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A necessary condition for a generally covariant scalar-tensor theory to be ghostfree is that it contains no
extra degrees of freedom in the unitary gauge, in which the Lagrangian corresponds to the spatially
covariant gravity. Compared with analyzing the scalar-tensor theory directly, it is simpler to map the
spatially covariant gravity to the generally covariant scalar-tensor theory using the gauge recovering
procedures. In order to ensure the resulting scalar-tensor theory to be ghostfree absolutely, i.e., no matter if
the unitary gauge is accessible, a further covariant degeneracy/constraint analysis is required. We develop a
method of covariant 3þ 1 correspondence, which maps the spatially covariant gravity to the scalar-tensor
theory in 3þ 1 decomposed form without fixing any coordinates. Then the degeneracy conditions to
remove the extra degrees of freedom can be found easily. As an illustration of this approach, we show how
the Horndeski theory is recovered from the spatially covariant gravity. This approach can be used to find
more general ghostfree scalar-tensor theory.

DOI: 10.1103/PhysRevD.105.044023

I. INTRODUCTION

Scalar-tensor theory is widely studied as one of the
alternatives of general relativity (GR), which introduces
additional scalar degrees of freedom (d.o.f.) other than the
two-tensorial d.o.f. (i.e., the gravitational waves) of GR.
In the theoretical aspect, one of the central problems in
the development of scalar-tensor theory is to introduce only
the healthy d.o.f. while evading the ghostlike (or simply the
unwanted) d.o.f. that are associated with the Ostrogradsky
instabilities [1,2].
The most straightforward approach is to construct a

generally covariant Lagrangian, in which the scalar field
(s) is (are) coupled to the spacetime metric covariantly.
This is actually what the name “scalar-tensor theory”
referred to originally. In the past decade, the successful
construction of the higher-derivative single-field scalar-
tensor theory with a single scalar d.o.f. has significantly
enlarged our scope of the scalar-tensor theory [3–11].
Ghostfree generally covariant scalar-tensor theory with
higher derivatives can be constructed by finely tuning the
higher derivatives such that the higher derivatives are
degenerate (see [12,13] for reviews and [14–18] for
general discussions of the degeneracy conditions).
Nevertheless, the generally covariant approach becomes
more and more involved when going to higher orders,
both in the derivatives of the scalar field and in the
curvature.

From the point of view of d.o.f., scalar-tensor theory can
be understood as any effective gravitational theory that
propagates the tensor as well as the scalar d.o.f. In particular,
a class of pure metric theories that respect only the spatial
diffeomorphism was proposed and shown to have two tensor
d.o.f. with an additional scalar d.o.f. [19,20]. In this sense,
the ghost condensation [21], the effective theory of inflation
[22,23] as well as the Hořava gravity [24,25] can be viewed
as subclasses of spatially covariant gravity, which were
proposed originally by different motivations. In particular,
the degeneracy can be made easily, even trivially, in the
spatially covariant gravity description, not only because the
Lagrangian is built directly in a spacetime split manner, but
also because the Lagrangian gets simplified dramatically
when fixing the unitary gauge. In fact, one may try even
ambitiously to build theories respecting only the spatial
covariance at the level of the Hamiltonian instead of the
Lagrangian [26–29].
These two apparently different approaches to scalar-tensor

theory are related by “gauge fixing/recovering” procedures.
If the gradient of the scalar field is timelike, we may fix the
time coordinate as the scalar field t ¼ ϕ, such that the
resulting theory appears to be a theory of spatially covariant
gravity. Conversely, starting from a spatially covariant
gravity, we may derive the corresponding generally covariant
Lagrangian of the scalar field and spacetime metric by the
so-called Stueckelberg trick.1 A natural idea is thus; we first
build the ghostfree spatially covariant gravity and then map it
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to the generally covariant scalar-tensor theory, which yields
a scalar-tensor theory that appears to be ghostfree at least
in the unitary gauge. Based on this idea, both the generally
covariant and spatially covariant monomials have been
classified and their correspondence has been investigated
in [30–32].
There are at least two subtleties in this correspondence.

Firstly, the reversibility of this gauge fixing/recovering
procedures relies on the assumption of a timelike scalar
field. Secondly, even we assume that the scalar field is
timelike, the generally covariant scalar-tensor theory got
from the spatially covariant gravity appears arguably to
have extra unwanted d.o.f. in coordinates that are not
adapted to the unitary gauge [33,34].2 This has also been
reported in the study of mimetic gravity with couplings
between the curvature and higher derivatives of the scalar
field [38,39], which appears to propagate a lower number
of d.o.f. in the unitary gauge. In order to construct a scalar-
tensor theory that is ghostfree “absolutely”, i.e., no matter
whether the scalar field is timelike or not and in any
coordinates, one needs to perform a further degeneracy or
constraint analysis. Usually this is done by making a 3þ 1
decomposition and performing the constraint analysis in
the Hamiltonian formalism.
Compared to finding the degeneracy conditions for the

most general scalar-tensor theory directly (e.g., the approach
taken in [9–11]), starting from the spatially covariant gravity
has already saved a lot of work. However, one still needs two
steps; first finding the generally covariant scalar-tensor
theory that corresponds to the ghostfree spatially covariant
gravity, and then making a degeneracy analysis which needs
a further covariant 3þ 1 decomposition. One may wonder if
we can derive the covariant 3þ 1 correspondence of the
spatially covariant gravity directly. This paper is devoted to
this issue.
Generally, there are three apparently different formula-

tions of the scalar-tensor theory. One is the generally
covariant scalar-tensor theory (of which the Lagrangian is
built) of the scalar field coupled to the metric through
generally covariant derivatives. The second is the spatially
covariant gravity, which corresponds to the generally covar-
iant scalar-tensor theory in the coordinates adapted to the
unitary gauge. The last one is the generally covariant 3þ 1
decomposition of the scalar-tensor theory, which is conven-
ient to use for the covariant degeneracy/constraint analysis.
In this work, we shall develop a formalism, which we dub
the “covariant 3þ 1 correspondence”, that can be used to
derive the explicit generally covariant 3þ 1 expressions
from the spatially covariant gravity.
This work is organized as follows. In Sec. II we describe

the three formulations of the scalar-tensor theory and their

correspondences. In Sec. III we derive the explicit expres-
sions of the covariant 3þ 1 correspondence. We apply this
correspondence in Sec. IV, in which we derive the covariant
3þ 1 correspondence of the spatially covariant gravity of
d ¼ 2 with d the total number of derivatives in spatially
covariant gravity formulation. By canceling all the danger-
ous terms, we determine the degeneracy conditions easily.
In Sec. V and Sec. VI, we further apply this method to
spatially covariant gravity of d ¼ 3 without and with the
acceleration, respectively. Not surprisingly, we can recover
the whole Lagrangian of the Horndeski theory easily by this
method. We summarize our results in Sec. VII.

