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An important physical phenomenon that manifests itself during the inspiral of two orbiting compact objects
is the tidal deformation of each under the gravitational influence of its companion. In the case of binary neutron
star mergers, this tidal deformation and the associated Love numbers have been used to probe properties of
dense matter and the nuclear equation of state. Nonspinning black holes on the other hand have a vanishing
(field) tidal Love number in general relativity. This pertains to the deformation of the asymptotic gravitational
field. In certain cases, especially in the late stages of the inspiral phase when the black holes get close to each
other, the source multipole moments might be more relevant in probing their properties and the no-hair
conjecture; contrastingly, these Love numbers do not vanish. In this paper, we track the source multipole
moments in simulations of several binary black hole mergers and calculate these Love numbers. We present
evidence that, at least for modest mass ratios, the behavior of the source multipole moments is universal.

DOI: 10.1103/PhysRevD.105.044019

I. INTRODUCTION

In this work, we study the relation between the
geometry of the dynamical horizons and their tidal
environment in a binary black hole (BBH) scenario. We
address the problem of tidal deformability of black holes
in the strong field regime.
The general treatment of the tidal deformation of compact

objects has been perturbative. In such a treatment, an
external tidal field is taken to induce a deformation of the
compact object, and consequently, the potential or the
asymptotic configuration of the gravitational field sourced
by the compact object also changes [1]. In the nonrelativistic
theory, the deformation of the compact object can be
quantified using its mass multipole moments, which are
expressed as integrals over the source distribution. The
external tidal field deforms the compact object (the source)
and changes its distribution, i.e., the multipole moments. At
the linear order in the external tidal field, every lth multipolar
order of the external tidal field induces an lth multipolar
moment in the configuration of the compact object, and the
constant of proportionality relating these is called a Love
number. These Love numbers encode information about the
constituent materials of the source.
In general relativity, the situation is more complex. The

deformation of the compact object is now conveniently
quantified using two sets of multipole moments, mass and

current type multipole moments, which quantify the con-
figuration of the asymptotic gravitational field produced by
the source. Although Love numbers can again be described
as linearly relating the change in the field multipole moments
and the external tidal field, the relation is not restricted to a
simple proportionality. When the source object is spinning,
the relation is tensorial and, hence, can involve the mixing of
tidal fields at different multipolar orders. Thus, when the
compact object is spinning, the lth order multipole moment
induced in the asymptotic field produced by the compact
object can have contributions from any l0th order component
of the external tidal field with l ≠ l0.
Sizeable literature exists on applications of tidal deforma-

tion and Love numbers [2–4], especially in how they encode
information about neutron star equation of state [5] in
gravitational-wave signals [6–8]. On the other hand, tidal
deformations of black holes and the associated Love numbers
are discussed in, e.g., Refs. [1,9,10] for the nonspinning case
and Refs. [11–13] for the spinning case.
Since a black hole is a solution to vacuum field equations,

the usual definition of the multipolar configuration of the
system involving an integral of its mass density is irrelevant
here. Furthermore, during a dynamical scenario such as a
binary black hole merger, which is of great relevance to the
recent gravitational-wave detections, it is difficult to define
and study the change in the asymptotic gravitational field of
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each black hole as it inspirals toward the other and merges.
Also, the situation is highly dynamical as the two objects
orbit under the mutual influence of their strong field gravity.
Thus, the field Love numbers will pose a limitation to
understanding this problem in the strong field regime.
Typically, past treatments of tidal deformability either start

with the assumption that there exists a source distribution
that is deformed due to an external tidal field [14] or involve
the application of black hole perturbation theory [1,9–13].
In the former treatment, a limit of the compactness is then
taken to deduce the corresponding Love numbers for
black holes. The problem with the “limiting compactness”
approach is that black holes do not have a source distribution
in the same sense as that of, e.g., a neutron star. Furthermore,
in a true sense, the horizons of black holes evolve, cease to
be null hypersurfaces, and are no longer isolated in a
dynamical tidal environment.
In the perturbative approach, the gravitational field far

away from the black hole is studied. Often, simplifying
assumptions, such as staticity/stationarity, slow variation in
time, etc., are imposed. The perturbative approaches cannot
be used to understand (a) the deformation of black holes
when they are close to each other and (b) the fully dynamical
aspects of tides on black holes. Furthermore, in a numerical
simulation, one does not have access to the asymptotic
regions of the individual black holes to study the problem
dynamically using the gravitational field far away from the
system. Due to these reasons, it is desirable to employ an
alternative treatment with a differently defined set of
quantities that characterize the tidal deformability of black
holes in the strong field regime.
Hence, more appropriately, one should address how

