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We study solutions describing spinning null sources called gyratons in generic theories of gravity with
terms that are quadratic in curvature and contain an arbitrary number of covariant derivatives. In particular,
we show that the properties of pp waves of the algebraic type III allow for extreme simplification of the
field equations. It turns out that the resulting differential equations are exactly solvable due to partial
decoupling and linearity of the equations. This is demonstrated explicitly by finding axially symmetric
gyraton solutions in Stelle’s fourth derivative gravity and the nonlocal gravity with an infinite number of
derivatives.
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I. INTRODUCTION

In general relativity (GR), exact interior and exterior
solutions of the field equations with a spinning null matter
were first studied by Bonnor in 1970 [1]. Later, the
gravitational fields generated by spinning ultrarelativistic
particles were studied by Frolov and Fursaev [2], who
called them gyratons. They were further investigated and
generalized in [3–5] (see also [6]). These geometries belong
to the class of pp-wave metrics with nondiagonal terms in
the Brinkmann form. Besides the null radiation component,
the energy-momentum tensor involves also nondiagonal
terms corresponding to internal angular momentum of
gyratons. Inside the source, the gyraton spacetimes are
of algebraic type III with the aligned null direction being
the generator of null geodesics along the direction of
propagation. Gyraton solutions beyond the class of type
III pp-waves within more general Kundt spacetimes are
also known. Namely, gyratons were studied on (anti–)de
Sitter background [7] (conformal to gyraton pp waves),
Melvin universe [8], and direct-product spacetimes [9].
Last, it turns out that gyratons exist not only in nonexpand-
ing Kundt geometries but also in the Robinson-Trautman
class of spacetimes [10].
In higher derivative theories of gravity, the Einstein-

Hilbert action is modified by adding extra scalar curvature
invariants. Their field equations are very complex. In order
to find their exact solutions, it is often necessary to employ

an appropriate ansatz that reduce the equations consider-
ably. A simple ansatz is the so-called universal spacetimes
[11–14], for which all rank-two tensors constructed from
the metric, the Riemann tensor, and its covariant derivatives
are multiples of the metric. The only component of the
vacuum field equations then gives an algebraic constraint
relating the value of the constant Ricci scalar with the
parameters of the given theory. Examples of universal
spacetimes of all algebraically special types (II, D, III, N)
are known. Generalization of universal spacetimes by
relaxing the condition imposed on the rank-two tensors
lead to the almost universal spacetimes [15]; the rank-two
tensors allowed have a trace-free part of type N. Therefore,
the field equations for almost universal spacetimes are
compatible with energy-momentum tensors of null radia-
tion and reduce to the algebraic constraint accompanied by
a single partial differential equation.
The possible scalar invariants quadratic in curvature

(without additional derivative) that can be added to the
action are Ricci scalar square, Ricci tensor square, and
Riemann tensor square. A generic theory that contains all
three is called the Stelle gravity (SG) [16]. Some exact
solutions of this theory were described in [17–19]. More
complicated geometry ansatz (such as the spherically
symmetric spacetime) usually requires numerical treatment
or the use of the Frobenius method to find infinite series
solution [20–22].
Going one step further, one can consider quadratic terms

that also contain covariant derivatives. A particularly
interesting theory arises when one takes an infinite number
of derivatives, the so-called infinite derivative gravity
(IDG) [23–25] (discussed already in [26]). This nonlocal
theory attracted attention for its predisposition for resolving
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singularities together with retaining the same degrees of
freedom (around Minkowski background) as there are in
GR. Unfortunately, this theory leads to immensely difficult
nonlocal nonlinear field equations, for which the numerical
methods are not available, so the research has focused
mainly on solutions in the linearized (weak-field) regime of
the theory [27–37]. Gyratons in linearized IDG were
constructed in [38] by boosting a solution for stationary
spinning object and taking its Penrose limit [39] in an
analogy to the Aichelburg-Sexl ultraboost of a pointlike
source [40]. An advancement in the search for exact
solutions of the full IDG came with the almost universal
spacetimes [41], which explained the previous discovery of
exact shock/impulsive waves in IDG [42–44].1 With this
ansatz, the field equations effectively reduce to a linear but
still nonlocal partial differential equation, which can be
solved exactly by eigenfunction expansion or using the heat
kernel method. The obtained solutions represent gravita-
tional waves generated by null particles propagating in
maximally symmetric spacetimes.
In this paper, we step further out of the family of almost

universal spacetimes by permitting the rank-two tensors to
have a tracefree part of type III. We show that many terms in
the field equations of theories of gravity with an arbitrary
number of covariant derivatives either vanish or simplify
significantly for type IIIppwaves. This allows us to find the
reduced field equations for gyraton metric ansatz, which are
compatible with energy-momentum tensors of spinning null
sources. These equations can be solved exactly as we show
by finding exact axially symmetric gyraton solutions in full
Stelle gravity as well as full infinite derivative gravity.
The paper is structured as follows: in Sec. II we introduce

the action and the field equations of a generic gravity that is
quadratic in curvature with arbitrary analytic (covariant)
differential operators. In Sec. III we examine various
properties of the pp waves of algebraic type III. In
particular, we show that many terms that appear in the
field equations either vanish or simplify significantly. In
Sec. IV, we derive the field equations for gyratons and
demonstrate that they are exactly solvable thanks to partial
decoupling and linearity. Sections V–VII are devoted to
specific examples. We review and find new solutions in the
general relativity, the Stelle gravity, and the infinite
derivative gravity. In Sec. VIII, we comment on gravity
theories of higher order in curvature. The paper is con-
cluded with a brief discussion of our results in Sec. IX.
Appendices A, B, and C provide supplementary material.

A. Index/index-free tensor notation

Before we proceed to the main calculations, let us clarify
the tensor notation employed in this paper. We use the bold

font for tensors and their indices, which are understood as
the abstract tensor indices [50] a; b;…, thus indicating
tensor type rather than their components. The regular font
is used for scalar quantities (such as coordinates and tensor
components) and nontensorial indices. On top of that, we
also employ the index-free notation, where · indicates
the contraction between two adjacent tensor indices. For
example, the contraction of a vector vwith a covector c reads
v · c ¼ vaca. Raising and lowering of all tensor indices is
achieved with the help of the musical isomorphisms ♯ and ♭

[51]; e.g., c♯ ¼ g−1 · c and v♭ ¼ g · v. Furthermore, we use∨
and ∧ to denote the symmetric and antisymmetric tensor
products, p ∨ q ¼ pqþ qp and p ∧ q ¼ pq − qp.

II. GENERIC QUADRATIC CURVATURE
GRAVITY

Consider a four-dimensional manifold M equipped with
a metric g. A generic gravity action that is quadratic in the
Riemann tensor R and analytic in the covariant derivative ∇
can be written as

S ¼ 1

2

Z
M
g
1
2½ϰ−1ðR− 2ΛÞ þRabcdDð∇ÞabcdefghRefgh� þ Sm;

ð2:1Þ

where D stands for an arbitrary tensorial-differential
operator. Using the symmetries of the Riemann tensor
and the Bianchi identities, one can show that, up to the
higher-order terms in curvature, the action can be recast to
the form [25,52]

S ∼
1

2

Z
M
g
1
2½ϰ−1ðR − 2ΛÞ þ RF 1ð□ÞR

þ SabF 2ð□ÞSab þ CabcdF 3ð□ÞCabcd� þ Sm; ð2:2Þ

where R is the Ricci scalar, Sab is the trace-free (TF) Ricci
tensor, Cabcd is the Weyl tensor, and g

1
2 denotes the volume

element (one-density associated to the metric g). The action
(2.2) contains the form factors, which are analytic functions
of the wave operator □≡ ∇♯ · ∇,

F ið□Þ ¼
X∞
n¼0

fi;n□n; ð2:3Þ

where fi;n are arbitrary constant coefficients. Varying the
action (2.2) with respect to the metric g, one can find [53]2

1Other exact solutions were obtained in the context of
cosmology, where the field equations were effectively localized
by imposing a recurrent ansatz on the Ricci scalar [45–49].

2Contrary to [53], we added the missing symmetrization to the
terms that are not symmetric (in general) in indices a, b and used
the identity Cðacde□nCbÞcde ¼ 1

4
gabCcdef□kCcdef . This identity

follows from theorem 3(a) in [54] for the Weyl tensor in four
dimensions, C½cd ½efδb�a� ¼ 0, when contracted with □nCef

cd.
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ϰ−1
�
Sab −

1

4
Rgab þ Λgab

�
þ 2SabF 1ð□ÞR − 2ð∇a∇b − gab□ÞF 1ð□ÞRþ

�
□þ 1

2
R

�
F 2ð□ÞSab

− 2gdðað∇c∇d − ScdÞF 2ð□ÞSbÞc þ gab

�
∇c∇d −

1

2
Scd

�
F 2ð□ÞScd − 4

�
∇c∇d þ 1

2
Scd

�
F 3ð□ÞCdðabÞc

−Ω1ab þ
1

2
gabðΩ1

c
c þ ℧1Þ −Ω2ab þ

1

2
gabðΩ2

c
c þ ℧2Þ −Ω3ab þ

1

2
gabðΩ3

c
c þ℧3Þ − 2Υ2ab − 4Υ3ab ¼ Tab; ð2:4Þ

where the symmetric tensors Ωiab, Υiab, and scalars ℧i are given by double sums:

Ω1ab ¼
X∞
n¼1

f1;n
Xn−1
l¼0

∇a□
lR∇b□

n−l−1R; ℧1 ¼
X∞
n¼1

f1;n
Xn−1
l¼0

□lR□n−lR;

Ω2ab ¼
X∞
n¼1

f2;n
Xn−1
l¼0

∇a□
lScd∇b□

n−l−1Scd; ℧2 ¼
X∞
n¼1

f2;n
Xn−1
l¼0

□lScd□n−lScd;

Ω3ab ¼
X∞
n¼1

f3;n
Xn−1
l¼0

∇a□
lCcdef∇b□

n−l−1Ccdef ; ℧3 ¼
X∞
n¼1

f3;n
Xn−1
l¼0

□lCcdef□n−lCcdef ;

Υ2ab ¼
X∞
n¼1

f2;n
Xn−1
l¼0

∇c½□lScd∇ða□n−l−1SbÞd − ∇ða□lScd□n−l−1SbÞd�;

Υ3ab ¼
X∞
n¼1

f3;n
Xn−1
l¼0

∇c½□lCcdef∇ða□n−l−1CbÞdef − ∇ða□lCcdef□n−l−1CbÞdef �: ð2:5Þ

III. TYPE III pp WAVES

A. Generic pp waves

The class of pp-wave metrics describing plane-fronted
waves with parallel rays is geometrically defined by the
property that it admits a covariantly constant null vector
(CCNV) ξa,

∇ξ ¼ 0: ð3:1Þ

It immediately follows that ξ is a Killing vector, £ξg ¼ 0,
and consequently ξ is a curvature collineation,

£ξR ¼ ∇ξR ¼ 0; ð3:2Þ

where ∇ξ ≡ ξ · ∇. On the other hand, the Ricci identities for
CCNV ξ (3.1) imply

ξ · R ¼ 0; ð3:3Þ

and therefore ∇ and ∇ξ commute when applied on an
arbitrary tensor t,

½∇ξ;∇�t ¼ 0: ð3:4Þ

Substituting the Riemann tensor R for t, it turns out that

∇ξ∇ � � �∇R ¼ 0: ð3:5Þ

Throughout the paper, we will make extensive use of the
Newman-Penrose (NP) formalism, which is summarized in
Appendix A. It utilizes the orthonormal null covector frame
feigi¼0;…;3 consisting of two real null covectors e0a ≡ la,
e1a ≡ na, a complex null covector e2a ≡ma, and its con-
jugate e3a ≡ m̄a satisfying

l♯ · n ¼ −1; m♯ · m̄ ¼ 1; ð3:6Þ
where, for convenience, we identify the CCNV ξ of pp
waves with the null frame vector l♯ ¼ ξ. The metric and its
inverse can be then written as

g¼−l∨nþm∨ m̄; g−1¼−l♯∨n♯þm♯∨ m̄♯: ð3:7Þ

Various contractions of (3.3) with appropriate frame vectors
lead to the following relations of the frame components of
the TF Ricci and the Weyl tensor [defined in (A4)]:

Ψ0 ¼ Ψ1 ¼ Φ00 ¼ Φ01 ¼ 0;

3Ψ2 ¼ 2Φ11 ¼ −R=4; Ψ3 ¼ −Φ21: ð3:8Þ

Therefore, the TF Ricci tensor and the Weyl tensor of
generic pp-wave metrics are both of the algebraic types II
and specialize to types III if the Ricci scalar vanishes (see,
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e.g., [55] for a review of algebraic classification based on
null alignment which is equivalent to Petrov classification
of the Weyl tensor in four dimensions).

