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We present new results concerning the Proca massive vector field in a Schwarzschild-anti–de Sitter
(Schwarzschild-AdS) black hole geometry. We provide a first principles analysis of Proca vector fields in
this geometry using both the vector spherical harmonic (VSH) decomposition and separation method and
the Frolov-Krtouš-Kubizňák-Santos (FKKS) method that separates the relevant equations in spinning
geometries. The analysis in the VSH method shows, on one hand, that it is arduous to separate the scalar-
type from the vector-type polarizations of the electric sector of the Proca field, and on the other hand, it
displays clearly the electric and the magnetic mode sectors. The analysis in the FKKS method is performed
by taking the nonrotating limit of the Kerr-AdS spacetime, and shows that the Ansatz decouples the
polarizations in the electric mode sector even in the nonrotating limit. On the other hand, it captures only
two of the three possible polarizations; indeed, the magnetic mode sector, which is of vector-type, is
missing. The reason for the absence of the remaining polarization is related to the degeneracy of the
principal tensor in static spherical symmetric spacetimes. The degrees of freedom and quasinormal modes
in both separation methods of the Proca field are found. The frequencies of the quasinormal modes are also
carefully computed. For the electric mode sector in the VSH method the frequencies are found through an
extension, which substitutes number coefficients by matrix coefficients, of the Horowitz-Hubeny numerical
procedure, whereas for the magnetic mode sector in the VSH method and the electric sector of the FKKS
method it is shown that a direct use of the procedure can be made. The values of the quasinormal mode
frequencies obtained for each method are compared and shown to be in good agreement with each other.
This further supports the analytical approaches presented here for the behavior of the Proca field in a
Schwarzschild-AdS black hole background.
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I. INTRODUCTION

Vector fields are known to describe the electroweak and
the strong interactions of the standard model of particle
physics. In particular, the mediator of electromagnetic
interactions is the photon and it can be identified as an
excitation of an Abelian massless vector field. Since the
standard model does not explain the existence of dark
matter, new kinds of fields have been proposed as candi-
dates. Such fields would have very feeble interactions with
ordinary matter, but would interact gravitationally. Thus,
bodies with strong gravitational effects serve as devices to
probe the existence of such new fields. General relativistic
black holes and their dynamical description are thus
important to understand the behavior of possible new
matter, such as massive vector fields that obey the Proca
equations.
The analysis of the Maxwell massless vector field in

static spacetimes has been performed using the vector
spherical harmonics method, or VSH method for short. In
Schwarzschild spacetimes, the Maxwell equations were
separated, decoupled, and reduced to a single master equation

in [1]. In Schwarzschild-anti–de Sitter (Schwarzschild-AdS)
spacetimes, the Maxwell equations and their quasinormal
mode content were studied using reflective boundary con-
ditions at infinity with VSH techniques in [2,3], and using
vanishing energy flux boundary conditions at infinity, the
quasinormal modes were found in [4,5]. The massive Proca
field in Schwarzschild-type spacetimes with an interest on its
late time behavior was studied in [6], and a quasinormal
mode analysis for Schwarzschild spacetimes was performed
in [7]. Quasinormal modes in Schwarzschild-AdS spacetimes
with a focus on their monopole term were analyzed in [8].
The separation of massless vector fields, such as the

Maxwell field, in the Kerr spacetime used a completely
different approach, that of the Newman-Penrose formalism,
despite the reduced group of explicit symmetries [9]. This
already hinted at the existence of another kind of symmetry.
Massive vector fields were considered not only under a small
rotation approximation with the equations yielding a ladder
of coupled multipoles [10], but also without approximations
using a fully numerical approach [11,12]. In a different
development, and following previous work [13–17] that
takes into account the presence of the principal tensor in the
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Kerr-NUT-AdS and Kerr-NUT-dS spacetimes, i.e., space-
times describing a rotating black hole in four and higher
dimensions and that include the NUT parameters and a
cosmological constant, Frolov, Krtouš, Kubizňák, and
Santos [18], or FKKS for short, were able to extend the
perturbation analysis to the case of a Proca massive vector
field in spinning geometries. It was further shown that with
this formalism the Proca equations can be separated. It is still
unclear whether the FKKS method covers all the degrees of
freedom, including polarizations and quasinormal modes, of
the Proca field in the whole Kerr-NUT-AdS and Kerr-NUT-
dS family. However, with the help of an analysis for the
marginally bound state case [19,20], it was found that for the
Kerr spacetime the FKKS Ansatz describes all possible
modes. The quasinormal modes for the FKKS Ansatz in Kerr
were then recalculated and found to yield excellent agree-
ment with previous approaches [21]. The investigation of the
degrees of freedom covered by the FKKS Ansatz in spinning
geometries can be performed either in a small spin approxi-
mation or numerically, whereas analytically, this investiga-
tion is arduous due to the complexity of the system
comprised of partial differential equations and a polynomial
equation.
In this paper, we analyze Proca fields in the