the external tidal field induces a change in the geometry
of the horizon. One has to study the tidal deformability of the
quasilocal dynamical horizons rather than the teleological
event horizons, which only coincide with the former in the
special case of stationarity. The information on the geometry
of the dynamical horizon is encoded in its source multipole
moments and can be used to study the problem of tidal
deformability. One may expect a similar relation between the
source multipoles and the lth order multipolar external tidal
field. In this sense, the dynamical horizon formalism is an
ideally suited framework to treat the problem of the tidal
deformation of black holes.
In this formalism, for black holes in a vacuum, a set of

numbers—called the source multipole moments—fully
characterize the horizon geometry. In a tidal environment,
these numbers can change, e.g., owing to an alteration in the
horizon geometry in response to the external tidal field.
Using this approach, one can directly study the deformation
of the horizon geometry due to an external tidal field. In this
work, we address how the black holes are tidally deformed in
a binary black hole merger scenario. We describe and use a
convenient definition of tidal deformability suited to a binary
black hole system and compute them numerically using full

numerical relativity simulation data of binary black hole
mergers of nonspinning black holes. We use the framework
of quasilocal horizons for our analysis; see, e.g., [15,16] for
reviews. We use the source multipole moments of the
involved dynamical horizons to address the problem of their
tidal deformability. In particular, we use the mass multipole
moments to characterize the deformation in the horizon
geometry of nonspinning black holes and define a set
of dimensionless tidal coefficients. We then calculate the
leading order tidal coefficients that characterize the defor-
mation of a black hole’s multipole moments in the tidal
environment of its companion in a binary black hole merger
scenario.
The plan for the rest of the paper is as follows. Section II

briefly reviews basic concepts and equations for dynamical
horizons and describes the definition of the source multipole
moments of horizons. The details of the numerical simu-
lations are given in Sec. III. In Sec. IV, we compute the tidal
coefficients and describe the fitting procedure. The results are
summarized in Sec. V followed by Sec. VI with discussion
and conclusions. The Appendix contains a comparison of
distance measures among the centroid distance and various
orders of post-Newtonian approximations.
All the equations and quantities are expressed in geo-

metric units, where G ¼ c ¼ 1. The masses of the horizons
of the primary and secondary black holes in the initial data
are M1 and M2, and their mass ratio is defined to be
q≡M2=M1, which is always ≤ 1. Additionally, the total
mass of the black hole horizons in the initial data, denoted by
M ¼ M1 þM2 is set to one. In a few places where tracking
the dependence on M is important, we show it explicitly.

II. PRELIMINARIES

Our calculation of the tidal deformations of black holes is
based on the formalism of quasilocal horizons [15–21].
A detailed description of this formalism is beyond the scope
of this article, and we restrict ourselves to a brief overview of
the most relevant concept, namely, that of black hole source
multipole moments.
The starting point is the notion of a marginally trapped

surface, first introduced by Penrose in the context of the
black hole singularity theorems [22]. More specifically, we
need here the notion of marginally outer trapped surfaces
(MOTS), which are closed spacelike two-dimensional
surfaces of spherical topology, such that their outgoing
null-normals la have vanishing expansion ΘðlÞ. Thus, if
S is a MOTS, eqab the Riemannian metric on S, and la an
outward-pointing null-normal to S, then a MOTS has

ΘðlÞ ≔ eqab∇alb ¼ 0: ð1Þ

Under time evolution, a MOTS S traces out a three-
dimensional world tube sometimes referred to as a
dynamical horizon [23,24], or a marginally trapped tube
[25,26]. We do not delve here into properties of this time
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evolution. We instead just consider various properties of S
as functions of time. It turns out that the time evolution of
MOTS is generally found to be smooth, which means that
we end up with smooth functions of time. When two black
holes collide, the process by how two distinct dynamical
horizons merge to yield a single final dynamical horizon
turns out to have interesting topological and dynamical
properties [27–30,30]. Again, this is beyond the scope of
this paper. Here, we only consider the two dynamical
horizons corresponding to the two individual black holes
before they merge.
For each of the two dynamical horizons, we calculate the

source multipole moments. These were first introduced in
[31] for isolated horizons and extended and used in [32] for
dynamical horizons. These multipole moments have found
applications, for example, in predictions of the antikick in
binary black hole mergers [33] and for studying tidal
deformations of black holes [34,35].
For defining these multipole moments, let S be a MOTS

on a Cauchy surface Σ. Let Kab be the extrinsic curvature of
Σ embedded in spacetime and ra the unit spacelike normal to
S and tangent to Σ. Let S have the 2-Ricci scalar R̃. Also, let
its areal radius be denoted by RS, its mass by MS, and its
angular momentum by JS. Furthermore, let S be axisym-
metric, and let φa be the axial symmetry vector field on S.
The symmetry vector φa can be used to construct a preferred
coordinate system ðθ;φÞ on S analogous to the usual
spherical coordinates on a sphere; let ζ ¼ cos θ. We can
then use spherical harmonics in this preferred coordinate
system to construct multipole moments. As expected, we
have two sets of moments Mn, Jn such that M0 is the mass
MS and J1 the angular momentum JS . The expressions for
the multipole moments are the following:

Mn ¼
MSRn

S

8π

I
S
R̃PnðζÞd2S ð2Þ

and

J n ¼
Rn−1
S

8π

I
S
P0
nðζÞKabφ

arbd2S; ð3Þ

where PnðζÞ is the nth Legendre polynomial and P0
nðζÞ its

derivative.
In a binary black hole merger scenario, the individual

horizons of the black holes are dynamical, and many of the
above assumptions do not hold. For example, the Weyl
scalar Ψ2 of the two black holes are not time independent
and neither are their areas, curvature, and other geometric
quantities on S. However, following Ref. [32], we continue
to interpret the surface density and current in the same way
so that the multipole moments share the same definitions
as above.
The dynamical horizons are geometric objects that exist in

spacetime independent of the spacetime foliation used to
locate them. In this sense, the dynamical horizons are gauge

invariant. On the other hand, the computation of the multi-
pole moments in a numerical relativity simulation requires
choosing a spacetime foliation. A different choice of space-
time slicing will give different values of the multipole
moments ðMn;J nÞ. For every choice of slicing, the
physical laws, like the flux/balance laws, will hold for the
corresponding dynamical horizon. The foliations and gauges
we choose (1þ log slicing, Γ-driver shift [36]) are such that
the horizon geometries are close to Kerr when the black
holes are far apart (in the start of the simulation), and they
settle down close to Kerr at late times after the merger. In all
numerical simulations done so far using these gauge choices,
we find the same reasonable behavior as expected [37], just
as in the case of waveform extraction. Although bad gauge
choices are expected to affect the multipole moment values,
we do not expect them to change significantly when the
gauge choice is reasonable. We expect that our results will be
the same qualitatively for other reasonable choices of gauge.
A quantitative study of the dependence of these results on the
choice of gauge is beyond the scope of this work.
In this work, we attempt to understand the tidal deforma-

tion of the horizons using the dynamical horizon formalism.
The horizon geometry is characterized by the mass and spin
multipole moments of the dynamical horizon. The presence
of the companion induces a change in the horizon geometry
of the black holes. For instance, the 2-Ricci scalars (R̃) of the
two-dimensional slices of the dynamical horizons change
from their equilibrium configuration, i.e., from their isolated
horizon values. During the inspiral phase, the two black
holes influence each other and mutually change their horizon
geometries. As they inspiral toward each other in the tidal
environment of their companion, the source multipole
moments [as defined in Eqs. (2) and (3)], which encode
information about the deformed geometries of the MOTS of
the individual dynamical horizons, evolve in time.
In this work, as we deal with nonspinning black holes, we

attempt to understand the tidal deformability of black holes
using the mass multipole moments. Using the evolution of
the mass multipole moment of the MOTS of the dynamical
horizons of both the black holes, we define and compute
dimensionless tidal coefficients (Love numbers)1 that uni-
versally characterize the tidal deformability of black holes in
general relativity. Although our methods are generically
applicable to all multipolar deformations, in this work, we
study tidal deformation of black holes using M2 as defined
in Eq. (2).
We turn now to our object of interest, namely, a binary

black hole system in the inspiral/premerger phase.
Imagine starting with two Kerr black holes far apart, with
the source mass and spin multipoles ðMn;J nÞ defined
above exactly as for a Kerr black hole. As the black holes
spiral in and approach each other, these multipole
moments will vary under the influence of the gravitational

1We use tidal coefficients and Love numbers interchangeably.

TIDAL DEFORMATION OF DYNAMICAL HORIZONS IN BINARY … PHYS. REV. D 105, 044019 (2022)

044019-3



field of the other. Let the variation in Mn and J n be,
respectively, δMn and δJ n (these will be functions of
time). In general, this deformation of the multipole
moments will depend on the mass and spin of the
companion, the separation d between the black holes,
and also possibly their relative velocity. However, for
simplicity, we do not study the dependence on all these
parameters in this work. The relative velocity would be
important in describing the evolution of the multipole
moments in the later stages of the inspiral and the merger
and is not included here. Furthermore, we do not study the
effect due to spinning black holes.
Note that as the horizon masses of the two black holes

evolve during the inspiral, they deviate from the physical
masses M1;2 in the initial data. However, the fractional
deviation turns out to be subpercent in the analysis domain
(i.e., ⪅ 0.1%). Similarly, the least upper bound for the spins
acquired by the black holes was found to be ⪅ 10−2.
We assume the masses and spins to remain constant

throughout the evolution. Therefore, in what follows, we
restrict ourselves to the simpler situation of nonspinning
black holes and also ignore their relative velocity.
We require that in the limit d → ∞, δMn and δJ n

should vanish. From dimensional arguments, we are then
naturally led to an expansion of the multipole moment of
the black hole whose deformation is being studied.
Denoting its mass by Mtd and that of its companion
responsible for the tidal field by Mtf, the expansion can
be written in the form

