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The response of black holes to companions is of fundamental importance in the context of their
dynamics and of gravitational-wave emission. Here, we explore the effect of charge on the static response
of black holes. With a view to constraining broader setups, we consider charged geometries in an arbitrary
number of spacetime dimensionsD ≥ 4. Tensor tidal Love numbers are shown to follow a power law in the
black hole temperature ∼T2lþ1

H , and thus vanish at extremality. In contrast, the black hole charge Q excites
new modes of polarization in the vector sector that are otherwise not responsive in the neutral limit. In four
dimensions, Love numbers and magnetic susceptibilities vanish for all values of the charge that respect the
extremality bound. Using the theory of Fuchsian equations we are able to obtain analytical results in most
cases, even beyond the hypergeometric instances.
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I. INTRODUCTION

The advent of gravitational-wave (GW) astronomy [1,2]
and of very long baseline interferometry [3,4] allows access
to the hitherto invisible Universe [5–9]. In this vast land-
scape, compact objects such as black holes (BHs) hold a
tremendous discovery potential, allowing for unprec-
edented tests of General Relativity (GR) in the strong-field
regime [5–7,9–11]: are BHs described by classical General
Relativity [12] in vacuum, and up to which extent are matter
effects important and measurable [13–15]? Do BHs exist
and how can we quantify the presence of horizons in the
spacetime [6,16]?
The answer to the above questions requires an under-

standing of the dynamics ofBH spacetimes in general setups,
a notoriously difficult task. A key component in how BHs
respond dynamically lies in their deformability properties,
encoded in so-called tidal Love numbers (TLNs) [17,18].
These leave a detectable imprint in the GW signal emitted by
compact binaries in the late stages of their orbital evolution.
An intriguing result in classical, vacuum GR concerns the
vanishing of the TLNs of BHs [19–24]. The precise
cancellation of the TLNs of BHs within Einstein’s theory
may pose a problem of “naturalness” [25–27], which can be
argued to be as puzzling as the strong CP and the hierarchy
problem in particle physics, or as the cosmological constant
problem. The resolution of this issue in BH physics could
lead to—testable, since theywouldbe encoded inGWdata—
smoking-gun effects of new physics.
The above properties only hold in vacuum, while

astrophysical BHs are surrounded by matter, even if dilute.

Indeed, it was shown that such environmental effects can
conspire to produce small but nonvanishing TLNs [28].
Other, light matter fields could arise in extensions of the
StandardModel, or in higher-dimensional theories [29–31].
While their abundance could be negligible, it is unclear if
their very existence contributes to nontrivial TLNs, but
extra degrees of freedom, particularly scalar fields, can
contribute with nonvanishing TLNs in some specific
theories [32].
Here, we address the following main question: what is

the effect of charge and electromagnetic fields on the static
polarizability of BHs? In particular, can charge excite new
modes of static polarization? Furthermore, we consider this
in an arbitrary number of spacetime dimensions D ≥ 4.
This is a well-motivated setup for different reasons. First,
the physics of higher-dimensional, charged BHs is a matter
of interest per se. In particular, these play a central role in
the microscopic derivations of the Bekenstein-Hawking
entropy [33,34] as well as in the computation of its stringy
corrections [35,36]. Upon dimensional reduction, such BHs
can also be relevant in astrophysics. While Kaluza-Klein
excitations do not seem reachable in astrophysical proc-
esses [37], in brane-world type reductions the extra
dimensions induce a definite signature in the BH frequency
spectrum [38]. It is important to revisit these scenarios with
focus on the static response. However, first one needs to
understand the higher-dimensional degrees of freedom in
more natural settings (e.g., n-dimensional spherical sym-
metry). Finally, from a more technical viewpoint, spacetime
dimensionality D can be seen as a regularization parameter
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to obtain four-dimensional TLNs by taking D → 4, hence
also understanding how special such parameter is in the
space of possible values [39,40].

II. CHARGED BLACK HOLES IN D DIMENSIONS

We are interested in the static response of D-dimen-
sional, asymptotically flat BHs which are charged under
matter gauge fields. One of the simplest theories containing
BHs fulfilling such requirements is Einstein-Maxwell
theory in arbitrary spacetime dimension D. The field
content is the metric gAB and a Uð1Þ gauge field AA, both
subject to the action

S½g;A� ¼ 1

2κ2

Z
dDx

ffiffiffi
g

p
R −

1

4

Z
dDx

ffiffiffi
g

p
F 2; ð1Þ

where F ¼ dA is the field strength and κ2 the D-dimen-
sional gravitational coupling. The equations of motion take
the familiar form

GAB ¼ κ2TAB; d⋆F ¼ 0

TAB ¼ FACFC
B −

1

4
gABF 2: ð2Þ

There is a large set of black objects solving these equations
that are of interest in several contexts [41]. Here we are
concerned with linear fluctuations on such spaces, which is
a problem of significant complexity and hard to approach in
various cases. An analysis of the perturbations based on
harmonic decomposition is possible as long as the BH
solutions enjoy enough structure [42,43], and this is the
only situation in which a complete description of the
perturbations in arbitraryD is known. Here we shall restrict
to the BH solutions of (1) in which such analysis holds.
Static, spherically symmetric BHs of (1) carrying

electric charge are described by the Reissner-Nordström-
Tangherlini solutions [44–46]. The metric and field
strength read

ds2 ¼ −fdt2 þ dr2

f
þ r2dΩ2

n; F ¼ E0dt ∧ dr; ð3Þ

where f ¼ fðrÞ; E0 ¼ E0ðrÞ and we find it convenient to
define the dimension parameter

n ¼ D − 2; ð4Þ

and

f ¼ 1 −
2M
rn−1

þ Q2

r2n−2
; E0 ¼

q
rn

; Q2 ¼ κ2q2

nðn − 1Þ ; ð5Þ

with M and Q the BH mass and charge (up to factors)
respectively. The metric (3) has Killing horizons relative to
k ¼ ∂t at

rn−1� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð6Þ

Consequently, the solution exhibits a regular event horizon
at r ¼ rþ as long as the extremality bound jQj ≤ M
is preserved. In that case, the Hawking temperature of
the BH is

TH ¼ n − 1

4πrnþ
ðrn−1þ − rn−1− Þ: ð7Þ

When the extremality bound is saturated, the event and
Cauchy horizons merge and TH ¼ 0. On the other hand, as
one approaches the neutral limitQ ¼ 0 the Cauchy horizon
r− coalesces with the curvature singularity at r ¼ 0 and the
solution reduces to Schwarzschild-Tangherlini [46]. We
will see that this plays a crucial role for the master
equations governing static perturbations. Whenever any
of these two limits takes place, i.e., Q ¼ 0 or TH ¼ 0, the
equations become hypergeometric and Love numbers and
magnetic susceptibilities are exactly solvable. For inter-
mediate values of the BH charge the equations pick an extra
pole (the Cauchy horizon) and are, therefore, less ame-
nable. Nevertheless, we still manage to get exact results in
most cases. In the following we derive the master equations
governing static perturbations of (3) for both the tensor and
vector sectors.

