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A necessary condition for a generally covariant scalar-tensor theory to be ghostfree is that it contains no
extra degrees of freedom in the unitary gauge, in which the Lagrangian corresponds to the spatially
covariant gravity. Compared with analyzing the scalar-tensor theory directly, it is simpler to map the
spatially covariant gravity to the generally covariant scalar-tensor theory using the gauge recovering
procedures. In order to ensure the resulting scalar-tensor theory to be ghostfree absolutely, i.e., no matter if
the unitary gauge is accessible, a further covariant degeneracy/constraint analysis is required. We develop a
method of covariant 3 4 1 correspondence, which maps the spatially covariant gravity to the scalar-tensor
theory in 3 + 1 decomposed form without fixing any coordinates. Then the degeneracy conditions to
remove the extra degrees of freedom can be found easily. As an illustration of this approach, we show how
the Horndeski theory is recovered from the spatially covariant gravity. This approach can be used to find

more general ghostfree scalar-tensor theory.
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I. INTRODUCTION

Scalar-tensor theory is widely studied as one of the
alternatives of general relativity (GR), which introduces
additional scalar degrees of freedom (d.o.f.) other than the
two-tensorial d.o.f. (i.e., the gravitational waves) of GR.
In the theoretical aspect, one of the central problems in
the development of scalar-tensor theory is to introduce only
the healthy d.o.f. while evading the ghostlike (or simply the
unwanted) d.o.f. that are associated with the Ostrogradsky
instabilities [1,2].

The most straightforward approach is to construct a
generally covariant Lagrangian, in which the scalar field
(s) is (are) coupled to the spacetime metric covariantly.
This is actually what the name “scalar-tensor theory”
referred to originally. In the past decade, the successful
construction of the higher-derivative single-field scalar-
tensor theory with a single scalar d.o.f. has significantly
enlarged our scope of the scalar-tensor theory [3—11].
Ghostfree generally covariant scalar-tensor theory with
higher derivatives can be constructed by finely tuning the
higher derivatives such that the higher derivatives are
degenerate (see [12,13] for reviews and [14-18] for
general discussions of the degeneracy conditions).
Nevertheless, the generally covariant approach becomes
more and more involved when going to higher orders,
both in the derivatives of the scalar field and in the
curvature.
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From the point of view of d.o.f., scalar-tensor theory can
be understood as any effective gravitational theory that
propagates the tensor as well as the scalar d.o.f. In particular,
a class of pure metric theories that respect only the spatial
diffeomorphism was proposed and shown to have two tensor
d.o.f. with an additional scalar d.o.f. [19,20]. In this sense,
the ghost condensation [21], the effective theory of inflation
[22,23] as well as the Horava gravity [24,25] can be viewed
as subclasses of spatially covariant gravity, which were
proposed originally by different motivations. In particular,
the degeneracy can be made easily, even trivially, in the
spatially covariant gravity description, not only because the
Lagrangian is built directly in a spacetime split manner, but
also because the Lagrangian gets simplified dramatically
when fixing the unitary gauge. In fact, one may try even
ambitiously to build theories respecting only the spatial
covariance at the level of the Hamiltonian instead of the
Lagrangian [26-29].

These two apparently different approaches to scalar-tensor
theory are related by “gauge fixing/recovering” procedures.
If the gradient of the scalar field is timelike, we may fix the
time coordinate as the scalar field r = ¢, such that the
resulting theory appears to be a theory of spatially covariant
gravity. Conversely, starting from a spatially covariant
gravity, we may derive the corresponding generally covariant
Lagrangian of the scalar field and spacetime metric by the
so-called Stueckelberg trick." A natural idea is thus; we first
build the ghostfree spatially covariant gravity and then map it

"This is also to perform a broken time diffeomorphism.
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to the generally covariant scalar-tensor theory, which yields
a scalar-tensor theory that appears to be ghostfree at least
in the unitary gauge. Based on this idea, both the generally
covariant and spatially covariant monomials have been
classified and their correspondence has been investigated
in [30-32].

There are at least two subtleties in this correspondence.
Firstly, the reversibility of this gauge fixing/recovering
procedures relies on the assumption of a timelike scalar
field. Secondly, even we assume that the scalar field is
timelike, the generally covariant scalar-tensor theory got
from the spatially covariant gravity appears arguably to
have extra unwanted d.o.f. in coordinates that are not
adapted to the unitary gauge [33,34].% This has also been
reported in the study of mimetic gravity with couplings
between the curvature and higher derivatives of the scalar
field [38,39], which appears to propagate a lower number
of d.o.f. in the unitary gauge. In order to construct a scalar-
tensor theory that is ghostfree “absolutely”, i.e., no matter
whether the scalar field is timelike or not and in any
coordinates, one needs to perform a further degeneracy or
constraint analysis. Usually this is done by making a 3 4 1
decomposition and performing the constraint analysis in
the Hamiltonian formalism.

Compared to finding the degeneracy conditions for the
most general scalar-tensor theory directly (e.g., the approach
taken in [9-11]), starting from the spatially covariant gravity
has already saved a lot of work. However, one still needs two
steps; first finding the generally covariant scalar-tensor
theory that corresponds to the ghostfree spatially covariant
gravity, and then making a degeneracy analysis which needs
a further covariant 3 + 1 decomposition. One may wonder if
we can derive the covariant 3 + 1 correspondence of the
spatially covariant gravity directly. This paper is devoted to
this issue.

Generally, there are three apparently different formula-
tions of the scalar-tensor theory. One is the generally
covariant scalar-tensor theory (of which the Lagrangian is
built) of the scalar field coupled to the metric through
generally covariant derivatives. The second is the spatially
covariant gravity, which corresponds to the generally covar-
iant scalar-tensor theory in the coordinates adapted to the
unitary gauge. The last one is the generally covariant 3 4 1
decomposition of the scalar-tensor theory, which is conven-
ient to use for the covariant degeneracy/constraint analysis.
In this work, we shall develop a formalism, which we dub
the “covariant 3 + 1 correspondence”, that can be used to
derive the explicit generally covariant 3 4+ 1 expressions
from the spatially covariant gravity.

