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We revisit the four-dimensional theory of gravity that arises from string theory with higher-derivative
corrections. By compactifying and truncating the ten-dimensional effective action of heterotic string theory at
first order in α0, and carefully dealing with field redefinitions, we show that the four-dimensional theory takes
the form of an axidilaton model where the scalars couple to the Gauss-Bonnet and Pontryagin densities. Thus,
the actual string gravity is a generalization of the well-studied Einstein-dilaton-Gauss-Bonnet and dynamical
Chern-Simons models. Using this action we compute the stringy corrections to the Kerr geometry, and we
obtain, for the first time to our knowledge, the corrections to the entropy of the Kerr black hole at order α02.
We check that the first law of black hole mechanics is satisfied and discuss several properties of the solution.
Our results suggest that there exist black hole solutions with J > M2 and therefore the extremal ratio J=M2

must be modified positively.
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I. INTRODUCTION

String theory is thought to provide a quantum theory of
gravity and a unified framework for all the forces of nature.
However, it possesses a huge landscape of low-energy
effective theories that include all sorts of interactions, many
for which we do not have any experimental evidence. One
exception to this is gravity itself. Thus, it makes sense to
wonder about the stringy prediction for the theory of
gravity in our four-dimensional universe.
It has been known since long ago that the gravitational

dynamics in string theories is not ruled by the Einstein field
equations, but by higher-derivative extensions thereof.
Indeed, the low-energy limit of the different types of string
theories can be described by ten-dimensional supergravity
actions with higher-derivative corrections [1–7]. The com-
pactification of these actions down to four dimensions leads
to effective theories with many scalar and vector fields
coupled to gravity, but it is interesting to ask what is the
minimal truncation one could perform of these theories.
Such a minimal theory would correspond to the stringy
description of pure gravity. Given that this theory will be

different from general relativity (GR), it is simply natural to
ask how the vacuum GR solutions are modified by string-
theoretical corrections. In particular, one should wonder
about the corrections to the arguably most important solution
of Einstein’s equations: the Kerr black hole.
In this paper we address these questions in the case of

heterotic string theory (HST). As is well known, the
effective action of HST receives higher-derivative correc-
tions at first order in the string tension, α0 ¼ l2

s [1,3–5,7],
and famously some of these corrections are quadratic
curvature terms [8–10].
It is a quite extended lore that, in four dimensions, the

effective action of heterotic string theory is captured by
the so-called Einstein-dilaton-Gauss-Bonnet (EdGB)
theory [11–14],

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 1

2
ð∂ϕÞ2 þ αe−ϕX4

�
; ð1Þ

where α is a parameter with units of length square and

X4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ð2Þ

is the Gauss-Bonnet density. This theory has been the subject
of very intensive research in past years (see Refs. [15–23] for
its black hole solutions), but we would like to revisit the
claim about the stringy origin of this model.
In fact, the EdGB theory cannot be the complete answer

for the low-energy effective action of HST for an important
reason: it lacks an axion field. In HST, the field strength of
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the Kalb-Ramond 2-form satisfies the Bianchi identity
dH ¼ α0R ∧ R, and hence one cannot truncate this field,
which must necessarily be a part of the gravitational sector
together with the metric and the dilaton. In fact, this has
inspired another family of well-studied models known as
the dynamical Chern-Simons (dCS) theory [24,25], which
can be written as

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 1

2
ð∂φÞ2 þ βφR̃2

�
; ð3Þ

where in this case

R̃2 ¼ 1

2
ϵμναβRμνρσRαβ

ρσ ð4Þ

is the Pontryagin density. Black hole solutions in this
theory are also known [26–31].
Thus, it is clear that none of the two models above, EdGB

and dCS gravities, can be, by themselves, the theory coming
from the heterotic string effective action in four dimensions.
On the other hand, it is not clear why one should not have
other types of higher-derivative terms besides quadratic-
curvature ones, such as ð∂φÞ4, ð∂ϕÞ2ð∂φÞ2, etc.
Therefore, the first question that we would like to clarify

in this paper is what is the precise theory of gravity in four
dimensions coming from HST. For that, we will make use
of the ten-dimensional effective action at first order in α0 as
given in [7]. As we show, the result is an almost (but not
exactly) direct generalization of both EdGB and dCS
theories. We cover this in Sec. II.
The second question we want to address is that of the

stringy corrections to the Kerr metric. It has been known for
some time that, at first order in α0, the Kerr black hole
possesses an axidilatonic hair on account on the nonminimal
coupling of these scalars to the curvature [32–34]. However,
unlike the case of charged black holes, which receive first
order in α0 corrections [35–38], the geometry of neutral
solutions such as the Kerr black hole is only modified at
order α02. While these effects have been studied in the
context of EdGB and dCS gravities (see the references
above), the corrections to the Kerr metric in the actual string
gravity model have been mostly ignored. As we show, the
four-dimensional stringy action at first order in α0 can be
consistently used to obtain the corrected Kerr metric at order
α02. Thus, in Sec. III we obtain the corrections to the Kerr
geometry expressed analytically as a power series in the spin.
We discuss in detail the thermodynamic properties of these
rotating black holes, and we compute for the first time the α0
corrections to the entropy of the Kerr black hole by using
Wald’s formula. As an important test of our computations,
we check that the first law of black hole mechanics is
satisfied.
Finally, we provide some concluding remarks and

discuss possible future directions in Sec. IV.

Note on conventions:We follow the conventions of [39]:
the metric has mostly a minus signature and the Riemann
tensor is defined by

½∇μ;∇ν�ξρ ¼ Rμνσ
ρξσ: ð5Þ

The Ricci tensor is defined in the usual way, Rμν ¼ Rμρν
ρ.

II. HETEROTIC SUPERSTRING EFFECTIVE
ACTION IN FOUR DIMENSIONS

The first order in α0 corrections to the heterotic string
effective action are fully understood [3–7]. Here wewill use
the action given by Ref. [7], which is obtained from the
supersymmetrization of the Lorentz-Chern-Simons terms.
The equivalence of this result with the ones obtained from
string amplitudes was determined in [40].
Our starting point is the heterotic superstring effective

action at first order in α0,

Ŝ ¼ g2s

16πGð10Þ
N

Z
d10x

ffiffiffiffiffi
jĝj

p
e−2ϕ̂

�
R̂ − 4ð∂ϕ̂Þ2 þ 1

12
Ĥ2

þ α0

8
R̂ð−ÞμνabR̂

μνab
ð−Þ þOðα03Þ

�
; ð6Þ

where we are already truncating away all of the gauge
fields. In this action, R̂ð−Þ is the curvature of the torsionful
spin connection

Ωð−Þab ¼ ωa
b −

1

2
Hμ

a
bdx

μ; ð7Þ

where a and b are Lorentz indices and ωa
b is the usual spin

connection. The curvature R̂ð−Þ can be written in terms of
the Riemannian curvature R̂ and in terms of Ĥ as follows:

R̂ð−Þμνρσ ¼ R̂μν
ρ
σ − ∇̂½μĤν�ρσ −

1

2
Ĥ½μjραĤjν�ασ: ð8Þ

On the other hand, the 3-form field strength is defined as

Ĥ ¼ dB̂þ α0

4
ωL
ð−Þ; ð9Þ

where B̂ is the Kalb-Ramond 2-form and ωL
ð−Þ is the

Lorentz-Chern-Simons 3-form of the torsionful spin con-
nection. Note that the relation (7) implies that Ĥ is defined
in a recursive way that produces implicitly an infinite tower
of α0 corrections according to (9) [41]. Also note that, due
to the Chern-Simons term, Ĥ satisfies the Bianchi identity,

dĤ ¼ α0

4
R̂ð−Þab ∧ R̂ð−Þba: ð10Þ

Finally, the string coupling constant gs is related to the
asymptotic vacuum expectation value of the dilaton
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according to gs ¼ ehϕ̂∞i, while the ten-dimensional