III. PERTURBATION THEORY

A large class of BH spacetimes can be written as a
warped product of an n-dimensional euclidean Einstein
manifold ðKn; γijÞ and an m-dimensional Lorentzian mani-
fold ðN m; gabÞ (i; j ¼ 1;…; n and a; b ¼ 1;…; m). The
spacetime is (nþm)-dimensional with manifold structure
M ¼ N m ×Kn and, in adapted coordinates xA ¼ ðya; ziÞ,
the metric takes the form

ds2 ¼ gabðyÞdyadyb þ r2ðyÞγijðzÞdzidzj; ð8Þ

where rðyÞ is the warping factor defined as a function on
N m. A metric with structure (8) is only compatible with
energy-momentum tensors of the form

Tai ¼ 0; Ti
j ¼ Pδij; ð9Þ

where P is a function onN m. Although such a spacetime is
notably general, the fact that Kn is Einstein still allows an
analysis of fluctuations based on harmonic decomposition.
This is due to Kodama and Ishibashi (KI) who established a
completely covariant and gauge-invariant approach to
perturbation theory on these spaces [42,43].
In the KI formalism, taking advantage of the structure of

Eq. (8) one decomposes a general perturbation in tensor,
vector and scalar sectors. After projection on the corre-
sponding harmonics, Einstein’s equations decouple in three
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sets of partial differential equations (PDEs) onN m, one for
each sector. This holds for a general energy-momentum
tensor, and the equations may be simplified by assuming its
covariant conservation. Once a specific field content has
been chosen, Einstein’s equations are supplemented with
the matter equations of motion. In the case of Einstein-
Maxwell theory, the vector potential can already be

decomposed in scalar ðδAa; aÞ and vector Að1Þ
i components1

δA ¼ δAadya þ ðAð1Þ
i þ D̂iaÞdzi; with D̂iAð1Þ

i ¼ 0;

ð10Þ

from which it follows that the matter tensor sector is empty
in this theory. The final form of the equations is given in
terms of a gauge-invariant basis of variables that can be
constructed for each sector. The BHs of Einstein-Maxwell
theory considered in this work, described by Eq. (3), fall in
the class of Eq. (8) with m ¼ 2 and Kn ¼ Sn. In the
remainder of this work we adopt the KI formalism [42,43]
and focus on tensor and vector fluctuations on the back-
ground space (3). This is convenient because, on the one
hand, it suffices to understand the behavior of test fields as
well as interacting gravitational and electromagnetic per-
turbations. In addition, the equations turn out to be simple
enough so as to admit analytical results in several instances.
A more thorough analysis including the scalar sector will
be considered elsewhere.

A.Master equations and their static limit: Tensor sector

A general tensor perturbation is generated by just two
gauge-invariant variables ðHT; τTÞ [42,43],

hij ¼ 2r2HTT ij; δTij ¼ r2ðτT þ 2PHTÞT ij; ð11Þ

where T ij are the tensor harmonics on Sn satisfying

ðD̂kD̂k þ k2t ÞT ij ¼ 0; T i
i ¼ 0 ¼ D̂jT ji; ð12Þ

with spectrum

k2t ¼ LðLþ n − 1Þ − 2; L ¼ 2;… ð13Þ

Furthermore, the Maxwell field strength δF does not
contribute to the tensor part of the energy-momentum
tensor,

τT ¼ 0; ð14Þ

and the Einstein-Maxwell equations reduce to a single PDE
on N 2 for HT,

□HT þ n
r
Dr ·DHT −

k2t þ 2

r2
HT ¼ 0: ð15Þ

As noted by KI [42,43], Eq. (15) turns out to be the same as
that satisfied by a test, massless scalar field on our back-
ground if k2t is appropriately identified with the angular
momentum number. Therefore, the tensor sector can also be
used to infer properties of test fields on (3).
After a field redefinition HT ¼ r−n=2ϕ to get rid of the

term ∼Dr ·DHT the master equation becomes

ð□þ VÞϕ ¼ 0; ð16Þ

with

V ¼ nð3n − 2Þ
4

Q2

r2n
−
4k2t þ 8þ n2 − 2n

4r2
−
n2

2

M
rnþ1

: ð17Þ

We are interested in the static solutions of this equation, that
is, solutions satisfying £kϕ ¼ 0 where k is the static
timelike Killing vector of (3). Either in Schwarzschild or
Eddington-Finkelstein coordinates, this translates into the
requirement that ϕ is a function of r only, ϕ ¼ ϕðrÞ. When
specialized for a static perturbation, Eq. (16) becomes an
ODE of Fuchsian type with four regular singular points:
infinity, the event horizon, the Cauchy horizon and the
singularity. Therefore, it can be cast in Heun’s form
[47,48]. To see this, we first introduce the dimensionless
variable

z ¼
�
rþ
r

�
n−1

: ð18Þ

Then, after a field redefinition

HTðzÞ ¼ rðzÞ−n=2z2lðn−1Þþn−2
2ðn−1Þ ΨðzÞ; ð19Þ

the master equation becomes of Heun’s type,

Ψ00 þ
�
γ

z
þ δ

z − 1
þ η

z − zc

�
Ψ0 þ αβðz − hÞ

zðz − 1Þðz − zcÞ
Ψ ¼ 0;

ð20Þ

where primes stand for derivatives with respect to z and
with coefficients

zc ¼ cot2
�
ϵ

2

�
; γ ¼ 2ðlþ 1Þ; δ¼ 1; η¼ 1;

α¼ 2þ l; β ¼ 1þ l; h¼ ðlþ 1Þcsc2ðϵ
2
Þ

lþ 2
: ð21Þ

This equation depends on two dimensionless parameters, ϵ
and l, defined as

1Equivalently, one may regard δF ¼ dδA as the basic variable
and decompose it with respect to Kn. This seems the most natural
approach for matter fields of higher ranks.
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l ¼ L
n − 1

; sin ϵ ¼ Q
M

; ð22Þ

where L is the harmonic number defined by (13). The
extremality bound dictates jQj ≤ M, and without loss of
generality we can restrict to ϵ ∈ ½0; π=2�with neturality and
extremality lying at 0 and π=2, respectively. Equation (20)
has regular poles at z ¼ 0; 1; zc;∞, corresponding respec-
tively to infinity, the event and Cauchy horizons and the
singularity.
It is interesting to specialize the general equation (20) to

neutral and extremal cases. The regular singularity at the
Cauchy horizon zc collides with that on the event horizon
as TH → 0, while in the neutral limit Q → 0 it merges with
the spacetime curvature singularity (see Fig. 1). Quite
interestingly, in none of these limits does the merging
produce an irregular singularity. Instead, one has three
regular singularities at infinity z ¼ 0, the horizon z ¼ 1 and
the curvature singularity z ¼ ∞. Consequently, the equa-
tion becomes of hypergeometric type and in such cases one
can use the theory of hypergeometric functions to obtain
analytically the response parameters, as discussed in
[39,40] for the neutral limit. We will find the same pole
structure in the vector sector.
Explicitly, in the neutral case Eq. (20) can be immedi-

ately evaluated at ϵ ¼ 0 giving the hypergeometric
equation

zð1 − zÞΨ00 þ ½c − ðaþ bþ 1Þz�Ψ0 − abΨ ¼ 0; ð23Þ

with coefficients

a ¼ b ¼ lþ 1; c ¼ 2ðlþ 1Þ: ð24Þ

This coincides with the equation obtained in Ref. [40] for
the tensor degree of freedom. In the extremal case ϵ ¼ π=2,
after a field redefinition

ΨðzÞ ¼ ð1 − zÞlψðzÞ; ð25Þ

one obtains again an hypergeometric equation (23) for
ψðzÞ, now with parameters

a ¼ c ¼ 2ðlþ 1Þ; b ¼ 2lþ 1: ð26Þ

In sum, we have found that a static tensor perturbation is
governed by Heun’s equation (20) with coefficients given

in (21). In the neutral and extremal limits, it reduces to a
hypergeometric equation (23) with coefficients given in
(24) and (26), respectively. In the following section we will
discuss solutions to these equations and obtain the asso-
ciated response parameters.