δMn

Mnþ1
td

¼
X∞
i;j¼1

αðnÞij

Mi
tdM

j
tf

diþj : ð4Þ

The deformation of the spin multipole moments J n can
also be expanded in a similar fashion. However, since we
are dealing with nonspinning black holes in this work, we
restrict ourselves to the behavior of mass multipole
moments. Such an expansion has been previously used
to understand the tidal deformations of black holes in
the Bowen-York initial data set [34]. Along similar lines,
the following observations can be made on the above
expansion. The expansion must start at i; j ≥ 1 since when
we take the limit of either of the masses tending to zero,
the left-hand side must vanish. Also, there should be no
positive exponents on the distance measure d; i.e., δM
does not contain any terms that are proportional to dν>0

since the perturbation should vanish in the limit d → ∞.
The determination of the leading order term in the
expansion is discussed in a Sec. IV A of this paper.

The coefficients αðnÞij are dimensionless coefficients inde-
pendent of the parameters of the system as they have been
scaled out by appropriate factors. These coefficients are
therefore the same for all black holes and are thus
universal. They should characterize the tidal deformability
of the black holes.

III. NUMERICAL SIMULATIONS OF BINARY
BLACK HOLE MERGERS

We ran numerical simulations of orbital mergers for a set
of nonspinning binary black holes with varying mass ratios.
The systems are evolved numerically using puncture data
[38] describing two black holes in quasicircular orbits, with
typical initial separations of 10–11M. These simulations
cover the dynamical behavior starting at 5–6 orbits before
the merger and going up to the merger phase. The gravi-
tational waveform is extracted [39] at various distances
between 100M to 500M from the merger location.
Since this work is focused on the study of the individual

horizon geometry of the black holes in the inspiral phase,
we track the individual horizons up to merger and compute
quasilocal quantities [32,40] using the isolated and dynami-
cal horizon formalisms [15].
Simulations are performed using the publicly available

code Einstein Toolkit [41,42]. The initial data are generated
based on the puncture approach [43], which has been
evolved through BSSNOK formulation [44–46] using the
1þ log slicing and Γ-driver shift conditions [36]. The
computational grid setup is based on the multipatch
approach using Llama [47] and Carpet modules, which
enable the mapping and coordinate transformation of a
multigrid set up from curvilinear coordinates to Cartesian
along with adaptive mesh refinement. It helps to optimally
evolve the spacetime for a long time in a larger computa-
tional domain and to extract gravitational waves at faraway
regions as compared to the Cartesian grid. Individual
horizons and common horizons on the numerical grid are
found via the method described in [48,49]. We compute the
quasilocal quantities on the horizon on an angular grid of
size (37, 76) along the longitudinal and latitudinal direc-
tions, respectively. The multipole moments in Eq. (2) are
obtained from the numerical simulations run using the
Einstein Toolkit, using the QuasiLocalMeasures thorn.
We consider nonspinning binary black hole systems with

varying mass ratios q ¼ M2=M1, whereM1;2 are the masses
of the primary and secondary objects. The larger black hole
with mass M1 is denoted by BH1 and the smaller one with
massM2 by BH2. We study the tidal deformation of each of
the black holes BH1 and BH2 due to the influence of their
companion.
We use the GW150914 parameter file available from

Ref. [50] as a template for our simulations. For each case,
as input parameters, we provide initial separation between
the two puncturesD, mass ratio q, and radial and azimuthal
linear momenta pr, pϕ, respectively, while keeping the total
horizon mass M ¼ M1 þM2 of the system to be 1.0 in
units of c ¼ G ¼ M ¼ 1. Parameters are listed in Table I.
We compute the corresponding initial locations, the x, y, z
components of linear momentum for both black holes, and
grid refinement levels, etc., before generating the initial
data and evolving it. We chose nonspinning cases ranging
between q ¼ 1.0 to 0.4, based on the initial parameters
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listed in [51,52]. Our simulations match very well with the
catalog simulations [53], having merger time discrepancies
of less than a few percent.

IV. COMPUTING THE TIDAL COEFFICIENTS

We now describe a method to compute the leading and
subleading order tidal coefficients appearing in the expres-
sions for the expansion of the perturbed multipole moments
numerically using the aforementioned simulations of BBH
mergers.
To distinguish between the black hole that is tidally

deformed and the black hole that sources the tidal field, we
useMtd for the former andMtf for the latter. Thus,Mtd can
be M1 and Mtf can be M2 or vice versa depending on
whether the deformation of BH1 is studied or that of BH2.
We denote an alternate mass ratio defined using Mtd and
Mtf by γ,

γ ¼ Mtf

Mtd
: ð5Þ

As opposed to the mass ratio defined earlier in Table I,
γ takes values in the range [0.4, 2.25].