This work is organized as follows. In Sec. II we describe
the three formulations of the scalar-tensor theory and their

2Such an extra mode is dubbed “instantaneous” or “shadowy”
mode since it propagates with an infinite speed. See also [35-37]
for early discussions.

correspondences. In Sec. III we derive the explicit expres-
sions of the covariant 3 + 1 correspondence. We apply this
correspondence in Sec. [V, in which we derive the covariant
3 + 1 correspondence of the spatially covariant gravity of
d = 2 with d the total number of derivatives in spatially
covariant gravity formulation. By canceling all the danger-
ous terms, we determine the degeneracy conditions easily.
In Sec. V and Sec. VI, we further apply this method to
spatially covariant gravity of d = 3 without and with the
acceleration, respectively. Not surprisingly, we can recover
the whole Lagrangian of the Horndeski theory easily by this
method. We summarize our results in Sec. VIIL.

II. THREE FACES OF THE SCALAR-TENSOR
THEORY

A. Generally covariant formulations

The generally covariant scalar-tensor theory (GST)
usually refers to the theory of scalar field(s) coupled to
the spacetime metric. In the present work, we concentrate
on the case of a single scale field. The action takes the
general form

SGST_/d4x\/_g£(¢;gab’eabcdv4Rabcd;va)v (1)

in which the Lagrangian is built of the scalar field ¢, the
spacetime metric g, the spacetime curvature tensor *R . 4,
as well as their covariant derivatives. The possible parity
violation is encoded in the 4-dimension Levi-Civita tensor
Eapeq- It 1 the scalar-tensor theory in the form of (1), in
which the general covariance is manifest, that is the subject
in [3—11] and is also used in practical model building of
cosmology and black holes, etc.

For the purpose of degeneracy/constraint analysis, split-
ting the 4-dimensional objects into their temporal and
spatial parts, i.e., the so-called 3 + 1 decomposition, is
needed. The starting point of the 3 4+ 1 decomposition is a
timelike vector field n, with normalization n,n* = —1. As
usual, this timelike vector field is assumed to be hyper-
surface orthogonal, and thus the induced metric which
projects any tensor field on the spatial hypersurface is

hab = Gab + ngnyg. (2)

All the 4-dimensional quantities are then split into parts that
are orthogonal and tangent to the spatial hypersurface by
projecting with n? and h,,, respectively. The decomposition
of the 4-dimensional curvature tensor yields the Gauss-
Codazzi-Ricci equations. For the scalar field, we have

va¢ = —n£,¢ + Do, (3)

where £, stands for the Lie derivative with respect to n“, and
D, is the projected derivative defined by

044023-2



COVARIANT 3 + 1 CORRESPONDENCE OF THE SPATIALLY ...

PHYS. REV. D 105, 044023 (2022)

Da¢ = hglva’qﬁ’ (4)

which is also the covariant derivative compatible with £,,.
The decompositions of the second and the third order
derivatives of the scalar field with respect to a general
normal vector n¢ can be found in [31].

With these settings, we can derive the covariant 3 + 1
decomposition (COD) of any 4-dimensional quantities. The
GST action (1) can be recast in the form

SCOD = / d4x V _g£(¢’ ng, hab’ Eabed> 3Rab; Da’ £n) (5)

We emphasize that the action (5) is generally covariant since
n, is an arbitrary hypersurface orthogonal unit timelike
vector field, and we have not yet chosen any specific
coordinates. In particular, the familiar lapse function N
and shift vector N do not appear in the Lagrangian.’ In
Eq. (5), °R,, is the intrinsic curvature of the hypersurfaces.
The projected derivative D, and the Lie derivative £,, can be
viewed as the “intrinsic” and “extrinsic” derivatives, respec-
tively. The Lie derivatives of n“ and h,,

a, = £,n,, (6)
1
Kab = §£nhab’ (7)

define the acceleration and the extrinsic curvature as usual.

B. Spatially covariant formulation

In Eq. (5) n, is an arbitrary unit timelike vector field that
is hypersurface orthogonal. While the scalar field ¢ itself
specifies a foliation of hypersurfaces with ¢ = const. In
particular, when the gradient of the scalar field is also
timelike, we are allowed to choose n, = u,, where

1
U, = _ﬁvagba (8)

with the canonical kinetic term of the scalar field
X =—1V,$V*¢. u, is nothing but the normal vector of
the hypersurfaces with constant ¢, which satisfies the
normalization u,u® = —1. Choosing n, = u, corresponds
to the so-called unitary gauge in the literature.*

In the unitary gauge, i.e., when being decomposed with
respect to the foliation specified by the scalar field ¢ itself,

They merely encode the gauge freedom of choosing the time
and space directions, i.e., fixing the coordinates.

4Usually the “unitary gauge” is referred to fixing the time
coordinate ¢ = ¢ in the literature. In this work, for the purpose of
distinguishing the generally covariant and spatially covariant
formulations, we use “unitary gauge” to denote choosing
n, = u,. In particular, no specific coordinates have been fixed.

the decompositions of the derivatives of the scalar field get
dramatically simplified. All the spatial derivatives of the
scalar field drop out since

Bu¢ = lljla alva’d) =0, (9)

where Il;ab is defined by

u

hab = Gab + UgUp,. (10)

Here and throughout this paper, an overscript “u” denotes
quantities defined with respect to u, [31], which is related
to the scalar field through (8). The first-order derivative of
the scalar field (3) is thus written as V¢ = —u, /N, where
we introduce

%:\/2_X=£,,¢. (11)

In Eq. (11) N is nothing but the lapse function, which arises
since we have identified the “space” to be the hypersurfaces
of constant ¢b. The decompositions of the second- and third-
order derivatives of the scalar field in the unitary gauge can
be found in [19,20,31]. Replacing n, by u, in Eq. (5) yields

Su.g. = /d4~x\/ —gﬁ(d?, ua’hab’gabcd’ 3lueab;]5a’£u>' (12)

At this point, all the ingredients are generally covariant. As
a result, the unitary gauge Eq. (12) is generally covariant.