B. Master equations and their static limit: Vector sector

The vector sector of a general perturbation is composed
of [42,43]

hai ¼ hð1Þa V i; hij ¼ −2kvh
ð1Þ
T V ij; ð27Þ

δTai ¼ Tð1Þ
a V i; δTij ¼ −2kvT

ð1Þ
T V ij; ð28Þ

where the vector harmonics V i satisfy

ðD̂jD̂jþk2vÞV i¼0; D̂iV i¼0; V ij≔−
1

kv
D̂ðiV jÞ;

k2v¼LðLþn−1Þ−1; L¼1;2;… ð29Þ

Excluding the special harmonic case L ¼ 1, a basis of
gauge-invariant variables in N 2 is

Fð1Þ
a ¼ 1

r

�
hð1Þa − r2Da

�
hð1ÞT

r2

��
; ð30Þ

τð1Þa ¼ 1

r
ðTð1Þ

a − Phð1Þa Þ; ð31Þ

τT ¼ 2kv
r2

ð−Tð1Þ
T þ Phð1ÞT Þ: ð32Þ

There are two Einstein equations for this sector plus one
coming from conservation of TAB, δð∇MTMAÞ ¼ 0. The
latter can be combined with one of the Einstein equations to
give an integrability condition, which allows one to trade
Fa by a function Ω satisfying

DaΩ ¼ ϵac

�
rn−1Fc − 2

κ2

mV
rnþ1τc

�
; ð33Þ

mV ¼ k2v − ðn − 1Þ ¼ ðL − 1ÞðLþ nÞ: ð34Þ

Notice that mV ¼ 0 only for the special harmonic L ¼ 1
that we consider separately. In addition, the vector sector of
Maxwell’s field is generated by a single gauge-invariant
function A on N 2,

δA ¼ AV idzi; τa ¼ −
q

rnþ1
ϵabDbA; τT ¼ 0: ð35Þ

In terms of the gauge-invariant functions ðΩ; AÞ onN 2, the
Einstein and Maxwell equations are reduced to a pair of
coupled PDEs:

FIG. 1. Singularity structure of the master equations. The
regular singular point at the Cauchy horizon z ¼ zc coalesces
with those at the event horizon z ¼ 1 and spacetime singularity
z ¼ ∞ in the extremal and neutral limits, respectively.
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rnDa

�
DaΩ
rn

�
−
mV

r2
Ω ¼ −

2κ2

mV
rnϵabDaðrτbÞ; ð36Þ

1

rn−2
Daðrn−2DaAÞ − k2v þ n − 1

r2
A ¼ qmV

r2n
Ω: ð37Þ

Introducing the field redefinitions

ϕ� ¼ a�r−n=2
�
Ω −

2κ2q
mV

A

�
þ b�r

n−2
2 A; ð38Þ

we find that Eqs. (36) and (37) decouple if

ðaþ; bþÞ ¼
�

QmV

ΔþMðn2 − 1Þ σðþÞ;
Q
q
σðþÞ

�
; ð39Þ

ða−; b−Þ ¼
�
σð−Þ;−

2κ2q
ΔþMðn2 − 1Þ σð−Þ

�
; ð40Þ

where σð�Þ are any two (nonzero) constants and the positive
constant Δ satisfies

Δ2 ¼ M2ðn2 − 1Þ2 þ 2nðn − 1ÞmVQ2: ð41Þ

With this, ϕ� satisfy master equations of the form

ð□þ V�Þϕ� ¼ 0; ð42Þ

with

V� ¼ −
k2v þ 1þ n2=4 − n=2

r2
−
nð5n − 2ÞQ2=4

r2n

−
−ðn2 þ 2ÞM=2� Δ

rnþ1
: ð43Þ

A comment here is in order. This derivation of Eq. (42)
reproduces that in Refs. [42,43] with the difference that the
decoupling parameters (39) and (40) are defined only up to
their global factors. This is due to the fact that the general
solution must depend on two independent amplitudes. In
the neutral background these are clearly associated with the
gravitational and electromagnetic fluctuations. However,
when the BH is charged, such fluctuations couple and the
independent amplitudes refer to the modes ϕ� that contain
fixed proportions of gravitational and electromagnetic
contributions. This fact will be important for the definition
of vector Love numbers and magnetic susceptibilities.
Lastly, notice that on the neutral background ϕ− and ϕþ
reduce to the standard gravitational and electromagnetic
master variables respectively, so it may still be sensible to
regard them as the gravitational and electromagnetic
degrees of freedom even in the charged case.
We are interested in static solutions of (42). In terms of

the new variables Ψ�,

ϕ� ¼ z
2lðn−1Þþn−2

2ðn−1Þ Ψ�; ð44Þ

we obtain once again Heun’s differential equation (20), but
now with parameters given by

zc ¼ cot2
�
ϵ

2

�
; α¼ lþ 3þ 1

n− 1
; β ¼ l−

1

n− 1
;

γ ¼ 2ðlþ 1Þ; δ¼ η¼ 1;

h� ¼ csc2ðϵ
2
Þð1þ 2lðn− 1Þ2ðlþ 2Þ þ n2 − 4n� Δ̃Þ
2ð2þ l2ðn− 1Þ2 þ 3lðn− 1Þ2 − 3nÞ : ð45Þ

The dimensionless variable z and parameters l and ϵ are
given by (18) and (22), respectively, while Δ̃ ≔ Δ=M.
This equation has the same pole structure as the master

equation of the tensor sector, with regular singularities at
infinity z ¼ 0, event horizon z ¼ 1, Cauchy horizon z ¼ zc
and curvature singularity z ¼ ∞. Just as in the tensor case,
the Cauchy horizon zc merges with the singular points at
the event horizon and the curvature singularity in the
extremal and neutral limits, respectively, leading in both
cases to a hypergeometric equation (see Fig. 1). The
equations for the neutral case are obtained just by evalu-
ating (20) at ϵ ¼ 0, and have hypergeometric form:

zð1 − zÞΨ00
� þ ½c − ða� þ b� þ 1Þz�Ψ0

� − a�b�Ψ� ¼ 0;

ð46Þ

with parameters c ¼ 2ðlþ 1Þ and

aþ ¼ a− þ 1 ¼ l −
1

n − 1
þ 1; ð47Þ

bþ ¼ b− − 1 ¼ lþ 1

n − 1
þ 1: ð48Þ

Again, we find agreement with previous results for the
neutral case [40]. The extremal limit is a bit more involved.
After a field redefinition

Ψ� ¼ ð1 − zÞ12ðΣ�n−1−1Þψ�; ð49Þ

where

Σ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þð5nþ 3Þ þ 4ðmV � Δ̃Þ

q
; ð50Þ

and introducing the symbol

Sðρ;σÞ ¼
Σρ þ σð3n − 1Þ

2ðn − 1Þ with ρ; σ ¼ �; ð51Þ

the equations for ψ� take hypergeometric form with c ¼
2ðlþ 1Þ and
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a� ¼ 1þ lþ Sð�;þÞ; b� ¼ 1þ lþ Sð�;−Þ: ð52Þ

Lastly, we consider the special harmonic mode. This
corresponds to the case that V i is a Killing vector field in
Kn, i.e., V ij ¼ 0. For Kn ¼ Sn this happens only if
mV ¼ ðL − 1ÞðLþ nÞ ¼ 0, i.e., L ¼ 1 [42,43]. The pro-
jection of the perturbation into this harmonic, unlike the
general one (27) and (28), is composed of just

hai ¼ hð1Þa V i; δTai ¼ Tð1Þ
a V i: ð53Þ

The gauge-invariant variables in this case are

Fab ¼ rDa

�
hð1Þb

r2

�
− rDb

�
hð1Þa

r2

�
; ð54Þ

τa ¼
1

r
ðTð1Þ

a − Phð1Þa Þ ¼ −q
rnþ1

ϵabDbA; ð55Þ

and Fab can be solved exactly as [42,43]

F ¼ q
2κ2

rnþ1
A −

2κ2

rnþ1
τ0; ð56Þ

where F ¼ ð1=2ÞϵabFab and τ0 is an arbitrary integration
constant. It follows that the gravitational special mode is
nondynamical. In particular, τ0 generates a small rotation so
restricting to a static background requires setting τ0 ¼ 0. In
terms of ϕþ ¼ r

n−2
2 A, Maxwell’s equation reduces precisely

to the “þ” equation in (42) with L ¼ 1.
In sum, we have found that static vector perturbations are

governed by equations of Heun’s type (20) with parameters
(45). In the neutral and extremal limits these become
hypergeometric, with parameters (47) and (48), and (52),
respectively. The special harmonic is recovered by just
setting L ¼ 1 in the electromagnetic mode (þ) and dis-
regarding the gravitational one (−). In the following section
we discuss static solutions to these equations and obtain the
associated response parameters.