Newton’s constant reads Gð10Þ
N ¼ 8π6g2sl8

s .
Our goal is then to find the simplest compactification and

truncation of this theory down to four dimensions and to
express it in the most compact or appealing way. We
observe that the minimal consistent truncation we can
perform consists in considering a direct product compacti-
fication on a six-torus, M4 × T6. That is, the metric takes
the form

dŝ2 ¼ ds̄2 þ dzidzi; i ¼ 1;…; 6; ð11Þ

where ds̄2 is the four-dimensional metric in the string frame
and the coordinates zi ∼ zi þ 2πls parametrize the six-
torus. Here we are taking all of the Kaluza-Klein vectors
and scalars to be trivial. At the same time, the Kalb-
Ramond 2-form and its 3-form field strength only have
four-dimensional components, a fact that we express by
B̂ ¼ B, Ĥ ¼ H. That this is a consistent truncation follows
from the fact that this compactification ansatz solves all of
the ten-dimensional equations of motion once the lower-
dimensional ones are satisfied, as one can check from direct
inspection.1

This trivial compactification gives rise to formally the
same theory as (6) but in four dimensions and with a
Newton’s constant Gð4Þ

N ¼ Gð10Þ
N =ð2πlsÞ6. In order to

express this theory in a more appropriate form, we first
dualize the Kalb-Ramond 2-form into a scalar field.2 Let us
note that, in four dimensions, the Bianchi identity (10) can
be expressed as

1

3!
ϵμνρσ∇̄μHνρσ þ

α0

8
R̄ð−Þμνρσ ˜̄Rð−Þ

μνρσ ¼ 0; ð12Þ

where

˜̄Rð−Þ
μνρσ ¼ 1

2
ϵμναβR̄ð−Þαβρσ: ð13Þ

Then, we can promote H to be the dynamical field instead
of B by introducing the Bianchi identity in the action
together with a Lagrange multiplier φ. After integration by
parts, we are left with the action.

S̄¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jḡj

p �
e−2ðϕ̂−ϕ̂∞Þ

�
R̄− 4ð∂ϕ̂Þ2 þ 1

12
H2

�

−
1

3!
Hμνρϵ

μνρσ∂σφþ α0

8
LR2 þOðα03Þ

�
; ð14Þ

where

LR2 ¼ e−2ðϕ̂−ϕ̂∞ÞR̄ð−ÞμνρσR̄
μνρσ
ð−Þ − φR̄ð−Þμνρσ ˜̄Rð−Þ

μνρσ: ð15Þ

Now the variation of this action with respect to φ yields the
Bianchi identity of H, while variation with respect to H
yields a relation that allows one to remove H in terms of φ.
However, in this case the dualization process is not so
straightforward as the Lagrangian has a nonlinear depend-
ence on H through LR2 . In fact, we get the following
equation from the variation of H:

e−2ðϕ̂−ϕ̂∞Þ 1
6
Hμνρ −

1

6
ϵμνρσ∇̄σφþ α0

8

δLR2

δHμνρ ¼ 0: ð16Þ

In order to solve it, we expand H in a series in α0,

H ¼ Hð0Þ þ α0Hð1Þ þ α02Hð2Þ þOðα03Þ; ð17Þ

and we get the following result for the first two terms:

Hð0Þ
μνρ ¼ e2ðϕ̂−ϕ̂∞Þϵμνρσ∇̄σφ; ð18Þ

Hð1Þ
μνρ ¼ −e2ðϕ̂−ϕ̂∞Þ 3

4

δLR2

δHμνρ

				
Hð0Þ

: ð19Þ

We then have to plug H ¼ HðφÞ back into the action so
that we eliminate the 3-form in terms of φ. Remarkably,
when (17) is inserted in (14), we observe that no additional
Oðα0Þ terms are generated, and the action reads simply

S̄ ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jḡj

p �
e−2ðϕ̂−ϕ̂∞ÞðR̄ − 4ð∂ϕ̂Þ2Þ

þ 1

2
e2ðϕ̂−ϕ̂∞Þð∂φÞ2 þ α0

8
LR2 jHð0Þ þOðα02Þ

�
: ð20Þ

We note, however, that the dualization introduces Oðα02Þ
terms which were not present in the original action (6). These
terms are given in Appendix A, where it is also argued that
they become of order Oðα04Þ when the scalars are of order
Oðα0Þ. This is relevant for computing corrections to vacuum
solutions of GR, as we shall discuss later. Then, we have to
evaluate the four-derivative term LR2 by substituting the
value ofHð0Þ in (18), for which we also have to use (8). After
a somewhat lengthy computation in which we make use of
the properties of the Levi-Civita symbol, we find the
following answer:

1Alternatively, one can be convinced of this by examining the
full toroidal compactification of HST, whose action is provided in
[42]. One can check that truncating all of the vectors and scalars,
except for the dilaton, is consistent.

2We should bear in mind that, although the theories with the
scalar field and with the 2-form are locally equivalent, they differ
in global aspects. This issue, however, will not be addressed in
this paper.
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LR2 jHð0Þ ¼ e−2ðϕ̂−ϕ̂∞Þ
�
R̄μνρσR̄μνρσ þ 6ḠμνAμAν

þ 7

4
A4 − 2∇̄μAν∇̄μAν − ð∇̄μAμÞ2

�

− φR̄μνρσ
˜̄Rμνρσ þ total derivatives; ð21Þ

where we have introduced Aμ ¼ e2ðϕ̂−ϕ̂∞Þ∂μφ. Here R̄μνρσ is
the standard Riemann tensor of the string frame metric,
while Ḡμν is the Einstein tensor. Now we have to transform
our theory to the (modified) Einstein frame. This is achieved
by rescaling the metric as

ḡμν ¼ e2ðϕ̂−ϕ̂∞Þgμν: ð22Þ

The effect of this conformal rescaling on the two-derivative
Lagrangian is well known:

ffiffiffiffiffi
jḡj

p
L2 ¼

ffiffiffiffiffi
jgj

p �
Rþ 2ð∂ϕ̂Þ2 þ 1

2
e4ðϕ̂−ϕ̂∞Þð∂φÞ2

�
: ð23Þ

On the other hand, it takes some computations to obtain
the transformation of the four-derivative Lagrangian under
this conformal rescaling. After making use of the trans-
formation rules of the Riemann tensor and of the covariant
derivative, and integrating by parts multiple times, we can
express the result as follows, up to total derivatives that
we omit:

ffiffiffiffiffi
jḡj

p
LR2 jHð0Þ ¼

ffiffiffiffiffi
jgj

p �
e−2ðϕ̂−ϕ̂∞ÞðRμνρσRμνρσ þ 4Rμνð4∂μϕ̂∂νϕ̂þ AμAνÞ þ Rð4∇2ϕ̂ − 4ð∂ϕ̂Þ2 − 3A2Þ

þ 12ð∂ϕ̂Þ4 þ 12ð∇2ϕ̂Þ2 þ 7

4
A4 − 12ð∂μϕ̂AμÞ2 − 2A2ð∂ϕ̂Þ2 − 8A2∇2ϕ̂

− 16∂μϕ̂Aμ∇αAα − 3ð∇αAαÞ2Þ − φRμνρσR̃μνρσ

�
: ð24Þ

This result is not very illuminating, but we can massage it a
bit further. Let us first rewrite this expression in terms of the
Gauss-Bonnet density, which is defined by