II. THREE FACES OF THE SCALAR-TENSOR
THEORY

A. Generally covariant formulations

The generally covariant scalar-tensor theory (GST)
usually refers to the theory of scalar field(s) coupled to
the spacetime metric. In the present work, we concentrate
on the case of a single scale field. The action takes the
general form

SGST ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðϕ; gab; εabcd; 4Rabcd;∇aÞ; ð1Þ

in which the Lagrangian is built of the scalar field ϕ, the
spacetime metric gab, the spacetime curvature tensor 4Rabcd,
as well as their covariant derivatives. The possible parity
violation is encoded in the 4-dimension Levi-Civita tensor
εabcd. It is the scalar-tensor theory in the form of (1), in
which the general covariance is manifest, that is the subject
in [3–11] and is also used in practical model building of
cosmology and black holes, etc.
For the purpose of degeneracy/constraint analysis, split-

ting the 4-dimensional objects into their temporal and
spatial parts, i.e., the so-called 3þ 1 decomposition, is
needed. The starting point of the 3þ 1 decomposition is a
timelike vector field na with normalization nana ¼ −1. As
usual, this timelike vector field is assumed to be hyper-
surface orthogonal, and thus the induced metric which
projects any tensor field on the spatial hypersurface is

hab ≡ gab þ nanb: ð2Þ

All the 4-dimensional quantities are then split into parts that
are orthogonal and tangent to the spatial hypersurface by
projecting with na and hab, respectively. The decomposition
of the 4-dimensional curvature tensor yields the Gauss-
Codazzi-Ricci equations. For the scalar field, we have

∇aϕ ¼ −na£nϕþ Daϕ; ð3Þ

where £n stands for the Lie derivative with respect to na, and
Da is the projected derivative defined by

2Such an extra mode is dubbed “instantaneous” or “shadowy”
mode since it propagates with an infinite speed. See also [35–37]
for early discussions.
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Daϕ ≔ ha
0

a ∇a0ϕ; ð4Þ

which is also the covariant derivative compatible with hab.
The decompositions of the second and the third order
derivatives of the scalar field with respect to a general
normal vector na can be found in [31].
With these settings, we can derive the covariant 3þ 1

decomposition (COD) of any 4-dimensional quantities. The
GST action (1) can be recast in the form

SCOD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðϕ; na; hab; εabcd; 3Rab;Da; £nÞ: ð5Þ

We emphasize that the action (5) is generally covariant since
na is an arbitrary hypersurface orthogonal unit timelike
vector field, and we have not yet chosen any specific
coordinates. In particular, the familiar lapse function N
and shift vector Na do not appear in the Lagrangian.3 In
Eq. (5), 3Rab is the intrinsic curvature of the hypersurfaces.
The projected derivative Da and the Lie derivative £n can be
viewed as the “intrinsic” and “extrinsic” derivatives, respec-
tively. The Lie derivatives of na and hab

aa ¼ £nna; ð6Þ

Kab ¼
1

2
£nhab; ð7Þ

define the acceleration and the extrinsic curvature as usual.

B. Spatially covariant formulation

In Eq. (5) na is an arbitrary unit timelike vector field that
is hypersurface orthogonal. While the scalar field ϕ itself
specifies a foliation of hypersurfaces with ϕ ¼ const. In
particular, when the gradient of the scalar field is also
timelike, we are allowed to choose na ¼ ua, where

ua ≡ −
1ffiffiffiffiffiffi
2X

p ∇aϕ; ð8Þ

with the canonical kinetic term of the scalar field
X ¼ − 1

2
∇aϕ∇aϕ. ua is nothing but the normal vector of

the hypersurfaces with constant ϕ, which satisfies the
normalization uaua ¼ −1. Choosing na ¼ ua corresponds
to the so-called unitary gauge in the literature.4

In the unitary gauge, i.e., when being decomposed with
respect to the foliation specified by the scalar field ϕ itself,

the decompositions of the derivatives of the scalar field get
dramatically simplified. All the spatial derivatives of the
scalar field drop out since

D
u

aϕ≡ h
u

a
a0∇a0ϕ ¼ 0; ð9Þ

where h
u

ab is defined by

h
u

ab ≡ gab þ uaub: ð10Þ

Here and throughout this paper, an overscript “u” denotes
quantities defined with respect to ua [31], which is related
to the scalar field through (8). The first-order derivative of
the scalar field (3) is thus written as ∇aϕ ¼ −ua=N, where
we introduce

1

N
¼

ffiffiffiffiffiffi
2X

p
¼ £uϕ: ð11Þ

In Eq. (11) N is nothing but the lapse function, which arises
since we have identified the “space” to be the hypersurfaces
of constant ϕ. The decompositions of the second- and third-
order derivatives of the scalar field in the unitary gauge can
be found in [19,20,31]. Replacing na by ua in Eq. (5) yields

Su:g: ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðϕ; ua; h

u

ab; εabcd; 3R
u

ab;D
u

a; £uÞ: ð12Þ

At this point, all the ingredients are generally covariant. As
a result, the unitary gauge Eq. (12) is generally covariant.
In the unitary gauge, since na is chosen to be ua, the

coordinates that are adapted to the foliation, i.e., the
Arnowitt-Deser-Misner (ADM) coordinates, correspond
to fixing t ¼ ϕ (while spatial coordinates are left free).
In these particular coordinates, we have ua ¼ −Nδ0a and the
time direction ta ¼ δa0 . The unitary gauge action (12) is
recast to

SSCG ¼
Z

dtd3xN
ffiffiffi
h

p
Lðt; N; hij; εijk; 3Rij;∇i; £uÞ; ð13Þ

where £u is now understood to be 1
N ð∂t − £N⃗Þ with N⃗ the

spatial component of ta − Nua ¼ ð0; NiÞ. Since the time
coordinate t is fixed to be the value of ϕ, the general
covariance is broken to the spatial diffeomorphism.
Equation (13) appears to be a pure metric theory respecting
spatial covariance, which we dub the spatially covariant
gravity (SCG). The effective theory of inflation [22,23], the
Hořava gravity [24,25] as well as the more general
framework proposed in [19,20] can be viewed as subclasses
of the general action of the SCG (13).

3They merely encode the gauge freedom of choosing the time
and space directions, i.e., fixing the coordinates.

4Usually the “unitary gauge” is referred to fixing the time
coordinate t ¼ ϕ in the literature. In this work, for the purpose of
distinguishing the generally covariant and spatially covariant
formulations, we use “unitary gauge” to denote choosing
na ¼ ua. In particular, no specific coordinates have been fixed.
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C. Theory triangle: Relations among different
formulations

We have now three apparently different formulations of
the theory. From the point of view of keeping the general
covariance manifestly and/or of making the spacetime
decomposition explicitly, different formulations have their
own merits.
(a) The generally covariant scalar-tensor theory (1):

The general covariance is manifest in the action of
GST, which is also convenient for model buildings in
the cosmology and black hole physics. However, more
calculations are needed to derive its spacetime decom-
position in order to make the degeneracy/constraint
analysis.

(b) The spatially covariant gravity (13):
The SCG is written in the already spacetime-

decomposed manner, which is convenient for control-
ling the number of d.o.f. through a strict degeneracy/
constraint analysis. In particular, comparing with the
GST, the degenerate SCG Lagrangian with the desired
number of d.o.f. can be constructed much easier. For
example, the SCG [19,20] contains only the extrinsic
curvature as the kinetic terms and thus is trivially
degenerate. SCG with a dynamical lapse function has
also been investigated in [40–42] (see also [43]).
However, the general covariance is explicitly broken
in SCG.

(c) The covariant 3þ 1 decomposition (5):
The COD Lagrangian can be viewed as the balance

between GST and SCG. It is written in the spacetime-
decomposed form and thus is convenient to perform
the constraint analysis. On the other hand, it is
generally covariant and has the exact equivalence to
the GST. In other words, the Lagrangians of COD and
GST are exactly the same, but merely written in
different forms.