IV. STATIC RESPONSE

The original works that established the vanishing of BH
Love numbers in four dimensions, both in neutral [19] and
charged [32] cases, followed an approach based on a full
GR computation. Recently, the authors in Ref. [40] con-
sidered also this point of view to compute the static
response of fields with integer spin, 0,1 and 2, fluctuating
on a neutral Schwarzschild-Tangherlini background. Along
the lines of [39], they also showed that response parameters
obtained in that way can be regarded as coefficients in a
worldline effective action associated with the BH, thus
clarifying some concerns about ambiguities in the defi-
nition of Love numbers [49,50]. All these motivates us to

adopt a full GR approach to study the static response of
charged BHs in arbitrary D.

A. Tensor Love numbers

The parameters governing the static response of a system
to a tidal field can be obtained by inspection of the solutions
at infinity. Consider first a tensor perturbation on (3), which
is described by (20). From the standard theory Fuchsian
equations, in a neighborhood of z ¼ 0 the general solution
has the form [47]

ΨðzÞ ¼ AΨrespðzÞ þ Bðz−2l−1ΨtidalðzÞ þ RΨrespðzÞ ln zÞ:
ð57Þ

Here, A and B are arbitrary constants multiplying two
linearly independent solutions. The first one, ΨrespðzÞ, is
analytic at z ¼ 0 and without loss of generality we choose
to normalize it as ΨrespðzÞ ¼ 1þOðzÞ. The second sol-
ution contains, in general, a logarithmic term where R is
some constant and ΨtidalðzÞ is another analytic function at
z ¼ 0 that we chose to normalize as ΨtidalðzÞ ¼ 1þOðzÞ.
Of course, the indices of our equation at z ¼ 0 are 0 and
−ð2lþ 1Þ, and the latter quantity serves as a discriminant
between qualitatively different cases:

(i) 2lþ 1 ∉ N: In this case the Frobenius solutions
associated with each index at z ¼ 0 are linearly
independent and one has R ¼ 0. After imposing
regularity at the horizon z ¼ 1 the relative normali-
zation between A and B gets fixed,

ΨðzÞ ¼ BðkΨrespðzÞ þ z−2l−1ΨtidalðzÞÞ: ð58Þ

The growing mode at infinity ∼z−2l−1 has the
interpretation of an external tidal field while
ΨrespðzÞ, which is regular at z ¼ 0, is the response
of the system. The parameter k is the (dimension-
less) tidal Love number, which is precisely the
quantity controlling the falloff induced by the tidal
field. Since it is completely determined by the
requirement of regularity at the horizon and does
not depend on the amplitude of the tidal field, the
Love number k is an intrinsic property of the BH.

(ii) 2lþ 1 ∈ N: In general, the second solution exhibits
a logarithmic term, so the constant R may not
vanish. Again, regularity at the horizon z ¼ 1 fixes
the relative normalization between A and B,

ΨðzÞ¼BðkΨrespðzÞþz−2l−1ΨtidalðzÞþRΨrespðzÞ lnzÞ:
ð59Þ

However, unlike the case where 2lþ 1 ∉ N, now the
quantity k is ambiguous due to power mixing. From
the regular solution (59), there is no natural way of
telling apart which contribution to the power series
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comes from the response and which from the tidal
field. In particular, kΨrespðzÞ can be completely
absorbed order by order in the term z−2l−1ΨtidalðzÞ.
Similar observationswere noted in [40]. The invariant
piece of information here isR. Furthermore, as shown
in [39] and discussed in [40] the logarithmic term
corresponds to a classical RG running of the induced
responsewhich is characterized byR, sowe shall take
R ln z as the response “parameter” in this case.
Nevertheless, there is a remarkable exception within
the case 2lþ 1 ∈ N. It may be that (20) admits a
second solution where R ¼ 0 and ΨtidalðzÞ is a
polynomial of degree ≤ 2lþ 1. This purely growing
mode is a tidal field and, furthermore, being just a
terminating series in z it is precisely the solution that is
regular on the horizon z ¼ 1. It follows that the Love
number is zero in this case.2 As shown below, this is
exactly what happens in D ¼ 4.

Notice that this definition of Love numbers is in
complete analogy with those in the literature in several
contexts [19,32,39,40,51] and, in particular, it reduces
exactly to that of [40] for the neutral BH. In the following
we compute the tensor Love numbers for neutral and
extremal limits separately, and then consider the case of
finite charge and temperature.

1. Neutral and extremal limits

For vanishing BH charge Q ¼ 0 static tensor perturba-
tions are governed by the hypergeometric equation (23)
with parameters (24). Writing the general solution in terms
of hypergeometric functions and using the connection
formulas between Kummer’s solutions, the authors in
[40] computed the response parameters defined as in the
previous section. We list them here for completeness,

kðneutÞtensor ¼

8>>><
>>>:

2lþ1
2π

Γðlþ1Þ4
Γð2lþ2Þ2 tan ðπlÞ l ∉ N; 1

2
N

ð−1Þ2lΓðlþ1Þ2
ð2lÞ!ð2lþ1Þ!Γð−lÞ2 ln z l ∈ 1

2
N

0 l ∈ N

; ð60Þ

and notice that the only relevant case in D ¼ 4 is l ∈ N. In
the extremal case the static tensor perturbation ψ in (25) is
likewise subject to a hypergeometric equation, but now
with parameters (26). Such equation turns out to admit a
remarkably simple general solution for all l,

ψðzÞ ¼ A
ð1 − zÞ2lþ1

þ B
z2lþ1

; ð61Þ

with A and B arbitrary constants. Clearly, imposing
regularity at the horizon z ¼ 1 fixes A ¼ 0, thus leaving
just a pure tidal field ψðzÞ ∼ z−2l−1. This leads to the

interesting result that tensor Love numbers vanish at
extremality in any number of spacetime dimensions,

kðextÞtensor ¼ 0: ð62Þ

2. Finite charge and temperature

For intermediate charges 0 < Q < M, the Cauchy hori-
zon introduces an additional pole in the master equation,
which becomes of Heun’s type (20). Unfortunately, the
latter is not as symmetric as the hypergeometric equation,
so no analog of Kummer’s solutions exists and connection
formulas are not available in general [47,48,52]. Thus, it is
not clear how to write suitably the analytic prolongation
of a solution, say, from a neighborhood of z ¼ 0 to a
neighborhood of z ¼ 1.3 This makes it difficult to obtain
the response parameters proceeding as in the neutral and
extremal limits. Rather remarkably, though, for tensor
perturbations it is possible to obtain analytical results for
all l. Consider first the degenerate case l ∈ 1

2
N. After

choosing the normalization of ΨtidalðzÞ as ΨtidalðzÞ ¼
1þOðzÞ, Eq. (20) applied to the second solution of
(57) fixes R completely and it is possible to obtain its
exact value after solving just a few orders. Furthermore, the
result can be written in closed form:

Rtensor ¼ RðneutÞ
tensor

�
cos ϵ

cos2 ðϵ=2Þ
�

2lþ1

¼ RðneutÞ
tensor

�
4πrþ
n − 1

TH

�
2lþ1

�
l ∈

1

2
N

�
; ð63Þ

where rþ and TH are the radius and temperature of the BH,

and RðneutÞ
tensor is the coefficient in front of the logarithm in the

neutral case (60). Notice that (63) vanish at extremality,
TH ¼ 0, as expected from the result in (62). For l ∈ N we
find that the second solution is just z−2l−1ΨtidalðzÞ, with
no logarithmic term, where ΨtidalðzÞ is a polynomial of
degree l, so

ktensor ¼ 0 ðl ∈ NÞ: ð64Þ

This is the only relevant case for D ¼ 4, where l takes
values just in N. Tensor perturbations do not exist in four
dimensions, but due to the close relation between the tensor
sector and (massless) scalar fields, the result (64) shows
that 4D, electrically charged BHs do not polarize under
tidal fields of scalar type. Finally, for l ∉ N; 1

2
N with no

connection formulas available it is most likely that the only
way of obtaining the Love numbers at finite Q and TH is
numerically. However, in views of the results (63) and (64)
it is very tempting to try with

2There is some discussion on whether this argument can be
applied to the rotating case [22,24].