In the unitary gauge, since n, is chosen to be u,, the
coordinates that are adapted to the foliation, i.e., the
Arnowitt-Deser-Misner (ADM) coordinates, correspond
to fixing ¢t = ¢ (while spatial coordinates are left free).
In these particular coordinates, we have u, = —N4& and the
time direction t* = ¢§fj. The unitary gauge action (12) is
recast to

ij>

SSCG:/dtd:;'XN\/ﬁ‘C(t’N’hij7£ijk73R 'vi,£u>, (13)

where £, is now understood to be 1 (9, — £5) with N the
spatial component of * — Nu® = (0, N'). Since the time
coordinate ¢ is fixed to be the value of ¢, the general
covariance is broken to the spatial diffeomorphism.
Equation (13) appears to be a pure metric theory respecting
spatial covariance, which we dub the spatially covariant
gravity (SCQ). The effective theory of inflation [22,23], the
Horava gravity [24,25] as well as the more general
framework proposed in [19,20] can be viewed as subclasses
of the general action of the SCG (13).
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C. Theory triangle: Relations among different
formulations

We have now three apparently different formulations of
the theory. From the point of view of keeping the general
covariance manifestly and/or of making the spacetime
decomposition explicitly, different formulations have their
own merits.

(a) The generally covariant scalar-tensor theory (1):

The general covariance is manifest in the action of
GST, which is also convenient for model buildings in
the cosmology and black hole physics. However, more
calculations are needed to derive its spacetime decom-
position in order to make the degeneracy/constraint
analysis.

(b) The spatially covariant gravity (13):

The SCG is written in the already spacetime-
decomposed manner, which is convenient for control-
ling the number of d.o.f. through a strict degeneracy/
constraint analysis. In particular, comparing with the
GST, the degenerate SCG Lagrangian with the desired
number of d.o.f. can be constructed much easier. For
example, the SCG [19,20] contains only the extrinsic
curvature as the kinetic terms and thus is trivially
degenerate. SCG with a dynamical lapse function has
also been investigated in [40-42] (see also [43]).
However, the general covariance is explicitly broken
in SCG.

(c) The covariant 3 4+ 1 decomposition (5):

The COD Lagrangian can be viewed as the balance
between GST and SCG. It is written in the spacetime-
decomposed form and thus is convenient to perform
the constraint analysis. On the other hand, it is
generally covariant and has the exact equivalence to
the GST. In other words, the Lagrangians of COD and
GST are exactly the same, but merely written in
different forms.

The relations among the three formulations are depicted
in Fig. 1. Starting from the GST, we get the COD by
performing a covariant 3 + 1 decomposition. Then we
arrive at the SCG by choosing the unitary gauge and fixing

the time coordinate. With this approach, the Lagrangian of
the Horndeski theory in the unitary gauge was derived in
[44]. Similar analysis was performed to get a geometric
reformulation of the quadratic degenerate higher-order
scalar-tensor theory [45]. For our purpose to use the SCG
to generate GST theories, the inverse procedures of the
3 + 1 decomposition and the gauge fixing are required. To
this end, we must determine the GST quantities that
correspond to the SCG quantities. This procedure has
been used in the covariant formulation of the Hofava
gravity [36,46—48] (see also [49,50]), and is sometimes
dubbed the Stueckelberg trick.

Since the SCG quantities are simply the unitary gauge
quantities after fixing the time coordinate t = ¢, while the
later are the GST quantities after choosing the unitary
gauge n, = u,, the one-to-one correspondence between a
SCG expression and a GST expression can be easily set up.
For example, (8) and (11) can be viewed as the GST
correspondences of u, and N, respectively. The extrinsic
curvature corresponds to

u

Kij - Ky

1 ! U
= - —/2—X ;laa’;lbb’va Vb ¢7 (14)

u
where h,, is defined in (10), which now should be
understood as

v |
hap = Gap + ﬁvaﬁbvbﬁb- (15)

By plugging (15) in (14), we get the GST correspondence
of K;;. We refer to [31] for the more complete and
detailed correspondences between the GST and SCG
expressions.

As we have argued before, since the degenerate SCG
Lagrangian can be constructed much easier than the GST,
one may use the degenerate SCG as the “seed theory”, and
map it to the space of GST theories using the above
correspondence. The resulting theory is the GST theory that
is ghostfree, or propagates the correct number of d.o.f.,

[ Spatially covariant gravity (SCG) ]

Generally covariant
scalar-tensor theory (GST)

FIG. 1.

] covariant 3+1 decomposition

> Generally covariant 3+1
decomposition (COD)

Theory triangle: Three faces of the scalar-tensor theory.
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when the unitary gauge is accessible.” In fact, this has
already been performed for the GST and SCG polynomials
[32] from the linear algebraic point of view.

When the unitary gauge is not accessible, or at least
when we do not fix the time coordinate to be the scalar
field, apparently there arise extra d.o.f. which might be
ghostlike. Our final purpose is to obtain the GST theory
that is ghostfree “absolutely”, which has the correct
number of d.o.f. in the generally covariant sense no
matter whether the scalar field is timelike so that the
unitary gauge is accessible or not, and shows no extra
d.o.f. in arbitrary coordinates. To this end, a further
covariant 3 + 1 decomposition is inevitable, which results
in the COD formulation of the GST. This “two-step”
approach, i.e., SCG — GST - COD, is correct and
straightforward, is technically involved since both steps
involve complicated correspondences among expressions
in different formulations.

The main purpose of this work is to find a “one-step”
approach, i.e., a method to derived the COD expressions
from the SCG expressions directly, which we dub the
covariant 3 + 1 correspondence and shall explain in the
next section.

III. COVARIANT 3 +1 CORRESPONDENCE

The covariant 3 + 1 correspondence is conceptually
simple, which combines the above two steps together, but
without expanding the intermediate GST in terms of
the scalar field and 4-dimensional geometric quantities
explicitly.