B. Type III

Let us focus on the class of pp-wave spacetimes for
which the TF Ricci tensor and Weyl tensor are both of the
algebraic types III. This means that there exists an aligned
null direction l♯ such that S and C contain the following
components only3:

S ¼ −2l ∨ ðΦ21mþ Φ̄21m̄Þ þ 2Φ22ll;

C ¼ Ψ3ðl ∧ mÞ ∨ ðn ∧ l þm ∧ m̄Þ
þ Ψ̄3ðl ∧ m̄Þ ∨ ðn ∧ l þ m̄ ∧ mÞ
þ Ψ4ðl ∧ mÞðl ∧ mÞ þ Ψ̄4ðl ∧ m̄Þðl ∧ m̄Þ: ð3:9Þ

Then R ¼ 0 due to (3.8). On top of that, we require that the
null frame is parallel-propagated (PP) along l♯,

Dn ¼ Dm ¼ Dm̄ ¼ 0; ð3:10Þ

where D≡ l♯ · ∇. Inverting the relations (A2) for the spin
coefficients and using (3.1) and (3.10), one can find for the
pp-wave geometries in the PP frame,

κ ¼ τ ¼ σ ¼ ρ ¼ π ¼ ε ¼ γ þ γ̄ ¼ αþ β̄ ¼ 0: ð3:11Þ

As a consequence of these relations and (A3), the direc-
tional derivatives Δ≡ n♯ · ∇, δ≡m♯ · ∇, and δ̄≡ m̄♯ · ∇
commute with D when acting on scalars,

½Δ;D� ¼ ½δ;D� ¼ ½δ̄;D� ¼ 0: ð3:12Þ

Let us discuss the reduction of the field equations
of a generic theory for these geometries. The pp waves
of type III are the so-called T-III spacetimes (see Proposition
16 in [15]), for which any rank-two tensor Bab constructed
from the R and ∇ of an arbitrary order takes the form

B ¼ ζgþ ψ̄ l ∨ mþ ψ l ∨ m̄þ ωll: ð3:13Þ

with ζ ¼ 0 in our case (R ¼ 0), since these spacetimes are
of vanishing scalar invariants (VSIs) [56]. Therefore the

field equations for the pp waves of type III reduce to a
system of three partial differential equations (one
component ω and two components of complex ψ).
Before we look at these components in more detail, we
need to introduce several convenient notions. The frame
normalization (3.6) and therefore the form of the metric
(3.7) is preserved by the Lorentz transformations of the
frame, namely spatial rotations, null rotations and boosts

l → eϖl; n → e−ϖn; ð3:14Þ

with a real parameter ϖ. We say that a quantity q
has a boost weight (b.w.) b if it transforms under boosts
according to

q → ebϖq: ð3:15Þ
The boost order (b.o.) of a tensor with respect to a given
frame is defined as the maximal b.w. of its frame compo-
nents. For example, Φ21 and Φ22 are of b.w. −1 and −2,
respectively, as can be seen directly from (A4). Then S in
(3.9) is obviously of b.o. −1. We also adopt the balanced
scalar approach of [57] (see also [12–15]). In a PP frame
along affinely parametrized null geodesics generated by
vector field l♯, a tensor t is said to be k balanced, if its
boost weight b part thbi satisfies thbi ¼ 0 for b ≥ −k and
D−b−kthbi ¼ 0 for b < −k. If t is 0 balanced, thenwe say it is
balanced.
In a PP frame (3.10) with CCNV l♯, frame components of

a tensor t ¼ ti1���ip
j1���jqei1 � � � eipej1 � � � ejq do not change

along the null geodesics with l♯ being the generator, i.e.,
Dti1���ip

j1���jq ¼ 0, if Dt ¼ 0 and vice versa. Therefore, (3.2)
ensures that all components of the curvature tensors are
annihilated by the operator D [this can be seen also from the
Bianchi identities (A6)]

b ¼ −1∶ DΨ3 ¼ DΦ21 ¼ 0;

b ¼ −2∶ DΨ4 ¼ DΦ22 ¼ 0; ð3:16Þ
where we also indicate the corresponding boost weight
b of given components. The curvature tensors S and C (and
consequently the Riemann tensorR) of ppwaves of type III
are thus balanced. Moreover, b.w. −2 parts of S and C,

Sh−2i ¼ 2Φ22ll;

Ch−2i ¼ Ψ4ðl ∧ mÞðl ∧ mÞ þ Ψ̄4ðl ∧ m̄Þðl ∧ m̄Þ; ð3:17Þ
are one balanced.
In general, the covariant derivative of a tensor can

increase its boost order. For example, applying the covar-
iant derivative on a rank-k contravariant tensor t ¼
ti1���ikei1 � � � eik leads to ∇t ¼ ð∇ti1���ikÞei1 � � � eik þ
ti1���ikð∇ei1Þ � � � eik þ � � � þ ti1���ikei1 � � � ð∇eikÞ. Using the
frame decomposition of the covariant derivative (A1), there

3To familiarize the reader with our notation, we write (3.9) also
using tensor indices,

Sab ¼ −4Φ21lðambÞ − 4Φ̄21lðam̄bÞ þ 2Φ22lalb;

Cabcd ¼ −8Ψ3lfanblcmdg − 8Ψ̄3lfanblcm̄dg

− 8Ψ3lfambm̄cmdg − 8Ψ̄3lfam̄bmcm̄dg

þ 4Ψ4lfamblcmdg þ 4Ψ̄4lfam̄blcm̄dg;

where the curly brackets correspond to Xfabcdg ≡
1
2
ðX½ab�½cd� þ X½cd�½ab�Þ.
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appear terms ðDti1���ikÞnei1 � � � eik and thus the operator D
increases boost weights of given components by one. The
terms ∇ei in principle add þ2 or þ1 to b.w. of the resulting
components via the spin coefficients κ or ρ, σ, ε, respec-
tively. However, these spin coefficients vanish for pp
waves (3.11). Although the possible nonvanishing spin
coefficients introduced by ∇ei either do not change or
decrease b.w., subsequent application of one more ∇ on ∇t
produces also ∇ of these spin coefficients and again due to
the decomposition (A1) the operator D increases b.w. For
instance, the spin coefficient α has b.w. 0 and thus Dnα is of
b.w. n. Therefore, after several applications of the covariant
derivative, there could appear a component of the boost
weight exceeding the boost order of the original tensor.
Nevertheless, such a situation does not happen in the case
of type III pp waves since the Ricci identities (A5) for the
nonvanishing spin coefficients imply

b ¼ 0∶ Dα ¼ Dβ ¼ 0;

b ¼ −1∶ Dγ ¼ Dλ ¼ Dμ ¼ 0;

b ¼ −2∶ Dν ¼ 0: ð3:18Þ
Similar reasoning carried out formally results in Lemma 1
of [15]: the covariant derivative of a k-balanced tensor in a
degenerate4 Kundt spacetime is again a k-balanced tensor.
One can thus conclude that ∇ � � �∇S, ∇ � � �∇C are balanced
and ∇ � � �∇Sh−2i, ∇ � � �∇Ch−2i are one balanced.
The balance property of the curvature tensors has several

direct consequences for rank-two tensors and thus for the
field equations. First, recall that k-balanced tensors are of
b.o. −ðkþ 1Þ (i.e., ∇ � � �∇S, ∇ � � �∇C are of b.o. −1 while
∇ � � �∇Sh−2i, ∇ � � �∇Ch−2i are of b.o. −2) and rank-two
tensors only admit components with b.w. ranging from −2
to 2. Therefore, rank-two tensors cubic or of a higher order
in curvature vanish (a tensor of order k in curvature tensors
which are of b.o. −1 is thus of b.o. −k). Only b.w. −1 parts
Sh−1i, Ch−1i and their covariant derivatives contribute to
rank-two tensors quadratic in curvature specifically to the ω
term of (3.13). Also, we immediately see that the pp-wave
spacetimes of type III are of VSI because all scalars are
constructed as contractions of balanced tensors ∇ � � �∇S
and ∇ � � �∇C, which are of b.o −1.

C. Vanishing tensors quadratic in curvature

In this subsection, we consider tensors (of any rank) that are
quadratic in curvature, namely tensors constructed as

contractions of ∇ � � �∇S∇ � � �∇S, ∇ � � �∇S∇ � � �∇C, or∇ � � �
∇C∇ � � �∇C. We show that such tensors with specific con-
figurations of indices vanish for type III pp-wave spacetimes:

(i) ∇ � � �∇S∇ � � �∇S vanishes if at least one S has no
free index.

Without loss of generality we assume that S with
no free index is the first one. Since S is of type III,
the first S contains at least one contracted l, see (3.9).
Here, we only sketch the proof using a schematic
notation, where l contractions are denoted by lines
between the contracted expressions (similar to the
well-known notation for Wick contractions).
Explicit calculations of all combinations are listed
in Appendix B. Null covector l from the first S may
contract in four different ways:

ð3:19Þ

each of which vanish. Prime denotes the expression
obtained after the removal of l. The first case is zero
due to vanishing trace of S. In the remaining cases, we use
∇l ¼ 0, which allows us to move l anywhere in the
expression; it gives rise either to the contraction S · l♯ ¼
0 (fourth line) or to derivative D ¼ l♯ · ∇ (second and third
lines). Thanks to (3.5), D∇ � � �∇S and D∇ � � �∇S0 vanish.5
(ii) ∇ � � �∇S∇ � � �∇C vanishes if S has no free index. In

addition to that, if at least one index of S is
contracted with C then C must have at most one
free index for the expression to vanish.

As before, it is always ensured that at least one index
of S corresponds to l (since S is of type III), which can
be contracted back to S, to derivatives, or to C:

ð3:20Þ

The first three lines vanish for similar reasons as the first three
lines of (3.19), specifically because S is trace free and
D∇ � � �∇S0 ¼ D∇ � � �∇C ¼ 0 due to (3.5). However, this
time the last line is nonzero in general since the contraction of
C with l reads

4The Kundt class is defined geometrically as spacetimes
admitting a nonexpanding, nonshearing, and nontwisting null
geodesic congruence. The pp-wave metrics thus belong to a
special subfamily of the Kundt class. A Kundt spacetime is said to
be degenerate if the Riemann tensor and all its covariant
derivatives are algebraically special (i.e., of type II or more
special) with the generator of the Kundt null geodesic congruence
being their aligned null direction.

5It can be shown using (A2) that DS ¼ 0 implies DS0 ¼ 0 for
CCNV l♯ in any frame (not necessarily the PP frame).
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C · l♯ ¼ Ψ3ðl ∧ mÞl þ Ψ̄3ðl ∧ m̄Þl: ð3:21Þ

If this rank-three tensorC · l♯ has at most one free index, then
at least one of the remaining indicesmust be associatedwith l.
Let us inspect all possible types of contractions with this l:

ð3:22Þ

The first line vanishes since the trace of C · l♯ is
zero. The contractions with derivatives (second
and third lines) lead to vanishing expressions
D∇ � � �∇ðC · l♯Þ0 ¼ D∇ � � �∇S0 ¼ 0. [Let us recall that ðC ·
l♯Þ0 is a rank-two tensor that is obtained by stripping (3.21) of
l.] Finally, the last line involves S0 · l♯ ¼ 0.
(iii) ∇ � � �∇S∇ � � �∇C vanishes if C has no free index.

From the decomposition of C in (3.9), we see that
at least one l is contracted back to C, to derivatives,
or to S:

ð3:23Þ

All the possibilities vanish since C is traceless, S · l♯ ¼ 0,
and D∇ � � �∇S ¼ D∇ � � �∇C0 ¼ 0.

(iv) ∇ � � �∇C∇ � � �∇C vanishes if one C has no free
index. In addition to that, if at least one index of this
C iscontractedintothesecondC thenthelattermusthave
at most one free index for the expression to vanish.

Withoutlossofgenerality,letusassumethatCwithout
free indices is the first one. As follows from (3.9), this
(first)C has at least one lwhich can be contracted either
back to C, to derivatives, or to the other (second) C:

ð3:24Þ

The first three cases vanish due to (3.5) or since C being trace
free.Inthelastcase,therank-threetensorC · l♯ oftheform(3.21)
hasatmostonefreeindexandthereforeatleastonel iscontracted
either back to C · l♯, to derivatives, or to C0:

ð3:25Þ

The first three cases vanish for the same reasons as above. The
rank-two tensorC0 · l♯ still has one l, which is contracted either
back to C0 · l♯, to derivatives, or to ðC · l♯Þ0:

ð3:26Þ

Again, the first three cases vanish as before and, in the last
case, ðC · l♯Þ0 · l♯ ¼ 0 as follows for the Weyl tensor of type
III from (3.9).

D. Relevant scalars and rank-two tensors

Here, we focus on particular scalars and rank-two tensors
appearing in the field equations (2.4).