3See [53] for recent progress in tackling this issue for Heun’s
confluent equation, which is the relevant ODE for oscillating
perturbations in Kerr’s black hole.
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ktensor ¼ kðneutÞtensor

�
4πrþ
n − 1

TH

�
2lþ1

�
l ∉ N;

1

2
N

�
: ð65Þ

where kðneutÞtensor is the neutral Love number shown in (60). We
compared this expression with the numerical results
obtained for ktensor and have found exact agreement. In
Fig. 2 we illustrate this for various values of l. This
confirms the validity of (65), although a rigorous proof
is still desirable.
We conclude that the tensor Love numbers of a charged

BH of radius rþ at temperature TH are

ktensor ¼ kðneutÞtensor

�
4πrþ
n − 1

TH

�
2lþ1

¼

8>>><
>>>:

2lþ1
2π

Γðlþ1Þ4
Γð2lþ2Þ2 tan ðπlÞ

�
4πrþ
n−1 TH

�
2lþ1

l ∉ N; 1
2
N

ð−1Þ2lΓðlþ1Þ2
ð2lÞ!ð2lþ1Þ!Γð−lÞ2

�
4πrþ
n−1 TH

�
2lþ1

ln z l ∈ 1
2
N

0 l ∈ N

:

ð66Þ

It is clear that these vanish at extremality, TH ¼ 0, thus
recovering (62), and reduce to those obtained in [40]
for Q ¼ 0 [see (60)]. At this point it is natural to
wonder how general the vanishing of Love numbers at
extremality is. In the following section we show that
vector Love numbers and magnetic susceptibilities do
not vanish at TH ¼ 0. Instead, BHs become signifi-
cantly more polarized as one approaches the extrem-
ality bound.

B. Vector Love numbers and
magnetic susceptibility

Response parameters k� can be defined for the master
variables of the vector sector Ψ� just as we did for the
tensor master variable. Recall that such k� may be just
numbers or could contain a logarithm in the degenerate
cases. The notions of vector Love number and magnetic
susceptibility, though, are defined relative to the original
fields, that is, the metric perturbation and Maxwell’s vector
potential [32]. More precisely, vector Love numbers
(magnetic susceptibility) measure the response of the BH
when there is no electromagnetic (gravitational) tidal field
at infinity. Physically, this can be thought of as the BH
being perturbed by the presence of a massive yet neutral
(light yet highly charged) companion.
The decoupled degrees of freedom (38) are defined up to

their respective independent amplitudes, σð�Þ. These modu-
late the intensity with which each mode contributes to the
total perturbation. Vanishing tidal fields at infinity are
achieved for particular choices of such amplitudes. To see
this, it is more convenient to trade the absolute amplitudes
σð�Þ by a relative amplitude Θ and a global amplitude A
defined as

Θ ≔
σð−Þ
σðþÞ

; ð67Þ

A ≔
ðΔ̃þ n2 − 1Þ2

2mVðn − 1Þn sin2ðϵÞ þ ðΔ̃þ n2 − 1Þ2
1

σð−Þ
: ð68Þ

In terms of these, the original fields4 take the form

hai ¼ A
ϵab
rn−2

Db

�
rn=2zðrÞ2lðn−1Þþn−2

2ðn−1Þ

�
kvectorðΘÞ þ

�
1þ 2ðn − 1Þn sin ϵ

Δ̃þ n2 − 1
Θ
�
z−2l−1 þ � � �

��
V i; ð69Þ

δAi ¼ AΘ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þp
κ

r−
n−2
2 zðrÞ2lðn−1Þþn−2

2ðn−1Þ

�
kmagneticðΘÞ þ

�
1 −

mV sin ϵ

Δ̃þ n2 − 1

1

Θ

�
z−2l−1 þ � � �

�
V i; ð70Þ

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.0

0.1

0.2

0.3

FIG. 2. Tensor TLNs for some values of l ¼ L=ðn − 1Þ in the
generic case 2lþ 1 ∉ N. For n ¼ 6, 10, we represent L ¼ 2, 3, 4.
Gray dots are the numerical values, solid black dots at the edges
are the analytic predictions at neutrality Q ¼ 0 and extremality
Q ¼ M, and the solid black lines correspond to the analytic
formula (65). We observe that (65) is indeed in perfect agreement
with both analytic and numeric results.

4The condition on the gravitational perturbation is actually imposed on the gauge-invariant variable Fa in (30). For clarity here we
give it in terms of the metric variable hai, but this is implicitly evaluated in the gauge hð1ÞT ¼ 0, where metric perturbation and gauge-
invariant variable coincide.
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where

kvectorðΘÞ ¼ k− þ 2ðn − 1Þn sin ϵ
Δ̃þ n2 − 1

Θkþ; ð71Þ

kmagneticðΘÞ ¼ kþ −
mV sin ϵ

Δ̃þ n2 − 1

k−
Θ

; ð72Þ

and we are keeping only the relevant terms of the master
variablesΨ�, that is, the tidal mode and the response falloff.
The quantities kvectorðΘÞ and kmagneticðΘÞ are ameasure of the
response of the BH to a gravito-magnetic tidal field char-
acterized by Θ, the relative intensity between the gravita-
tional and magnetic contributions. The vector Love numbers
and the magnetic susceptibility are precisely these quantities
evaluated at the Θ’s in which there is no magnetic or no
gravitational tidal fields respectively, that is, when no term
∼z−2l−1 is present in the expansion of (70) or (69) [32],

kvector ¼ k− þ 2 sin2 ϵ
mVðn − 1Þn
ðΔ̃þ n2 − 1Þ2 kþ; ð73Þ

kmagnetic ¼ kþ þ 2 sin2 ϵ
mVðn − 1Þn
ðΔ̃þ n2 − 1Þ2 k−: ð74Þ

With this, vector Love numbers kvector and magnetic sus-
ceptibility kmagnetic are related simply byþ ↔ −, and k� can
be obtained from the master equations of Ψ� proceeding as
we did for the tensor variable.