Firstly, we covariantize the SCG expressions by deter-
mining the corresponding unitary gauge expressions. For
example, the spatial metric h;;, although appears to be
3-dimension tensor, is actually the spatial component of a
4-dimension tensor

u
hij = hap = Gap + Ualtp, (16)

where u, is nothing but the normalized gradient of the
scalar field (8). Secondly, instead of recasting the unitary
gauge expressions in terms of the scalar field and
4-dimension geometric quantities explicitly [e.g., (15)],
we make a further 3 + 1 decomposition with respect to a
general spacelike foliation with normal vector n,. For u,,
we write

Uy = —n,a+ fg, (17)
and require that n’f, =0. Since both u, and n, are

normalized (with sign —1), a and f, are not independent,
which satisfy

>Scalar-tensor theory with this property is also referred to be
“U-degenerate”, i.e., being degenerate in the unitary gauge [33].

a=—\/1+p, (18)

where > = B,°. Since u, is given in (8), a and f3, are
related to the derivatives of the scalar field by

Y.
a= Nord (19)
p= - Da? (20)

V2X'

where the canonical kinetic term X is now decomposed
to be

1 1
X =5 (844)° = Do, @)

Throughout this paper, quantities without any overscript
are defined with respect to a general normal vector field
n,. Therefore (17) becomes

Ug = Ng\/ 1 +ﬂ2 + P (22)

Equation (22) is the starting point of the following
analysis, which is nothing but the covariant 3 + 1 decom-
position of the normalized gradient of the scalar field
without fixing any coordinates. One can see from Eq. (22)
that 3, encodes the deviation of the general foliation from
the foliation specified by the scalar field. Therefore, the
unitary gauge is simply defined to be

unitary gauge: g, — 0, (23)
which implies n, — u, as expected.

The covariant 3 + 1 correspondence of the spatial metric
.6
is

Zab = nanb;lnn - Zn(a;h;)n + ;’aiw (24)
where
han = 7. (25)
/L;an = af,, (26)
B = has + Bl (27)

Here h,, is the induced metric associated with n,, i.e.,
hap = Gap + nany,. Here and in what follows, we use the
notation in [51] that for a general spacetime tensor, an index

6Throughout this paper, symmetrization is normalized, e.g.,
A(aBb) = % (AaBb + AbBa)'
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replaced by r denotes contraction with n,, and indices with
a hat denote projection with 4, i.e.,

= hT ... (28)

From (24) it is clear that the difference of A, and A, is

completely encoded in the nonvanishing f,,. Therefore ;zab
reduces to h,;, in the unitary gauge.

In the following, we derive the explicit expressions in the
covariant 3 + 1 correspondence. The fundamental objects
are the covariant derivatives of u,. For the first order
derivative of u,, we have

V., u, = n,n,A —n,B, — By, + Ay, (29)
with
A=V,u, =a-aP,, (30)
By, = Vuuy = —apa+ f, — K3p.. (31)
B, =Vau, = D,a - KSp,, (32)
Ay = Vauy = —Kpa+Dypy,. (33)

Throughout this work, overdots on the spatial tensors with
lower indices denote Lie derivatives with respect to the
general normal vector n¢, e.g., a=£,aq, B = £.Bus
p.=£2p,, etc. Occasionally we also use dotted spatial
tensors with upper indices for shorthand, in which the
upper indices are raised by the inverse induced metric 2%,
e.g., f=hp,, K = he p?' K ., etc.” Evaluating the
Lie derivative of (20) explicitly yields

1

ﬁﬁax ] (Da¢ + au¢)’ (34)

ﬁa:_ \/Z_X

where

5( = ¢¢ _Da¢(Da¢ + aués) + KabDu¢Dh¢' (35)

From (35) it is transparent that Ba contains the second order

Lie derivative of the scalar field gb through X , which should
be degenerate (with the extrinsic curvature) in order not to
excite the unwanted d.o.f..

When considering the third-order derivative of the scalar
field, the second-order derivative of u, will arise. We have

vcvaub = _ncnanbU + ncnavb + ncnbVa + naanc
- nchb —ny ch - nbf]ca + anh’ (36)

"Therefore % = h'" £,5, # £,/

with
U=A-a'B,—aB,, (37)
V, = —a,A+ B, — B4K¢ — Agya?, (38)
7, =—a,A+B, - B,K! - A, ac, (39)
W,=D,A-KB, - KB, (40)

Yep = —KpA + DBy — KiAy,, (42)
?ca = _KcaA + Dcéa - KtciAad’ (43)
Zeay = —KeoBp — Bach + DcAabv (44)

where A,B,,B,,A,, are given in (30)—(33). For later
convenience, we also evaluate the Lie derivatives of
A,B,.B,, A,, explicitly, which are given by

A=a—pra,— Py +2KPap,, (45)
Bb = —ac'tb - abd+ﬁb _ﬁckbc _KZBd +2KbCKCdﬂd’ (46)

éa = Dad+aad_ﬂckac _Kgﬂ.d +2KacKCd/}d’ (47)
and

Aab = _akab - Kabd + Da:Bb + aaﬁb
— (a,Kpa + apK 4g — agK )
— (DyKpg +DyK 4y — DKo ) . (48)

We are ready to use (29) and (36) to derive the covariant
3+ 1 correspondences of various geometric quantities.
For the extrinsic curvature, it is convenient to use the
expression

u u

Kab = ha a/hb b/V<a/ub/). (49)

It immediately follows that

u

u u u
Kap = ngnpKon = 2n(, K, + Kpj. (50)

where

u 1 . 1
K =~ e = KBufia + P+ FD Py,
(51)
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u 1 . 1 1 ,.
Kin = iﬁa <_ﬂcﬂc +afa. + aﬂcﬁdD(cﬁd)> - iﬁzﬂa
1 1 1
+ _aﬁzaa - Kadﬁd + _ﬂdDaﬁd =+ _aﬂdDdﬂav
2 2a 2
(52)

and

u

1 .
K,y = —Kua+Dpp — Eﬁa (apy — apa® = f<D )
1 .
_Eﬂb(aﬁa _auaz _ﬁchﬁa)' (53)

For the acceleration, we shall use the expression

a, = u’Vyu,. (54)
It follows that
Qy = —ngdy + Gy, (55)
where
b = P+ B+ DL (56)
and
g = —afl, + a0’ + f’Dyp,. (57)

For the spatial Ricci tensor we make use of
3 u u /M b u d u
"Rap = ha“hy” h“Ryepas (58)

u
where R .4 18 defined to be

u

Racbd = 4Racbd - v(aub)v(cud) + v(aud)v(cub)' (59)

Note ﬁacbd has exactly the same (anti)symmetries of the
spacetime Riemann tensor. Therefore there are three
independent projections with n, and h,,. By using the
Gauss-Codazzi-Ricci equations of the Riemann tensor
and (29), we find

u .