(i) ∇c∇d□nScd, Scd□nScd, and Ccdef□nCcdef vanish.
As mentioned above, type III pp-wave spacetimes

are of VSI, meaning that all scalars constructed as

contractions of ∇ � � �∇S and ∇ � � �∇C vanish. Re-

mark that two latter scalars can also be shown to

vanish using the results of Sec. III C.
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(ii) ∇c∇ða□nSbÞc and Scða□nSbÞc cancel each other.
Commuting ∇c and ∇d, it turns out that

∇c∇ða□nSbÞc cancels exactly with Scða□nSbÞc,

gdðað∇c∇d − ScdÞ□nSbÞc
¼ ∇ða∇c□nSbÞc þ Sðac□nSbÞc

− Cacbd□
nScd þ 1

2
gabScd□nScd ¼ 0; ð3:27Þ

where we employed (C1), (C4) and the fact that
scalars constructed from ∇ � � �∇S∇ � � �∇S vanish.

(iii) □nSab is of b.o −1 because ∇ � � �∇S are balanced
tensors.

(iv) ð∇c∇d þ 1
2
ScdÞ□nCcðabÞd takes the form (3.32).

Recasting the contracted Bianchi identities with
R ¼ 0 in terms of TF Ricci and Weyl, one obtains

∇bSba ¼ 0; ∇dCabc
d ¼ −∇½aSb�c; ð3:28Þ

and consequently, using (C4),

∇b∇dCabcd ¼
1

2
ð□Sac − SbdCabcdÞ: ð3:29Þ

The term under consideration [i.e., the term involv-
ing F 3ð□Þ in (2.4)] can be expressed recursively by
commuting one □ over ∇c∇d as

�
∇c∇d þ 1

2
Scd

�
□nþ1CcðabÞd

¼ □

�
∇c∇d þ 1

2
Scd

�
□nCcðabÞd − Qnab; ð3:30Þ

with Qn being rank-two tensors of b.o −2,

Qnab ≡ −
1

2
□ðSðac□nSbÞcÞ −

3

2
Sðac□nþ1SbÞc þ 3∇cSdða∇d□nSbÞc −

9

2
∇dScða∇d□nSbÞc

−□nCacbd□Scd − 4∇e∇d□nSðacCbÞdce − ∇e∇dSðac□nCbÞecd

− 2∇f□
nCdecða∇cCbÞdef − 2∇f□

nCdecða∇eCbÞdcf : ð3:31Þ

To get this expression, we employed the contracted Bianchi
identities (3.28), the results of Sec. III C, Eqs. (C1), (C5),
(C7), and (C10), the fact that terms cubic in curvature
vanish, and the fact that covariant derivatives commute
(since the commutator introduces one more curvature
tensor). Starting with (3.29) and applying (3.30) repeatedly,
we finally obtain

�
∇c∇d þ 1

2
Scd

�
□nCcðabÞd

¼ −
1

2
□nþ1Sab −

Xn−1
k¼0

□kQðn−k−1Þab: ð3:32Þ

Note that for n ¼ 0 the sum is empty and we recover (3.29).

IV. FIELD EQUATIONS FOR GYRATONS

A. Gyratons

Let us now focus on specific geometries called “gyra-
tons,” which are known to describe various spinning null
sources. Their subclass within type III ppwaves is given by
the metric [5]

g ¼ −du ∨ ðdrþHduþ JdφÞ þ dρdρþ ρ2dφdφ;

ð4:1Þ

where H ¼ Hðu; ρ;φÞ and J ¼ Jðu; ρ;φÞ are two arbitrary
functions that can be determined from the field equations.
The coordinate r is an affine parameter along the null
congruence generated by CCNV ξ ¼ ∂r. The null coor-
dinate u is the retarded time for which ξ♭ ¼ −du. The
coordinates ρ and φ are polar coordinates spanning the
two-dimensional flat submanifolds of constant u at each r.
Occasionally, we will also use the Cartesian coordinates
x ¼ ρ cosφ, y ¼ ρ sinφ, which are regular at the
origin x ¼ y ¼ 0 (i.e., ρ ¼ 0). The metric g then takes
the form

g ¼ −du ∨
�
drþHdu −

y
ρ2

Jdxþ x
ρ2

Jdy

�

þ dxdxþ dydy: ð4:2Þ

To utilize the NP formalism we need introduce the
natural covector null frame,

l ¼ −du; n ¼ −dr −Hdu − Jdφ;

m ¼ 1ffiffiffi
2

p ðdρþ iρdφÞ; ð4:3Þ

and the corresponding dual vector frame,
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l♯ ¼ ∂r; n♯ ¼ ∂u −H∂r;

m♯ ¼ 1ffiffiffi
2

p ∂ρ þ
iffiffiffi
2

p
ρ
ð∂φ − J∂rÞ: ð4:4Þ

The vector l♯ is CCNV and the natural null frame is PP
along geodesics generated by l♯. The spacetime has a
vanishing Ricci scalar, R ¼ 0. The nonvanishing compo-
nents of the TF Ricci and Weyl tensors in this frame read

Φ21 ¼ −Ψ3 ¼ −
J;ρφ

4
ffiffiffi
2

p
ρ2

þ i
J;ρ − ρJ;ρρ
4

ffiffiffi
2

p
ρ2

;

Φ22 ¼
1

2
△H þ ðJ;ρÞ2 − 2J;uφ

4ρ2
;

Ψ4 ¼
1

2ρ2
ð−ρH;ρ − 2iρH;ρφ þ ρ2H;ρρ þ 2iH;φ

−H;φφ − 2iJ;u þ J;uφ þ iρJ;uρÞ; ð4:5Þ

where we defined the Laplace operator on two-dimensional
transversal space,6

△≡ ∂2
ρ þ

1

ρ
∂ρ þ

1

ρ2
∂2
φ: ð4:6Þ

The nonvanishing spin coefficients are

α ¼ −β ¼ −
1

2
ffiffiffi
2

p
ρ
; μ ¼ 2γ ¼ i

J;ρ
2ρ

;

ν ¼ H;ρffiffiffi
2

p − i
H;φ − J;uffiffiffi

2
p

ρ
: ð4:7Þ

Note that λ vanishes for gyratons (4.1) even though it is
nonzero for general pp waves of type III.
In what follows we will repeatedly use several properties

of directional derivatives of the NP formalism. First, let us
recall the properties of the D derivative. It annihilates all
frame covectors (3.10) and curvature components (3.16).
Moreover, D also commutes with all remaining derivatives

(3.12). On the contrary, the commutators of δ derivatives
(on scalars) are

½δ;Δ� ¼ −ν̄D; ½δ̄; δ� ¼ −2μD − 2αδ̄þ 2αδ: ð4:8Þ

The action of δ and δ̄ on the null frame is given by

δl ¼ 0; δm ¼ −2αm;

δn ¼ μm; δ̄m ¼ −μl þ 2αm: ð4:9Þ

In addition, we will also need δ derivatives of the spin
coefficients α and μ,

δα¼ δ̄α¼2α2; δ̄μ¼−2Φ21; δμ¼2Φ̄21: ð4:10Þ

Finally, the action of Δ derivative on the frame covectors is

Δl¼0; Δn¼νmþ ν̄m̄; Δm¼ ν̄lþμm: ð4:11Þ

B. Field equations

The action of the wave operator □ can be expressed in
terms of the directional derivatives using the decomposition
(A1) and the properties (3.1), (3.10), (4.9), and (4.11). We
arrive at the formula

□ ¼ −ΔDþ DΔþ δ̄δþ δδ̄ − 2αδ − 2αδ̄: ð4:12Þ

For a scalar field ϕ subject to Dϕ ¼ 0, the wave operator
reduces to two-dimensional Laplace (4.6),

□ϕ ¼ △ϕ; ð4:13Þ

and δ derivative of ϕ is given by

δϕ ¼ ϕ;ρffiffiffi
2

p þ i
ϕ;φffiffiffi
2

p
ρ
: ð4:14Þ

With the help of (4.12), we can find the following useful
formulas:

□ðϕmÞ ¼ ½ð△ − 4αδ̄þ 4αδ − 8α2Þϕ�mþ ½ð−2μδ − δμþ 4αμÞϕ�l;
□ðϕm̄mmÞ ¼ ½ð△ − 4αδ̄þ 4αδ − 8α2Þϕ�m̄mmþ ½ð−2μ̄ δ̄−δ̄ μ̄−4αμ̄Þϕ�lmm

þ ½ð−2μδ − δμþ 4αμÞϕ�m̄ðl ∨ mÞ þ ½ð2μμ̄Þϕ�lðl ∨ mÞ: ð4:15Þ

Applying the first one repeatedly on a type III TF Ricci tensor (3.9), □nS ¼ −2l ∨ □nðΦ21mþ Φ̄21m̄Þ þ 2ð□nΦ22Þll, we
obtain

6Do not confuse with Δ derivative of the NP formalism.
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□nS ¼ −2l ∨ ½ðBnΦ21Þmþ ðB̄nΦ̄21Þm̄� þ 2

�
△nΦ22 þ 2

Xn−1
k¼0

△kðMBn−k−1Φ21 þ M̄B̄n−k−1Φ̄21Þ
�
ll; ð4:16Þ

where we introduced the auxiliary differential operators

B≡△ − 4αδ̄þ 4αδ − 8α2; M≡ 2μδþ δμ − 4αμ: ð4:17Þ

In order to express (3.32) explicitly, we also need to calculate tensorsQn. Using the above properties [particularly (4.15)],
we can write the individual terms of (3.31) as

Sac□kþ1Sbc ¼ 4ðΦ21B̄
kþ1Φ̄21 þ Φ̄21Bkþ1Φ21Þlalb;

∇cSda∇d□kSbc ¼ 4½ðδ̄Φ̄21 − 2αΦ̄21Þðδ̄B̄kΦ̄21 − 2αB̄kΦ̄21Þ þ ðδ̄Φ21 þ 2αΦ21ÞðδB̄kΦ̄21 þ 2αB̄kΦ̄21Þ
þ ðδΦ21 − 2αΦ21ÞðδBkΦ21 − 2αBkΦ21Þ þ ðδΦ̄21 þ 2αΦ̄21Þðδ̄BkΦ21 þ 2αBkΦ21Þ�lalb;

∇dSca∇d□kSbc ¼ 4½ðδΦ21 − 2αΦ21Þðδ̄B̄kΦ̄21 − 2αB̄kΦ̄21Þ þ ðδ̄Φ21 þ 2αΦ21ÞðδB̄kΦ̄21 þ 2αB̄kΦ̄21Þ
þ ðδΦ̄21 þ 2αΦ̄21Þðδ̄BkΦ21 þ 2αBkΦ21Þ þ ðδ̄Φ̄21 − 2αΦ̄21ÞðδBkΦ21 − 2αBkΦ21Þ�lalb;

□kCacbd□Scd ¼ 4ðBkΦ21B̄Φ̄21 þ B̄kΦ̄21BΦ21Þlalb;
∇e∇d□kSacCbdce ¼ −2½Φ21½ðδ2 − 2αδ − 4α2ÞBkΦ21 − ðδδ̄ − 2αδ − 4α2ÞB̄kΦ̄21�

þ Φ̄21½ðδ̄2 − 2αδ̄ − 4α2ÞB̄kΦ̄21 − ðδ̄δ − 2αδ̄ − 4α2ÞBkΦ21��lalb;
∇e∇dSac□kCbecd ¼ −2½BkΦ21ðδδΦ21 − 2αδΦ21 − 4α2Φ21 − δδ̄Φ̄21 þ 2αδΦ̄21 þ 4α2Φ̄21Þ

þ B̄kΦ̄21ðδ̄ δ̄ Φ̄21 − 2αδ̄Φ̄21 − 4α2Φ̄21 − δ̄δΦ21 þ 2αδ̄Φ21 þ 4α2Φ21Þ�lalb;
∇f□kCa

cde∇cCbdef ¼ 2½ðδΦ21 − 2αΦ21ÞðδBkΦ21 − 2αBkΦ21Þ þ ðδ̄Φ̄21 − 2αΦ̄21Þðδ̄B̄kΦ̄21 − 2αB̄kΦ̄21Þ�lalb;
∇f□kCa

cde∇eCbdcf ¼ ½ðδ̄Φ21 þ 2αΦ21ÞðδB̄kΦ̄21 þ 2αB̄kΦ̄21Þ þ ðδΦ̄21 þ 2αΦ̄21Þðδ̄BkΦ21 þ 2αBkΦ21Þ
þ ðδΦ21 − 2αΦ21 þ 2δ̄Φ̄21 − 4αΦ̄21Þðδ̄B̄kΦ̄21 − 2αB̄kΦ̄21Þ
þ ðδ̄Φ̄21 − 2αΦ̄21 þ 2δΦ21 − 4αΦ21ÞðδBkΦ21 − 2αBkΦ21Þ�lalb: ð4:18Þ