The relations among the three formulations are depicted
in Fig. 1. Starting from the GST, we get the COD by
performing a covariant 3þ 1 decomposition. Then we
arrive at the SCG by choosing the unitary gauge and fixing

the time coordinate. With this approach, the Lagrangian of
the Horndeski theory in the unitary gauge was derived in
[44]. Similar analysis was performed to get a geometric
reformulation of the quadratic degenerate higher-order
scalar-tensor theory [45]. For our purpose to use the SCG
to generate GST theories, the inverse procedures of the
3þ 1 decomposition and the gauge fixing are required. To
this end, we must determine the GST quantities that
correspond to the SCG quantities. This procedure has
been used in the covariant formulation of the Hořava
gravity [36,46–48] (see also [49,50]), and is sometimes
dubbed the Stueckelberg trick.
Since the SCG quantities are simply the unitary gauge

quantities after fixing the time coordinate t ¼ ϕ, while the
later are the GST quantities after choosing the unitary
gauge na ¼ ua, the one-to-one correspondence between a
SCG expression and a GST expression can be easily set up.
For example, (8) and (11) can be viewed as the GST
correspondences of ua and N, respectively. The extrinsic
curvature corresponds to

Kij → K
u

ab ¼ −
1ffiffiffiffiffiffi
2X

p h
u

aa0h
u

bb0∇a0∇b0ϕ; ð14Þ

where h
u

ab is defined in (10), which now should be
understood as

h
u

ab ¼ gab þ
1

2X
∇aϕ∇bϕ: ð15Þ

By plugging (15) in (14), we get the GST correspondence
of Kij. We refer to [31] for the more complete and
detailed correspondences between the GST and SCG
expressions.
As we have argued before, since the degenerate SCG

Lagrangian can be constructed much easier than the GST,
one may use the degenerate SCG as the “seed theory”, and
map it to the space of GST theories using the above
correspondence. The resulting theory is the GST theory that
is ghostfree, or propagates the correct number of d.o.f.,

FIG. 1. Theory triangle: Three faces of the scalar-tensor theory.
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when the unitary gauge is accessible.5 In fact, this has
already been performed for the GST and SCG polynomials
[32] from the linear algebraic point of view.
When the unitary gauge is not accessible, or at least

when we do not fix the time coordinate to be the scalar
field, apparently there arise extra d.o.f. which might be
ghostlike. Our final purpose is to obtain the GST theory
that is ghostfree “absolutely”, which has the correct
number of d.o.f. in the generally covariant sense no
matter whether the scalar field is timelike so that the
unitary gauge is accessible or not, and shows no extra
d.o.f. in arbitrary coordinates. To this end, a further
covariant 3þ 1 decomposition is inevitable, which results
in the COD formulation of the GST. This “two-step”
approach, i.e., SCG → GST → COD, is correct and
straightforward, is technically involved since both steps
involve complicated correspondences among expressions
in different formulations.
The main purpose of this work is to find a “one-step”

approach, i.e., a method to derived the COD expressions
from the SCG expressions directly, which we dub the
covariant 3þ 1 correspondence and shall explain in the
next section.

III. COVARIANT 3+ 1 CORRESPONDENCE

The covariant 3þ 1 correspondence is conceptually
simple, which combines the above two steps together, but
without expanding the intermediate GST in terms of
the scalar field and 4-dimensional geometric quantities
explicitly.
Firstly, we covariantize the SCG expressions by deter-

mining the corresponding unitary gauge expressions. For
example, the spatial metric hij, although appears to be
3-dimension tensor, is actually the spatial component of a
4-dimension tensor

hij → h
u

ab ¼ gab þ uaub; ð16Þ

where ua is nothing but the normalized gradient of the
scalar field (8). Secondly, instead of recasting the unitary
gauge expressions in terms of the scalar field and
4-dimension geometric quantities explicitly [e.g., (15)],
we make a further 3þ 1 decomposition with respect to a
general spacelike foliation with normal vector na. For ua,
we write

ua ¼ −naαþ βa; ð17Þ

and require that naβa ≡ 0. Since both ua and na are
normalized (with sign −1), α and βa are not independent,
which satisfy

α ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
; ð18Þ

where β2 ≡ βaβ
a. Since ua is given in (8), α and βa are

related to the derivatives of the scalar field by

α ¼ −
£nϕffiffiffiffiffiffi
2X

p ; ð19Þ

βa ¼ −
Daϕffiffiffiffiffiffi
2X

p ; ð20Þ

where the canonical kinetic term X is now decomposed
to be

X ¼ 1

2
ð£nϕÞ2 −

1

2
DaϕDaϕ: ð21Þ

Throughout this paper, quantities without any overscript
are defined with respect to a general normal vector field
na. Therefore (17) becomes

ua ¼ na

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
þ βa: ð22Þ

Equation (22) is the starting point of the following
analysis, which is nothing but the covariant 3þ 1 decom-
position of the normalized gradient of the scalar field
without fixing any coordinates. One can see from Eq. (22)
that βa encodes the deviation of the general foliation from
the foliation specified by the scalar field. Therefore, the
unitary gauge is simply defined to be

unitary gauge∶ βa → 0; ð23Þ

which implies na → ua as expected.
The covariant 3þ 1 correspondence of the spatial metric

is6

h
u

ab ¼ nanbh
u

nn − 2nðah
u

b̂Þn þ h
u

â b̂; ð24Þ

where

h
u

nn ¼ β2; ð25Þ

h
u

ân ¼ αβa; ð26Þ

h
u

â b̂ ¼ hab þ βaβb: ð27Þ

Here hab is the induced metric associated with na, i.e.,
hab ≡ gab þ nanb. Here and in what follows, we use the
notation in [51] that for a general spacetime tensor, an index

5Scalar-tensor theory with this property is also referred to be
“U-degenerate”, i.e., being degenerate in the unitary gauge [33].

6Throughout this paper, symmetrization is normalized, e.g.,
AðaBbÞ ≡ 1

2
ðAaBb þ AbBaÞ.
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replaced by n denotes contraction with na, and indices with
a hat denote projection with hab, i.e.,

T ���n��� ¼ naT ���a���; T ���â��� ¼ haa
0
T ���a0���: ð28Þ

From (24) it is clear that the difference of h
u

ab and hab is

completely encoded in the nonvanishing βa. Therefore h
u

ab
reduces to hab in the unitary gauge.
In the following, we derive the explicit expressions in the

covariant 3þ 1 correspondence. The fundamental objects
are the covariant derivatives of ua. For the first order
derivative of ua, we have

∇aub ¼ nanbA − naBb − B̃anb þ Δab; ð29Þ

with

A≡∇nun ¼ _α − acβc; ð30Þ

Bb ≡∇nub̂ ¼ −abαþ _βb − Kc
bβc; ð31Þ

B̃a ≡∇âun ¼ Daα − Kc
aβc; ð32Þ

Δab ≡∇âub̂ ¼ −Kabαþ Daβb: ð33Þ

Throughout this work, overdots on the spatial tensors with
lower indices denote Lie derivatives with respect to the
general normal vector na, e.g., _α ¼ £nα, _βa ≡ £nβa,
β̈a ≡ £2nβa, etc. Occasionally we also use dotted spatial
tensors with upper indices for shorthand, in which the
upper indices are raised by the inverse induced metric hab,
e.g., _βa ≡ hab _βb, _Kab ≡ haa