R = —ch—l—KceKZ—l—aCad—l—Dcad
- (_cha + D(cﬂd))(a - aeﬁe)

1
+ Z (ﬁc —a.a— 2Kgﬂe + Dca)

X (B = aqa — 2K’B; + Dya). (60)

¢ndn

and

u
Ra’f’zz’n - Da'KCd _DCKa’d

1
_5 (_Ku’da+ D(a’ﬂd)) (ﬂc —a.o— 2Kfﬂe + Dca)

1
+§(_cha+D(cﬁd))(ﬂa’ —aya— ZKZ//BB +Da’a>’
(61)

and

Ruciva = Racya + (KawKae — KgaKye)
- (_Ka’b’a + D(a’ﬁb’))(_cha + D(cﬂd))
+ <_Ka’da + D(a’ﬂd))(_ch’a + D(cﬁb’))' (62)

Plugging (59) together with the above projections in (58),
after long and tedious manipulations, we find

u

u u u
Ryp = nany Ry — 20, Ry + Ry (63)

where
3Il%nn = /)72 (ﬂzth - ﬁcﬁd)Rﬁn;in
+ 22 R e
+ B R g (64)
and

3R, = BralfPhed — PR
Iy (B2 = BoB) + (14 282 o | R
+ (1 + By Vo hR (65)

and
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3R&B = [ﬂa[}b ((lzth - ﬂcﬁd) + ﬂQhachbd - hacﬁbﬁd - hbdﬂaﬁc]RZ‘nZIn

= alh, by B+ iy h B — (ha® By + iy B = 2B o TR 2 31

ac

+ [ By (R 4 ) + (ha By + 1 Ba) B+ BubBoB” B h IR i (66)

u u u
where R0, Rysqn> and R, are given in (60)—(62),
respectively.

For the purpose to analyze the scalar-tensor theory
involving the third order derivative of the scalar field, we
also need the covariant 3 + 1 correspondence of the spatial
derivatives of the extrinsic curvature and of the acceleration.

It is convenient to employ the expression

u

u u u Ju U
DcKab = hc ¢ ha “ hb b lCc’a’b” (67)
with

Keap = VCV(aub) + ch(a|udvdu“,). (68)
Together with (29) and (36), we can get the covariant 3 +
1 correspondence of ]u)cl%ab explicitly. Similarly, we make

use of

u

Daglb = ha a/hb blAa’b’v (69)
with

u

Ay = uV Vo, +V,uV.u,. (70)

Together with (29) and (36), we then get the covariant

Uy ..
3 + 1 correspondence of D,a, explicitly.
Before proceeding, let us take the trace of the extrinsic
curvature K as an illustrative example. From (50) one finds

u u
K= K=g"Ky
Kab
— ,/1+’[,>2K_M
V1t p

L e ap, t D, (T1)

N

which is the covariant 3 4 1 correspondence of K. Clearly
in the unitary gauge n, — u,, i.e., in the limit , — 0, the
above reduces to K. On the other hand, generally ﬁa arises,
which signals the extra d.o.f. when deviating from the
unitary gauge.

IV. DEGENERATE ANALYSIS: d=2

In the above we have derived the explicit covariant 3 + 1
correspondences of various SCG quantities. When deviat-
ing from the unitary gauge, there arise extra Lie derivatives
of B, and/or K, (with coefficients proportional to f,),
which correspond to higher temporal derivatives of the
scalar field and/or the metric. This also explains the
apparent appearance of extra modes for the SCG theory
in general coordinates [33,52]. It is possible, however, that
such “dangerous” terms can get cancelled by combining
several SCG terms. In other words, there might exist
particular SCG combinations, of which the COD formu-
lation is also degenerate. Since the COD and GST are
exactly equivalent, this means the corresponding GST is
degenerate.

As a simple example, in this section we consider the
linear combination

£<SZC)G = 1K;;KY + ¢,K* + ¢3°R + cqa;a’,  (72)

where the coefficients c¢;’s are functions of  and N. The
Lagrangian in (72) is the combination of four SCG
monomials with d = 2, where d is the total number of
the derivatives (temporal or spatial) in each monomial. We
refer to [31] for more details on the classification of SCG
monomials according to the derivatives. The unitary gauge
correspondence of (72) reads

u

u u u
/Ju?é. = KK+ K2+ 3R+ cyaa. (73)

In (72), the coefficients ¢;’s are understood as functions
of the scalar field ¢ as well as its canonical kinetic term X.

In the spatially covariant formulation, only the spatial
metric acquires kinetic term through the extrinsic curva-
ture. In the covariant correspondence, extra terms carrying
temporal derivative arise. In the current case, these are /3,
(i.e., X) and Kab. Therefore, it is convenient to group
terms according to the orders of temporal derivatives of
each term. After some manipulations, the full covariant
3 + 1 correspondence can be written as

2 2 2 2 2
‘CEZ())D = ‘CEZ(>)D|ﬁ2 + EE:())D|51( + EEZ())D|K + £<C())D|K2

2 2 2
+ L3y + L&k + LEDo- (74)
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There are four kinds of terms that are of the second order and

in temporal derivatives, which are

@) | opa 1 2
Léoplyp =Bab [044'2(01 +c3+2c4)p ] ‘Cg())D|K2 =[cy + (c1 + 3¢3) K 1, K
. 1 ¢ +c +[cr + (cy = c3) K2
L gy {——<c1+c3+zc4>+1‘ 22} - e+ (c2 = €3))
. b = 2(cy = 265) KK "
. — 2 Kab .
COD|ﬂK (Cl + c3)ﬁaﬁb - 2(C] + 3C3)K2Kbcﬂuﬁh
2(c1 + ) d ctc
_ a\ (K c 1 2 a
1+ﬁ2 (ﬂaﬂ )( cdﬂﬂ ) + 1—|—ﬂ2 ( ubﬂ ﬁh)z.
+2(ca = c3) (BuP)K. (76)
@) _ a a '
Léopli = 2¢3 (B B’ = hB)K g, (77) The terms of the first order in temporal derivatives are
|