After adding all these terms together, we arrive at the compact expression

Qk ¼ ðNBkΦ21 þ N̄B̄kΦ̄21Þll; ð4:19Þ

where we introduced another operator

N ¼ −2½4Φ̄21B − 4Φ21δ
2 þ 4Φ̄21δ̄δ − 2ð5δΦ21 − 14αΦ21 − 5δ̄Φ̄21 þ 10αΦ̄21Þδþ 4δΦ̄21δ̄

þ3B̄Φ̄21 − δ2Φ21 þ δδ̄Φ̄21 þ 22αδΦ21 − 20α2Φ21 − 20αδ̄Φ̄21 þ 36α2Φ̄21 þ 6αδΦ̄21�: ð4:20Þ
The field equations can be satisfied only if the cosmological constant Λ vanish (because R ¼ 0) and the energy-

momentum tensor T is of the algebraic type III,

T ¼ −2l ∨ ½Ξ21mþ Ξ̄21m̄� þ 2Ξ22ll;

¼ 2
ffiffiffi
2

p
du ∨ ½ReΞ21dρ − ImΞ21ρdφ� þ 2Ξ22dudu;

¼ 2
ffiffiffi
2

p
ρ−1du ∨ ½ðxReΞ21 þ yImΞ21Þdxþ ðyReΞ21 − xImΞ21Þdy� þ 2Ξ22dudu; ð4:21Þ

where we introduced the components Ξ21 and Ξ22 in analogy to the notation for components of TF Ricci tensor, cf. (3.9).
The resulting field equations for the gyraton metric take the form

½1þ ϰF 2ðBÞB�Φ21 ¼ ϰΞ21;

½1þ ϰðF 2ð△Þ þ 2F 3ð△ÞÞ△�Φ22 þ 2ϰ
P∞

n¼1

P
n−1
k¼0 △

k½ðf2;n−1Mþ f3;nNÞBn−k−1Φ21

þðf2;n−1M̄þ f3;nN̄ÞB̄n−k−1Φ̄21� ¼ ϰΞ22:

ð4:22Þ
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Upon inserting the components of the TF Ricci Φ21 and
Φ22 from (4.5) in (4.22), we see that the two field equations
are partly decoupled. Indeed, the first equation of (4.22) is
independent of H, so we can find J from this equation.
With the obtained J, we can then calculate the correspond-
ing operatorsM andN that appear in the second equation of
(4.22) and solve it for H. Due to the linearity of the first
equation in J and the second equation inH, we may rely on
the theorems for the existence of the solutions and make use
of known mathematical methods for linear partial differ-
ential equations.

C. Axial symmetry

The field equations reduce even further if we assume the
axial symmetry described by the Killing vector ∂φ,

£∂φ
g ¼ 0: ð4:23Þ

This will not only make the functionsH and J independent
of φ, but also the derivatives ∂u will drop out from the field

equations. As a result, we will be left with ordinary
differential equations in coordinate ρ (with additional trivial
dependence on u). To arrive at this result, we first notice
that the axial symmetry significantly simplifies the oper-
ators defined above (note that δ ¼ δ̄),

△ ¼ △0; B ¼ B̄ ¼ △1;

M ¼ −M̄ ¼ ◊=4; N ¼ −N̄ ¼ ♡=4; ð4:24Þ

and the components of the TF Ricci tensor,

Φ21 ¼ −Φ̄21 ¼ ⊚J;

Φ22 ¼
1

2
△0H þ ðJ;ρÞ2

4ρ2
: ð4:25Þ

In these equations, we introduced △w, which denotes the
Bessel operators of order w, and three other auxiliary
ordinary differential operators ⊚, ◊, and ♡,

△w ≡ ∂2
ρ þ

1

ρ
∂ρ −

w2

ρ2
; ◊≡ 4iffiffiffi

2
p

�
J;ρ
ρ
∂ρ þ

J;ρρ
2ρ

þ J;ρ
2ρ2

�
;

⊚≡ −
i

4
ffiffiffi
2

p ∂ρ

�
1

ρ
∂ρ

�
; ♡≡ −4i

ffiffiffi
2

p �
2
ρJ;ρρ − J;ρ

ρ2
∂2
ρ þ

3ρ2J;ρρρ − 2ρJ;ρρ þ 2J;ρ
ρ3

∂ρ þ
J;ρρρρ
ρ

�
: ð4:26Þ

Furthermore, it follows from the first equation of (4.22) that the components of the energy-momentum tensor T must also
obey Ξ21 ¼ −Ξ̄21 to match the left-hand side; therefore, T takes the form

T ¼ −2Ξ21l ∨ ðm − m̄Þ þ 2Ξ22ll;

¼ 2
ffiffiffi
2

p
iΞ21ρdu ∨ dφþ 2Ξ22dudu;

¼ 2
ffiffiffi
2

p
iΞ21ρ

−1du ∨ ð−ydxþ xdyÞ þ 2Ξ22dudu: ð4:27Þ

Using (4.24) and (4.27), the field equations (4.22) finally reduce to

½1þ ϰF 2ð△1Þ△1�Φ21 ¼ ϰΞ21;

½1þ ϰðF 2ð△0Þ þ 2F 3ð△0ÞÞ△0�Φ22 þ ϰ
P∞

n¼1

P
n−1
k¼0 △

k
0ðf2;n−1◊þ f3;n♡Þ△n−k−1

1 Φ21 ¼ ϰΞ22:
ð4:28Þ

These equations along with (4.25) form a set of field
equations for axially symmetric gyratons that we will study
in the rest of the paper.
Notice that (4.28) are ordinary differential equations forH

and J in variable ρ with additional (nonderivative) depend-
ence on u. The partial linearity and decoupling of the
equations enables us to split the general solution in twoparts:

J ¼ Jhom þ Jpart½Ξ21�;
H ¼ Hhom þHpart½J;Ξ22�: ð4:29Þ

The homogeneous parts Jhom and Hhom stand for all
solutions of the homogeneous equations obtained by keep-
ing the linear terms (in J of the first equation and H of the
second equation),

½1þ ϰF 2ð△1Þ△1�⊚Jhom ¼ 0;

½1þ ϰðF 2ð△0Þ þ 2F 3ð△0ÞÞ△0�△0Hhom ¼ 0: ð4:30Þ

The particular parts Jpart and Hpart denote solutions satisfy-
ing the full inhomogeneous equations. It is important to
emphasize that the homogeneous part Hhom does not
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necessarily correspond to the solutions in the vacuum
because Hpart may actually be nontrivial (different from
any Hhom) even for T ¼ 0. This is because the equation for
Hpart also depends on J obtained from the first equation.
Through this dependence it is affected not only by Jpart (i.e.,
by Ξ21), but also by Jhom.
Since the Bessel operators △w arise naturally for

the axially symmetric source, it turns out to be practical
to introduce the Hankel transform of the order w (see, e.g.,
[58]),7

Hw½ϕ�ðsÞ ¼
Z
Rþ

dρρϕðρÞJwðρsÞ;

H−1
w ½ψ �ðρÞ ¼

Z
Rþ

dssψðsÞJwðsρÞ: ð4:31Þ

The reason is because the Bessel functions JwðρsÞ are the
eigenfunctions of △w with the eigenvalues −s2; as a
consequence of which the Hankel transforms of △w are
simply

Hw½△wϕ�ðsÞ ¼ −s2Hw½ϕ�ðsÞ: ð4:32Þ

One method that can be used to find particular parts Jpart
andHpart is to first solve the first equation of (4.28) forΦ

part
21

using the Hankel transform of the order 1,

Φpart
21 ¼ ϰH−1

1

�
H1½Ξ21�ðs̃Þ

1 − ϰF 2ð−s̃2Þs̃2
�
ðρÞ: ð4:33Þ

Then we can obtain Jpart by integrating the first equation in
(4.25), i.e.,

⊚Jpart ¼ Φpart
21 : ð4:34Þ

Its solution can be written in the form

Jpart ¼ 2
ffiffiffi
2

p
i
Z

ρ

0

dρ0ðρ2 − ρ02ÞΦpart
21 ðρ0Þ; ð4:35Þ

where we used the Cauchy formula for repeated integration.
After choosing one specific function J ¼ Jhom þ Jpart (with
desired asymptotic behavior, etc.), we get the explicit form
of the operators ◊ and ♡ from (4.26).
A particular part Hpart is then obtained by solving the

second equation of (4.28). This can be done again in two
steps. First, we apply the Hankel transforms of orders 0 and
1 to get

Φpart
22 ¼ ϰH−1

0

�
H0½Ξ22�ðsÞ

1 − ϰðF 2ð−s2Þ þ 2F 3ð−s2ÞÞs2
�
ðρÞ

− ϰ
X∞
n¼1

Xn−1
k¼0

H−1
0

�ð−s2ÞkH0½ðf2;n−1◊þ f3;n♡ÞH−1
1 ½ð−s̃2Þn−k−1H1½Φ21�ðs̃Þ�ðρÞ�ðsÞ

1 − ϰðF 2ð−s2Þ þ 2F 3ð−s2ÞÞs2
�
ðρÞ: ð4:36Þ

Employing (4.25), we then arrive at the equation for Hpart,

△0Hpart ¼ 2Φpart
22 −

ðJ;ρÞ2
2ρ2

≡Wðu; ρÞ; ð4:37Þ

in which we recognize Poisson’s equation with an axially
symmetric right-hand side Wðu; ρÞ. It can be solved using
convolution with the Green’s function (integrated out over
angles φ),

Hpart ¼ G⋆W ¼ 1

4π

Z
∞

0

Z
2π

0

dρ0dφ0ρ0

× log

�
ρ2 þ ρ02 − 2ρρ0 cosðφ − φ0Þ

ρ20

�
Wðu; ρ0Þ;

¼
Z

∞

0

dρ0ρ0Lðρ; ρ0ÞWðu; ρ0Þ; ð4:38Þ

where

Lðρ; ρ0Þ≡
�
logðρ0=ρ0Þ; ρ < ρ0

logðρ=ρ0Þ; ρ > ρ0
: ð4:39Þ

Finally, let us mention that these generic methods assume
convergence of certain integrals. If these assumptions are not
satisfied, thenonehas tousedifferent techniques aswewill also
need to do in one example below.

V. GYRATONS IN GR

Before we move on to the application in higher derivative
gravity theories, we focus on the general relativity. We will
review a known vacuum solution (in the notation of this
paper) and also discuss a nonvacuum solution obtained by
regularization of its Dirac-delta source. The Einstein-
Hilbert action corresponds to setting all form factors to
zero,

7Hankel transforms of various functions can be found in Tables
[59,60].
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F 1ð□Þ ¼ F 2ð□Þ ¼ F 3ð□Þ ¼ 0: ð5:1Þ

Then the field equations for axially symmetric gyratons
read

Φ21 ¼ ϰΞ21;

Φ22 ¼ ϰΞ22; ð5:2Þ

where Φ21 and Φ22 should be understood in terms of J and
H through (4.25).

A. Homogeneous parts

It is instructive to first focus on the homogeneous parts
Jhom and Hhom. Following (4.30), these functions satisfy
two independent second order differential equations

⊚Jhom ¼ 0;

△0Hhom ¼ 0; ð5:3Þ

which can be easily integrated out,

Jhom ¼ c1ðuÞρ2 þ c2ðuÞ;
Hhom ¼ c3ðuÞ log ρþ c4ðuÞ; ð5:4Þ

where ciðuÞ denote four arbitrary functions of the null
coordinate u. To clarify the meaning of (5.4), we have to
treat Jhom and Hhom in the language of distributions. For
this purpose, we switch to Cartesian coordinates, which are
well defined at the origin ρ ¼ 0 (unlike the polar coor-
dinates). In these coordinates, the operators△0 and⊚ from
(4.26) are given by formulas

△0H ¼ ð∂2
x þ ∂2

yÞH;

⊚J ¼ −
i

4
ffiffiffi
2

p
�
x
ρ
∂x þ

y
ρ
∂y

��
∂x

�
x
ρ2

J

�
þ ∂y

�
y
ρ2

J

��
:

ð5:5Þ
Taking into consideration the distributional identity

△0 log ρ ¼ ∂x

�
x
ρ2

�
þ ∂y

�
y
ρ2

�
¼ 2πδðxÞδðyÞ; ð5:6Þ

we can now evaluate the action of the operators △0 and ⊚
on the homogeneous parts (5.4),

⊚Jhom ¼ −
iπc2ðuÞ
2

ffiffiffi
2

p
�
y
ρ
δðxÞδ0ðyÞ þ x

ρ
δ0ðxÞδðyÞ

�
;

△0Hhom ¼ 2πc3ðuÞδðxÞδðyÞ: ð5:7Þ
Thus, we see that the functions Jhom ¼ c2ðuÞ and Hhom ¼
c3ðuÞ log ρ may be considered as homogeneous parts only
for ρ > 0 (when treated as functions), but not in the

distributional sense. With this in mind, we can now proceed
to solutions for various sources.