A. Identification of the leading order term

We begin by noting that Eq. (4) is a power series in the
inverse of the distance of separation of the two orbiting
black holes. We postulate that there would be no term at
order less than 1=d3 (i.e., no term involving a lower
exponent on 1=d, such as 1=d2 or 1=d) since the
Newtonian tidal force enters at the order of 1=d3.
Therefore, the leading term is Oð1=d3Þ. The subleading
order term is Oð1=d4Þ and is responsible for post-
Newtonian tidal influences. Henceforth, we use third order
and fourth order to refer to the exponent on the distance,
with third order being the leading term and fourth order
being the subleading term.
The expression for the perturbative expansion for the

n ¼ 2mass multipole moment at the leading (model A) and
subleading (model B) order perturbations due to Mtf are,
respectively,

ModelA∶
M2

M3
td

¼ að2Þ3

d3
þ const: ð6Þ

and

ModelB∶
M2

M3
td

¼ að2Þ3

d3
þ að2Þ4

d4
þ const: ð7Þ

Here, the tidal coefficients are related to að2Þ3 and að2Þ4

through

að2Þ3 ¼ MtdM2
tfα

ð2Þ
12 þM2

tdMtfα
ð2Þ
21 ; ð8Þ

að2Þ4 ¼ αð2Þ13 MtdM3
tf þ αð2Þ22 M

2
tdM

2
tf þ αð2Þ31 M

3
tdMtf: ð9Þ

Note that in the case of an isolated nonspinning black hole,
the horizon geometry is spherically symmetric; therefore,
the n ¼ 2 mass multipole moment is zero, resulting in
δM2 ¼ M2. However, in the above model, we include an
overall constant in the fits to allow for any systematic errors
in the numerical computation of the multipole moment and
to possibly take into account the fact that the initial data are
described by punctures and not real black holes. We use the
distance measure which is computed by the simple Euclidean
separation between the geometric centroids of the two black
holes at every time step in the simulation. This agrees well
with the physical distance measures between the black holes.
More details can be found in the Appendix.
We now detail the procedure for computing the tidal

coefficients αð2Þ12 , α
ð2Þ
21 , α

ð2Þ
13 , α

ð2Þ
22 , and α

ð2Þ
31 using these models.

Thereafter, we compare the fits obtained. The superscript
(2) is used to denote the fact that we are analyzing the n ¼ 2
mass multipole moment; since this paper deals exclusively
with n ¼ 2 mass multipolar deformations, it is dropped
henceforth. Resolving higher n multipole moments would
require a sufficiently fine grid on the horizon. Due
to computational limitations, we restrict our analysis to
n ¼ 2 multipolar deformations in this work.

TABLE I. Initial parameters for nonspinning binary black holes with quasicircular orbits. Here, q ¼ M2=M1 is the
mass ratio, d the initial separation between the two holes, and pr and pt are the radial and tangential (to the orbit)
momenta in the initial data, respectively.

Nonspinning BBH simulations

Mass ratio d M1 M2 pr pt

1.0 11.0 0.5 0.5 −7.220 × 10−4 0.09019
0.85 12.0 0.54051 0.4595 −5.290 × 10−4 0.08448
0.75 11.0 0.5714 0.4286 −6.860 × 10−4 0.08828
0.6667 11.75 0.6 0.4000 −5.290 × 10−4 0.08281
0.50 11.0 0.6667 0.3333 −5.720 × 10−4 0.0802
0.40 11.25 0.7143 0.2857 −4.500 × 10−4 0.07262
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B. The fitting procedure

To estimate the tidal coefficients, we follow a two-step
fitting procedure:
(1) Fit the multipole moment data to distance data,

separately to each of the simulations and black holes,
and estimate the coefficients a3 and a4 using the
models Eqs. (6) and (7).

(2) Refit all the values of the best-fit parameters ob-
tained from the above step to the masses Mtd and
Mtf, in a combined manner, to the models in Eqs. (8)
and (9) to obtain the tidal coefficients αij.