X4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð25Þ

Thus, we can simply replace the Riemann squared term
by the Gauss-Bonnet density using RμνρσRμνρσ ¼ X4þ
4RμνRμν − R2. Then, we can express the result as

ffiffiffiffiffi
jḡj

p
LR2 jHð0Þ ¼

ffiffiffiffiffi
jgj

p
ðe−2ðϕ̂−ϕ̂∞ÞX4

− φRμνρσR̃μνρσ þ L0Þ; ð26Þ

where we are simply collecting the rest of the terms in L0,
whose form, as we have seen, is quite complicated. However,
this Lagrangian becomes much more illuminating if we write
it in terms of the zeroth-order equations of motion,

Eμν ¼ Rμν þ 2∂μϕ̂∂νϕ̂þ 1

2
AμAν; ð27Þ

Eϕ̂ ¼ ∇2ϕ̂ −
1

2
A2; ð28Þ

Eφ ¼ ∇μAμ þ 2∂μϕ̂Aμ: ð29Þ

After some algebra, we obtain the following result:

L0 ¼ e−2ðϕ̂−ϕ̂∞Þ½4EμνEμν − E2 þ 12E2
ϕ̂
þ 4EEϕ̂

− 3E2
φ þ 2Eϕ̂ðA2 − 4ð∂ϕ̂Þ2Þ − 4Eφ∂μϕ̂Aμ�: ð30Þ

Astoundingly, all of the terms in L0 are proportional to the
zeroth-order equations of motion. This means that these terms
can be removed via a redefinition of the fields of the form

gμν→gμνþα0Δμν; ϕ̂→ ϕ̂þα0Δϕ̂; φ→φþα0Δφ: ð31Þ

These redefinitions introduceOðα0Þ terms proportional to the
zeroth equations of motion, and hence we can use them to
cancel all of the terms in L0. We show the explicit
redefinitions in Appendix A. Of course, these redefinitions
also modify the action at higher orders in α0, and in particular
they introduce Oðα02Þ corrections. Note that, for the terms in
(30) that are quadratic in the zeroth order equations of motion
(EOM), these Oðα02Þ corrections generated by the redefini-
tions are still proportional to the EOM and they can be further
removed by an additional redefinition. These will then only
contribute at order Oðα03Þ. However, the two last terms in
(30) are only linear in the equations of the scalar fields, and
therefore we will introduce nontrivial Oðα02Þ corrections
upon removing these terms at first order in α0. We discuss
these terms in more detail in Appendix A.3

3In any case, we note that, as it happens with the Oðα02Þ terms
generated by the dualization, these terms are proportional to the
square of derivatives of the scalars.
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In sum, field redefinitions can be used to set L0 ¼ 0.
Finally, introducing the four-dimensional dilaton as ϕ ¼
2ðϕ̂ − ϕ̂∞Þ we have a very elegant form for the heterotic
string effective action at first order in α0 in four dimen-
sions4,5:

S ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ 1

2
ð∂ϕÞ2 þ 1

2
e2ϕð∂φÞ2

þ α0

8
ðe−ϕX4 − φRμνρσR̃μνρσÞ þOðα02Þ

�
: ð32Þ

This result deserves some comments. First, observe that it is
very nontrivial that the only higher-derivative corrections
are given by the Gauss-Bonnet and Pontryagin densities.
There are four other higher-derivative operators that could
be present in the action and that could not be removed by
field redefinitions, namely ð∂ϕÞ4, e3ϕð∂φÞ4, eϕð∂φÞ2ð∂ϕÞ2,
and eϕð∂μϕ∂μφÞ2. We remark that our result is completely
general and we are not making any approximation; e.g., we
are not neglecting those terms by assuming that the scalar
fields are of order α0. We simply find that these terms are
not present.
Second, precisely because we do not have those terms,

this action is almost exactly equivalent to an axidilaton
model where the curvature 2-form plays the role of the
field strength of the gauge field. In fact, introducing
τ ¼ φþ ie−ϕ, and taking into account that the Gauss-

Bonnet density can be written as X4 ¼ −Rμνρσ
˜̃Rμνρσ,

where ˜̃Rμνρσ is the double dual of the Riemann tensor,
we can write the action in a suggestive way as

S ¼ 1

16πGð4Þ
N

Z
d4x

ffiffiffiffiffi
jgj

p �
Rþ ∂μτ∂μτ̄

2jImðτÞj2

−
α0

8
ðImðτÞRμνρσ

˜̃Rμνρσ þ ReðτÞRμνρσR̃μνρσÞ
�
: ð33Þ

Thus, except for the presence of R ˜̃R instead of Riemann2

(which would be the equivalent of F2), this is essentially
like an axidilaton model.6

Third, note that the scalar fields cannot be truncated, and
hence they form part of the gravitational sector. In particular,
the axion must be nontrivial whenever RμνρσR̃μνρσ ≠ 0.
For the special case of spherically symmetric solutions,
the Pontryagin density vanishes, and hence one recovers
the solutions of EdGB gravity. However, whenever the
Pontryagin density is nontrivial, an axion hair is generated,
and the solutions will be different from those of EdGB and
dCS theories. This happens of course for rotating black
holes, but also, e.g., for linear perturbations around spherical
black holes.
Finally, observe that, for corrections over Ricci flat

solutions, the scalar fields acquire nontrivial profiles of
order α0, and these backreact into the geometry at order α02.
The reason for this is that the two quadratic densities are
topological, and thus they only contribute to the equations of
motion as long as the scalars are nontrivial. Now, since the
Oðα02Þ terms in the action (32) are proportional to derivatives
of the scalars (see Appendix A), these terms actually
contribute at higher orders when the scalars have profiles
of order α0. Therefore, the Oðα0Þ action already captures all
of the Oðα02Þ corrections to Ricci-flat solutions, such as the
Kerr black hole, that we study in the next section.

III. THE KERR BLACK HOLE AT ORDER α02

After having determined the form of the heterotic string
effective action in four dimensions as given in (32), our
goal now is to compute the α0 corrections to the Kerr metric
in that theory. Throughout this section wewill work in units

of Gð4Þ
N ¼ 1, so one has to bear in mind that every quantity

is expressed in Planck units. Observe that the value of

Newton’s constant in our setup is given by Gð4Þ
N ¼ g2sα0=8,

and therefore, in Planck units we have α0 ¼ 8g−2s . Hence, if
we consider a weakly coupled string theory, gs ≪ 1, we
have α0 ≫ 1, and thus the corrections appear much below
the Planck scale.
The first aspect that one notices about the solutions of the

theory (32) is that they typically possess an axidilatonic hair
generated by the coupling of the scalars to the quadratic
invariants. The existence of this hair in the context of string
theory was noted long ago [32–34], but let us quickly review
it. The equations for the dilaton and the axion read

∇2ϕ ¼ e2ϕð∂φÞ2 − α0

8
e−ϕX4 þOðα02Þ; ð34Þ

∇μðe2ϕ∇μφÞ ¼ −
α0

8
RμνρσR̃μνρσ þOðα02Þ; ð35Þ

and it is clear these scalars cannot be constant as long as
the quadratic curvature invariants do not vanish. We can
simplify these equations if we are interested in correc-
tions to solutions that have trivial scalars at zeroth order
in α0—that is, corrections to GR solutions. Note that,

4Let us note that essentially the same action was written in
[33]. However, that paper starts with an action that seems to lack
many of the higher-derivative terms of HST [compare Eq. (1) of
that paper with Eq. (3.1) of [4]], so the result of [33] does not
seem to be justified.