1. Neutral and extremal limits

It is convenient to deal first with neutral and extremal
limits since the equations undergo a significant simplifi-
cation. The response parameters for Q ¼ 0 were found in
[40] by solving (46) with parameters (47) and (48).5 Let us

consider a maximally charged BH Q ¼ M. Static pertur-
bations are described by the master variable ψ� [see (49)]
subject to a hypergeometric equation with coefficients (52).
The response parameters k� in degenerate and nondegen-
erate cases are obtained as follows:
First case: 2lþ 1 ∉ N: The general solution can be

written as [47,48,52]

ψ�ðzÞ ¼ AF½a�; b�; cjz� þ Bz1−cF½a� − cþ 1;

b� − cþ 1; 2 − cjz�; ð76Þ
where A and B are arbitrary constants, a�; b� and c are
given in (52) and F½a; b; cjz� denotes the hypergeometric
function. Since the latter are normalized according to
F½a; b; cj0� ¼ 1, the response parameter k� enters the
solution as (see Sec. IVA)

ψ�ðzÞ ¼ Bk�F½a�; b�; cjz�;
þ Bz1−cF½a� − cþ 1; b� − cþ 1; 2 − cjz�: ð77Þ

Using the connection formula [48,52]

sin ½πðc − a − bÞ�
πΓðcÞ F½a; b; cjz�

¼ F½a; b; aþ b − cþ 1j1 − z�
Γðc − aÞΓðc − bÞΓðaþ b − cþ 1Þ

− ð1 − zÞc−a−b F½c − a; c − b; c − a − bþ 1j1 − z�
ΓðaÞΓðbÞΓðc − a − bþ 1Þ ;

ð78Þ
one can write explicitly the analytic continuation of each
hypergeometric function in (77) to a neighborhood of
z ¼ 1. In our case,

ψ�ðzÞ
B

¼ −k�
πΓðcÞð1 − zÞc−a�−b�F½c − a�; c − b�; c − a� − b� þ 1j1 − z�

sin ½πðc − a� − b�Þ�Γða�ÞΓðb�ÞΓðc − a� − b� þ 1Þ

−
πΓð2 − cÞð1 − zÞc−a�−b�z1−cF½1 − a�; 1 − b�; c − a� − b� þ 1j1 − z�
sin ½πðc − a� − b�Þ�Γða� − cþ 1ÞΓðb� − cþ 1ÞΓðc − a� − b� þ 1Þ þ ðterms regular at z ¼ 1Þ; ð79Þ

and using the further index displacement

z1−cF½1 − a�; 1 − b�; c − a� − b� þ 1j1 − z� ¼ F½c − a�; c − b�; c − a� − b� þ 1j1 − z�; ð80Þ

Eq. (79) reads

5We obtain exact agreement with the results of [40] with the exception of the magnetic susceptibility in the case that l is a generic
number. This may well be a typo and we take the opportunity to provide the corrected result:

kV ¼ ð2L̂þ 1ÞΓðL̂þ 1þ 1
D−3Þ2Γð1þ L̂ − 1

D−3Þ2
Γð2L̂þ 2Þ2

sin ½πðL̂þ 1
D−3Þ� sin ½πðL̂ − 1

D−3Þ�
π sin ð2πL̂Þ ; ð75Þ

where L̂ and kV stand for our l and kmagnetic, respectively, in their notation.
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ψ�ðzÞ
B

¼ −
�

k�ΓðcÞ
Γða�ÞΓðb�Þ

þ Γð2 − cÞ
Γða� − cþ 1ÞΓðb� − cþ 1Þ

#
π
ð1 − zÞc−a�−b�F½c − a�; c − b�; c − a� − b� þ 1j1 − z�

sin ½πðc − a� − b�Þ�Γðc − a� − b� þ 1Þ
þ ðterms regular at z ¼ 1Þ: ð81Þ

The coefficients (52) of the extremal master equation
satisfy

c − a� − b� ¼ −
Σ�
n − 1

; ð82Þ

so the first term in (81) is singular at the horizon z ¼ 1
unless k� are chosen to make the prefactor vanish, that is, in
terms of l and the symbol Sð�;�Þ [see (51)],

k� ¼ −
ðSð�;þÞ þ lÞðSð�;−Þ þ lÞ

2lð2lþ 1Þ
Γð−2lÞ
Γð2lÞ

×
ΓðSð�;þÞ þ lÞ
ΓðSð�;þÞ − lÞ

ΓðSð�;−Þ þ lÞ
ΓðSð�;−Þ − lÞ : ð83Þ

Second case: 2lþ 1 ∈ N: Here we shall additionally
distinguish between D ≠ 4 and D ¼ 4. In the former case
the general solution takes the form

ψ�ðzÞ ¼ AF½a�; b�; cjz�
þ BF½a�; b�; a� þ b� − cþ 1j1 − z�; ð84Þ

and only the second solution is regular at z ¼ 1, which
implies A ¼ 0. Again using appropriate connection for-
mulas in the degenerate cases it is easy to show that
[47,48,52]

F½a�; b�; a� þ b� − cþ 1j1 − z�
∼ ðz−2l−1 þ � � � þ R�F½a�; b�; cjz� ln zÞ; ð85Þ

where the ellipsis denotes subleading terms in z and, in
terms of l and Sð�;�Þ, R� reads

R� ¼ ð−1Þ2l ðSð�;þÞ þ lÞðSð�;−Þ þ lÞ
ð2lþ 1Þ!ð2lÞ!

ΓðSð�;þÞ þ lÞ
ΓðSð�;þÞ − lÞ

×
ΓðSð�;−Þ þ lÞ
ΓðSð�;−Þ − lÞ : ð86Þ

If D ¼ 4, however, the coefficients in (52) become highly
degenerate,

aþ ¼ a− þ 2 ¼ cþ 3; bþ ¼ b− þ 2 ¼ c − 4;

c ¼ 2ðlþ 1Þ: ð87Þ
In particular, all of them are integers and the general
solution is

ψ�ðzÞ ¼ AF½a�; b�; cjz� þ Bz−2l−1
	
F½4;−1;−2ljz�ðþÞ
F½2;−3;−2ljz�ð−Þ :

ð88Þ
Regularity at the horizon z ¼ 1 sets A ¼ 0 and the
functions in the braces are just polynomials in z [we recall
that L ¼ 1 has no gravitational mode (−)]. This is a purely
tidal field and, thus, we conclude that in D ¼ 4

k� ¼ 0: ð89Þ

To summarize, we have found that the response parameters
k� of the extremal BHs are given by

k� ¼

8>>><
>>>:

− ðSð�;þÞþlÞðSð�;−ÞþlÞ
2lð2lþ1Þ

Γð−2lÞ
Γð2lÞ

ΓðSð�;þÞþlÞ
ΓðSð�;þÞ−lÞ

ΓðSð�;−ÞþlÞ
ΓðSð�;−Þ−lÞ 2lþ 1 ∉ Z

ð−1Þ2l ðSð�;þÞþlÞðSð�;−ÞþlÞ
ð2lþ1Þ!2l!

ΓðSð�;þÞþlÞ
ΓðSð�;þÞ−lÞ

ΓðSð�;−ÞþlÞ
ΓðSð�;−Þ−lÞ ln z 2lþ 1 ∈ Z; D ≠ 4

0 D ¼ 4

; ð90Þ

where the symbol Sð�;�Þ is defined in (51). The vector Love
numbers and the magnetic susceptibility are obtained by
plugging such k�’s into (73) and (74), respectively.
It is worth making a remark here before considering the

BH with finite Q and TH. We have found that vector Love
numbers and magnetic susceptibilities do not vanish at
extremality unlessD ¼ 4. This is in contrast with the tensor
sector, where Love numbers are ∼T2lþ1

H and thus vanish at

zero temperature. Quite the opposite, for vector perturba-
tions the charge triggers polarizations in modes that are
otherwise not excited in the neutral case. Indeed, Ref. [40]
found that some special modes in the vector sectors (both of
gravitational and electromagnetic types) do not exhibit a
static response to external fields when the BH is not
charged. These have l∈ 1

2
N inD ¼ 5 or L ¼ NðD − 3Þ � 1

in D > 5 with N ∈ N (notice these always include the
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special mode L ¼ 1). Such special modes seem to be a
property of magneticlike perturbations since they have no
analog in the corresponding scalar sectors. However, when
the BH is maximally charged we have found that such
harmonics do not fall within any special class and, there-
fore, exhibit some polarization (of both gravitational and
magnetic types) according to (90). Therefore, a nontrivial
static response in these harmonics is a signature of non-
vanishing charge. In the following section we show that,
indeed, charging up the BH has the effect (in the vector
sector) of increasing the intensity of the response and even
turning on new modes of polarization.