Schwarzschild-AdS spacetime through both the VSH
and the FKKS techniques, i.e., we investigate the degrees
of freedom and quasinormal modes through both methods.
In the computation of the quasinormal modes, we use
reflective boundary conditions at infinity and pure incom-
ing wave boundary conditions at the event horizon. The
analysis in the VSH method has the advantage that both
the electric and the magnetic sectors appear in a natural
way. The analysis in the FKKS method has the advantage
that the polarizations in the electric mode sector decouple
promptly. To do this we use a useful numerical procedure
set up by Horowitz and Hubeny [22] to study perturba-
tions for scalar fields in Schwarzschild-AdS spacetimes
and to find their quasinormal mode frequencies (see also
Ref. [23]). An extension of this method which substitutes
the number coefficients by matrix coefficients will be
performed by us here (see also Ref. [24]). For a review of
all these treatments, and an overview of the FKKS Ansatz,
see the thesis [25].
The paper is organized as follows. In Sec. II, we present

the general Einstein-Proca field equations and specialize
them for a fixed background geometry with a negative
cosmological constant. In Sec. III, we separate the Proca
equations for a Schwarzschild-AdS spacetime using the
VSH method and compute its quasinormal modes. In
Sec. IV, we present the FKKS method adapted to the
Kerr-AdS spacetime, take the nonrotating limit to the
Schwarzschild-AdS spacetime, and compute its quasinormal
modes. In Sec. V, we compare the quasinormal modes given
by the VSH and FKKS methods. In Sec. VI, we conclude.
Geometric units G ¼ c ¼ 1 are used throughout the paper.

II. EINSTEIN-PROCA FIELD EQUATIONSWITH A
NEGATIVE COSMOLOGICAL CONSTANT: FIXED

BACKGROUND

The action for the minimally coupled Einstein-Proca
system is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðLEH − LAÞ; ð1Þ

where g is the determinant of the metric gab,

LEH ¼ R − 2Λ
16π

ð2Þ

is the Einstein-Hilbert Lagrangian density with R ¼ Rabgab,
and Rab the Ricci tensor, both built out of the Riemann
tensor Ra

bcd made of the metric and its first and second
derivatives. Λ is the cosmological constant, with which we

can define a characteristic length l ¼
ffiffiffiffiffi
3
jΛj

q
, and

LA ¼ FabFab

4
þ μ2

2
AaAa; ð3Þ

is the Proca Lagrangian density with Fab, given by Fab ¼∇aAb −∇bAa being the Proca field strength, Aa being the
Proca vector potential, and μ the field mass. It follows from
the Euler-Lagrange equations for the metric field gab that the
Einstein equation must be obeyed, i.e.,

Gab þ Λgab ¼ 8πTab; ð4Þ

where Gab is the Einstein tensor defined as
Gab ¼ Rab − 1

2
gabR, and Tab is the energy-momentum

tensor given by

Tab ¼FacFbdgcd−
1

4
gabFcdFcdþμ2

�
AaAb −

1

2
gabAcAc

�
:

ð5Þ

It follows from the Euler-Lagrange equations for the Proca
field Aa that the Proca equation must be obeyed, i.e.,

∇bFab þ μ2Aa ¼ 0: ð6Þ

The tensor field Fab also obeys the internal equa-
tions ∇½aFbc� ¼ 0.
The Einstein-Proca system consists of nonlinear coupled

partial differential equations, Eqs. (4)–(6). We now want to
study the perturbations of the Aa field in a fixed background
with negative cosmological constant, Λ < 0. In other words,
we consider a perturbative expansion of the field equations
when the vector field and its derivatives are small. In this
case, from Eq. (4) one has the vacuum Einstein equation,
namely,
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Gab −
3

l2
gab ¼ 0: ð7Þ

Now, Eq. (7) obeys the field Bianchi identities,
∇aðGab − 3

l2 g
abÞ ¼ 0. Although to first order the stress-

energy tensor Tab is zero, in second order it is not; it must
obey the conservation equation