5In the more usual conventions of mostly “þ” signature and
Riemann tensor defined by ½∇μ;∇ν�ξρ ¼ Rρ

σμνξ
σ, the only differ-

ence in the action would be a change of sign in the kinetic terms
of the scalar fields, e.g., ð∂ϕÞ2 → −ð∂ϕÞ2.

6It is very tempting to wonder if this action possesses an
SLð2;RÞ symmetry that involves the dualization of the curvature.
We will not dwell on this aspect in this paper but we think it
would be worthwhile to explore this idea elsewhere.
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since ϕ ¼ 2ðϕ̂ − ϕ̂∞Þ, the vacuum value of the four-
dimensional dilaton must be zero according to string
theory, while the axion can have an arbitrary vacuum
value φ∞. Then, since the fluctuations of the scalars with
respect to their vacuum values will be of order α0, one can
reduce their equations to the following:

∇2ϕ ¼ −
α0

8
X 4 þOðα02Þ; ð36Þ

∇2φ ¼ −
α0

8
RμνρσR̃μνρσ þOðα02Þ: ð37Þ

In the background of the Kerr black hole, one finds a
unique stationary and axisymmetric solution to these
equations by fixing the asymptotic values of the scalars
to their vacuum values and demanding that they are
regular at the horizon. This solution does not seem to
admit a fully analytic expression but one can easily
expand it in a series in the spin χ [18,26–28,34,43]. In
particular, let us remark that the axionic hair is vanishing
for spherically symmetric solutions, but not for rotat-
ing ones.
While the profile of these scalars can only be obtained

analytically through a power series in χ, it is possible to find
the exact (in spin) value for the dilaton charge,Qϕ, identified
by the asymptotic expansion of the dilaton, ϕ ¼ −Qϕ=ρ
when ρ → ∞. It turns out that this reads [43,44]

Qϕ ¼ 2πα0T; ð38Þ

where T is the Hawking temperature of the black hole. This
result is known to hold in general for EsGB gravity with a
linear coupling [44], but it holds for heterotic string theory
only at first order in α0. Likewise, one can find an exact
expression for the dipole moment of the axion—see [43].
While the axion and the dilaton get corrections at first

order in α0, one can see that these in turn “backreact” in the
geometry at order Oðα02Þ. As we have shown, one can use
the action (32) to consistently compute these corrections in
heterotic string theory. Although the corrections to the Kerr
metric associated with either the Gauss-Bonnet [15,17–23]
or the Chern-Simons [26–31] sectors have been separately
studied in the literature, their joint action has been
essentially missed.
In order to compute the corrections to the Kerr geometry,

we will follow our previous work [43] that studies a more
general theory motivated by effective field theory argu-
ments and offers a systematic method to find the corrected
Kerr metric in higher-derivative theories. As shown in that
reference, one can capture the corrections to the Kerr metric
by using the following ansatz:

ds2 ¼
�
1−

2Mρ

Σ
−H1

�
dt2þð1þH2Þ

4Maρsin2θ
Σ

dtdϕ

− ð1þH3ÞΣ
�
dρ2

Δ
þdθ2

�

− ð1þH4Þ
�
ρ2þa2þ 2Mρa2sin2θ

Σ

�
sin2θdϕ2: ð39Þ

where Σ ¼ ρ2 þ a2 cos2 θ and Δ ¼ ρ2 − 2Mρþ a2, and
the functions Hi contain the corrections. These functions
can be obtained analytically by performing a series expan-
sion in the spin χ ¼ a=M as

Hi ¼
X∞
n¼0

χnHðnÞ
i ðρ; xÞ; ð40Þ

where each term HðnÞ
i ðρ; xÞ is simply a polynomial in 1=ρ

and x ¼ cos θ. When solving the equations of motion we
get several integration constants, but we fix these by
imposing asymptotic flatness and that the parameters M
and J ¼ χM2 still represent the total mass and angular
momentum. We show the few first terms of these functions
in Appendix B, but one can solve the equations algorithmi-
cally and for the present work we managed to obtain the
solution to order χ40. An analysis of convergence indicates
that these series are convergent for χ < 1, and to order χ40

they are accurate everywhere outside the horizon for
χ < 0.9. It is to be expected that these series do not
converge for χ ∼ 1, corresponding to near extremality.
As a matter of fact, the metric above is not appropriate
to study the corrections to extremal black holes, as the
ansatz assumes that extremality happens for χ ¼ 1 (whenΔ
develops a double root), but this is no longer true in the
presence of corrections [19,22,45]. One should use a
different approach to study the corrections to extremal or
near-extremal black holes. Nevertheless, we will try to say a
few things about the extremal limit by extrapolating our
results to higher values of χ.
One could study many properties of these corrected

black hole geometries, but here we focus on the thermo-
dynamic properties, which were not completely character-
ized in [43]—in particular, the entropy was not computed.
Let us start by characterizing the event horizon of (39).

The main advantage of the coordinates used in the metric
above is that the location of the horizon is determined by
the largest root of Δ,

ρþ ¼ M

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
; ð41Þ

and therefore its position in terms of ρ is not corrected. The
Killing vector that generates the horizon must be of the
form
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ξ ¼ ∂t þ Ω∂ϕ; ð42Þ

for certain constant Ω. Demanding that ξ becomes null at
ρ ¼ ρþ one finds that Ω is indeed the angular velocity of
the horizon,

Ω ¼ gtϕ
jgϕϕj

				
ρ¼ρþ

: ð43Þ

This quantity does receive α0 corrections, and the few
first terms in the χ expansion read

Ω ¼ χ

2Mð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ
−

χα02

64M5

�
1193

8960
þ 173137χ2

806400

þ 9251171χ4

35481600
þOðχ6Þ

�
þOðα03Þ: ð44Þ

Notice that the fact that this quantity is actually constant
means that the black hole horizon is a Killing horizon.
This is a quite nontrivial check of the correctness of our
solution. Also observe that the corrections to Ω are
negative, so the stringy black holes spin more slowly
than Kerr ones. In Fig. 1 we show Ω as a function of the
spin up to χ ¼ 0.9 by using an expansion up to order χ40.
The effect of the corrections becomes more relevant as we
decrease the ratioM=

ffiffiffiffi
α0

p
, but they also increase for larger

values of the spin.
Once we have determined the Killing vector ξ, one can

compute its associated surface gravity at the horizon κ, and
consequently obtain Hawking’s temperature of the black
hole, which is given by

T ¼ κ

2π
: ð45Þ

We remind the reader that the surface gravity is defined by
the equation ξν∇νξ

μ ¼ κξμ, which holds on the horizon.
In practice, the computation of κ is a bit tricky, but it can
be obtained with the methods of Ref. [46]. The result can be
expressed in terms of the Hi functions (see [43]), and when
evaluated on the stringy solution we get the following value
for Hawking’s temperature:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− χ2

p
4πMð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− χ2

p
Þ
þ α02

128πM5

�
73

480
þ 2965χ2

21504

þ 228349χ4

1290240
þ 30077567χ6

141926400
þOðχ8Þ

�
þOðα03Þ: ð46Þ

In this case, we note that the corrections to the temperature
are positive and they grow as we increase χ. This is even
more evident in Fig. 2, where we show the temperature up to
χ ∼ 0.9 by using the Oðχ40Þ solution.
At this point, we may wonder about the extremal limit