B. Vacuum

Let us first look for solutions of (5.2) in the region with
no matter content, T ¼ 0. The condition Ξ21 ¼ 0 implies
J ¼ Jhom, which, after taking into account Ξ22 ¼ 0, leads to
a general solution

J ¼ c1ðuÞρ2 þ c2ðuÞ;

H ¼ c3ðuÞ log ρþ c4ðuÞ −
1

2
c1ðuÞ2ρ2: ð5:8Þ

The function c1ðuÞ can be removed by a coordinate
transformation φ̃ ¼ φ −

R
duc1ðuÞ and the function

c4ðuÞ is of no physical relevance [6]. Consequently, the
solution can be equivalently rewritten in the form [1,2]

J ¼ ϰχJðuÞ
4π

;

H ¼ ϰχHðuÞ
4π

log

�
ρ2

ρ20

�
; ð5:9Þ

where χJðuÞ and χHðuÞ are the profile functions and ρ0 is an
arbitrary constant (without any physical significance).
In order to interpret this solution, we will calculate the

energy-momentum tensor T in a distributional sense. If we
use the distributional formulas (5.7) together with J;ρ=ρ ¼
∂xðxJ=ρ2Þ þ ∂yðyJ=ρ2Þ and (5.6), then we obtain

Ξ21 ¼ −
iχJðuÞ
23

ffiffiffi
2

p
�
y
ρ
δðxÞδ0ðyÞ þ x

ρ
δ0ðxÞδðyÞ

�
;

Ξ22 ¼
χHðuÞ
2

δðxÞδðyÞ þ ϰχ2J ðuÞ
24

ðδðxÞδðyÞÞ2: ð5:10Þ

The ill-defined term ðδðxÞδðyÞÞ2 obviously arises because
of the naïve application of linear distributions to nonlinear
expressions [2]. It signifies that the distributional Dirac-
delta sources describing null particles can be used only in
the nonspinning case, χJ ¼ 0, or in the linearized regime of
slow rotation, Oðχ2J Þ ≈ 0. In other words, the spinning null
sources in the full theory must be spatially distributed. One
possibility to overcome this issue is to glue the exterior
vacuum solution (5.9) to an interior nonvacuum solution
representing the spinning cylindrical beam of light of finite
radius [1]. Another option, employed here, is to consider
Gaussian-type distribution of the spinning null matter that
is nonzero throughout the spacetime.

C. Gaussian beam

Motivated by (5.10), we may obtain the Gaussian-type
source by regularizing Dirac-delta distribution δðxÞ using
the nascent delta function δϵðxÞ given by the heat kernel,
i.e., the Gaussian function,
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δϵðxÞ ¼
e−x

2=4ϵ2

2
ffiffiffi
π

p
ϵ
: ð5:11Þ

Here, the parameter ϵ > 0 controls the width of the
Gaussian. Replacing δðxÞ by δϵðxÞ in (5.10), we get the
energy-momentum tensor

Ξ21 ¼
iχJðuÞ

26
ffiffiffi
2

p
πϵ4

ρe−ρ
2=4ϵ2 ;

Ξ22 ¼
χHðuÞ
23πϵ2

e−ρ
2=4ϵ2 þ ϰχ2J ðuÞ

28π2ϵ4
e−ρ

2=2ϵ2 : ð5:12Þ

This specific choice of regularization will prove very useful
in evaluating the Hankel transforms of the relevant func-
tions that would otherwise be very difficult if not impos-
sible. The corresponding function J can be obtained from
the formula for particular part (4.35),

J ¼ ϰχJðuÞ
4π

�
1 − e−

ρ2

4ϵ2

�
; ð5:13Þ

where we subtracted the homogeneous part proportional to
ρ2 to match the asymptotic behavior at ρ → ∞ with the
vacuum solution (5.9).
Having found J, we can now calculate H by means of

Green’s function (4.38) and using the identity

G⋆e−bρ2 ¼ 1

4b
½log ðρ2=ρ20Þ − Eið−bρ2Þ�; ð5:14Þ

with b being a positive constant. The result is

H ¼ ϰχHðuÞ
4π

�
log

�
ρ2

ρ20

�
− Ei

�
−

ρ2

4ϵ2

��
: ð5:15Þ

Notice that the regularization of the source induces the
behavior J ¼ Oðρ2Þ and H ¼ Oð1Þ near ρ ¼ 0. Finally, let
us point out that the parameter ϵ, characterizing the width of
the Gaussian beam, should not be regarded as infinitesimal
but as a finite quantity. In fact, due to the presence of
ðδϵðxÞδϵðyÞÞ2 term, many expressions are expected to blow
up in the limit ϵ → 0 unless we neglect the nonlinear terms
proportional to Oðχ2J Þ.

VI. GYRATONS IN SG

The Stelle gravity is obtained if we set the form factors to
constants [16,61],

F 1ð□Þ¼αþβ=4; F 2ð□Þ¼β; F 3ð□Þ¼0; ð6:1Þ

where, without loss of generality, we left out the Weyl term.
It is always possible to achieve F 3ð□Þ ¼ 0 by adding the
Gauss-Bonnet term to the action, which does not affect the
field equations in four dimensions. In order for the theory to

admit a spin-two degree of freedom with positive mass
(around the Minkowski background), it is often required
that m2 ≡ −1=ϰβ > 0. In the GR limit, m → ∞, the action
reduces to the Einstein-Hilbert term, so we can also
expect to get the GR solutions when this limit is applied
to SG solutions. Since ϰf2;n−1 ¼ −m−2δ0n−1, we can write
the field equations for axially symmetric gyratons as
[cf. (4.28)]

ð1 −m−2△1ÞΦ21 ¼ ϰΞ21;

ð1 −m−2△0ÞΦ22 −m−2◊Φ21 ¼ ϰΞ22; ð6:2Þ

where Φ21 and Φ22 are again given by (4.25).

A. Homogeneous parts

As before, let us start by identifying the homogeneous
parts Jhom and Hhom. This time, they obey the differential
equations of the fourth order,

ð1 −m−2△1Þ⊚Jhom ¼ 0;

ð1 −m−2△0Þ△0Hhom ¼ 0: ð6:3Þ

The general solutions of these two independent equations
are given by linear combinations

Jhom ¼ c1ðuÞmρI1ðmρÞ þ c2ðuÞmρK1ðmρÞ
þ c3ðuÞρ2 þ c4ðuÞ;

Hhom ¼ c5ðuÞI0ðmρÞ þ c6ðuÞK0ðmρÞ
þ c7ðuÞ log ρþ c8ðuÞ; ð6:4Þ

with eight arbitrary functions ciðuÞ. With this in hand we
can now focus on vacuum solutions.

B. Vacuum

In contrast to GR gyratons, the gyratons in SG solving
(6.2) may be of type III even in the region with no matter
(T ¼ 0). The condition Ξ21 ¼ 0 is satisfied by J ¼ Jhom
with arbitrary ciðuÞ. In what follows, we focus on solutions
that approach the vacuum GR solutions for ρ → ∞ and
give rise to continuous metric in Cartesian coordinates.
These two assumptions lead to c1ðuÞ ¼ c3ðuÞ ¼ 0 and
c2ðuÞ ¼ −c4ðuÞ, respectively. After renaming the function
c4ðuÞ to match (5.9), we get

J ¼ ϰχJðuÞ
4π

ð1 −mρK1ðmρÞÞ: ð6:5Þ

The corresponding curvature component Φ21 is nonzero,
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Φ21 ¼
iϰχJðuÞm3

24
ffiffiffi
2

p
π

K1ðmρÞ; ð6:6Þ

which signifies the algebraic type III as we foreshadowed.
Moving on to the second equation of (6.2) with Ξ22 ¼ 0,

we observe that the particular partHpart cannot be found by
blindly following the methods presented in Sec. IV C in this
specific case. Namely, we cannot use the formula (4.36),

Φpart
22 ¼ H−1

0

�
H0½m−2◊Φ21�ðsÞ

1þm−2s2

�
ðρÞ; ð6:7Þ

because the integral in the Hankel transform of the
expression

m−2◊Φ21 ¼
ϰ2m4χ2J ðuÞ

26π2
ð2K0ðmρÞ2 þ K1ðmρÞ2Þ

≡m4Uðu;mρÞ ð6:8Þ

does not converge. Despite this inconvenience, we can find
Φ22 by direct integration, which results in

Φ22 ¼
m2

2
c5ðuÞI0ðmρÞ þm2

2
c6ðuÞK0ðmρÞ þm6

Z
ρ

ρ1

dρ̃ ρ̃ðI0ðmρ̃ÞK0ðmρÞ − I0ðmρÞK0ðmρ̃ÞÞUðu;mρ̃Þ;

¼ m2

2
c6ðuÞK0ðmρÞ þm6

Z
∞

0

dρ̃ ρ̃ ½Zðmρ̃; mρÞ − θðρ1 − ρ̃ÞI0ðmρ̃ÞK0ðmρÞ�Uðu;mρ̃Þ: ð6:9Þ

In this derivation, we included two arbitrary functions
c5ðuÞ and c6ðuÞ corresponding to the freedom in adding a
homogeneous part. The function c5ðuÞ was set to

c5ðuÞ ¼ 2m4

Z
∞

ρ0

dρ̃ ρ̃K0ðmρ̃ÞUðu;mρ̃Þ ð6:10Þ

so as to achieve vanishing Φ22 for ρ → ∞. We also rewrote
the expression in terms of the Heaviside step function θ and
the function Z,

Zðx; yÞ≡
�
I0ðxÞK0ðyÞ; x < y

I0ðyÞK0ðxÞ; x > y
: ð6:11Þ

The choice of c5ðuÞ also guarantees the convergence of the
convolution integral with the Green’s function (4.38),
which we can use to find H, where without loss of
generality we choose ρ1 ¼ ρ0. The corresponding solution
is then given by

H ¼ c6ðuÞðK0ðmρÞ þ logðρ=ρ0ÞÞ þ 2m6

Z
∞

0

dρ0ρ0Lðρ; ρ0Þ
Z

∞

0

dρ̃ ρ̃ ½Zðmρ̃; mρ0Þ − θðρ0 − ρ̃ÞI0ðmρ̃ÞK0ðmρ0Þ�Uðu;mρ̃Þ

−
ϰ2m2χ2J ðuÞ

26π2
ðm2ρ2K0ðmρÞ2 þmρK1ðmρÞK0ðmρÞ −m2ρ2K1ðmρÞ2 þ logðρ=ρ0ÞÞ: ð6:12Þ

The function c6ðuÞ can be determined by comparing the
asymptotic behavior of H for ρ → ∞ with (5.9). To get a
match, we set

c6ðuÞ ¼ −2m6

Z
∞

0

dρ0ρ0
Z

∞

0

dρ̃ ρ̃½Zðmρ̃; mρ0Þ

− θðρ0 − ρ̃ÞI0ðmρ̃ÞK0ðmρ0Þ�Uðu;mρ̃Þ

þ ϰ2m2χ2J ðuÞ
26π2

þ ϰχHðuÞ
2π

; ð6:13Þ

which then gives us the same asymptotic expansion

Hðρ → ∞Þ ≈ ϰχHðuÞ
4π

log

�
ρ2

ρ20

�
: ð6:14Þ

Employing the properties of the Bessel functions, it is
not difficult to check that the GR limit of the solution given
by (6.5) and (6.12) is nothing but GR gyraton in vacuum
(5.9). Interestingly, we can also observe the regular
behavior J ¼ Oðρ2Þ and H ¼ Oð1Þ near ρ ¼ 0, even
though no regularization of the source was imposed by
hand. In the slowly rotating linearized regime H reduces to

Hlin ¼
ϰχHðuÞ
4π

�
log

�
ρ2

ρ20

�
þ 2K0ðmρÞ

�
: ð6:15Þ

The relevant graphs for the SG vacuum gyraton are plotted
in dimensionless quantities in Fig. 1.
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VII. GYRATONS IN IDG

Consider a nonlocal gravity with the form factors [25]:

ϰF 2ð□Þ¼−4ϰF 1ð□Þ¼Að□Þ−1

□
; F 3ð□Þ¼0; ð7:1Þ

where A is an arbitrary analytic nonpolynomial function
with no zeros in the complex plane satisfying Að0Þ ¼ 1.
This theory is often referred to as the infinite derivative
gravity. The choice of the form factors ensures that (around
the Minkowski background) the theory has no ghosts or
extra degrees of freedom when compared to GR. As a
simple example, we take the exponential operator

Að□Þ ¼ e−l
2□; ð7:2Þ

which implies ϰf2;n−1 ¼ ð−l2Þn=n!. The parameter l is
called the (length) scale of nonlocality. Einstein-Hilbert
action is recovered in the (local) GR limit, l → 0. The
exponential operator (7.2) has also a technical advantage
over other common choices. It allows us to simplify the
infinite double-sum operator in (4.28),

X∞
n¼1

ð−l2Þn
n!