∇aTab ¼ 0; ð8Þ

where Tab is the Proca energy-momentum tensor given in
Eq. (5). For the Proca equation given in Eq. (6), one can
make use of the commutation relations for covariant
derivatives that involve the Riemann tensor to yield
gcd∇c∇dAa − μ2Aa − Ra

dAd ¼ 0, where use of the
Bianchi identity for the Proca field was also made. In a
background spacetime with a negative cosmological con-
stant, we have from Eq. (7) that Rab ¼ − 3

l2 gab. So the Proca
equation in a fixed negative cosmological constant back-
ground becomes

gcd∇c∇dAa −
�
μ2 −

3

l2

�
Aa ¼ 0: ð9Þ

The Bianchi identity for the Proca Aa field is clearly

∇aAa ¼ 0; ð10Þ

i.e., its divergence is zero. Note that for the massless case,
μ ¼ 0, the Bianchi identity given in Eq. (10) is the Lorenz
gauge condition that may or may not be imposed, indeed in
this case the field equations are invariant under the gauge
transformation Aa → Aa þ∇aχ, where χ is a scalar obeying
the Klein-Gordon equation, i.e., ∇a∇aχ ¼ 0.
Thus, to study the perturbations of the Proca field Aa

with a fixed spacetime background, and thus a fixed metric,
one uses Eq. (9) with the help of Eq. (10). Of interest is the
case in which the cosmological constant is negative and the
background is a Schwarzschild-AdS black hole. We apply
two methods to solve the Proca set of equations given in
Eqs. (9) and (10), the VSH and the FKKS methods.

III. PROCA FIELD PERTURBATIONS IN
SCHWARZSCHILD-AdS: THE VSH METHOD

A. Schwarzschild-AdS metric

The spacetime considered here is the Schwarzschild-
AdS spacetime, whose line element can be written in
spherical ðt; r; θ;ϕÞ coordinates as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð11Þ

where the function fðrÞ is

fðrÞ ¼ 1 −
2M
r

þ r2

l2
; ð12Þ

and M is the spacetime mass. The Schwarzschild-AdS
metric describes a vacuum spherically symmetric space-
time with a negative cosmological constant. It is a static
black hole solution with an event horizon located at rþ
given by the positive root of the equation fðrÞ ¼ 0, i.e.,

r3þ þ rþl2 − 2Ml2 ¼ 0: ð13Þ

B. Perturbations in the Proca field, separation of
variables, and the VSH method

1. General case

In the Schwarzschild-AdS spacetime, the Proca equa-
tions (9) can be separated using vector spherical harmonics
which can be obtained by the sum of a spin s ¼ 1 with
angular momentum l as it is well known from any modern
quantum mechanics textbook. This vector spherical har-
monics method, or VSH method, was first used in [1] to
separate the Maxwell equations in static geometries. In
the VSH method the following Ansatz is assumed for the
field Aa:

Aa ¼
1

r

X3
i¼0

X
lm

ciuðiÞðt; rÞZðiÞlm
a ðθ;ϕÞ; ð14Þ

where c0 ¼ 1, c1 ¼ 1, c2 ¼ 1

½lðlþ1Þ�12
, and c3 ¼ 1

½lðlþ1Þ�12
,

where the uðiÞ, with i ¼ 0, 1, 2, 3, are functions of t and
r that should be written as uðiÞðt; rÞ≡ ulmðiÞ ðt; rÞ, but the
indices l andm have been suppressed to not overcrowd the

notation, and the ZðiÞlm
a are given by

Zð0Þlm
a ¼ ð1; 0; 0; 0ÞYlm; ð15Þ

Zð1Þlm
a ¼

�
0;
1

f
; 0; 0

�
Ylm; ð16Þ

Zð2Þlm
a ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ð0; 0; ∂θ; ∂ϕÞYlm; ð17Þ

Zð3Þlm
a ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp
�
0; 0;

∂ϕ

sin θ
;− sin θ∂θ

�
Ylm; ð18Þ

where Ylm are the spherical harmonics, with l being the
principal number and m the azimuthal number.
Indeed, by inserting the Ansatz given in Eq. (14) into the

Proca equations (9), one finds after rearrangement the
following system of equations for the functions uðiÞ:
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D̂2uð0Þ þ ð∂rfÞð _uð1Þ − u0ð0ÞÞ ¼ 0; ð19Þ