T ¼ 0, but one has to be cautious with the α0 and χ
expansions, which are both singular for χ ∼ 1. To under-
stand this, let us consider the corrections to the temperature
of a near-extremal black hole. Assuming the extremal limit
T → 0 is regular, one can see that the temperature must be
of the form

Tn:e: ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cα02=M4 − χ2

p
4πM

; when χ ∼ 1; ð47Þ

where c is a certain dimensionless constant. Essentially,
this formula expresses the fact that the temperature will
tend to zero as a square root, T ∝ ðχext − χÞ1=2. This is the

FIG. 1. Angular velocity of rotating black holes at order α02. We
show the dimensionless product MΩ divided by χ to better
observe the nonlinear spin dependence. The red line corresponds
to the Kerr prediction while blue lines of different opacities
represent the deviation for several values of the mass relative to
the string scale.

FIG. 2. Temperature of the corrected Kerr black holes as a
function of the spin. We show the product MT, which is only a
function of the spin χ in Einstein gravity. The red line corresponds
to the Kerr prediction while blue lines of different opacities
represent the corrections for several values of the mass relative to
the string scale.
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type of behavior one naturally expects near extremality
even in the presence of higher-derivative corrections.7 If we
now expand this expression in α0 we get

Tn:e: ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
4πM

þ cα02

8πM5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p þOðα03Þ: ð48Þ

Thus, when expressed in this way, the correction to the
temperature is divergent for χ ¼ 1, but this divergence
appears because the series expansion in α0 is not valid
anymore if 1 − χ2 ∼ α02=M4, so it is just an artifact. Now
we can ask if our correction to the temperature in Eq. (46)
behaves as ∼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
when χ → 1, but there are two

caveats to this. In the first place, we do not know if the
extremal limit is actually regular, and in fact studies of near-
horizon geometries in EdGB and dCS theories suggest that it
may not be [47].8 In that case, it is not guaranteed one can
then use (47) for the near-extremal temperature. On the other
hand, as we have already remarked, our series expansions do
not converge for χ ∼ 1. Thus, the best we can do is to
examine the correction to the temperature up to a large
enough value of χ (in our case we can reach χ ∼ 0.9) and try
to extrapolate the result for χ ∼ 1. Let us define the
dimensionless correction to the temperature by T ¼ TKerrþ
α02
M5 ΔT, so thatΔT is only a function of χ. Then, our idea is to
fit this function to an expression of the form

ΔT ¼ c0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p þ c1 þ c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
þ � � � ; ð49Þ

for values of χ as close to 1 as we can. The result of this fit in
the interval χ ∈ ½0.7; 0.9�—in which our series expansion in
(46) is accurate—is shown in Fig. 3. As we can observe, the
fit with only three terms works very well, and it therefore
suggests that the correction to the temperature really behaves
as in (48). We also obtain a value for the constant c ¼ 8πc0,
namely c ≈ 8π × 0.0034 ≈ 0.086, although it is hard to say
how accurate this result is—we would need to get closer to
extremality to obtain a better estimation. On account of our
previous discussion and Eq. (47), this would imply that the
extremal limit is reached for

χext ¼ 1þ cα02

2M4
þOðα03Þ > 1: ð50Þ

Determining the precise value of the spin at the extremal limit
would require other methods than the ones we have applied
here, but all of the evidence points toward the existence of
solutions with χ > 1.9

Let us now turn our attention to the entropy of these
black holes, which can be obtained by means of the Wald
formula [48,49]. This formula tells us that the entropy in
a general diffeomorphism-invariant theory of gravity is
given by

S ¼ −2π
Z
Σ
d2x

ffiffiffiffiffiffi
jhj

p
Eμνρσ
R ϵμνϵρσ; ð51Þ

where h and ϵμν are, respectively, the induced metric and
the binormal (normalized so that ϵμνϵμν ¼ −2) of any cross
section of the horizon Σ,10 and

Eμνρσ
R ¼ 1ffiffiffiffiffijgjp δS

δRμνρσ
ð52Þ

is the variation of the four-dimensional action S with respect
to the Riemann tensor. Let us remark that this formula can
only be applied to theories in which all the fields are tensors;
i.e., there should be no fields with internal gauge freedom.
This is an issue for the original form of the heterotic string
effective action (6), as the B-field contains Chern-Simons
terms that are not (manifestly) invariant under diffeomor-
phisms. Historically, this has been a source of problems
when dealing with the entropy of black holes in the heterotic

FIG. 3. Correction to the temperatureΔT ¼ M5

α02 ðT − TKerrÞ as a
function of the spin. We show the value of ΔT obtained with a
series expansion to order χ40, which is accurate to χ ∼ 0.9, and
the best fit of the form (49) performed in the interval
χ ∈ ½0.7; 0.9�. The results suggest that (49) indeed captures
the behavior near χ ∼ 1.

7This has been explicitly observed, e.g., in the case of charged
black holes with α0 corrections [38].

8In particular, the near-horizon extremal geometries seem to be
singular in EdGB gravity but they are regular for dCS theory [47].
However, the singularities in the EdGB case only appear at the
poles of the horizon, and, for instance, the entropy is well defined,
so the thermodynamic properties probably behave regularly. It
would be interesting to investigate what happens for the complete
theory (32).

9As a matter of fact, this phenomenon has been observed for
EdGB gravity [19,22], so it is not unexpected that the theory (32)
shares this feature.

10In the original formula by Iyer and Wald, Σ is assumed to be
the bifurcation surface. However, it was later shown in [50] that
the result is independent of which cross section is chosen.
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theory (see, for instance, [51–56] and references therein) that
only recently has been rigorously understood [57,58].
However, in the form in which we expressed (32), the
Chern-Simons terms appear in a manifestly diffeomorphism-
invariant form, and hence Wald’s formula can be applied
right away.
The variation of the action with respect to the curvature

reads

Eμνρσ
R ¼ 1

16π

�
gμ½ρgσ�ν −

α0

4
e−ϕ ˜̃Rμνρσ

−
α0

8
φðR̃μνρσ þ R̃ρσμνÞ

�
; ð53Þ

where

˜̃Rμν
ρσ ¼

1

4
ϵμναβϵρσλτRαβ

λτ

¼ −Rμν
ρσ þ 4R½μ½ρδν�σ� − Rδ½μ½ρδν�σ� ð54Þ

is the double dual of the Riemann tensor. However, it is
known that the Gauss-Bonnet contribution to Wald’s
entropy can be simplified for stationary black holes, as
the one at hand. In fact, by decomposing the Riemann
tensor at the horizon using the Gauss-Codazzi equations it
is possible to show that

˜̃Rμνρσ
ϵμνϵρσ ¼ 2RþOðK2Þ; ð55Þ

where R is the Ricci scalar of the induced metric on the
horizon and OðK2Þ are terms quadratic in the extrinsic
curvatures of the horizon that vanish for stationary black
holes. Hence, the Wald formula reduces to the Jacobson-
Myers result [59], which takes a simpler form as it only
involves intrinsic quantities. On the other hand, a similar
analysis does not seem to lead to anything particularly
illuminating for the Chern-Simons contribution.
In sum, taking into account that ϵμνϵμν ¼ −2, we obtain

the following general formula for the entropy of stationary
black holes in the theory (32):