0
hbb

0 _Ka0b0 , etc.
7 Evaluating the

Lie derivative of (20) explicitly yields

_βa ¼ −
1

2X
βa _X −

1ffiffiffiffiffiffi
2X

p ðDa
_ϕþ aa _ϕÞ; ð34Þ

where

_X ¼ ϕ̈ _ϕ−DaϕðDa
_ϕþ aa _ϕÞ þ KabDaϕDbϕ: ð35Þ

From (35) it is transparent that _βa contains the second order
Lie derivative of the scalar field ϕ̈ through _X, which should
be degenerate (with the extrinsic curvature) in order not to
excite the unwanted d.o.f..
When considering the third-order derivative of the scalar

field, the second-order derivative of ua will arise. We have

∇c∇aub ¼ −ncnanbU þ ncnaVb þ ncnbṼa þ nanbWc

− ncXab − naYcb − nbỸca þ Zcab; ð36Þ

with

U ¼ _A − adBd − adB̃d; ð37Þ

Vb ¼ −abAþ _Bb − BdKd
b − Δdbad; ð38Þ

Ṽa ¼ −aaAþ _̃Ba − B̃dKd
a − Δadad; ð39Þ

Wc ¼ DcA − Kd
cBd − Kd

cB̃d; ð40Þ

Xab ¼ −aaBb − B̃aab þ _Δab − ΔadKd
b − ΔdbKd

a; ð41Þ

Ycb ¼ −KcbAþ DcBb − Kd
cΔdb; ð42Þ

Ỹca ¼ −KcaAþ DcB̃a − Kd
cΔad; ð43Þ

Zcab ¼ −KcaBb − B̃aKcb þ DcΔab; ð44Þ

where A; Bb; B̃a;Δab are given in (30)–(33). For later
convenience, we also evaluate the Lie derivatives of
A;Bb; B̃a;Δab explicitly, which are given by

_A ¼ α̈ − βb _ab − ab _βb þ 2Kababβa; ð45Þ

_Bb ¼−α _ab−ab _αþ β̈b−βc _Kbc−Kd
b
_βdþ2KbcKcdβd; ð46Þ

_̃Ba ¼ Da _αþ aa _α − βc _Kac − Kd
a
_βd þ 2KacKcdβd; ð47Þ

and

_Δab ¼ −α _Kab − Kab _αþ Da
_βb þ aa _βb

− ðaaKbd þ abKda − adKabÞβd
− ðDaKbd þ DbKda − DdKbaÞβd: ð48Þ

We are ready to use (29) and (36) to derive the covariant
3þ 1 correspondences of various geometric quantities.
For the extrinsic curvature, it is convenient to use the
expression

K
u

ab ¼ h
u

a
a0h
u

b
b0∇ða0ub0Þ: ð49Þ

It immediately follows that

K
u

ab ¼ nanbK
u

nn − 2nðaK
u

b̂Þn þ K
u

â b̂; ð50Þ

where

K
u

nn ¼ −β2
1

α
βc _βc −

1

α
Kcdβcβd þ β2acβc þ βcβdDðcβdÞ;

ð51Þ7Therefore _βa ≡ haa
0
£nβa0 ≠ £nβa.
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K
u

ân ¼ 1

2
βa

�
−βc _βc þ αβcac þ

1

α
βcβdDðcβdÞ

�
−
1

2
β2 _βa

þ 1

2
αβ2aa − Kadβ

d þ 1

2α
βdDaβd þ

1

2
αβdDdβa;

ð52Þ

and

K
u

â b̂ ¼ −Kabαþ DðaβbÞ −
1

2
βaðα _βb − abα2 − βcDcβbÞ

−
1

2
βbðα _βa − aaα2 − βcDcβaÞ: ð53Þ

For the acceleration, we shall use the expression

a
u
a ≡ ub∇bua: ð54Þ

It follows that

a
u
a ¼ −naa

u
n þ a

u
â; ð55Þ

where

a
u
n ¼ −βc _βc þ αacβc þ

1

α
βbβcDbβc; ð56Þ

and

a
u
â ¼ −α_βa þ aaα2 þ βbDbβa: ð57Þ

For the spatial Ricci tensor we make use of

3R
u

ab ¼ h
u

a
a0h
u

b
b0h
u
cdR

u

a0cb0d; ð58Þ

where R
u

acbd is defined to be

R
u

acbd ¼ 4Racbd −∇ðaubÞ∇ðcudÞ þ∇ðaudÞ∇ðcubÞ: ð59Þ

Note R
u

acbd has exactly the same (anti)symmetries of the
spacetime Riemann tensor. Therefore there are three
independent projections with na and hab. By using the
Gauss-Codazzi-Ricci equations of the Riemann tensor
and (29), we find

R
u

ĉnd̂n ¼ − _Kcd þ KceKe
d þ acad þ Dcad

− ð−Kcdαþ DðcβdÞÞð _α − aeβeÞ

þ 1

4
ð_βc − acα − 2Ke

cβe þ DcαÞ
× ð_βd − adα − 2Kf

dβf þ DdαÞ; ð60Þ

and

R
u

â0ĉ d̂n ¼Da0Kcd−DcKa0d

−
1

2
ð−Ka0dαþDða0βdÞÞð _βc−acα−2Ke

cβeþDcαÞ

þ1

2
ð−KcdαþDðcβdÞÞð _βa0 −aa0α−2Ke

a0βeþDa0αÞ;
ð61Þ

and

R
u

â0ĉb̂0d̂ ¼ 3Ra0cb0d þ ðKa0b0Kdc − Ka0dKb0cÞ
− ð−Ka0b0αþ Dða0βb0ÞÞð−Kcdαþ DðcβdÞÞ
þ ð−Ka0dαþ Dða0βdÞÞð−Kcb0αþ Dðcβb0ÞÞ: ð62Þ

Plugging (59) together with the above projections in (58),
after long and tedious manipulations, we find

3R
u

ab ¼ nanb 3R
u

nn − 2nða 3R
u

b̂Þn þ 3R
u

â b̂; ð63Þ

where

3R
u

nn ¼ β2ðβ2hcd − βcβdÞR
u

ĉnd̂n

þ 2β2αβa
0
hcdR

u

â0ĉ d̂ n

þ α2βa
0
βb

0
hcdR

u

â0ĉb̂0d̂; ð64Þ

and

3R
u

b̂n ¼ βbαðβ2hcd− βcβdÞR
u

ĉnd̂n

þ½hba0 ðβ2hcd− βcβdÞþ ð1þ 2β2Þβbβa0hcd�R
u

â0ĉ d̂n

þðhbb0 þ βbβ
b0 Þαβa0hcdR

u

â0ĉb̂0d̂; ð65Þ

and
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3R
u

â b̂ ¼ ½βaβbðα2hcd − βcβdÞ þ β2hachbd − hacβbβd − hbdβaβc�R
u

ĉnd̂n

− α½haa0hbdβc þ hba
0
hadβc − ðhaa0βb þ hba

0
βaÞhcd − 2βaβbβ

a0hcd�R
u

â0ĉ d̂ n

þ ½haa0hbb0 ðhcd þ βcβdÞ þ ðhaa0βb þ hba
0
βaÞβb0hcd þ βaβbβ

a0βb
0
hcd�R

u

â0ĉb̂0d̂; ð66Þ

where R
u

ĉnd̂n, R
u

â0ĉ d̂ n, and R
u

â0ĉb̂0d̂ are given in (60)–(62),
respectively.
For the purpose to analyze the scalar-tensor theory

involving the third order derivative of the scalar field, we
also need the covariant 3þ 1 correspondence of the spatial
derivatives of the extrinsic curvature and of the acceleration.
It is convenient to employ the expression