Xn−1
k¼0

△k
0◊△n−k−1

1

¼
X∞
k¼0

△k
0◊

X∞
l¼0

ð−l2Þkþlþ1

ðkþ lþ 1Þ!△
l
1

¼ −l2

Z
1

0

dte−tl
2△0◊e−ð1−tÞl2△1 ; ð7:3Þ

using the integral identity

Z
1

0

dttkð1 − tÞl ¼ k!l!
ðkþ lþ 1Þ! : ð7:4Þ

This mathematical trick brings the field equations to a much
more tractable form with an integral instead of infinite
double sums,

e−l
2△1Φ21 ¼ ϰΞ21;

e−l
2△0Φ22 − l2

Z
1

0

dte−tl
2△0◊e−ð1−tÞl2△1Φ21 ¼ ϰΞ22:

ð7:5Þ

Let us now proceed to discuss the solutions of these
nonlocal equations.

A. Homogeneous parts

Once more we start with homogeneous parts Jhom and
Hhom, which now obey the differential equations

e−l
2△1⊚Jhom ¼ 0;

e−l
2△0△0Hhom ¼ 0: ð7:6Þ

It is a well-known fact [62,63] that the structure of solutions
of homogeneous equations is affected only by the operators
with zeros in the complex plane. Following this rule, the
nonlocal exponential operators should not change the
homogeneous parts, thus the solutions of (7.6) should be

FIG. 1. Vacuum gyraton in SG. Functions 4πJ=ϰχJ (left) and function 4πH=ϰχH (right) with respect to the variable mρ for the values:
mρ0 ¼ 3 and ðϰ=χHÞ1=2mχJ ¼ 3, 6, 9.
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equivalent to the solutions of (5.3), which are given by
(5.4). However, this is only true for ρ > 0 and we have no
reasons to exclude the origin ρ ¼ 0 from the domain of
functions on which the operators act. At this moment, we
recall the result (5.7), which states that Jhom ¼ c2ðuÞ as
well as Hhom ¼ c3ðuÞ log ρ are not homogeneous solutions
when ρ ¼ 0 is taken into account in a distributional sense.
Since the actions of e−l

2△1 and e−l
2△0 on Dirac-delta

sources (5.7) are not even mathematically well defined (the
integrals in the Fourier space blow up), we are forced to set
c2ðuÞ ¼ c3ðuÞ ¼ 0, i.e.,

Jhom ¼ c1ðuÞρ2;
Hhom ¼ c4ðuÞ: ð7:7Þ

For this reason, we should again expect the full solution to
behave like J ¼ Oðρ2Þ and H ¼ Oð1Þ near ρ ¼ 0.

B. Gaussian beam

Let us consider the source (5.12) describing the spinning
null matter of Gaussian-type distribution. This kind of
source is not only physically relevant, but also makes the
calculations exceptionally simple. The reason is because
the formulas for the particular parts (4.33) and (4.36)
reduce to

Φpart
21 ¼ ϰH−1

1 ½e−l2 s̃2H1½Ξ21�ðs̃Þ�ðρÞ ð7:8Þ

and

Φpart
22 ¼ ϰH−1

0 ½e−l2s2H0½Ξ22�ðsÞ�ðρÞ

þ l2

Z
1

0

dtH−1
0 ½e−ð1−tÞl2s2H0

× ½◊H−1
1 ½eð1−tÞl2 s̃2H1½Φ21�ðs̃Þ�ðρÞ�ðsÞ�ðρÞ; ð7:9Þ

respectively. Although these expressions may look pretty
intimidating at first sight, the actual calculations will
involve just repeated evaluation of Hankel transforms of
Gaussian-type functions (Gaussian functions multiplied by
even/odd polynomials) which are then turned into other
Gaussian-type functions. Moreover, because all integrals
converge, we can follow the methods from Sec. IV C
exactly as written there.
In particular, the formula (7.8) leads to

Φpart
21 ¼ iϰχJðuÞ

26
ffiffiffi
2

p
πðl2 þ ϵ2Þ2 ρe

− ρ2

4ðl2þϵ2Þ; ð7:10Þ

which can be then integrated using (4.35) to obtain

J ¼ ϰχJðuÞ
4π

ð1 − e
− ρ2

4ðl2þϵ2ÞÞ; ð7:11Þ

where we used the freedom in adding a homogeneous
part proportional to ρ2 that provides GR-like asymptotic
behavior for ρ → ∞, cf. (5.13). Notice that the difference
lies only in the replacement of ϵ2 by the effective
width ϵ2 þ l2.
With this J in hand, we can now express the operator ◊,

and evaluate all the Hankel transforms in (7.9),

Φpart
22 ¼ ϰχHðuÞ

23πðl2þϵ2Þe
− ρ2

4ðl2þϵ2Þ þ ϰ2χ2J ðuÞ
28π2ϵ2ð2l2þϵ2Þe

− ρ2

2ð2l2þϵ2Þ

þϰ2χ2J ðuÞl2

210π2

Z
1

0

dt½α0ðtÞþα2ðtÞρ2�e−βðtÞρ2 ; ð7:12Þ

where we introduced the functions

α0ðtÞ≡ −
4ð3þ tð2 − ð4 − tÞtÞÞl6 þ 4ð11 − tðtþ 4ÞÞl4ϵ2 þ 12ð3 − tÞl2ϵ4 þ 8ϵ6

½ð1þ ð1 − tÞtÞl4 þ ð3 − tÞl2ϵ2 þ ϵ4�3 ;

α2ðtÞ≡ ðl2 þ ϵ2Þððtþ 2Þl2 þ 3ϵ2Þ
½ð1þ ð1 − tÞtÞl4 þ ð3 − tÞl2ϵ2 þ ϵ4�3 ;

βðtÞ≡ ðtþ 1Þl2 þ 2ϵ2

4½ð1þ ð1 − tÞtÞl4 þ ð3 − tÞl2ϵ2 þ ϵ4� : ð7:13Þ

We can observe that the first two terms and the integrand in the third term of (7.12) as well as the term

ðJ;ρÞ2
2ρ2

¼ ϰ2χ2J ðuÞ
128π2ðl2 þ ϵ2Þ2 e

− ρ2

2ðl2þϵ2Þ ð7:14Þ

have the same form,

Wς ¼ ða0ðuÞ þ a2ðuÞρ2Þe−bρ2 ¼ ða0ðuÞ − a2ðuÞ∂bÞe−bρ2 : ð7:15Þ
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Here ς labels the individual “summands,” where the integrand is also treated as a summand with a continuous index t.
Therefore, we can formally write the right-hand side of (4.37) as

W ¼
XZ

ς
Wς: ð7:16Þ

Owing to the linearity of (4.37), we can calculate the solutions for individual terms by means of the Green’s function (4.38),

Hς ¼ G⋆Wς ¼ G⋆ða0ðuÞ − a2ðuÞ∂bÞe−bρ2 ¼ ða0ðuÞ − a2ðuÞ∂bÞðG⋆e−bρ2Þ;
¼ a0ðuÞbþ a2ðuÞ

4b2
½log ðρ2=ρ20Þ − Eið−bρ2Þ� þ a2ðuÞ

4b2
e−bρ

2

; ð7:17Þ

where we used again (5.14). After summing and integrating these terms we arrive at the result

H ¼ ϰχHðuÞ
4π

�
log

�
ρ2

ρ20

�
− Ei

�
−

ρ2

4ðl2 þ ϵ2Þ
��

þ ϰ2χ2J ðuÞ
28π2

�
l2

ϵ2ðl2 þ 2ϵ2Þ log
�
ρ2

ρ20

�
þ 1

l2 þ ϵ2
Ei

�
−

ρ2

2ðl2 þ ϵ2Þ
�
−

1

ϵ2
Ei

�
−

ρ2

2ð2l2 þ ϵ2Þ
�

þ
Z

1

0

dt
l2

ððtþ 1Þl2 þ 2ϵ2Þ2
�
Ei
�
−

ð1þ tÞl2 þ 2ϵ2

4½ðð1 − tÞtþ 1Þl4 þ ð3 − tÞl2ϵ2 þ ϵ4� ρ
2

�

þ ðl2 þ ϵ2Þððtþ 2Þl2 þ 3ϵ2Þ
ðð1 − tÞtþ 1Þl4 þ ð3 − tÞl2ϵ2 þ ϵ4

exp

�
−

ð1þ tÞl2 þ 2ϵ2

4½ðð1 − tÞtþ 1Þl4 þ ð3 − tÞl2ϵ2 þ ϵ4� ρ
2

���
: ð7:18Þ

Notice that the asymptotic behavior of H for ρ → ∞,

Hðρ → ∞Þ ≈
�
ϰχHðuÞ
4π

þ ϰ2χ2J ðuÞ
28π2

l2

ϵ2ðl2 þ 2ϵ2Þ
�
log

�
ρ2

ρ20

�
;

ð7:19Þ

is governed by a different constant compared to the GR
solution. In IDG, unlike in GR or SG, this logarithmic
behavior cannot bemodified by adding a homogeneous part,
cf. (7.7). If we take the GR limit of the nonlocal solution
given by (7.11) and (7.18) and use the properties of the
exponential integral, then we recover the Gaussian beam
solution in GR, (5.13) and (5.15). Near ρ ¼ 0 the solution
has the expected behavior J ¼ Oðρ2Þ and H ¼ Oð1Þ.
In the linearized approximation of slow rotation, H sim-
plifies to

Hlin ¼
ϰχHðuÞ
4π

�
log

�
ρ2

ρ20

�
− Ei

�
−

ρ2

4ðl2 þ ϵ2Þ
��

; ð7:20Þ

wherewe also see the effective replacement of ϵ2 by ϵ2 þ l2

when compared to the GR result. If we also take the limit
ϵ → 0, the geometry reduces to the gyratons solution in the
linearized IDG [38]. Graphs of the IDG solution for the
Gaussian beam in dimensionless quantities is depicted
in Fig. 2.

VIII. HIGHER-ORDER CURVATURE GRAVITY

In this section, we would like to briefly comment on
gyraton solutions of theories that are of the cubic and higher
orders in curvature. First, let us point out that Lagrangians of
the nth order in curvature (with no terms of a lower order
thann) lead to field equationswhich are at least of the (n − 1)
th order in curvature. This can be seen by noticing that any
Lagrangian L ¼ Lðg;∇ � � �∇RÞ can be rearranged to the
form that is totally symmetric in derivatives,

L ¼ Lðg;∇a1R;∇ða1∇a2ÞR;…;∇ða1 � � �∇apÞRÞ; ð8:1Þ
because we can get rid of the antisymmetric parts using the
commutator at the expense of introducing one more curva-
ture tensor. The field equations derived from the Lagrangian
(8.1) then read [64]

∂L
∂gab þ Ea

cdeRbcde þ 2∇c∇dEcabd þ 1

2
gabL ¼ Tab; ð8:2Þ

where we denoted

Eabcd ≡ ∂L
∂Rabcd

− ∇a1

∂L
∂∇a1Rabcd

þ � � �

þ ð−1Þp∇ða1 � � �∇apÞ
∂L

∂∇ða1 � � �∇apÞRabcd
: ð8:3Þ

Therefore, starting with a Lagrangian involving scalar
curvature invariants of nth order and higher, only
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∇c∇dEcabd contains terms of a lower order in curvature,
namely n − 1.
Asmentioned inSec. III B, rank-two tensors that are cubic

or of a higher order in curvature vanish and hence we can
conclude that the only contributions to the field equations for
gyratons following from Lagrangians that are cubic in
curvature must be quadratic in curvature; moreover, they
are given by ∇c∇dEcabd. Scalar curvature invariants of the
fourth and higher orders do not contribute at all.
However, a generic Lagrangian cubic in curvature cannot

be recast in a form involving only the wave operator □
using the integration by parts, Bianchi identities, and the
symmetry of the Riemann tensor as one can do in the
quadratic case (2.2).8 We are thus not able to explicitly
express ∇c∇dEcabd in a compact form. Nevertheless, the
results of Sec. III C imply that the only possible non-
vanishing contributions to the field equations following
from Lagrangians cubic in curvature are of the forms

∇ � � �∇S∘•∇ � � �∇S∘•;
∇ � � �∇S∘•∇ � � �∇C∘•••;
∇ � � �∇S••∇ � � �∇C∘•∘•;
∇ � � �∇C∘•••∇ � � �∇C∘•••;
∇ � � �∇C∘•∘•∇ � � �∇C••••; ð8:4Þ

where ∘ and • represent free and dummy indices, respec-
tively. All such rank-two tensors have only b.w. −2
components constructed from two b.w. −1 components
of the TF Ricci and Weyl tensors. In other words, the
first equation of the field equations for gyraton metrics
(4.22) (equation for J, independent of H) is unaffected
by higher-order terms in the action, so the solution
for J remains the same. On the other hand, the second
equation of (4.22) (equation for H) is modified by
additional terms that are quadratic in Φ21 (i.e., quadratic
in J).