S ¼ AΣ

4
þ α0

32

Z
Σ
d2x

ffiffiffiffiffiffi
jhj

p
½2e−ϕRþ φR̃μνρσϵμνϵρσ�; ð56Þ

where AΣ denotes the area of any cross section of the
horizon.
Let us compute the different contributions in this

formula, for instance, for a t ¼ const slice of the horizon
of our rotating black hole. The metric induced in this two-
dimensional surface is the following:

ds2Σ ¼ ð1þH3ÞΣdθ2

þ ð1þH4Þ
4M2ρ2þsin2θ

Σ
dϕ2

			
ρ¼ρþ

: ð57Þ

Therefore, the area is given by

AΣ ¼ 4πMρþ

Z
1

−1
dx

�
1þH3 þH4

2
þOðα04Þ

�				
ρ¼ρþ

; ð58Þ

and evaluating it in our solution we get

AΣ ¼ 8πM2


1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− χ2

q �
−

πα02

64M2

�
98

5
þ 3959χ2

560

þ 262877χ4

100800
þ 7842301χ6

31046400
þOðχ8Þ

�
þOðα03Þ: ð59Þ

Let us remark at this point that the corrections to the area
are strictly negative for every value of χ; these black holes
are more compact than their GR counterparts.
Now we have to evaluate the integral in (56). We note

there is a first-order correction related to the Gauss-Bonnet
term whose origin is topological. In fact, to first order in α0

we have e−ϕ ¼ 1 − ϕ, and hence we have the term

α0

16

Z
Σ
d2x

ffiffiffiffiffiffi
jhj

p
R ¼ πα0

4
χðΣÞ ¼ πα0

2
; ð60Þ

where in the first equality we used the Gauss-Bonnet
theorem and in the second one we took into account that
the Euler characteristic of a (topologically) spherical horizon
is χðΣÞ ¼ 2. On the other hand, there is no analogous
topological contribution from the Chern-Simons term
because its integral vanishes.
Finally, we have to compute the dynamical contribution

to the entropy by integrating the combination −2ϕRþ
φR̃μνρσϵμνϵρσ . For that, we take into account that the scalar
fields are already of order α0, and therefore we can evaluate
the curvatures on the Kerr metric. In addition, the appro-
priately normalized binormal to the horizon reads

ϵtρ ¼
ρ2þ þ a2cos2θ

2Mρþ
þOðα02Þ: ð61Þ

The evaluation of the integral yields the following result:

α0

8

Z
Σ
d2x

ffiffiffiffiffiffi
jhj

p
½−2ϕRþ φR̃μνρσϵμνϵρσ�

¼ πα02

64M2

�
88

3
þ 349χ2

30
þ 27751χ4

4200
þ 580801χ6

141120
þOðχ8Þ

�

þOðα03Þ: ð62Þ

Then, putting all of the pieces together, we find the
following result for the entropy at order α02:
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S ¼ 2πM2


1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q �
þ πα0

2
þ πα02

64M2

�
73

30
þ 7667χ2

6720

þ 403147χ4

403200
þ 271959χ6

281600
þOðχ8Þ

�
þOðα03Þ: ð63Þ

Interestingly, we observe that all of the corrections to the
entropy are positive, despite the area term being corrected
negatively.
Finally, we should check whether the first law of black-

hole mechanics [60] is satisfied. For that, we must take into
account that, in our solution, M represents indeed the
physical mass of the black hole, while the angular momentum
is J ¼ χM2. Then, using (44), (46), and (63), we observe that
the first law

δM ¼ TδS þ ΩδJ ð64Þ

holds at order α02. Although here we are only showing the
solution at order χ6, we have checked that the first law is
satisfied for all the terms in the χ expansion that we are able

to compute—up to ∼χ40. This is a remarkably strong test on
the validity of our computations, but also an interesting
check on the validity of the first law of black hole mechanics
for heterotic string theory. We offer two different visualiza-
tions of the entropy in Fig. 4. In the top plot we show the
entropy of rotating black holes relative to that of static ones,
and we observe that, while the entropy always decreases
with the spin, it does so more slowly when the α0 corrections
are taken into account. In the second plot we graph the ratio
between the entropy of the corrected black holes and the one
of the Kerr black hole. We see that, not only the entropy of
the stringy black holes is larger than the Kerr one, but the
difference increases as we turn on the spin. All these effects
seem to become more drastic as we approach χ ∼ 1, so it
would be interesting to explore what happens in the near-
extremal case that is not accessible with our analysis.

IV. CONCLUSIONS

We have performed a dimensional reduction and trunca-
tion of the heterotic string effective action down to four
dimensions. The resulting theory can be expressed in a very
appealing form as given by Eq. (32), which is a simple
generalization of the well studied EdGB and dCS models.
We have observed that the appearance of the Gauss-Bonnet
and Pontryagin densities and no other higher-derivative
terms is in fact a natural and nontrivial prediction of heterotic
string theory. Interestingly, the four-dimensional action
resembles that of a standard axidilaton model [see (33)]
where the curvature plays the form of the field strength of a
gauge field. It is therefore tantalizing to speculate whether
such an action could contain a sort of SLð2;RÞ duality
symmetry involving the curvature. If one could make sense
of such a symmetry, this would be a very interesting way to
constrain the additional α0 corrections in this minimal setup
that only contains the metric and the axidilaton.
Expressed as in Eq. (32), the action contains Oðα02Þ

corrections, which we show explicitly in Appendix A.
However, these terms become of higher order if one is
interested in corrections to vacuumGR solutions (with trivial
scalars at zeroth order). Therefore, the simple action (32) can
be used to compute consistently all of the corrections to
Ricci flat solutions to order α02. Then, using the methods
of [43] we have obtained the perturbative α02 corrections to
the Kerr background expressed as a power series in the
dimensionless spin parameter χ ¼ J=M2. This approach
allows one to study nonextremal black holes, but with
enough terms in the series one can get close to extremality
χ ∼ 1. In our case, we managed to obtain the solution to
order χ40, which is accurate up to χ ∼ 0.9. We have focused
on the thermodynamic properties of these stringy rotating
black holes, and in particular we have obtained their entropy
at order α02. We have found that, for a fixed angular
momentum and mass, these black holes spin more slowly,
are more compact, are hotter, and are more entropic than

FIG. 4. Entropy of rotating stringy black holes as a function of
the spin χ. Top: entropy relative to the one of static black holes.
Bottom: entropy relative to the one of a Kerr black hole. In red we
show the Kerr result while the blue lines of different opacities
correspond to different values of α02=M4. The entropy of the
stringy black holes is larger than the one of Kerr, and the
difference increases with χ.
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their Kerr counterparts. In addition, all these effects become
more relevant as the spin increases. We have also checked
that the first law of black hole mechanics holds at order α02,
which is a very strong test of our calculations.
The positivity of the corrections to the entropy is in line

with general expectations, as it indicates that the underlying
quantum theory contains more degrees of freedom that only
become active at higher energies. On the other hand, the
fact that the temperature is higher than for Kerr black holes
suggests that the extremal value of the angular momentum
will be corrected positively. We cannot obtain a precise
value for the extremality bound with our current approach,
but as discussed in Sec. III, everything points toward the
fact that extremality is modified as