D
u

cK
u

ab ¼ h
u

c
c0h
u

a
a0h
u

b
b0K

u

c0a0b0 ; ð67Þ

with

K
u

cab ¼ ∇c∇ðaubÞ þ∇cuðajud∇dujbÞ: ð68Þ

Together with (29) and (36), we can get the covariant 3þ
1 correspondence of D

u

cK
u

ab explicitly. Similarly, we make
use of

D
u

aa
u
b ¼ h

u

a
a0h
u

b
b0A

u

a0b0 ; ð69Þ

with

A
u

ab ¼ uc∇a∇cub þ∇auc∇cub: ð70Þ

Together with (29) and (36), we then get the covariant

3þ 1 correspondence of D
u

aa
u
b explicitly.

Before proceeding, let us take the trace of the extrinsic
curvature K as an illustrative example. From (50) one finds

K → K
u ≡ gabK

u

ab

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
K −

Kabβaβbffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2
p βa _βa þ aaβa þ Daβa; ð71Þ

which is the covariant 3þ 1 correspondence of K. Clearly
in the unitary gauge na → ua, i.e., in the limit βa → 0, the
above reduces to K. On the other hand, generally _βa arises,
which signals the extra d.o.f. when deviating from the
unitary gauge.

IV. DEGENERATE ANALYSIS: d = 2

In the above we have derived the explicit covariant 3þ 1
correspondences of various SCG quantities. When deviat-
ing from the unitary gauge, there arise extra Lie derivatives
of βa and/or Kab (with coefficients proportional to βa),
which correspond to higher temporal derivatives of the
scalar field and/or the metric. This also explains the
apparent appearance of extra modes for the SCG theory
in general coordinates [33,52]. It is possible, however, that
such “dangerous” terms can get cancelled by combining
several SCG terms. In other words, there might exist
particular SCG combinations, of which the COD formu-
lation is also degenerate. Since the COD and GST are
exactly equivalent, this means the corresponding GST is
degenerate.
As a simple example, in this section we consider the

linear combination

Lð2Þ
SCG ¼ c1KijKij þ c2K2 þ c33Rþ c4aiai; ð72Þ

where the coefficients ci’s are functions of t and N. The
Lagrangian in (72) is the combination of four SCG
monomials with d ¼ 2, where d is the total number of
the derivatives (temporal or spatial) in each monomial. We
refer to [31] for more details on the classification of SCG
monomials according to the derivatives. The unitary gauge
correspondence of (72) reads

Lð2Þ
u:g: ¼ c1K

u

abK
u

ab þ c2K
u

2 þ c3 3R
u þ c4a

u
aa
u a: ð73Þ

In (72), the coefficients ci’s are understood as functions
of the scalar field ϕ as well as its canonical kinetic term X.
In the spatially covariant formulation, only the spatial

metric acquires kinetic term through the extrinsic curva-
ture. In the covariant correspondence, extra terms carrying
temporal derivative arise. In the current case, these are _βa
(i.e., _X) and _Kab. Therefore, it is convenient to group
terms according to the orders of temporal derivatives of
each term. After some manipulations, the full covariant
3þ 1 correspondence can be written as

Lð2Þ
COD ¼ Lð2Þ

CODj_β2 þ Lð2Þ
CODj _βK þ Lð2Þ

CODj _K þ Lð2Þ
CODjK2

þ Lð2Þ
CODj _β þ Lð2Þ

CODjK þ Lð2Þ
CODj0: ð74Þ
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There are four kinds of terms that are of the second order
in temporal derivatives, which are

Lð2Þ
CODj _β2 ¼ _βa _β

a
�
c4þ

1

2
ðc1þ c3þ 2c4Þβ2

�

þð_βaβaÞ2
�
−
1

2
ðc1þ c3þ 2c4Þþ

c1þ c2
1þ β2

�
; ð75Þ

Lð2Þ
CODj _βK ¼ 2ðc1 þ c3Þ _βaβbKab

−
2ðc1 þ c2Þ
1þ β2

ð _βaβaÞðKcdβ
cβdÞ

þ 2ðc2 − c3Þð _βaβaÞK; ð76Þ
Lð2Þ
CODj _K ¼ 2c3 ðβaβb − habβ2Þ _Kab; ð77Þ

and

Lð2Þ
CODjK2 ¼ ½c1 þ ðc1 þ 3c3Þβ2�KabKab

þ ½c2 þ ðc2 − c3Þβ2�K2

− 2ðc2 − 2c3ÞKKabβ
aβb

− 2ðc1 þ 3c3ÞKc
aKbcβ

aβb

þ c1 þ c2
1þ β2

ðKabβ
aβbÞ2: ð78Þ

The terms of the first order in temporal derivatives are

Lð2Þ
CODj _β ¼

ðc1 þ c3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ð _βaβbDaβbÞ þ ðc1 þ c3 þ 2c4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
ð_βaβbDbβaÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ½2ðc2 − c3ÞðDcβ
cÞ − ðc1 þ c3 þ 2c4ÞðβcβdDcβdÞ�ð _βaβaÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
½2c4 þ ðc1 þ c3 þ 2c4Þβ2�ðaa _βaÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ½c1 þ 2c2 − c3 − 2c4 − ðc1 þ c3 þ 2c4Þβ2�ðacβcÞð _βaβaÞ; ð79Þ

and

Lð2Þ
CODjK ¼ −

2ðc2 − c3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ðKabβ
aβbÞðDcβ

cÞ − 2ðc1 þ c3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p ðKabβ
cβaDbβcÞ

þ 2ðc1 þ c3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
ðaaKabβ

bÞ − 4c3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
ðβaDaKÞ

þ 4c3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
ðβaDbKb

aÞ þ 2ðc1 þ c3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
ðKabDbβaÞ

þ 2ðc2 − c3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
KðaaβaÞ þ 2ðc2 − c3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
KðDaβ

aÞ

−
2ðc1 þ c2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2
p ðacβcÞðKabβ

aβbÞ; ð80Þ

The terms containing no temporal derivative are

Lð2Þ
CODj0 ¼ c33Rþ 2c3ð3Rabβ

aβbÞ þ ðc2 − c3ÞðDaβ
aÞ2 þ ðc1 þ c3ÞðaaβbDaβbÞ þ 2ðDaaaÞc3β2

− 2c3ðβaβbDbaaÞ þ ðaaβaÞ½2ðc2 − c3ÞðDcβ
cÞ − ðc1 þ c3 þ 2c4ÞðβcβdDcβdÞ�

þ 1

2
ðc1 þ c3 þ 2c4ÞðβaβcDaβ

bDcβbÞ þ
1

2
ðc1 þ c3ÞðDaβbDbβaÞ

þ 1

2
ðc1 þ c3ÞðDbβaDbβaÞ þ ðc1 þ c3 þ 2c4Þð1þ β2ÞðaaβbDbβaÞ

−
c1 þ c3 þ 2c4
2ð1þ β2Þ ðβaβbDbβaÞ2 −

c1 þ c3
2ð1þ β2Þ ðβ

aβcDbβcDbβaÞ

þ 1

2
ðaaβaÞ2½c1 þ 2c2 − 5c3 − 2c4 − ðc1 þ c3 þ 2c4Þβ2�

þ 1

2
ðaaaaÞ½2c4 þ ðc1 þ 5c3 þ 4c4Þβ2 þ ðc1 þ c3 þ 2c4Þðβ2Þ2�: ð81Þ
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The presence of _β2, _βK, and _K terms correspond to the
higher temporal derivatives, and thus signal the possible
propagation of extra mode(s). Our goal is thus to tune the
coefficients c1;…; c4 such that all these “dangerous” terms
are suppressed. In the following, we replace βa (and its
spatial derivatives) in terms of the scalar field ϕ, its kinetic
term X and their temporal and spatial derivatives.
In the rest part of this work, we suppress the subscript