We carry out linear regression of the numerical data in the
two steps to fit the numerical data to the models. We
minimize a least-squares objective function in the process.
We directly compute a least-squares objective function on a
grid in the parameter space and locate the minimum. Since
this method is computationally expensive, we follow the
two-step procedure mentioned above.
For carrying out the regression, we relate the models and

the data in a matrix form as

Y ¼ XA; ð10Þ

where Y is a matrix of dimensions (K, 1) of the left-hand
side of the respective model, X the matrix of data points
of dimensions (K, L), and A the matrix of the parameters
of dimensions (L, 1). For instance, in the fitting procedure
of step one, K is equal to the number of data points in the
time-series data of the multipole moment/distance, and L
is the number of parameters in the model (which is 3 for
model B).
We use the following least-squares objective function in

the minimization procedure (the summation convention is
assumed on repeating indices):

LðAÞ ¼
X
i

ðYi − XijAjÞ2: ð11Þ

Here, XijAj is the prediction from the respective linear
models. The linearization of the above models in Eqs. (6),
(7), (8), and (9) is done by assuming the fitting parameters
as coefficients of linear variables. To exemplify this, let us
consider the two steps of the fitting procedure for model B.
In step one, the linearized model corresponding to Eq. (7)
would be written as

M2

M3
td

¼ a3x3 þ a4x4 þ const; ð12Þ

where x3 ¼ 1=d3 and x4 ¼ 1=d4 are the linear fitting
variables. For refitting, Eqs. (8) and (9) would be used.
The refitting model corresponding to Eq. (9) would be
written as

a4 ¼ α13μ13 þ α22μ22 þ α31μ31; ð13Þ

where μ13 ¼ MtdM3
tf, and so on.

1. Error estimation

The best-fit parameter values (denoted by Â) are those
that minimize the least-squares objective function Eq. (11)
for the respective models. We compute the errors on the
best-fit parameter values from the diagonal components of
the variance-covariance matrix C of the data and the fit
residue σfit,

C ¼ XTX ð14Þ

and

σfit ¼
ffiffiffiffiffiffiffiffiffiffiffi
LðÂÞ

q
ð15Þ

as

σðÂÞ ¼ σfit ×DiagðCÞ: ð16Þ

Here, the matrix of best-fit parameters is denoted by Â and
their standard error of estimates by σðÂÞ. We refer to the
individual elements of these matrices by Âj and σj,
respectively. Since these parameters can correspond to
the fitting procedure of either step one or step two, we
explicitly mention which step we are referring to during
their usage.

V. RESULTS

We obtain the best-fit parameters for the two models
Eqs. (6) and (7) using the two-step procedure mentioned in
the preceding section and tabulate the results in Table II.
In this table, the final results of step two of the fitting
procedure [i.e., refits to the models in Eqs. (8) and (9)] are

TABLE II. Tidal coefficient values estimated from a refit of the fit coefficients a3 and a3, a4 in Eqs. (6) and (7), respectively.

Tidal coefficients

Model α12 α21 α13 α22 α31

Third-order model −0.15� 0.21 −3.43� 0.21 NA NA NA
Third- and fourth-order model −0.89� 0.21 −5.45� 0.21 1.79� 1.72 5.3� 3.65 4.68� 1.72
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denoted in the format Âj � σj: the best-fit parameter value
and the respective standard error.
In Fig. 1, we show the fit of the n ¼ 2 mass multipole

moment to the two models Eq. (6) (model A) and Eq. (7)
(model B) for q ¼ 0.4 simulation data. In these plots, we
show the data points and the best-fitting model, i.e.,
the values of the n ¼ 2 multipole moment M2 predicted
by the models in Eqs. (6) and (7) for the best-fit parameter
values Â. In the top panel, we plot the multipole moment data
vs the distance of separation for the more massive black hole
(left) and the less massive black hole (right). In the bottom
panel, we plot the same in logarithmic scale on both the axes.
In Figs. 2 and 3, we show the results of step two of the

fitting procedure (refitting results) of the parameters a3 and
a4 of model B appearing in Eqs. (8) and (9), respectively,
which were obtained from step one of the fit for the set of
binary black hole configurations as listed in Table I. In these
plots, we show the data points and the best-fitting model, i.e.,
the values of a3 and a4 predicted by the models in Eqs. (8)
and (9) for the best-fit parameter values Â.
Some comments are in order regarding these fits.

FIG. 1. The fit of the n ¼ 2mass multipole moment of BH1 (left) and BH2 (right) for the simulation q ¼ 0.4. Top: multipole moment data
are plotted against the distance d. Bottom: multipole moment data and the distance d are plotted on a logarithmic scale. Note that the variable
on the y axis of the bottom figure contains the negative of the multipole moment. In these two figures, the model where only the leading
(third) order term is included [namely, model A of Eq. (6)] is shown in cyan (squares), whereas the model where the leading and subleading
order terms have been included [namely, model B of Eq. (7)] is shown in magenta (triangles). The data are in black (dots).