IX. CONCLUSIONS

In this work, we derived field equations for gyratons in
generic theories of gravity that are quadratic in curvature
and contain an arbitrary number of covariant derivatives.
We also commented on theories with higher order terms in
curvature. Since the gyraton metric (4.1) belongs to the pp
waves of type III, many terms in the field equations either
vanish or get drastically simplified, as shown in Sec. III.
The resulting set of two partial differential equa-
tions (4.22) is partly linear and decoupled, which makes
the system completely solvable using standard methods
for linear differential equations. In particular, for the
axially symmetric case, we show that these equations

FIG. 2. Gaussian beam gyraton in IDG. Functions 4πJ=ϰχJ (left) and function 4πH=ϰχH (right) with respect to the variable ρ=l for the
values: ϵ=l ¼ 1, ρ0=l ¼ 3, and ðϰ=χHÞ1=2χJ=l ¼ 10, 20, 30.

8The contraction of two covariant derivatives gives □, no
matter where they appear in the cubic term
∇ � � �∇R∇ � � �∇R∇ � � �∇R of the action that is totally symmetric
in derivatives because either ∇ � � �∇∇a∇ � � �∇∇a∇ � � �∇R ¼
□∇ � � �∇R or we have the term of the form
∇ � � �∇∇a∇ � � �∇R∇ � � �∇∇a∇ � � �∇R∇ � � �∇R, where we can
employ ∇ct1∇ct2t3 ¼ 1

2
t1t2□t3 − 1

2
□t1t2t3 − 1

2
t1□t2t3. The last

identity follows from the combination of □ðt1t2Þt3 ¼
−∇cðt1t2Þ∇ct3 ¼ ðt1t2Þ□t3 (integrations by parts) and
□ðt1t2Þt3 ¼ □t1t2t3 þ 2∇ct1∇ct2t3 þ t1□t2t3 (Leibniz rule). A
covariant derivative contracted with the Riemann tensor on
which it is applied can be eliminated using the contracted Bianchi
identities ∇dRabcd ¼ 2∇½aRb�c, ∇bRab ¼ 1

2
∇aR. Unfortunately, it

seems that there is no appropriate way of simplifying the
contractions containing ∇ � � �∇∇a∇ � � �∇R∇ � � �∇Rabcd in the
cubic terms.
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become ordinary differential equations (4.28), and can be
solved by means of the Hankel transforms, Green’s
function, etc. The reduced field equations (4.22) and
(4.28), and methods presented in Sec. IV C are readily
applicable to various theories of gravity (provided that
Hankel transforms exists and convolution integrals
converge).
To demonstrate the application of our equations, we

considered Stelle’s fourth derivative gravity and the
nonlocal gravity with an infinite number of derivatives.
In the former (SG), we found a vacuum gyraton solution
that is described by functions (6.5) and (6.12), see Fig. 1.
In the latter (IDG), we obtained the gyraton solution for
the Gaussian beam, given by the functions (7.11) and
(7.18), see Fig. 2. The functions J and H are regular in
both cases. Furthermore, the obtained solutions reduce to
the corresponding gyratons in GR when we take the GR
limits of the theories. SG vacuum gyraton also
approaches GR vacuum gyraton far from the source,
while IDG Gaussian beam gyraton shows different
logarithmic behavior then GR Gaussian beam gyraton,
see (7.19). This is most likely a consequence of the fact
the nonlocality plays an important role only near the
sources. The Gaussian-type source extends to infinity
while the source that generates the vacuum SG solution is
located at ρ ¼ 0.
Since all pp waves of type III are of VSI, all gyratons

within this class are always free of scalar curvature
singularities. To decide on the presence/absence of the
nonscalar curvature singularities [65,66] one needs to
investigate the components of the curvature in PP frames
along all timelike and null geodesics. However, this is a
rather nontrivial task that deserves a proper investigation in
a separate project.
One natural continuation of our research was hinted in

Sec. VIII, i.e., the generalization to completely generic
actions that are analytic in R and ∇. As mentioned there, the
actions that are of quartic and higher orders in the curvature
cannot contribute to the field equations of gyratons. Thus,
since we already dealt with the contributions from the

quadratic terms, the only remaining terms that must be
worked out are of the cubic order in curvature. It was also
pointed out above that their contributions to the field
equations should be of the form (8.4), which can only
affect the function H while the function J remains
unchanged.
Another interesting project is also generalization to

spacetimes with constant nonzero Ricci scalar R, which
could be interpreted as gyratons (spinning null sources)
propagating in (anti–)de Sitter background. Although, this
line of research requires considering type II spacetimes
with nonzero components of b.w. 0, the reduction of
equation might still be significant because the b.w. 0 are
necessarily constant.
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APPENDIX A: NP FORMALISM

In this Appendix, we gather the most important formulas
of the Newman-Penrose formalism; for more details we
refer the reader to [67]. The formalism makes use of the
orthonormal null covector frame l, n, m, and m̄ satisfying
(3.6). In this frame, the covariant derivative ∇ can be
expressed by means of the directional derivatives D, Δ, δ,
and δ̄,

∇ ¼ −nD − lΔþ m̄δþmδ̄: ðA1Þ

Derivatives of the frame vectors are characterized using 12
complex functions called the spin coefficients commonly
denoted by lowercase Greek letters:

Dl ¼ ðεþ ε̄Þl − κ̄m − κm̄; Dn ¼ −ðεþ ε̄Þnþ πmþ π̄ m̄; Dm ¼ π̄l − κnþ ðε − ε̄Þm;

Δl ¼ ðγ þ γ̄Þl − τ̄m − τm̄; Δn ¼ −ðγ þ γ̄Þnþ νmþ ν̄ m̄; Δm ¼ ν̄l − τnþ ðγ − γ̄Þm;

δl ¼ ðᾱþ βÞl − ρ̄m − σm̄; δn ¼ −ðᾱþ βÞnþ μmþ λ̄ m̄;

δm ¼ λ̄l − σn − ðᾱ − βÞm; δ̄m ¼ μ̄l − ρnþ ðα − β̄Þm: ðA2Þ
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When acting on scalars, the commutators of directional derivatives read:

½Δ;D� ¼ ðγ þ γ̄ÞDþ ðεþ ε̄ÞΔ − ðτ þ π̄Þδ̄ − ðτ̄ þ πÞδ;
½δ;D� ¼ ðᾱþ β − π̄ÞDþ κΔ − σδ̄ − ðρ̄þ ε − ε̄Þδ;
½δ;Δ� ¼ −ν̄Dþ ðτ − ᾱ − βÞΔþ λ̄ δ̄þðμ − γ þ γ̄Þδ;
½δ̄; δ� ¼ ðμ̄ − μÞDþ ðρ̄ − ρÞΔ − ðᾱ − βÞδ̄ − ðβ̄ − αÞδ: ðA3Þ

The curvature is described in terms of the Ricci scalar R, components of the TF Ricci tensor Φij, and the Weyl scalars Ψk,
which are defined as

Φ00¼ Φ̄00≡1

2
Sablalb; Ψ0≡Cabcdlamblcmd;

Φ01¼ Φ̄10≡1

2
Sablamb; Ψ1≡Cabcdlanblcmd;

Φ02¼ Φ̄20≡1

2
Sabmamb; Ψ2≡−Cabcdlambncm̄d;

Φ11¼ Φ̄11≡1

4
Sabðlanbþmam̄bÞ; Ψ3≡Cabcdnalbncm̄d;

Φ12¼ Φ̄21≡1

2
Sabnamb; Ψ4≡Cabcdnam̄bncm̄d;

Φ22¼ Φ̄22≡1

2
Sabnanb: ðA4Þ

The components of the curvature and spin coefficients are connected through the Ricci identities:

Dρ − δ̄κ ¼ ρ2 þ σσ̄ þ ðεþ ε̄Þρ − κ̄τ − κð3αþ β̄ − πÞ þΦ00;

Dσ − δκ ¼ ðρþ ρ̄Þσ þ ð3ε − ε̄Þσ − ðτ − π̄ þ ᾱþ 3βÞκ þ Ψ0;

Dτ − Δκ ¼ ðτ þ π̄Þρþ ðτ̄ þ πÞσ þ ðε − ε̄Þτ − ð3γ þ γ̄Þκ þ Ψ1 þΦ01;

Dα − δ̄ε ¼ ðρþ ε̄ − 2εÞαþ βσ̄ − β̄ε − κλ − κ̄γ þ ðεþ ρÞπ þΦ10;

Dβ − δε ¼ ðαþ πÞσ þ ðρ̄ − ε̄Þβ − ðμþ γÞκ − ðᾱ − π̄Þεþ Ψ1;

Dγ − Δε ¼ ðτ þ π̄Þαþ ðτ̄ þ πÞβ − ðεþ ε̄Þγ − ðγ þ γ̄Þεþ τπ − νκ þ Ψ2 þΦ11 − R=24;

Dλ − δ̄π ¼ ρλþ σ̄μþ π2 þ ðα − β̄Þπ − νκ̄ − ð3ε − ε̄ÞλþΦ20;

Dμ − δπ ¼ ρ̄μþ σλþ ππ̄ − ðεþ ε̄Þμ − πðᾱ − βÞ − νκ þ Ψ2 þ R=12;

Dν − Δπ ¼ ðπ þ τ̄Þμþ ðπ̄ þ τÞλþ ðγ − γ̄Þπ − ð3εþ ε̄ÞνþΨ3 þΦ21;

Δλ − δ̄ν ¼ −ðμþ μ̄Þλ − ð3γ − γ̄Þλþ ð3αþ β̄ þ π − τ̄Þν −Ψ4;

δρ − δ̄σ ¼ ρðᾱþ βÞ − σð3α − β̄Þ þ ðρ − ρ̄Þτ þ ðμ − μ̄Þκ − Ψ1 þΦ01;

δα − δ̄β ¼ μρ − λσ þ αᾱþ ββ̄ − 2αβ þ γðρ − ρ̄Þ þ εðμ − μ̄Þ −Ψ2 þΦ11 þ R=24;

δλ − δ̄μ ¼ ðρ − ρ̄Þνþ ðμ − μ̄Þπ þ μðαþ β̄Þ þ λðᾱ − 3βÞ − Ψ3 þΦ21;

δν − Δμ ¼ μ2 þ λλ̄þ ðγ þ γ̄Þμ − ν̄π þ ðτ − 3β − ᾱÞνþΦ22;

δγ − Δβ ¼ ðτ − ᾱ − βÞγ þ μτ − σν − εν̄ − βðγ − γ̄ − μÞ þ αλ̄þΦ12;

δτ − Δσ ¼ μσ þ λ̄ρþ ðτ þ β − ᾱÞτ − ð3γ − γ̄Þσ − κν̄þΦ02;

Δρ − δ̄τ ¼ −ðρμ̄þ σλÞ þ ðβ̄ − α − τ̄Þτ þ ðγ þ γ̄Þρþ νκ −Ψ2 − R=12;

Δα − δ̄γ ¼ ðρþ εÞν − ðτ þ βÞλþ ðγ̄ − μ̄Þαþ ðβ̄ − τ̄Þγ −Ψ3: ðA5Þ
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Finally, it is also useful to list the equations that are equivalent to Bianchi identities in NP formalism:

δ̄Ψ0 − DΨ1 þ DΦ01 − δΦ00 ¼ ð4α − πÞΨ0 − 2ð2ρþ εÞΨ1 þ 3κΨ2 þ ðπ̄ − 2ᾱ − 2βÞΦ00 þ 2ðεþ ρ̄ÞΦ01

þ 2σΦ10 − 2κΦ11 − κ̄Φ02;

ΔΨ0 − δΨ1 þ DΦ02 − δΦ01 ¼ ð4γ − μÞΨ0 − 2ð2τ þ βÞΨ1 þ 3σΨ2 þ ð2ε − 2ε̄þ ρ̄ÞΦ02 þ 2ðπ̄ − βÞΦ01

þ 2σΦ11 − 2κΦ12 − λ̄Φ00;

δ̄Ψ3 − DΨ4 þ δ̄Φ21 − ΔΦ20 ¼ ð4ε − ρÞΨ4 − 2ð2π þ αÞΨ3 þ 3λΨ2 þ ð2γ − 2γ̄ þ μ̄ÞΦ20 þ 2ðτ̄ − αÞΦ21

þ 2λΦ11 − 2νΦ10 − σ̄Φ22;