“COD” for simplicity. Schematically we write

Lð2Þ ¼ Lð2Þj _X2 þ Lð2Þj _XK þ Lð2Þj _K þ Lð2ÞjK2

þ Lð2Þj _X þ Lð2ÞjK þ Lð2Þj0; ð82Þ

where the first line are monomials of the second order in the
Lie derivative, the second line are monomials of the first
order in the Lie derivative and containing spatial derivatives
only. For the terms of the second order in the Lie
derivatives, we have

Lð2Þj _X2 ¼
_X2ðDϕÞ2
8X3 _ϕ2

½ðc1 þ c2ÞðDϕÞ2 þ c4 _ϕ
2�; ð83Þ

Lð2Þj _XK ¼−
_X

2X2 _ϕ2
fKabDaϕDbϕ½ðc1þ c3Þ _ϕ2

− ðc1þ c2ÞðDϕÞ2�þ ðc2− c3ÞKðDϕÞ2 _ϕ2g; ð84Þ

Lð2Þj _K ¼ c3
X

_KabðDaϕDbϕ − habðDϕÞ2Þ; ð85Þ

and

Lð2ÞjK2 ¼ −
1

2X _ϕ2
½−ðc2 _ϕ2 − c3ðDϕÞ2ÞK2 _ϕ2

− ðc1 _ϕ2 þ 3c3ðDϕÞ2ÞKabKab _ϕ2

þ 2ðc2 − 2c3ÞKKabDaϕDbϕ _ϕ2

þ 2ðc1 þ 3c3ÞKc
aKbcDaϕDbϕ _ϕ2

− ðc1 þ c2ÞðKabDaϕDbϕÞ2�: ð86Þ

We shall pay special attention to the terms involving _K,
which should be reduced by the integrations by parts using

Cab _Kab ≃ −KCabKab − ð£nCabÞKab: ð87Þ

After performing the integrations by parts, since the _K
terms have been reduced, there are three types of terms that
are second order in the Lie derivatives. The _X2 terms are not
affected as in (83), while the _XK and K2 terms become

Lð2Þj _XK ¼ −
1

2X2 _ϕ2
_X

��
c1 − c3 þ 2X

∂c3
∂X

�
KabDaϕDbϕ _ϕ2

− ðc1 þ c2ÞKabDaϕDbϕðDϕÞ2 þ
�
c2 þ c3 − 2X

∂c3
∂X

�
K ðDϕÞ2 _ϕ2

�
; ð88Þ

and

Lð2ÞjK2 ¼ 1

2X _ϕ2
½ðc2 _ϕ2 þ c3ðDϕÞ2ÞK2 _ϕ2 þ ðc1 _ϕ2 − c3ðDϕÞ2ÞKabKab _ϕ2

− 2ðc2 þ c3ÞKKabDaϕDbϕ _ϕ2 − 2ðc1 − c3ÞKc
aKbcDaϕDbϕ _ϕ2

þ ðc1 þ c2ÞðKabDaϕDbϕÞ2�: ð89Þ

We are now ready to determine the coefficients in order
make the COD Lagrangian degenerate.
(1) No _X2 term: From (83) we must set

c1 þ c2 ¼ 0; ð90Þ

c4 ¼ 0: ð91Þ

(2) No _XK terms: From (88) we must set

c1 − c3 þ 2X
∂c3
∂X ¼ 0; ð92Þ

c2 þ c3 − 2X
∂c3
∂X ¼ 0: ð93Þ
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We have the unique solutions for the coefficients:

c1 ¼ −c2 ¼ c3 − 2X
∂c3
∂X ; c4 ¼ 0: ð94Þ

This is nothing but corresponds to the Horndeski
Lagrangian in the unitary gauge [44]. In other words,
the specific combination

Lð2Þ
SCG ¼

�
c3 − 2X

∂c3
∂X

�
ðKijKij − K2Þ þ c33R; ð95Þ

represents the SCG Lagrangian of which the corresponding
GST is degenerate.8 Clearly the GR is a special case with c3
being constant.
It is interesting to check, after applying the degeneracy

conditions,

Lð2ÞjK2 →

�
c3 − 2X

∂c3
∂X

�
ðKabKab − K2Þ

þ ∂c3
∂X ð−2hcdDaϕDbϕþ 2hbcDaϕDdϕ

− ðhachbd − habhcdÞðDϕÞ2ÞKcdKab: ð96Þ

The second line is proportional to Daϕ and thus is
vanishing in the unitary gauge.
After imposing the above conditions, at the linear order

in the Lie derivatives, there are terms proportional to K and
_X. For terms proportional to _X, we find

Lð2Þj _X¼
_X

X2 _ϕ

�
c3−X

∂c3
∂X

�
ðDaϕDaDbϕDbϕ−D2ϕðDϕÞ2Þ:

ð97Þ

These two types of terms are safe since they have nothing to
do with the degeneracy, which can also be further reduced
by the integrations by parts.

V. DEGENERATE ANALYSIS: d = 3 WITHOUT ai

In this section we consider the SCG Lagrangian

Lð3Þ ¼ cð0;3;0Þ1 KijKjkKi
k þ cð0;3;0Þ2 Kijaiaj

þ cð0;3;0Þ3 KijKijK þ cð0;3;0Þ4 Kaiai þ cð0;3;0Þ5 K3

þ cð0;1;1Þ1 Kij∇iaj þ cð0;1;1Þ2 K∇iai

þ cð1;1;0Þ1
3RijKij þ cð1;1;0Þ2

3RK; ð98Þ

which is the linear combination of SCG monomials of

d ¼ 3. In (98) all the coefficients cðc0;d2;d3Þn are functions of t

and N. We refer to [31] for details on the meaning of the
superscripts. In this section, we turn off the terms involving
the acceleration ai, i.e., we set

cð0;3;0Þ2 ¼ cð0;3;0Þ4 ¼ cð0;1;1Þ1 ¼ cð0;1;1Þ2 ¼ 0: ð99Þ

A. The third order in the Lie derivative

At the third order in the Lie derivatives, schematically,
there are in total six types of monomials, of which five are
dangerous,

_X3; _X2K; _X _K; K _K; _XK2; ð100Þ

and 1 is safe,

K3: ð101Þ

At the third order in the Lie derivatives, _X3; _X2K; _X _K
terms cannot be reduced by integrations by parts.9

Therefore, we must to suppress them by setting the
corresponding coefficients to be vanishing identically.
On the other hand, the terms involving _K should be
reduced by the integrations by parts. For the K _K term,
schematically we write