J
M2

				
ext

¼ 1þ c
α02

M4
þOðα02Þ; ð65Þ

for a positive constant c. Interestingly, this is reminiscent of a
form of the weak gravity conjecture according to which the
corrections to the charge-to-mass ratio of extremal charged
black holes should be positive in string theory [61–63]. The
positivity of the corrections to the entropy is also connected
with this statement [64]. One of the reasons behind this
conjecture is the requirement that extremal black holes
should be able to discharge, which is possible if Q=M is
modified positively by the higher-derivative corrections.
In the case of rotating black holes, there does not seem to
be an obvious reason why J=M2 should be corrected
positively, as the angular momentum can always be radiated
away.11 Our results suggest that J=M2 > 1 anyway, in
complete analogy with the charged case.
It would certainly be interesting to better understand the

properties of extremal and near-extremal black holes in the
theory (32). One possibility to simplify the problem would
be to study the near-horizon geometry of extremal black
holes, which is itself a solution with enhanced symmetry to
the equations of motion [47,67]. The near-horizon geometry
allows one to obtain the entropy of extremal black holes, but
the expression obtained is meaningless unless it can be
written in terms of physical quantities.12 One could compute
the angular momentum by making use of generalized Komar
integrals [68], in whose case one would obtain a physically
meaningful relation SðJÞ. However, one cannot identify the
mass of the black hole from the near-horizon geometry.
Thus, in order to compute the extremality bound one would
need to study the global geometry of extremal black holes,

which probably can only be accessed numerically—see [30]
though.13

Finally, it would be interesting to study the solutions to
(32) even in a nonperturbative fashion. Although strictly
speaking one would lose contact with string theory [because
the stringy action contains more terms besides those in (32)],
there are at least two reasons to do this. On the one hand, the
theory (32) is, on its own, a well-motivated and interesting
model. As it is known, the Gauss-Bonnet invariant leads to
second order equations of motion, and the Pontryagin
density also has reduced-order equations, namely, of third
order (instead of fourth order, which is the case for typical
higher-curvature terms). Thus, the theory might have a
chance to lead to a well-posed dynamical evolution, which
would be worth exploring [69]. On the other hand, non-
perturbative solutions may offer new phenomena that are not
seen when performing a perturbative expansion in α0, hence
their interest. Also, in that case the coupling between the
axion and the dilaton and the presence of both Gauss-Bonnet
and Pontryagin densities will make the nonperturbative
solutions substantially different from their EdGB [19,22]
and dCS [31] counterparts, leading perhaps to interesting
new properties.
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APPENDIX A: FIELD REDEFINITIONS AND THE
Oðα02Þ TERMS

As we have discussed in the main text, the dualization of
the Kalb-Ramond 2-form B introduces Oðα02Þ terms that
we have, however, ignored in (20). The effective
Lagrangian including these terms is given by

L¼ e−2ðϕ̂−ϕ̂∞ÞðR̄− 4ð∂ϕ̂Þ2Þþ 1

2
e2ðϕ̂−ϕ̂∞Þð∂φÞ2þα0

8
LR2

			
Hð0Þ

−
α02

12
e−2ðϕ̂−ϕ̂∞ÞHð1Þ

μνρHð1ÞμνρþOðα03Þ; ðA1Þ

where
11See nevertheless Refs. [65,66] on possible extensions of the

weak gravity conjecture for spinning black holes.
12In Ref. [47], the entropy of extremal black holes in EdGB

and dCS theories is computed. The result is expressed in terms of
a parameter M that is claimed to be the mass, but the higher-
derivative corrections could renormalize the mass, thus changing
the interpretation of M. This cannot be seen in the near-horizon
geometry alone.

13Ref. [45] provides another way to obtain analytically the
corrections to the thermodynamic properties of Kerr black holes.
However, that method is only applicable to first-order corrections,
while in our case the thermodynamic quantities are modified at
second order.
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Hð1Þμνρ ¼ −e2ðϕ̂−ϕ̂∞Þ 3
4

δLR2

δHμνρ

				
Hð0Þ

¼ −e2ðϕ̂−ϕ̂∞Þ 3
2
f∇̄σðe−2ðϕ̂−ϕ̂∞ÞR̄ð0Þ

ð−Þ
σ½μνρ� − φ ˜̄Rð0Þ

ð−Þ
σ½μνρ�Þ

þ ðe−2ðϕ̂−ϕ̂∞ÞR̄ð0Þ
ð−Þ

α½μρjβ − φ ˜̄Rð0Þ
ð−Þ

α½μρjβÞHð0Þ
αβ

ν�g ðA2Þ

and

R̄ð0Þ
ð−Þ μνρσ ≡ R̄ð−ÞμνρσjHð0Þ : ðA3Þ

One could now use (18) and (8) in order to find the
expression of Hð1Þ in terms of the Riemann tensor and the
scalars, and then plug it back into (A1) to write down the α02
corrections using these variables. This is, however, a long
calculation that we are going to avoid since we do not need
to know explicitly these terms. All we have to check, before
ignoring them once for all, is that they will not induce α02
corrections to vacuum solutions of GR. This is not difficult
to see, as one can check by using the Bianchi identities of
the Riemann tensor (namely, R̄μ½νρσ� ¼ 0 and ∇̄σ ˜̄Rσμνρ ¼ 0)
in the first term of (A2) that all the terms entering in the
expression for Hð1Þ contain derivatives of the scalars. This
implies that the α02 terms in the action actually become
effectively of order Oðα04Þ when this action is used to
compute corrections to vacuum solutions of GR. Hence,
one can simply ignore them if we are just interested in the
leading Oðα02Þ corrections.
Let us now give further details of the field redefinitions that

one has to perform in order to cancel all the terms contained
in L0. Let us recall that, in terms of ϕ ¼ 2ðϕ̂ − ϕ̂∞Þ, the
Lagrangian expressed in the modified Einstein frame reads

L ¼ Rþ 1

2
ð∂ϕÞ2 þ 1

2
e2ϕð∂φÞ2

þ α0

8
ðe−ϕX4 − φRμνρσR̃μνρσ þ L0Þ þOðα02Þ; ðA4Þ

where

L0 ¼ e−ϕ½4EμνEμν − E2 þ 2EEϕ þ 3E2
ϕ − 3E2

φ

þ EϕðA2 − ð∂ϕÞ2Þ − 2Eφ∂μϕAμ� ðA5Þ

and where

Eμν ¼ Rμν þ
1

2
∂μϕ∂νϕþ 1

2
AμAν; E ¼ Eμνgμν; ðA6Þ

Eϕ ¼ ∇2ϕ − A2; ðA7Þ

Eφ ¼ ∇μAμ þ ∂μϕAμ; ðA8Þ

and we recall that Aμ ¼ eϕ∂μφ. We then perform field
redefinitions of order α0,

gμν → gμνþ
α0

8
Δμν; ϕ→ ϕþα0

8
Δϕ; φ→ φþα0

8
Δφ:

ðA9Þ

It is not difficult to see that, up to boundary terms that we
discard, these redefinitions have the following effect in the
Lagrangian,

L → L −
α0

8

��
Eμν −

1

2
Egμν

�
Δμν þ EϕΔϕ þ EφΔφ

�

þOðα02Þ: ðA10Þ

Therefore, we can use these redefinitions to cancel all of the
terms in L0. This is, for instance, achieved by