2. Finite charge and temperature

For intermediate values of the BH charge the equation
governing static perturbations in the vector sector (20) has
an extra pole due to the Cauchy horizon. Thus, the
treatment in terms of hypergeometric functions considered
in the neutral and extremal cases does not apply. While in
the degenerate case 2lþ 1 ∈ N it is still possible to obtain
exact analytic results, for general l with 2lþ 1 ∉ N we
proceed numerically.
First case: 2lþ 1 ∈ N: Again we shall distinguish the

cases D ≠ 4 and D ¼ 4. Consider first D ≠ 4 and let
Lα;β;γ;δ;η;h;zc ½·� be Heun’s operator, so that Heun’s equation
for a function fðzÞ reads Lα;β;γ;δ;η;h;zc ½fðzÞ� ¼ 0. Much
like in the tensor case, after choosing the normalization
of Ψtidalð�ÞðzÞ as Ψtidalð�ÞðzÞ ¼ 1þOðzÞ, imposing Heun’s
equation (20) on the second solution of (57) fixes R�
completely. In particular, using that Lα;β;γ;δ;η;h;zc ×

½Ψrespð�ÞðzÞ� ¼ 0 and expanding Lα;β;γ;δ;η;h;zc ×

½z−2l−1Ψtidalð�ÞðzÞ� ¼ z−2l−2
P

i¼0 a
ð�Þ
i zi it follows that

R� is formally given by

R� ¼ −
að�Þ
2l

2lþ 1
: ð91Þ

The coefficient að�Þ
2l depends on the coefficients at all

previous orders að�Þ
i<2l, and it is not clear whether it is

possible to give the general result for any l, n, and ϵ (as it
was in the tensor sector). However, given a particular value
of l one can just solve all previous orders ai<2l and get,
through (91), the exact result of R� in terms of n, ϵ. For
example, for l ¼ 1 we find

R� ¼ ½−2n4 þ 3n3 − 7n2 þ 11n − 13

� ð−2n2 þ 3nþ 11ÞΔ̃þ ð2n2 − 3nþ 1Þ

× ðn2 � Δ̃ − 7Þ cosð2ϵÞ� n
2 sec6ðϵ

2
Þ

96ðn − 1Þ6 ; ð92Þ

and it is easy to check that this interpolates between the
neutral result in [40] and the extremal one in (90) (as ϵ goes

from 0 to π=2, respectively). Love numbers and magnetic
susceptibilities are finally obtained by plugging these
results into (73) and (74). In Fig. 3 we show kvector and
kmagnetic in D ¼ 11 for several harmonics l. Next we
consider D ¼ 4. Once again we find a second solution
with R� ¼ 0 and Ψtidalð�ÞðzÞ a polynomial of degree
< 2lþ 1. This is the solution that is regular at the horizon
z ¼ 1 and consists solely of a tidal field, so once more
kvector ¼ 0 and kmagnetic ¼ 0 in four dimensions, now for
any value of the BH temperature TH.
Second case: 2lþ 1 ∉ N: In this case, there seems to be

no clear way of guessing the results for k� out of those for
R� in (91) as we did for the tensor sector. Thus, we proceed
numerically by implementing a standard shooting method
(similar to that used in [54]) which matches the regular
solution at the horizon z ¼ 1with one at infinity of the form
(58), thus obtaining the values of k�. Then kvector and
kmagnetic follow from (73) and (74). In Fig. 4 we show kvector
and kmagnetic in D ¼ 10 for several harmonics l.
These results confirm the analytical predictions atQ ¼ 0

and TH ¼ 0. We can conclude that charged BHs exhibit a
stronger response to gravitational and electromagnetic tidal

0.0 0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

–0.5

0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

–1

0

1

2

FIG. 3. kvector (top) and kmagnetic (bottom), in the degenerate
case 2lþ 1 ∈ N (omitting the factor ln z). We show L ¼ 4, 8, 12
in D ¼ 11. Solid black lines are the analytic results obtained as
explained in the main text. These interpolate exactly between the
analytic predictions at Q ¼ 0 and Q ¼ M, represented with solid
black dots.

LOVE NUMBERS AND MAGNETIC SUSCEPTIBILITY OF … PHYS. REV. D 105, 044026 (2022)

044026-11



fields, relative to their neutral counterparts. Even more, a
nonvanishing charge turns on new modes of gravitational
and magnetic polarization that are otherwise not responsive
for Q ¼ 0. A nontrivial static response in such harmonics
is, therefore, a definite signature of charge. We can also
confirm that in four dimensions, for all TH, both tidal Love
numbers and magnetic susceptibilities vanish. This prop-
erty is strongly related to the fact that, in D ¼ 4, the
equations become degenerate enough so as to admit purely
growing polynomial solutions.

V. DISCUSSION

We have studied the effect of charge on the static
polarizability of BHs in D ≥ 4 spacetime dimensions.
While the four-dimensional setup remains intriguingly
special, with all response parameters vanishing, TLNs
and magnetic susceptibilities exhibit a rich structure in
D > 4. In particular, charging up the BH turns on new
vector-type modes of polarization, while tensor Love
numbers (encoding also the response to scalar tidal fields)
decrease and eventually vanish at extremality. More

precisely, our results can be summarised as follows.
(i) The relevant differential equations are of Fuchsian type
with four poles (Heun) at infinity, the event and Cauchy
horizons and the curvature singularity. In the neutral
(Q ¼ 0) and extremal (TH ¼ 0) limits, the equations
become hypergeometric and TLNs are exactly solvable.
(ii) For the tensor sector of gravitational perturbations we
showed that all TLNs (equivalently, the response to scalar
tidal fields) vanish at extremality, TH ¼ 0, and confirmed
the results in the literature for Q ¼ 0 [40]. Even for
arbitrary (subextremal) values of the BH charge we are
able to obtain the exact result analytically, finding that
tensor TLNs follow a power law in the BH temperature,
ktensor ∼ T2lþ1

H . (iii) For the so-called vector sector, we find
analytical expressions for the Love numbers and magnetic
susceptibilities at extremality, TH ¼ 0. We also recover
results in the literature at zero charge [40], correcting the
reported result for the magnetic susceptibilities. For inter-
mediate Q’s we find some results analytically and some
numerically, in all cases confirming our analytic predictions
at TH ¼ 0 and those in the literature for the neutral case,
Q ¼ 0. In contrast to the tensor sector, we found that
charged BHs exhibit a stronger response to gravitational
and electromagnetic tidal fields (of vector type), relative to
their neutral counterparts. In addition, we showed that the
BH charge excites new modes of gravitational and mag-
netic polarization that are otherwise not responsive for
Q ¼ 0. A nontrivial static response in such harmonics is,
therefore, a definite signature of charge. (iv) Our results
show that in four dimensions and for all values of the
charge, all response parameters vanish. This property is
strongly related to the fact that, in D ¼ 4, the equations
become degenerate enough so as to admit purely growing
polynomial solutions.
Our results raise interesting questions in various direc-

tions. First, it is desirable to understand and explore further
the special properties of tensor modes (scalar fields) at
extremality, possibly including black hole rotation in a
suitable spin configuration. In parallel, it would also be
interesting to consider BHs carrying a more general charge
configuration and study whether these excite new modes of
polarization, similarly to what we found in the vector
sector. These and more aspects about tidal deformability of
charged BHs will be addressed in future work.

ACKNOWLEDGMENTS

D. P. gratefully acknowledges the hospitality of the
group at CENTRA. D. P. thanks Francisco Duque,
Rodrigo Vicente, Laura Bernard, Marc Casals and
Alexandre Le Tiec for interesting conversations. D. P. is
funded in part by a Centro de Excelencia Internacional
UAM/CSIC FPI Predoctoral grant. V. C. is a Villum
Investigator supported by VILLUM FONDEN (Grant
No. 37766) and a DNRF Chair supported by the Danish
National Research Foundation. This project has received

0.0 0.2 0.4 0.6 0.8 1.0

–10

–5

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2

0

2

4

6

FIG. 4. kvector (top) and kmagnetic (bottom), in the general case
2lþ 1 ∉ N. We show L ¼ 2, 3, 4, 6 in D ¼ 10. Solid black lines
are the results obtained numerically and solid black dots are the
analytical results at Q ¼ 0 and Q ¼ M. The harmonic L ¼ 6,
represented with a dashed line, is an example of the special modes
that do not polarize at Q ¼ 0, but exhibit a nontrivial response as
Q grows.