Cab;cdKcd
_Kab ≃ −

1

2
KCab;cdKcdKab −

1

2
ð£nCab;cdÞKabKcd

þ 1

2
ðCab;cd − Ccd;abÞKcd

_Kab; ð102Þ

which cannot be reduced further. After performing the
integration by parts, the K _K terms should eliminated by
tuning the coefficients, if not being vanishing identically.
After performing the integration by parts of K _K terms

using (102), for the _X3 terms, we find

Lð3Þ
3 j _X3 ¼ −

_X3ðDϕÞ6
ð2XÞ9=2 _ϕ3

ðcð0;3;0Þ1 þ cð0;3;0Þ3 þ cð0;3;0Þ5 Þ; ð103Þ

therefore we need to impose one condition,

cð0;3;0Þ1 þ cð0;3;0Þ3 þ cð0;3;0Þ5 ¼ 0; ð104Þ

from which we solve

cð0;3;0Þ5 ¼ −cð0;3;0Þ1 − cð0;3;0Þ3 : ð105Þ

8The corresponding GST is the Horndeski Lagrangian L4 (in
the convention of [5,6]).

9Although the _X _K term can also be transformed by the
integration by parts: F _X _K ≃ − KF _XK − _F _XK − F ẌK, we
find it is not necessary since the new term ẌK will arise.
Therefore we simply keep the _X _K term in its original form.
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For the _X2K terms, we have

Lð3Þ
3 j _X2K ¼

_X2ðDϕÞ2
ð2XÞ7=2 _ϕ3

½2XKabDaϕDbϕð3cð0;3;0Þ1 þ cð1;1;0Þ1 þ 2cð1;1;0Þ2 þ 2cð0;3;0Þ3 Þ

þ ðKðDϕÞ2 _ϕ2 − ðDϕÞ2KabDaϕDbϕÞð−cð1;1;0Þ1 − 2cð1;1;0Þ2 þ cð0;3;0Þ3 þ 3cð0;3;0Þ5 Þ�; ð106Þ

After applying the condition (104), the above is reduced to be

Lð3Þ
3 j _X2K → −

_X2ðDϕÞ2
ð2XÞ7=2 _ϕ ðKðDϕÞ2 − KabDaϕDbϕÞð3cð0;3;0Þ1 þ cð1;1;0Þ1 þ 2cð1;1;0Þ2 þ 2cð0;3;0Þ3 Þ: ð107Þ

Thus we need to impose the second condition

3cð0;3;0Þ1 þ cð1;1;0Þ1 þ 2cð1;1;0Þ2 þ 2cð0;3;0Þ3 ¼ 0; ð108Þ

from which we solve

cð0;3;0Þ3 ¼ −
3

2
cð0;3;0Þ1 −

1

2
cð1;1;0Þ1 − cð1;1;0Þ2 : ð109Þ

For the _X _K terms, we find

Lð3Þ
3 j _X _K ¼

_XðDϕÞ2
ð2XÞ5=2 _ϕ

_KabðhabðDϕÞ2 − DaϕDbϕÞðcð1;1;0Þ1 þ 2cð1;1;0Þ2 Þ: ð110Þ

In deriving (110) we have not used the conditions (104) and
(108). Therefore we need to impose the third condition

cð1;1;0Þ1 þ 2cð1;1;0Þ2 ¼ 0; ð111Þ

from which we solve

cð1;1;0Þ2 ¼ −
1

2
cð1;1;0Þ1 : ð112Þ

Using (112), (109) is reduced to be

cð0;3;0Þ3 ¼ −
3

2
cð0;3;0Þ1 : ð113Þ

Plugging (113) into (105) yields

cð0;3;0Þ5 ¼ 1

2
cð0;3;0Þ1 : ð114Þ

For the K _K terms, we find

Lð3Þ
3 jK _K ¼ −

cð1;1;0Þ1 þ 2cð1;1;0Þ2

2
ffiffiffiffiffiffi
2X

p
_ϕ

_KabKcdðhabDcϕDdϕ

− hcdDaϕDbϕÞ: ð115Þ

Fortunately, this term gets cancelled exactly after impos-
ing the condition (112). Therefore, after performing the

integration by parts and imposing the condition (112), the
K _K terms are removed automatically.
Then we are left with only the _XK2 terms, which have

two origins. One corresponds to those already existing in
the original expression, the other corresponds to those
arising from K _K terms after the integration by parts. The
full expression of _XK2 terms without the above degeneracy
conditions are tedious and we do not present it in the
current work. After applying all the above three conditions
(104), (108), and (111), we find that

Lð3Þ
3 j _XK2 ¼ −

_X _ϕ

2ð2XÞ5=2
�
3cð0;3;0Þ1 þ 2X

∂cð1;1;0Þ1

∂X
�

× ½ðK2 − KabKabÞðDϕÞ2
− 2KKabDaϕDbϕþ 2Kc

aKbcDaϕDbϕ�: ð116Þ

In order to remove this term, we need to impose the fourth
condition

3cð0;3;0Þ1 þ 2X
∂cð1;1;0Þ1

∂X ¼ 0; ð117Þ

from which we solve
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cð0;3;0Þ1 ¼ −
2

3
X
∂cð1;1;0Þ1

∂X : ð118Þ

It is interesting that, at the third order in the Lie
derivatives, we have already got the whole 4 conditions
(114), (113), (112), and (118) in the Horndeski theory of
L5 [44].

B. The second and the first orders in Lie derivatives

As a consistency check, in the following we shall show
that all the dangerous terms at the second and first order in
Lie derivatives are indeed removed.
At the second order in the Lie derivatives, schematically,

there are in total 4 types of monomials, of which three are
dangerous

_X2; _XK; _K; ð119Þ

and one is safe,

K2: ð120Þ

The terms involving _K can be fully reduced by using

Cab _Kab ≃ −KCabKab − ð£nCabÞKab; ð121Þ

where Cab contains no Lie derivative. For the terms of the
second order in the Lie derivatives, after imposing the four
conditions (114), (113), (112), and (118), we have exam-
ined that all the “dangerous” terms (i.e., involving _X2, _K;
and _XK) get cancelled automatically. Therefore we do not
need to impose any further condition.
There are two types of terms of the first order in Lie

derivatives, _X and K. These two types of terms are always
safe. Nevertheless, it is interesting to see that after imposing
the four conditions (114), (113), (112), and (118)

Lð3Þ
1 j _X ¼

_X

2ð2XÞ5=2 _ϕ

�
−cð1;1;0Þ1 4XGabDaϕDbϕ

þ
�
3cð1;1;0Þ1 − 2X

∂cð1;1;0Þ1

∂X
�
½ðDϕÞ2DaDbϕDaDbϕ − ðDϕÞ2ðD2ϕÞ2

þ 2ðD2ϕÞDaϕDbϕDaDbϕ − 2DaϕDbϕDaDcϕDcDbϕ�
�
: ð122Þ

Moreover, after integration by parts, there also arise terms
involving the Lie derivatives of the acceleration _aa, which
are possibly dangerous. We have checked that these terms
are exactly cancelled out after imposing the four conditions
(114), (113), (112), and (118).