FIG. 2. The refit of the coefficient a3 to obtain the tidal
coefficients in Eq. (8) (model B). Here, a3=ðM2

tdMtfÞ is plotted
against γ. The data points are individual best-fit parameters of
model B in Eq. (9) for both black holes in each simulation. The
data points for the fit are in black (crosses), and the best-fit model
values are in magenta (dots).
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First, as can be clearly seen, model B, consisting of both
1=d3 and 1=d4 terms, fits the data better in comparison to
model A (which has only the 1=d3 term).
Second, although the overall fit to the data of model A is

worse than that of model B, nevertheless the former model
fits the data relatively well in the early inspiral phase, i.e., at
large distances of separation between the black holes,
especially, for the heavier black hole (left panel of Fig. 1).
Since the system spends more time in the early inspiral

phase (at large distances of separation), there are more
points at large d to which the model fits well. However,
this model fails to explain the data as the black holes close
in. This is expected because the subleading term in Eq. (7)
is expected to become increasingly important at low
separation distances d. This is why we expect model B
to be more accurate.
Third, regarding the quality of fit of the leading order

model to the data, the fit of model A is visibly worse,
especially for the smaller black hole (right panels of Fig. 1).
From a perturbative point of view, we can intuitively
explain this as follows. The change in the geometry of
the smaller black hole due to the presence of the larger
black hole is more than the change in geometry, as
quantified by the multipole moments, of the larger black
hole due to the smaller one, as the larger black hole is more
massive leading to more variations in its multipole moment.
The subleading (fourth) order term contains higher powers
of the perturbing black hole’s mass Mtf than at the leading
(third) order [M3

tf as opposed to M2
tf in Eqs. (8) and (9)].

Therefore, the effect of the fourth-order term will be easily
visible in the multipole moment of the smaller black hole
M2 (see right panels in Fig. 1), and the fit between data and

model A is visibly worse in the plots for the smaller
black hole.
Fourth, the fourth-order term has the opposite sign to

that of the third. This is visible in the same plots in Fig. 1
at small values of d. The effective slope of the data points
deviates from 1=d3 behavior and reduces in magnitude as
the distance between the black holes reduces. Therefore,
the fourth-order term is responsible for reducing the
overall tidal force involving the leading and subleading
term, consistent with the velocity independent post-
Newtonian correction to the Newtonian tidal force (see
Ref. [54] and references therein),

kF1PNk ∼
M2

tdMtf

d3
: ð17Þ

One feature of the model in Eq. (9) is that there are three
independent terms at the fourth order in distance, whereas
there seems to be just one term in the expression for the 1PN
correction to the Newtonian gravitational force. It was
verified that all three terms were necessary to explain the
data points, which have a quadratic dependence on the mass
ratio q, as can be seen in the bottom panel of Fig. 3, and
obtain a good fit to the data. This needs to be probed further
in the future.
Fifth, there is room for some error at the fourth order in d.

At this 1PN order, terms involving the relative velocities of
the black holes would enter into the expansion of Eq. (7).
These terms might be contributing more to the tidal effects as
the mass ratio decreases.
Therefore, in order to analyze the multipole moment

data to infer the tidal coefficients at further smaller mass
ratios than q ¼ 0.4, one may need to take into account new
terms involving velocities in the perturbative multipole
expansion.
To further check the precision of these fits, we considered

multiple sets of data having various combinations of our
simulations, with additional configurations for intermediate
q ¼ f0.6; 0.7g, excluding a few configurations randomly, or
even adding/removing a few lower q ≤ 0.6. Across these
sets, we find α12 to be ≈ − 1.0 and α21 ≈ −5.3. Based on
the results, we conclude that the tidal Love numbers at the
leading order (α12 and α21) are estimated at a higher
precision than for those at the subleading order (α13, α22,
and α31). This is reasonable since we are attempting to
estimate the coefficients of the subleading order term, to
which there are three contributions [Eq. (9)]. The contribu-
tion of the fourth-order term is not visible until the onset of
the late inspiral phase of the evolution, i.e., at smaller values
of d (as can be seen in Fig. 1). It has the largest impact during
this phase, where the number of data points is significantly
less than that in the early inspiral phase, thus making it
difficult to estimate it at the same precision.
The estimates for the tidal Love numbers at the fourth

order may be expected to be computed with more accuracy

FIG. 3. The refit of a4 to the model of Eq. (9), with three terms,
for the simulations q ≥ 0.4 (model B). Here, a4

M2
tdM

2
tf
is plotted

against γ. The data points are individual best-fit parameters of
model B in Eq. (9) for both black holes in each simulation. The
data points for the fit are in black (crosses), and the best-fit model
values are in magenta (dots).
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by increasing the number of simulations and the resolution
of the runs.