DAVID PEREÑIGUEZ and VITOR CARDOSO PHYS. REV. D 105, 044026 (2022)

044026-12



funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-
Curie Grant Agreement No. 101007855. We thank FCT
for financial support through Project No. UIDB/00099/
2020. We acknowledge financial support provided by

FCT/Portugal through Grants No. PTDC/MAT-APL/
30043/2017 and No. PTDC/FIS-AST/7002/2020. The
authors would like to acknowledge networking support
by the GWverse COST Action No. CA16104, “Black
holes, gravitational waves and fundamental physics,”

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Phys. Rev. X 11, 021053 (2021).

[3] K. Akiyama et al. (Event Horizon Telescope), Astrophys. J.
Lett. 875, L1 (2019).

[4] R. Abuter et al. (GRAVITY Collaboration), Astron. As-
trophys. 636, L5 (2020).

[5] L. Barack et al., Classical Quant. Grav. 36, 143001 (2019).
[6] V. Cardoso and P. Pani, Living Rev. Relativity 22, 4

(2019).
[7] G. Bertone, T. M. P. Tait, and , Nature (London) 562, 51

(2018).
[8] N. Bar, K. Blum, T. Lacroix, and P. Panci, J. Cosmol.

Astropart. Phys. 07 (2019) 045.
[9] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[10] E. Berti, A. Sesana, E. Barausse, V. Cardoso, and K.

Belczynski, Phys. Rev. Lett. 117, 101102 (2016).
[11] P. A. Seoane et al., Gen. Relativ. Gravit. 54, 3 (2022).
[12] P. T. Chrusciel, J. Lopes Costa, and M. Heusler, Living Rev.

Relativity 15, 7 (2012).
[13] V. Cardoso and L. Gualtieri, Classical Quant. Grav. 33,

174001 (2016).
[14] E. Barausse, V. Cardoso, and P. Pani, Phys. Rev. D 89,

104059 (2014).
[15] V. Cardoso, K. Destounis, F. Duque, R. P. Macedo, and A.

Maselli, arXiv:2109.00005.
[16] V. Cardoso and P. Pani, Nat. Astron. 1, 586 (2017).
[17] C. Murray and S. Dermott, Solar System Dynamics

(Cambridge University Press, Cambridge, England,
2000).

[18] E. Poisson and C.Will,Gravity: Newtonian, Post-Newtonian,
Relativistic (Cambridge University Press, Cambridge,
England, 2014).

[19] T. Binnington and E. Poisson, Phys. Rev. D 80, 084018
(2009).

[20] T. Damour and A. Nagar, Phys. Rev. D 80, 084035 (2009).
[21] N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015).
[22] A. Le Tiec and M. Casals, Phys. Rev. Lett. 126, 131102

(2021).
[23] A. Le Tiec, M. Casals, and E. Franzin, Phys. Rev. D 103,

084021 (2021).
[24] H. S. Chia, Phys. Rev. D 104, 024013 (2021).

[25] R. A. Porto, Phys. Rep. 633, 1 (2016).
[26] R. A. Porto, Fortschr. Phys. 64, 723 (2016).
[27] I. Rothstein, Analytic calculations of gravitational wave

signatures during early stages of inspirals, in Proceeding at
the Simons Center meeting “GW161212: The Universe
through gravitational waves”, 2017.

[28] V. Cardoso and F. Duque, Phys. Rev. D 101, 064028
(2020).

[29] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).
[30] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[31] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[32] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo,

Phys. Rev. D 95, 084014 (2017); Phys. Rev. D 95, 089901
(A) (2017).

[33] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[34] J. M. Maldacena, Black holes in string theory, Ph.D. thesis,

Princeton University, 1996.
[35] Z. Elgood, D. Mitsios, T. Ortín, and D. Pereñíguez, J. High

Energy Phys. 07 (2021) 007.
[36] Z. Elgood, T. Ortín, and D. Pereñíguez, J. High Energy

Phys. 05 (2021) 110.
[37] V. Cardoso, L. Gualtieri, and C. J. Moore, Phys. Rev. D 100,

124037 (2019).
[38] S. S. Seahra, C. Clarkson, and R. Maartens, Phys. Rev. Lett.

94, 121302 (2005).
[39] B. Kol and M. Smolkin, J. High Energy Phys. 02 (2012)

010.
[40] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon,

J. Cosmol. Astropart. Phys. 04 (2021) 052.
[41] R. Emparan and H. S. Reall, Living Rev. Relativity 11, 6

(2008).
[42] A. Ishibashi and H. Kodama, Prog. Theor. Phys. Suppl. 189,

165 (2011).
[43] H. Kodama and A. Ishibashi, Prog. Theor. Phys. 111, 29

(2004).
[44] H. Reissner, Ann. Phys. (N.Y.) 50, 636 (1916).
[45] G. Nordstrom, Proc. K. Ned. Akad. Wet. 20, 1238 (1918).
[46] F. Tangherlini, Nuovo Cimento 27, 636 (1963).
[47] G. Kristensson, Second Order Differential Equations

(Springer, New York, 2010).
[48] DLMF, NIST Digital Library of Mathematical Functions,

edited by F. W. J. Olver, A. B. Olde Daalhuis, D.W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,

LOVE NUMBERS AND MAGNETIC SUSCEPTIBILITY OF … PHYS. REV. D 105, 044026 (2022)

044026-13

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1007/s10714-021-02889-x
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1103/PhysRevD.89.104059
https://doi.org/10.1103/PhysRevD.89.104059
https://arXiv.org/abs/2109.00005
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1103/PhysRevLett.126.131102
https://doi.org/10.1103/PhysRevLett.126.131102
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.104.024013
https://doi.org/10.1016/j.physrep.2016.04.003
https://doi.org/10.1002/prop.201600064
https://doi.org/10.1103/PhysRevD.101.064028
https://doi.org/10.1103/PhysRevD.101.064028
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1103/PhysRevD.95.084014
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1007/JHEP07(2021)007
https://doi.org/10.1007/JHEP07(2021)007
https://doi.org/10.1007/JHEP05(2021)110
https://doi.org/10.1007/JHEP05(2021)110
https://doi.org/10.1103/PhysRevD.100.124037
https://doi.org/10.1103/PhysRevD.100.124037
https://doi.org/10.1103/PhysRevLett.94.121302
https://doi.org/10.1103/PhysRevLett.94.121302
https://doi.org/10.1007/JHEP02(2012)010
https://doi.org/10.1007/JHEP02(2012)010
https://doi.org/10.1088/1475-7516/2021/04/052
https://doi.org/10.12942/lrr-2008-6
https://doi.org/10.12942/lrr-2008-6
https://doi.org/10.1143/PTPS.189.165
https://doi.org/10.1143/PTPS.189.165
https://doi.org/10.1143/PTP.111.29
https://doi.org/10.1143/PTP.111.29
https://doi.org/10.1002/andp.19163550905
https://doi.org/10.1007/BF02784569


B. V. Saunders, H. S. Cohl, and M. A. McClain, http://dlmf
.nist.gov/, Release 1.1.3 of 2021-09-15.

[49] H. Fang and G. Lovelace, Phys. Rev. D 72, 124016 (2005).
[50] S. E. Gralla, Classical Quant. Grav. 35, 085002 (2018).
[51] R. Emparan, A. Fernandez-Pique, and R. Luna, J. High

Energy Phys. 09 (2017) 150.
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