Δμν ¼ 4Eμν − ðE þ 2EϕÞgμν; ðA11Þ

Δϕ ¼ 3Eϕ þ A2 − ð∂ϕÞ2; ðA12Þ

Δφ ¼ −3Eφ − 2∂μϕAμ; ðA13Þ

the choice being not unique. Notice that the redefinition
not only introduces Oðα0Þ terms canceling L0, but also
introduces an infinite tower of α0n terms, which includes in
particular α02 corrections, besides those already present
originally in (A4). These new terms are proportional to the
Δ shifts. In the case of Δμν, this quantity is also propor-
tional to the zeroth-order equations of motion, and there-
fore the Oðα02Þ terms generated by the transformation Δμν

can be removed by a new field redefinition of order α02.
The same reasoning applies to the part of Δϕ andΔφ that is
proportional to the zeroth-order EOMs. Therefore, the
only α02 terms that we cannot a priori get rid of are those
related to the transformations

Δ̃ϕ ¼ A2 − ð∂ϕÞ2; Δ̃φ ¼ −2∂μϕAμ: ðA14Þ

Since these are related to redefinitions of the scalars, it is
easy to compute their effect, and we see that they generate
the following contribution to the six-derivative
Lagrangian

Lð6Þ ⊃
α02

64

�
1

2
ð∂Δ̃ϕÞ2þ

1

2
e2ϕð∂Δ̃φÞ2þ 2e2ϕΔ̃ϕ∂μφ∂μΔ̃φ

þ e2ϕΔ̃2
ϕð∂φÞ2− e−ϕΔ̃ϕX4 − Δ̃φRμνρσR̃μνρσ

�
: ðA15Þ
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We suspect that this Lagrangian, together with the ðHð1ÞÞ2
contribution in (A1), can be simplified by integrating by
parts and using additional Oðα02Þ field redefinitions.
However, for the purposes of this paper we only need
to note that the quantities Δ̃ϕ;φ are proportional to the
square of ∂ϕ and ∂φ. Therefore, for corrections over
vacuum GR solutions we have Δ̃ϕ;φ ∼Oðα02Þ and in those
cases the Lagrangian Lð6Þ actually contributes to the

equations of motion at order Oðα04Þ. Hence, the first-
order Lagrangian (32) already provides all of the α02
corrections to the vacuum GR solutions.

APPENDIX B: THE CORRECTED SOLUTION

The scalar fields, to order χ4, are given by

ϕ ¼ α0
�
−

M
3ρ3

−
1

4ρ2
−

1

4Mρ
þ
�
x2
�
12M3

5ρ5
þ 21M2

20ρ4
þ 7M
20ρ3

�
þ M2

40ρ4
þ M
20ρ3

þ 1

16ρ2
þ 1

16Mρ

�
χ2

þ
�
x4
�
−
45M5

7ρ7
−
55M4

28ρ6
−
11M3

28ρ5

�
þ x2

�
−

M4

14ρ6
−
3M3

35ρ5
−
3M2

56ρ4
−

M
56ρ3

�
þ M3

140ρ5
þ M2

56ρ4
þ 3M
112ρ3

þ 1

32ρ2
þ 1

32Mρ

�
χ4 þOðχ6Þ

�
þOðα02Þ; ðB1Þ

φ ¼ α0
�
x

�
−
9M2

8ρ4
−
5M
8ρ3

−
5

16ρ2

�
χ þ

�
x3
�
25M4

6ρ6
þ 3M3

2ρ5
þ 3M2

8ρ4

�

þ x

�
M3

20ρ5
þ 3M2

40ρ4
þ M
16ρ3

þ 1

32ρ2

��
χ3 þOðχ5Þ

�
þOðα02Þ; ðB2Þ

where we recall that x ¼ cos θ. The expressions for the Hi functions are lengthier, and hence we only show here their
expressions to order χ2,

H1 ¼ α02
�
13M3

22ρ7
þ 7M2

660ρ6
þ 107M
18480ρ5

−
1601

12320ρ4
−

61

12320Mρ3
−

1117

73920M2ρ2
þ 1117

73920M3ρ

þ
�
x2
�
−
15289M5

5280ρ9
þ 2867383M4

2242240ρ8
þ 153473M3

240240ρ7
þ 576768737M2

1009008000ρ6
þ 20236591M
2018016000ρ5

þ 20614157

576576000ρ4

−
2878313

52416000Mρ3

�
−
1744903M4

1681680ρ8
−
2088607M3

3363360ρ7
−
324773297M2

1009008000ρ6
þ 349537M
42042000ρ5

þ 11853323

288288000ρ4

þ 2844323

288288000Mρ3
−

883349

230630400M2ρ2
þ 883349

230630400M3ρ

�
χ2 þOðχ4Þ

�
þOðα03Þ; ðB3Þ

H2 ¼ α02
�
13M2

44ρ6
−

4871M
21120ρ5

−
1061

7392ρ4
−

10963

73920Mρ3
−

337

73920M2ρ2
−

1117

147840M3ρ
þ 1117

147840M4

þ
�
x2
�
−
12169M4

10560ρ8
þ 9398303M3

6726720ρ7
þ 6719353M2

13453440ρ6
þ 9627139M
44352000ρ5

−
799998211

16144128000ρ4
−

119427883

6457651200Mρ3

−
35886187

1076275200M2ρ2

�
−
1744903M3

3363360ρ7
−
11445271M2

40360320ρ6
−

527219389M
4036032000ρ5

þ 136836577

5381376000ρ4
þ 1014817483

32288256000Mρ3

þ 99396923

16144128000M2ρ2
−

883349

461260800M3ρ
þ 883349

461260800M4

�
χ2 þOðχ4Þ

�
þOðα03Þ; ðB4Þ
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H3 ¼ α02
�
−
23M2

132ρ6
−

73M
660ρ5

−
551

7392ρ4
−

101

18480Mρ3
−

19

73920M2ρ2
þ 1117

73920M3ρ
−

1117

73920M4

þ
�
x2
�
7153M4

10560ρ8
þ 2604257M3

13453440ρ7
þ 54877M2

2446080ρ6
−

104823353M
1009008000ρ5

−
907967

12812800ρ4
−

241183

4576000Mρ3

þ 254477

230630400M2ρ2

�
þ 525947M3

13453440ρ7
þ 1765081M2

26906880ρ6
þ 6740833M
91728000ρ5

þ 14704687

288288000ρ4
þ 5882663

288288000Mρ3

þ 50639

9609600M2ρ2
þ 883349

230630400M3ρ
−

883349

230630400M4

�
χ2 þOðχ4Þ

�
þOðα03Þ; ðB5Þ

H4 ¼ α02
�
−
23M2

132ρ6
−

73M
660ρ5

−
551

7392ρ4
−

101

18480Mρ3
−

19

73920M2ρ2
þ 1117

73920M3ρ
−

1117

73920M4

þ
�
x2
�
−
31M5

33ρ9
þ 4277M4

3520ρ8
þ 1173329M3

2242240ρ7
þ 5905531M2

13453440ρ6
−

741859M
22932000ρ5

þ 11743751

576576000ρ4

−
2878313

52416000Mρ3

�
þ 31M5

33ρ9
−
2839M4

5280ρ8
−
390977M3

1345344ρ7
−
429197M2

1223040ρ6
þ 983803M
504504000ρ5

−
644247

16016000ρ4

þ 13037711

576576000Mρ3
þ 1469813

230630400M2ρ2
þ 883349

230630400M3ρ
−

883349

230630400M4

�
χ2 þOðχ4Þ

�
þOðα03Þ: ðB6Þ
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