VI. DISCUSSION AND CONCLUSIONS

The primary goal of this paper was to study the tidal
effects on horizons during the inspiral phase of binary black
hole mergers. Past studies have examined this problem
using the perturbations of the asymptotic gravitational
fields, but this is the first time that tidal effects have been
explored for a binary system comprising similar masses
using full numerical relativity simulations and to deduce a
black hole’s tidal coefficients.
We used source multipoles computed on the marginally

outer trapped surfaces of the spacelike dynamical horizons
of both the black holes for this analysis. We simulated
nonspinning BBH with varying mass ratios q ∈ ½0.4; 1�.
We defined a convenient set of tidal coefficients to
characterize the tidal deformability of black holes in a
binary system using the source mass multipole moments
of a dynamical horizon. This approach does not involve
the field multipole moments that are defined far away
from the system nor do they involve assuming a matter
distribution whose compactness limit is taken to describe
the black hole case. Assumptions regarding the statio-
narity/slow evolution of the tides were not made either. By
definition, these numbers are dimensionless and should be
independent of the system considered, i.e., same for all
black holes (of any mass and spins) in general relativity.
We computed five tidal Love numbers which characterize
the n ¼ 2 mass multipolar deformations of the dynamical
horizon geometry: two at the leading order and three at the
subleading order.
These results show in explicit detail, as noted in the

existing literature, that, although the Love numbers that
characterize the tidal deformations of the gravitational
fields of nonspinning black holes far away from the system
are zero, the corresponding Love numbers that characterize
the strong field tidal deformation of the horizon geometry
in the strong field regime do not vanish.
The relations in Eqs. (7), (8), and (9), together with the

best-fit parameters listed in Table II, show how the mass
multipole moment of the horizon evolves in relation to the
dynamics of the system in a binary black hole merger
scenario, apart from describing the evolution of tidal
deformations. We find that the evolution of the multipole
moments can be described quite accurately by the model in
Eq. (7) up to the merger.
Here, it must be noted that in simulations of lower mass

ratios, we notice an increase in the error of our fits to
numerical data. This can be attributed to the increasing
importance of the terms involving relative velocities of the
black holes and terms involving higher powers of 1=d.
In principle, more tidal Love numbers at successively higher
orders can be computed in the manner described here, given
that a sufficient number of numerical simulations are

sufficient in number, and are carried out at sufficiently high
resolution. It will be important to examine those cases with
higher resolution runs in the future.
Analogous to the treatment of neutron star tidal

deformability, a source-independent definition of the
tidal deformation of a black hole horizon using the source
multipole moments of the horizon must also be possible.
This would involve studying the perturbation of the
geometry of an otherwise isolated horizon due to the
external perturbing fields and finding a relation between
them—a quest that may be pursued in a future work.
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APPENDIX: DISTANCE MEASURE

An estimate of the distance between the two black holes
is required to calculate the tidal coefficients. We now
discuss various choices for this distance measure and
describe how we compute it from the numerical simula-
tions. In the simulations we carried out, the numerical
evolution uses a coordinate system described in [49]. We
define and compute the following measures of distances of
separation between the black holes:

(i) The Euclidean distance between the geometric
centroids of the individual apparent horizons of
the two black holes.

(ii) Newtonian proper distance.
(iii) Post-Newtonian (PN) distances up to second order

(PN1, PN2).
We explain each of these definitions below.

1. Euclidean distance

We use the coordinate locations of the geometric centroids
[ðx1; y1; z1Þ and ðx2; y2; z2Þ] of the individual horizons of the
two black holes to define a simple Euclidean distance
measure. The distance is then defined by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 þ ðy1 − y2Þ2 þ ðz1 − z2Þ2

q
: ðA1Þ

a. Newtonian proper distance

Kepler’s third law for orbiting binaries can be used to
calculate the physical distance of separation between the
center of masses of the orbiting objects,
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T2 ¼ kd3: ðA2Þ

We compute the instantaneous time period of the quasi-
circular configuration by using the instantaneous frequency
of the gravitational waves emitted from the system. We use
the extracted gravitational radiation at 100M from the center
of the system for this purpose.
The gravitational waves emitted from the system were

provided by the WaveExtractCPM thorn in the Llama
package in the Einstein toolkit infrastructure.

b. Post-Newtonian distances

Using a method similar to the one described above for
computing the Newtonian proper distance, we can compute
proper distances to any post-Newtonian order by using an
appropriate PN corrected version of Kepler’s third law.
Using this method, we compute PN1 and PN2 distances
between the centers of the black holes.

c. Choosing the distance measure

The plot for these distance measures for one of our
simulations is shown in Fig. 4 for illustration.
It is observed that although the simple Euclidean distance

measure seems less appropriate in comparison with the rest
of the proper distance measures, it is the measure closest to
the second-order post-Newtonian distance measure. For any
given simulation, the maximum cumulative (rms) deviation

between the simple Euclidean and other distance measures
was found to be less than few times the initial separation.
Further, the cumulative deviation with the PN2 distance
measure was found to be the least for the simple Euclidean
distance measure. Therefore, throughout the analysis, we
choose to work with this distance measure.
The simple Euclidean distance measure also closely

matches the Newtonian evolution of the separation between
the two black holes. This can be verified by means of
simple fitting (see also [55]).
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