VI. DEGENERATE ANALYSIS: d = 3 WITH ai

In this section we consider the Lagrangian of d ¼ 3 (98)
with all the coefficients are present. As in the previous
section, we first focus on the terms of the third order in Lie
derivatives. Due to the presence of∇iaj terms, there arise Ẍ
terms. Schematically, there are two types of terms

Ẍ _X; ẌK; ð123Þ

due to the presence of ai. Nevertheless, by performing the
integrations by parts

CẌ _X≃ −
1

2
ðKC þ _CÞ _X2; ð124Þ

and

CabẌKab≃−KCab _XKab−ð£nCabÞ _XKab−Cab _X _Kab; ð125Þ

the two terms Ẍ _X and ẌK can be reduced to the 6 types of
terms in (100) and (101) that already exist in the case
without ai.
In the following, we first perform the integrations by

parts to reduce the Ẍ terms, then make a similar analysis as
in Sec. V. For the _X3 terms, we have

Lð3Þ
3 j _X3 ¼ −

_X3ðDϕÞ4
2ð2XÞ9=2 _ϕ3

�
2X _ϕ2

∂
	
cð0;1;1Þ1 þ cð0;1;1Þ2



∂X − 4X

	
cð0;1;1Þ1 þ cð0;1;1Þ2 − cð0;3;0Þ2 − cð0;3;0Þ4




þ
	
−cð0;1;1Þ1 − cð0;1;1Þ2 þ 2cð0;3;0Þ1 þ 2cð0;3;0Þ2 þ 2cð0;3;0Þ3 þ 2cð0;3;0Þ4 þ 2cð0;3;0Þ5



ðDϕÞ2

�
: ð126Þ
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We must set

∂
	
cð0;1;1Þ1 þ cð0;1;1Þ2



∂X ¼ 0; ð127Þ

cð0;1;1Þ1 þ cð0;1;1Þ2 − cð0;3;0Þ2 − cð0;3;0Þ4 ¼ 0; ð128Þ

− cð0;1;1Þ1 − cð0;1;1Þ2 þ 2cð0;3;0Þ1 þ 2cð0;3;0Þ2 þ 2cð0;3;0Þ3

þ 2cð0;3;0Þ4 þ 2cð0;3;0Þ5 ¼ 0: ð129Þ

We solve

cð0;3;0Þ4 ¼ −cð0;3;0Þ2 þ f1ðϕÞ; ð130Þ

cð0;1;1Þ2 ¼ −cð0;1;1Þ1 þ f1ðϕÞ; ð131Þ

cð0;3;0Þ5 ¼ −cð0;3;0Þ1 − cð0;3;0Þ3 −
1

2
f1ðϕÞ; ð132Þ

where f1ðϕÞ is an arbitrary function of ϕ only.
For the _X2K terms, after applying the above conditions

(130)–(132), we have

Lð3Þ
3 j _X2K ¼ −

_X2

ð2XÞ7=2 _ϕ ðKðDϕÞ2 − KabDaϕDbϕÞ

×

�	
−cð0;1;1Þ1 þ 3cð0;3;0Þ1 þ cð1;1;0Þ1 þ cð0;3;0Þ2 þ 2cð1;1;0Þ2 þ 2cð0;3;0Þ3 þ 2f1ðϕÞÞðDϕÞ2

þ 2X _ϕ2 ∂cð0;1;1Þ1

∂X þ Xð−2cð0;1;1Þ1 þ 2cð0;3;0Þ2


�
: ð133Þ

We must have

− cð0;1;1Þ1 þ 3cð0;3;0Þ1 þ cð1;1;0Þ1 þ cð0;3;0Þ2 þ 2cð1;1;0Þ2

þ 2cð0;3;0Þ3 þ 2f1ðϕÞ ¼ 0; ð134Þ

∂cð0;1;1Þ1

∂X ¼ 0; ð135Þ

−2cð0;1;1Þ1 þ 2cð0;3;0Þ2 ¼ 0; ð136Þ

from which we solve

cð0;1;1Þ1 ¼ f2ðϕÞ; ð137Þ

cð0;3;0Þ2 ¼ f2ðϕÞ; ð138Þ

cð0;3;0Þ3 ¼ −
3cð0;3;0Þ1

2
−
cð1;1;0Þ1

2
− cð1;1;0Þ2 − f1ðϕÞ: ð139Þ

Again, f2ðϕÞ is an arbitrary function of ϕ only.
For the _X _K terms, after applying the above conditions

(130)–(132) and (137)–(139), we have

Lð3Þ
3 j _X _K ¼

_X

ð2XÞ5=2 _ϕ ½ðcð1;1;0Þ1 þ 2cð1;1;0Þ2 þ f1ðϕÞ − f2ðϕÞÞðhab _KabÞðDϕÞ4

− ðcð1;1;0Þ1 þ 2cð1;1;0Þ2 þ f1ðϕÞ − f2ðϕÞÞðDϕÞ2 _KabDaϕDbϕ

þ 2ðf1ðϕÞ − f2ðϕÞÞXðhab _KabÞðDϕÞ2 þ 2f2ðϕÞX _KabDaϕDbϕ�: ð140Þ

We must have

cð1;1;0Þ1 þ 2cð1;1;0Þ2 þ f1ðϕÞ − f2ðϕÞ ¼ 0; ð141Þ

f1ðϕÞ − f2ðϕÞ ¼ 0; ð142Þ

f2ðϕÞ ¼ 0; ð143Þ

from which we solve

f1ðϕÞ ¼ f2ðϕÞ ¼ 0; ð144Þ

and
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cð1;1;0Þ1 þ 2cð1;1;0Þ2 ¼ 0: ð145Þ

At this point, we can already fix that

cð0;3;0Þ2 ¼ cð0;3;0Þ4 ¼ cð0;1;1Þ1 ¼ cð0;1;1Þ2 ¼ 0; ð146Þ

and therefore we have been back to the case without ai. As
a result, the subsequent analysis is exactly the same as the
case without ai in Sec. V.

VII. CONCLUSION

A necessary condition for a generally covariant scalar-
tensor theory (GST) to be ghostfree is that it is ghostfree in
the unitary gauge when the scalar field is timelike, in which
the theory takes the form of the spatially covariant gravity
(SCG). One may use the SCG as the starting point to search
for the ghostfree GST. To this end, a further covariant 3þ 1
decomposition (COD) of the GST without fixing any
coordinates is also needed. Therefore, in principle, one
needs “two steps” (SCG → GST → COD) to complete the
analysis. In this work, we developed a “one step” method,
which we dub the “covariant 3þ 1 correspondence”, to
derive the corresponding COD from SCG directly. The

resulting COD expressions can be used as the starting point
of the further degeneracy/constraint analysis.
In Sec. III we derive the explicit expressions of this

covariant 3þ 1 correspondence. We take the SCG
Lagrangians of d ¼ 2 and d ¼ 3 as simple illustrations of
this method in the subsequent sections. By deriving the
corresponding COD using this method, one can determine
the degeneracy conditions easily. Not surprisingly, the
resulting Lagrangians with these degeneracy conditions
are nothing but correspond to the Horndeski theory in the
unitary gauge. In other words, one could rediscover the
Horndeski theory with this method in a quite simple manner.
In this work, we only consider SCG Lagrangians in which
the lapse function is nondynamical. If we start with more
general degenerate SCG Lagrangians (e.g., with a dynamical
lapse function [40–42]), the method in this work may be
used to search for more general ghostfree scalar-tensor
theory with higher-order derivatives and curvature terms.
We shall report the progress in the future.
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