COD|ﬂ (\c/ll—'——c;) (BaBpDB?) + (c1 + ¢3 + 2¢q4)4/1 + P (B.ByD"B)

1
1+ p°

+ /1 + P24 + (c1 + 3 + 2¢4)B)(aB,)

(78)

2(cs = ¢3) (Do) = (1 + 3+ 2¢4) (B BDeBa)) (BuS)

+

W

ol + 2 — e = 20— (e e+ 26 @B B
and

@, _ 2(ca—c3) " o 2(c1 +c3) o o
Lplx = —ﬁ (KanBB?) (Do) — ﬁ( BB DB,)

+2(cy + c3)\/ 1+ 2 (aK ") = 4ezy/1 + f*(p“D,K)
+4c3y/1 + P(P'DLKG) +2(cy + c3)4/ 1 + (K, DPBY)

+2(cy = c3)\/ 1+ 2K (a“B,) + 2(cs — c3)\/ 1 + f*K(D ")

B Z(Cﬁ—? (@Be) (K aBB), (80)

The terms containing no temporal derivative are
2
L&plo = e5R +263CRuPYB) + (c2 = €3) (DY + (€1 + €3)(a"p'Dyy) +2(D )3

—2¢5(f*P"Dyay,) + (a“B,)[2(cs — ¢3) (D) = (¢1 + 3 + 2¢4) (B D fy)]

1 1
3 (c1 + ¢34 2¢4)(B*FDS"Dpy) + 3 (c1 + ¢3)(D,BD"p*)
1
+t3 (c1 4 ¢3)(DpBDPBY) + (c1 + 3+ 2¢4) (1 + %) (a“B"Dy,)

_atat2a sy sy 1T g b
(1 +ﬂ2) (ﬂ ﬂ bﬁa) 2(1 +ﬂ2) (ﬂ ﬂ DbﬂcD ﬂa)

(a“Ba)*[cr +2¢y = 5c3 = 2¢4 — (€1 + ¢35 + 2¢4) )
(81)

NI»—il\JI»—ﬂ
A

a,a")[2¢cs + () + 5¢3 +4cy)f* + (c1 + ¢35 + 2¢4) (47)].

+
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The presence of BQ, BK , and K terms correspond to the
higher temporal derivatives, and thus signal the possible
propagation of extra mode(s). Our goal is thus to tune the
coefficients cy, ..., ¢4 such that all these “dangerous” terms
are suppressed. In the following, we replace f, (and its
spatial derivatives) in terms of the scalar field ¢, its kinetic
term X and their temporal and spatial derivatives.

In the rest part of this work, we suppress the subscript
“COD” for simplicity. Schematically we write

L2 = £<2>‘5{2 4 £<2)|5{K 4 £<2)|1‘< + L2
+ L + LA + LB, (82)

where the first line are monomials of the second order in the
Lie derivative, the second line are monomials of the first
order in the Lie derivative and containing spatial derivatives
only. For the terms of the second order in the Lie
derivatives, we have

LO]z = 2K (D'D'G— 1 (DP)).  (85)

and

ﬁ [~(ca? - c3(DPP) K2
— (c1¢” + 3¢3(Dp)*) K, K *
+2(cs = 2¢3) KK 1, DgpDP g’
+2(cy + 3¢3)KSK, DUGDP e

= (c1 + ¢2)(KpD¢D’¢)?]. (86)

LO]g = —

We shall pay special attention to the terms involving K,
which should be reduced by the integrations by parts using

XZ D(l') 2 . ab x ~ ab ab
ﬁ(z)lj(z = 8(T¢2) [(Cl + 62><D¢)2 + C4¢2], (83) C Kah ~—KC Kab - (£nc )Kab' (87)
X - After performing the integrations by parts, since the K
L2 & = —W {KapsD*@DPp[(cy +c3)¢p terms have been reduced, there are three types of terms that
) S are second order in the Lie derivatives. The X? terms are not
—(c1+¢2)(DP)?] +(c2—c3)K(DP)* "}, (84)  affected as in (83), while the XK and K2 terms become
|
@) 1 . 8c3 a b2
L |XK:_—2X2¢2X Cl—C3+2X8—X KabD ¢D ¢¢
Jdc .
— (¢ 4 ) K, D*¢pDPp(Dgp)* + <02 S ZXG_X3> K (D¢)2¢2] ; (88)
and

£<2)|

T oxg?

[(c2¢” + ¢3(Dp)?)K*¢* + (c1” — ¢3(Dp)*) K o K

—2(cy + ¢3) KKy DD p* — 2(c) — ¢3) KK D pD

+ (¢1 + ¢2) (K, D*¢DP )2,

We are now ready to determine the coefficients in order
make the COD Lagrangian degenerate.
(1) No X? term: From (83) we must set

Cq + Cyr = 0, (90)

Cy =0. (91)

(89)
|
(2) No XK terms: From (88) we must set
aC3
- 2X—=0, 92
¢y —C3+ X (92)
(9c3
-2X—=0. 93
¢y +C3 e (93)
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We have the unique solutions for the coefficients:

8C3

a—X, Cqy = 0. (94)

Cq :—C2:C3—2X
This is nothing but corresponds to the Horndeski
Lagrangian in the unitary gauge [44]. In other words,
the specific combination

Jc;

E(Szc)G = <C3 -2X aX)(KUK” —Kz) +C33R, (95)
represents the SCG Lagrangian of which the corresponding
GSTis degenerate.8 Clearly the GR is a special case with c;
being constant.

It is interesting to check, after applying the degeneracy

conditions,

Jc
@2 - ( —2X 8;)(19;,1(”}’ -K?)

+ 2;3 (—2hDIPDP + 2hbeDEFDAp
— (R = BR)DPPK Ky (96)

The second line is proportional to D,¢ and thus is
vanishing in the unitary gauge.

