing to use a strange star equation of state
we employed the gravitational potential of Vaidya and
Tikekar which was used to construct models of superdense
stars in four dimensional gravity. The remaining gravita-
tional potential was settled by solving a differential
equation emanating from the equation of state. It was then
possible to calculate all the remaining dynamical variables
and stability indicators. Graphical plots assisted us to
investigate the behavior of the model with and without
higher curvature effects. It was found that lower energy
densities were realizable for increasing values of the
coupling constant α. The pulsar LMC X–4 supplied mass
and radius values to analyse other features of the star. In
order to study the physical viability of our solution, we
employed the mass-radius characteristics of the pulsar
LMC X-4. Our model closely mimics this pulsar in terms
of regularity, stability and causality. In addition, we
considered other stellar candidates (Table I) with masses

ranging from 1.29 M⊙ (SMC-X4) to 1.97 M⊙ (PSR J1614-
2230) which is just below the observed maximum mass of
neutron stars. Our solution is robust enough to account for
the predicted densities of these stellar candidates. It was
also found that higher curvature terms resulted in a
significant reduction in surface gravitational redshift values
when compared to the 5 dimensional Einstein star. With
regards to stability we concluded that the Gauss-Bonnet
terms did not disturb the stability of the model in the
Chandrasekhar adiabatic stability sense nor in the sense of
the TOV equation components. Lower sound speeds were
evident in the EGB models however neither model became
acausal within the radial value. It was shown that the EGB
model produced characteristics not out of sync with a range
of known compact objects. While there exists no exper-
imental data constraining the value of the Gauss-Bonnet
coupling, our models suggest that value of the order of 103

are required at least to generate viable strange star models.
This demonstrates that the higher curvature Gauss-Bonnet
terms impose a strong influence on the structure of stars and
could potentially alter inferences and interpretations of
observations of stars at large length scales.

FIG. 15. Graphs of stability factor, adiabatic index, TOV-equation andM − R curve withM ¼ 1.04 M⊙, R ¼ 8.3 km and γ ¼ 1=3 in
GR limit α ¼ 0.

TABLE I. Parameter of few well-known compact star candidates.

Object M
M⊙

R km γ c × 10−3 α ξ ρc × 1013 g=cc ρb × 1013 g=cc pc × 1033 dyne=cm2

LMC X-4 1.04 8.3 0.33 0.161 1200 0.06885 7.15 6.99 8.68
SMC X-4 1.29 8.831 0.33 0.155 1250 0.07931 6.93 6.77 9.50
EXO 1785-248 1.3 8.849 0.33 0.154 1300 0.12468 6.89 6.77 1.06
4U 1820-30 1.58 9.1 0.33 0.163 1350 0.27091 7.52 7.32 1.78
PSR J1614-2230 1.97 9.69 0.33 0.158 1400 0.2788 7.32 7.13 1.93
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