ΔΨ3 − δΨ4 þ δ̄Φ22 − ΔΦ21 ¼ ð4β − τÞΨ4 − 2ð2μþ γÞΨ3 þ 3νΨ2 þ ðτ̄ − 2β̄ − 2αÞΦ22 þ 2ðγ þ μ̄ÞΦ21

þ 2λΦ12 − 2νΦ11 − ν̄Φ20;

DΨ2 − δ̄Ψ1 þ ΔΦ00 − δ̄Φ01 þ
1

12
DR ¼ −λΨ0 þ 2ðπ − αÞΨ1 þ 3ρΨ2 − 2κΨ3 þ ð2γ þ 2γ̄ − μ̄ÞΦ00 − 2ðτ̄ þ αÞΦ01

− 2τΦ10 þ 2ρΦ11 þ σ̄Φ02;

ΔΨ2 − δΨ3 þ DΦ22 − δΦ21 þ
1

12
ΔR ¼ σΨ4 þ 2ðβ − τÞΨ3 − 3μΨ2 þ 2νΨ1 þ ðρ̄ − 2ε − 2ε̄ÞΦ22 þ 2ðπ̄ þ βÞΦ21

þ 2πΦ12 − 2μΦ11 − λ̄Φ20;

DΨ3 − δ̄Ψ2 − DΦ21 þ δΦ20 −
1

12
δ̄R ¼ −κΨ4 þ 2ðρ − εÞΨ3 þ 3πΨ2 − 2λΨ1 þ ð2ᾱ − 2β − π̄ÞΦ20 − 2ðρ̄ − εÞΦ21

− 2πΦ11 þ 2μΦ10 þ κ̄Φ22;

ΔΨ1 − δΨ2 − ΔΦ01 þ δ̄Φ02 −
1

12
δR ¼ νΨ0 þ 2ðγ − μÞΨ1 − 3τΨ2 þ 2σΨ3 þ ðτ̄ − 2β̄ þ 2αÞΦ02 þ 2ðμ̄ − γÞΦ01

þ 2τΦ11 − 2ρΦ12 − ν̄Φ00;

DΦ11 − δΦ10 − δ̄Φ01 þ ΔΦ00 þ
1

8
DR ¼ ð2γ − μþ 2γ̄ − μ̄ÞΦ00 þ ðπ − 2α − 2τ̄ÞΦ01 þ ðπ̄ − 2ᾱ − 2τÞΦ10 þ 2ðρþ ρ̄ÞΦ11

þ σ̄Φ02 þ σΦ20 − κ̄Φ12 − κΦ21;

DΦ12 − δΦ11 − δ̄Φ02 þ ΔΦ01 þ
1

8
δR ¼ ð−2αþ 2β̄ þ π − τ̄ÞΦ02 þ ðρ̄þ 2ρ − 2ε̄ÞΦ12 þ 2ðπ̄ − τÞΦ11 þ ð2γ − 2μ̄ − μÞΦ01

þ ν̄Φ00 − λ̄Φ10 þ σΦ21 − κΦ22;

DΦ22 − δΦ21 − δ̄Φ12 þ ΔΦ11 þ
1

8
ΔR ¼ ðρþ ρ̄ − 2ε − 2ε̄ÞΦ22 þ ð2β̄ þ 2π − τ̄ÞΦ12 þ ð2β þ 2π̄ − τÞΦ21

− 2ðμþ μ̄ÞΦ11 þ νΦ01 þ ν̄Φ10 − λ̄Φ20 − λΦ02: ðA6Þ
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APPENDIX B: EXPLICIT CALCULATIONS FOR CONTRACTIONS OF ∇ � � �∇S∇ � � �∇S
This Appendix contains a simple example of explicit calculations that were schematically indicated in Sec. III C. The

schematic notation in (3.19) is equivalent to the following:

∇ � � �∇Saa∇ � � �∇S ¼ 0;

∇ � � �∇∇a∇ � � �∇∇b∇ � � �∇Sab∇ � � �∇S ¼ ∇ � � �∇D∇ � � �∇∇b∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇S
þ ∇ � � �∇∇a∇ � � �∇D∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇S ¼ 0;

∇ � � �∇∇a∇ � � �∇Sab∇ � � �∇∇b∇ � � �∇S ¼ ∇ � � �∇∇a∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇D∇ � � �∇S
þ ∇ � � �∇D∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇∇b∇ � � �∇S ¼ 0;

∇ � � �∇Sab∇ � � �∇∇a∇ � � �∇∇b∇ � � �∇S ¼ ∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇D∇ � � �∇∇b∇ � � �∇S
þ ∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇∇a∇ � � �∇D∇ � � �∇S ¼ 0;

∇ � � �∇∇a∇ � � �∇Sab∇ � � �∇Sb∘ ¼ ∇ � � �∇∇a∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇ðS · l♯Þ
þ ∇ � � �∇D∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇Sb∘ ¼ 0;

∇ � � �∇Sab∇ � � �∇∇a∇ � � �∇Sb∘ ¼ ∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇∇a∇ � � �∇ðS · l♯Þ
þ ∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇D∇ � � �∇Sb∘ ¼ 0;

∇ � � �∇Sab∇ � � �∇Sab ¼ ∇ � � �∇ð−2Φ21mb − 2Φ̄21m̄b þΦ22lbÞ∇ � � �∇ðSablaÞ
þ ∇ � � �∇ð−2Φ21ma − 2Φ̄21m̄a þΦ22laÞ∇ � � �∇ðSablbÞ ¼ 0: ðB1Þ

APPENDIX C: AUXILIARY STATEMENTS FOR pp WAVES OF TYPE III

In this Appendix, we list some rank-two tensors linear or quadratic in curvature and point out their properties in type III
pp-wave spacetimes that are used in the main text:

(i) □nS is divergence free.

∇b□
nSab ¼ 0: ðC1Þ

This property of □nS can be proved by induction. The case n ¼ 0 follows directly from the contracted Bianchi
identities (3.28). Now, let us assume that (C1) holds for n and show that it then also holds for nþ 1 by commuting ∇
over one □, i.e.,

∇b□
nþ1Sab ¼ □∇b□

nSab − Sbc∇a□nSbc −
1

2
□nSbc∇aSbc þ 2Sbc∇b□

kSac þ Sab∇c□nSbc

þ 1

2
□nSbc∇bSac þ

3

2
□nSab∇cSbc þ□nSbc∇dCa

bcd þ 2Ca
bcd∇d□nSbc ¼ 0; ðC2Þ

where we employed the assumption (C1) for n and the results of Sec. III C.
(ii) Cacbd□

nScd, Scd□nCacbd, and Sac□nSbc are equal.
Rank-two tensors constructed from two tensors of b.o −1 are of b.o −2, i.e., they have only b.w. −2 parts

proportional to lalb and therefore only the b.w. −1 parts of two original tensors contribute. As mentioned in Sec. III
B, only Sh−1i or Ch−1i and their covariant derivatives give the b.w. −1 parts of ∇ � � �∇S or ∇ � � �∇C of type III pp
waves, respectively. Hence,

Cacbd□
kScd ¼ 8lalb½Ψ3mðcndÞ þ Ψ̄3m̄ðcndÞ�□k½Φ21lðcmdÞ þ Φ̄21lðcm̄dÞ�;

¼ −4lalb½Ψ3mc þ Ψ̄3m̄c�□k½Φ21mc þ Φ̄21m̄c�;
Scd□kCacbd ¼ 8lalb½Φ21lðcmdÞ þ Φ̄21lðcm̄dÞ�□k½Ψ3mðcndÞ þ Ψ̄3m̄ðcndÞ�;

¼ −4lalb½Φ21mc þ Φ̄21m̄c�□k½Ψ3mc þ Ψ̄3m̄c�;
Sac□kSbc ¼ 4½Φ21lamc þ Φ̄21lam̄c�□k½Φ21lbmc þ Φ̄21lbm̄c�;

¼ 4lalb½Φ21mc þ Φ̄21m̄c�□k½Φ21mc þ Φ̄21m̄c�: ðC3Þ
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The equality of the terms is then a consequence of
Ψ3 ¼ −Φ21,

Cacbd□
kScd ¼ Scd□kCacbd ¼ Sac□kSbc: ðC4Þ

(iii) ∇c∇d□
kCab

cd vanishes.
Using the cyclic symmetry of the Weyl tensor

∇c∇d□
kCa

½bcd� ¼ 0 and the commutator of ∇c∇d,
one can show that

∇c∇d□
kCab

cd ¼ −C½acde□kCb�cde: ðC5Þ

The right-hand side vanishes because the rank-
two tensor Ca

cde□kCbcde is of b.o −2 for
type III pp waves and therefore proportional
to lalb.

(iv) ∇d□
kCacbe∇eScd and ∇e□

kCacbd∇eScd equal
1
2
∇cSda∇d□kSbc and ∇dSca∇d□k∇Sbc, respec-

tively.
Straightforwardly from the decomposition of

the TF Ricci and Weyl tensors of type III pp waves
(3.9) along with D∇ � � �∇C ¼ 0 due to (3.5), it
follows that

∇cSda∇d□kSbc ¼ 4lalb∇c½Φ21md þ Φ̄21m̄d�∇d□k½Φ21mc þ Φ̄21m̄c�;
∇d□

kCacbe∇eScd ¼ 4lalb∇d□
k½Ψ3mðcneÞ þ Ψ̄3m̄ðcneÞ�∇e½Φ21lcmd þ Φ̄21lcm̄d�

¼ −2lalb∇d□
k½Ψ3me þ Ψ̄3m̄e�∇e½Φ21md þ Φ̄21m̄d�;

∇dSca∇d□kSbc ¼ 4lalb∇d½Φ21mc þ Φ̄21m̄c�∇d□k½Φ21mc þ Φ̄21m̄c�;
∇e□

kCacbd∇eScd ¼ 8lalb∇e□
k½Ψ3mðcndÞ þ Ψ̄3m̄ðcndÞ�∇e½Φ21lðcmdÞ þ Φ̄21lðcm̄dÞ�

¼ −4lalb∇e□
k½Ψ3mc þ Ψ̄3m̄c�∇e½Φ21mc þ Φ̄21m̄c�: ðC6Þ

Substituting Ψ3 ¼ −Φ21, we obtain

∇d□
kCacbe∇eScd ¼ 1

2
∇cSda∇d□kSbc;

∇e□
kCacbd∇eScd ¼ ∇dSca∇d□kSbc: ðC7Þ

(v) Ccdef∇d∇f□
kCcðabÞe equals ∇e∇d□kSðacCbÞdce.

If any index of d, c, or e inCbdce is associated with l,
then ∇e∇d□kSacCbdce vanishes because D∇ � � �∇S ¼
S · l♯ ¼ 0. Therefore, only the terms proportional to
lm̄mm̄ or lmm̄m of the b.w.−1 part ofCbdce contribute,

∇e∇d□kSðacCbÞdce ¼ −4lalb∇e∇d□k½Φ21mc þ Φ̄21m̄c�½Ψ3mdm̄½cme� þ Ψ̄3m̄dm½cm̄e��: ðC8Þ

If index d or f of Ccdef is associated with l♯, then Ccdef∇d∇f□
kCcðabÞe vanishes due to D∇ � � �∇C ¼ 0. If both c and e are

associated with l♯, then this term vanishes as well due to l♯ · C · l♯ ¼ 0. Hence, only the terms proportional to l♯m̄♯m♯m̄♯ or
l♯m♯m̄♯m♯ of the b.w. −1 part of Ccdef contribute when l♯ is associated either with c or e, i.e.,

Ccdef∇d∇f□
kCcðabÞe ¼ −2lalb½Ψ3lcmdm̄½emf � þ Ψ̄3lcm̄dm½em̄f ��∇d∇f□

k½Ψ3ncme þ Ψ̄3ncm̄e�
− 2lalb½Ψ3lemf m̄½cmd� þ Ψ̄3lem̄fm½cm̄d��∇d∇f□

k½Ψ3mcne þ Ψ̄3m̄cne�;
¼ 2lalb½Ψ3mdm̄½emf � þ Ψ̄3m̄dm½em̄f ��∇d∇f□

k½Ψ3me þ Ψ̄3m̄e�
2lalb½Ψ3mf m̄½cmd� þ Ψ̄3m̄fm½cm̄d��∇d∇f□

k½Ψ3mc þ Ψ̄3m̄c�;
¼ 4lalb½Ψ3mdm̄½emf � þ Ψ̄3m̄dm½em̄f ��∇d∇f□

k½Ψ3me þ Ψ̄3m̄e�; ðC9Þ

where we employed the fact that, for type III pp waves, the covariant derivatives commute in rank-two tensors quadratic in
curvature. Finally, comparing (C8) with (C9), we get

Ccdef∇d∇f□
kCcðabÞe ¼ ∇e∇d□kSðacCbÞdce: ðC10Þ
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