After imposing the above conditions, at the linear order
in the Lie derivatives, there are terms proportional to K and

X. For terms proportional to X, we find

X Jc
@). 2> 3 a b 2
£l =5 (=52 ) 044000 -0 D)
(97)
These two types of terms are safe since they have nothing to
do with the degeneracy, which can also be further reduced
by the integrations by parts.
V. DEGENERATE ANALYSIS: d =3 WITHOUT g;

In this section we consider the SCG Lagrangian

£0) = c§°;3’°)1<,» KK + c(zozo)Kja"aj

+c§0;3‘0)K K,JK+C(030)KCZ. i_|_C§0;3,O)K3
+C(10;1,1)Kijv1 Jj +C201 1) Kv
+ e "M OPRUK + 3 ORK, %)

which is the linear combination of SCG monomials of
d = 3.Tn (98) all the coefficients c'***®) are functions of ¢

The corresponding GST is the Horndeski Lagrangian £, (in
the convention of [5,6]).

and N. We refer to [31] for details on the meaning of the
superscripts. In this section, we turn off the terms involving
the acceleration «;, i.e., we set

(03.0) _ (030) _ (0:1.1)
s =cy

! A =0, (99)

A. The third order in the Lie derivative

At the third order in the Lie derivatives, schematically,
there are in total six types of monomials, of which five are
dangerous,

X3, X’k, XK, KK, XK?  (100)

and 1 is safe,
K3. (101)

At the third order in the Lie derivatives, X°, X’K, X K
terms cannot be reduced by integrations by paurts.9
Therefore, we must to suppress them by setting the
corresponding coefficients to be vanishing identically.
On the other hand, the terms involving K should be
reduced by the integrations by parts. For the KK term,
schematically we write

. 1 \ Lo pabe
Cah,chchah ~__ Kcab’CchdKab - 5 (£nc b, d)Kachd

_ (Cab cd

2 CCd.ab)chkabﬂ

(102)
which cannot be reduced further. After performing the

integration by parts, the KK terms should eliminated by
tuning the coefficients, if not being vanishing identically.
After performing the integration by parts of KK terms

using (102), for the X3 terms, we find

L0 = - (}2(;(;2/42; (030 4 (0300 | 030)y (103
therefore we need to impose one condition,
c(10;3,0) n 650;3,0) n Cgo;3,0) —o. (104)
from which we solve
Cg0;3,0) _ _050;3,0) _ Cgo;3,0)' (105)

9Although the XK term can also be transformed by the
integration by parts: FX K~ — KFXK — FXK-FXK, we
find it is not necessary since the new term XK will arise.
Therefore we simply keep the X K term in its original form.
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For the X?K terms, we have

_ X*(Dg)>
- (2X)7P?

0:3.0)

3 a
Lok 2XK ,,DI¢DP (3¢

+ (K(Dg)2¢? — (Dp)*K ,,D¢DP ) (—c'

After applying the condition (104), the above is reduced to b

X*(Dg)*

3

Loy YT
(2X)"¢

Thus we need to impose the second condition

(a

3C§0;3'0) + C(ll;1,0) + 2C2

from which we solve

. 3 0
Cgos,o) _ —0(10’3'0) _
For the X K terms, we find
X(Dg)* .
£k = — K 4 (h® (D)
Vltie = G K0 (00)

In deriving (110) we have not used the conditions (104) and
(108). Therefore we need to impose the third condition

(1;1,0)

B F )} (111)
from which we solve
. 1 .
c(21,1,0) _ 5C(ll,l,o) (112)
Using (112), (109) is reduced to be
. 3 0
C(30,3,0) --2 (10,3,0) (113)
Plugging (113) into (105) yields
. 1 (o
cgo,s,o) . 5050’3'0)- (114)
For the KK terms, we find
(1;1,0) (1;1,0)
+ 2¢ .
Lk = — =2 KK g (hDegD
3 |KK 2\/2—45 b d( ¢ ¢
— heDPpD ). (115)

Fortunately, this term gets cancelled exactly after impos-
ing the condition (112). Therefore, after performing the

044023-

(K(D§)* = K sD*¢D" ) (3¢ + ¢

n 651;1,0) + 2c(21;1,0) + 2Cg0;3,0))

1:10) 20&1;1,0) i Cgo;z,o) + 30(50;3,0))]7 (106)
€

51;1,0) +2C<21;1,0) +2c§0;3'0)). (107)

104 5090 _ (108)
1 /. .
Z 10 _ ((1:10) (109)
2
- DD 21 (110

|
integration by parts and imposing the condition (112), the
KK terms are removed automatically.

Then we are left with only the XK? terms, which have
two origins. One corresponds to those already existing in
the original expression, the other corresponds to those
arising from KK terms after the integration by parts. The
full expression of XK? terms without the above degeneracy
conditions are tedious and we do not present it in the
current work. After applying all the above three conditions
(104), (108), and (111), we find that

0;3.0)
22X (36’5 +2X >
X [(K? = KK (D)?

— 2KK,_,D¢DP¢p + 2K.K, DDl ). (116)

1;1,0
acg )
19).4

__Xo

3
ﬁg )|5(K2 -

In order to remove this term, we need to impose the fourth
condition

1;1,0
80(1 )
19).4

(0:3,0)
1

3¢\ Loy =0, (117)

from which we solve

12
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1;1,0
acﬁ )
0X

0;3,0
[959) _

2
—-= 118

: (18)

It is interesting that, at the third order in the Lie
derivatives, we have already got the whole 4 conditions
(114), (113), (112), and (118) in the Horndeski theory of
Ls [44].

B. The second and the first orders in Lie derivatives

As a consistency check, in the following we shall show
that all the dangerous terms at the second and first order in
Lie derivatives are indeed removed.

At the second order in the Lie derivatives, schematically,
there are in total 4 types of monomials, of which three are
dangerous

X’ XK, K, (119)

and one is safe,

X

3

£y =
2(2X)

11,0
8cs )

K2 (120)
The terms involving K can be fully reduced by using

CK = —KC?PK  — (£,C)K 4, (121)

where C* contains no Lie derivative. For the terms of the
second order in the Lie derivatives, after imposing the four
conditions (114), (113), (112), and (118), we have exam-
ined that all the “dangerous” terms (i.e., involving Xz, K ,
and XK) get cancelled automatically. Therefore we do not
need to impose any further condition.

There are two types of terms of the first order in Lie
derivatives, X and K. These two types of terms are always
safe. Nevertheless, it is interesting to see that after imposing
the four conditions (114), (113), (112), and (118)

;1.0 p
45/2&5{_65 J4X G, D¢D’ ¢

n (3c2“"°> _ox —) (D@D, Dy DD — (D)D)

0X

+2(D?*¢)D*¢D’$D,D)¢ — 2D¢D"$D,D ¢D Dy ] }

Moreover, after integration by parts, there also arise terms
involving the Lie derivatives of the acceleration ¢,, which
are possibly dangerous. We have checked that these terms

are exactly cancelled out after imposing the four conditions
(114), (113), (112), and (118).

VI. DEGENERATE ANALYSIS: d=3 WITH «;

In this section we consider the Lagrangian of d = 3 (98)
with all the coefficients are present. As in the previous
section, we first focus on the terms of the third order in Lie
derivatives. Due to the presence of V;a; terms, there arise X
terms. Schematically, there are two types of terms
XK,

XX, (123)

(0;1.1)

(122)

[
due to the presence of a;. Nevertheless, by performing the
integrations by parts

CX X~ —

(KC+C)X?, (124)

N =

and
CabXKab ~ —KC“bXKab - (£nC“b)XKab —Cabj(kab, (125)

the two terms X X and XK can be reduced to the 6 types of
terms in (100) and (101) that already exist in the case
without a;.

In the following, we first perform the integrations by
parts to reduce the X terms, then make a similar analysis as
in Sec. V. For the X° terms, we have

. (0;1,1)

O, = — X (Dgp)* 7 (9(c1 +c

P 0x)924 X
(0:1.1)

(0:1.1) (0:3.0)

+ (—c1 -y 420 +2¢

(0:3.0)

) _ 4x(c(0;1,1) + C(O;l,l) _ céO;3,0) _ c4(¥0;3,0)>

1 2

+ 230 4 260 1 2c30) (D¢)2] . (126)
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We must set 620;3‘0) (0 Y0 fi(#), (130)
0:1,1 0:1,1
8<c<1 )+ cg )> L) L)
ox =0, (127) S = =" 1 £1(4), (131)
C(]O;l,l) n Cg();l,l) _ Cgo;&o) _ 650;3.0) —0, (128)
0;3.0 0;3,0 0;3,0)
(0:1.1) (01 1) (0:3,0) (0:3,0) (0:3,0) Cg = _C(l - ( _fl (). (132)
—-c —|-2 20,7 4 205
+ 2c(0 20 4 2020’3’0) =0. (129)  where f(¢) is an arbitrary function of ¢ only.
For the X?K terms, after applying the above conditions
We solve (130)—(132), we have
Loy = —L (K(Dg)* — K,,D*¢D )
(2X)"2¢
« {( (0:1,1) +3¢! (0:3.0) 651;1,0) —|—c§0;3’0) +2Cg1;1,0) 1 2¢! (0:3,0) +271(4))(Dp)?
(0 1,1) . 4
+2X¢° aX + X(=2c0M 4 2050’3’0)” . (133)
|
We must have 01 1 = f2(¢). (137)
_ (01 1) +3 (0:3,0) +C(11;1,0) +C;0;3,0> +2cgl;1,o) 030 o s,
+2c§°3° +2f1(¢) = 0. (134) ?
acgo;m) 030) _ 3‘3(10 3.0) C(ll;l.O) (1 o)
= - 139
=0, (135) 3 5 5 - fi(#). (139)
201D 4 9 030 (136)  Again, f,(¢) is an arbitrary function of 1
i > =0, s o). y function of ¢ only.
For the X K terms, after applying the above conditions
from which we solve (130)—(132) and (137)—(139), we have
X :
£<3) o i (110)+2 110)+ _ habKa D 4
Vlik = gl 11(8) = ) (1 K ) (D)
= (™ 267 4 £1(¢) = f2(¢) (DP)*K 1, D*$D"
+2(f1(¢) - f2(¢>> (h*K 1) (D) + 2(¢) XK ;pD*¢D ). (140)
I
We must have from which we solve
426 1 £y () - falg) = 0. (141)
f1(@) = f2(d) =0, (144)
[1(@) = f2(#) =0, (142)
f2(9) =0, (143 and
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1;1,0) (1:1,0)

AP o (0 — g, (145)

At this point, we can already fix that

(0:3.0) (0:3.0)

_ (0:1.1)
c, =cy

= O — D — 0, (146)
and therefore we have been back to the case without a;. As
a result, the subsequent analysis is exactly the same as the
case without ¢; in Sec. V.

VII. CONCLUSION

A necessary condition for a generally covariant scalar-
tensor theory (GST) to be ghostfree is that it is ghostfree in
the unitary gauge when the scalar field is timelike, in which
the theory takes the form of the spatially covariant gravity
(SCG). One may use the SCG as the starting point to search
for the ghostfree GST. To this end, a further covariant 3 + 1
decomposition (COD) of the GST without fixing any
coordinates is also needed. Therefore, in principle, one
needs “two steps” (SCG — GST — COD) to complete the
analysis. In this work, we developed a “one step” method,
which we dub the “covariant 3 + 1 correspondence”, to
derive the corresponding COD from SCG directly. The

resulting COD expressions can be used as the starting point
of the further degeneracy/constraint analysis.

In Sec. IIl we derive the explicit expressions of this
covariant 3+ 1 correspondence. We take the SCG
Lagrangians of d =2 and d = 3 as simple illustrations of
this method in the subsequent sections. By deriving the
corresponding COD using this method, one can determine
the degeneracy conditions easily. Not surprisingly, the
resulting Lagrangians with these degeneracy conditions
are nothing but correspond to the Horndeski theory in the
unitary gauge. In other words, one could rediscover the
Horndeski theory with this method in a quite simple manner.
In this work, we only consider SCG Lagrangians in which
the lapse function is nondynamical. If we start with more
general degenerate SCG Lagrangians (e.g., with a dynamical
lapse function [40-42]), the method in this work may be
used to search for more general ghostfree scalar-tensor
theory with higher-order derivatives and curvature terms.
We shall report the progress in the future.
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