D̂2uð1Þ þ
2f
r2

�
1 −

3M
r

�
ðuð2Þ − uð1ÞÞ ¼ 0; ð20Þ

D̂2uð2Þ þ
�
2flðlþ 1Þ

r2
uð1Þ

�
¼ 0; ð21Þ

D̂2uð3Þ ¼ 0; ð22Þ

where _uðiÞ ¼ ∂uðiÞ
∂t , u0ðiÞ ¼

∂uðiÞ
∂r� with r� being defined by

dr�
dr ¼ 1

f, and where D̂2 is shorthand for

D̂2 ¼ −∂2
t þ ∂2

r� − f

�
lðlþ 1Þ

r2
þ μ2

�
: ð23Þ

It must be noted that uð0Þ, uð1Þ, and uð2Þ describe the electric

modes since, under parity transformations, Zð0Þ
a , Zð1Þ

a , and

Zð2Þ
a gain a factor of ð−1Þl, whereas uð3Þ describes the

magnetic modes since, under parity transformations, Zð3Þ
a

gains a factor of ð−1Þlþ1. All this follows the notation
given in [7], where the Proca equations for a pure
Schwarzschild background have been presented.
Furthermore, inserting the Ansatz in Eq. (14) into the

Bianchi identity given in Eq. (10), ∇aAa ¼ 0, one obtains

1

rf

�
u0ð1Þ − _uð0Þ þ

f
r
ðuð1Þ − uð2ÞÞ

�
¼ 0: ð24Þ

Equation (24) was used to find Eq. (20). Indeed, the Ansatz
given in Eq. (14) when put into Eq. (9) leads directly to

D̂uð1Þ þ ð∂rfÞð _uð0Þ − u0ð1ÞÞ þ 2f2

r2 ðuð2Þ − uð1ÞÞ ¼ 0, which

upon using Eq. (24) yields Eq. (20).
Therefore, the system consisting of Eqs. (19)–(22),

taking into account the definition given in Eq. (23),
determines the solution. The Bianchi identity, Eq. (24),
also helps in the determination of the solution. For
example, the static part of uð0Þ must be obtained from
Eq. (19), but the dynamical part of uð0Þ can be described by
the Bianchi identity, Eq. (24). Equations (20) and (21), for
uð1Þ and uð2Þ, are coupled together, whereas Eq. (22), for
uð3Þ, is decoupled.
We shall assume that the time dependence of the

functions uð0Þ, uð1Þ, uð2Þ, and uð3Þ goes as e−iωt. In this
case, the system given by Eqs. (19)–(22) can be treated as
an eigenvalue problem to ω. We classify the eigenvectors
of the system according to the three degrees of freedom,
i.e., the three polarizations, of the Proca vector Aa. These
three polarizations consist of one scalar-type polarization
and two vector-type polarizations. The electric modes of
Aa, characterized by uð0Þ, uð1Þ, and uð2Þ, possess one scalar-
type polarization and one vector-type polarization. The

scalar-type polarization of Aa has a behavior similar to a
scalar field, and can be picked up to the higher l modes
from the l ¼ 0 mode, which has solely scalar-type
polarization. Moreover, setting the Proca mass μ to zero,
μ ¼ 0, the scalar-type polarization becomes nonphysical,
more precisely, at the massless limit it can be removed
by the gauge freedom. The vector-type polarization of Aa
of the electric modes are then picked up by exclusion, i.e.,
they are the ones that are not scalar-type. Since the system
in the electric mode sector is coupled, it is not trivial to
obtain the scalar-type and the vector-type polarization of
Aa in terms of the functions uð1Þ and uð2Þ. The magnetic
modes of Aa, characterized by uð3Þ, possess the remaining
vector-type polarization.
As an addendum, we note that it is possible to decouple

the pair of equations for uð1Þ and uð2Þ which are also
present in the pure Schwarzschild case (see Ref. [7]).
Equation (21) can be used to find uð1Þ as a function of uð2Þ,

i.e., uð1Þ ¼ − r2D̂2uð2Þ
2flðlþ1Þ. Substituting this expression in

Eq. (20), a decoupled equation for uð2Þ can be found,

Hðruð2ÞÞ ¼ 0, where H ¼ D̂2½1f D̂2
1� − 2fð∂rfÞμ2 and

D̂1
2 ¼ −∂2

t þ ∂2
r� − f½lðlþ1Þ

r2 þ μ2 þ ∂rf
r �. Thus, one can

decouple the pair of equations in this way by paying
the price of increasing the order of the partial differential
equations. This happens since uð2Þ must contain the scalar-
type and the vector-type polarizations. In the massless
limit, μ ¼ 0, the operator H factorizes, becoming the
product between the operators D̂2 and f−1D̂2

1. One must
notice that in this limit, the scalar-type polarization can be
removed by the gauge freedom, meaning uð2Þ will contain
both a spurious degree of freedom and the physical vector-
type polarization associated with the electric modes. It can
be shown that the scalarΨ ¼ f−1D2

1ðruð2ÞÞ is related to the
field strength tensor Fab, thus in the massless case it
describes appropriately the vector-type polarization
related to the electric modes without the spurious degree
of freedom. Moreover, the equation Hðruð2ÞÞ ¼ 0 indi-
cates that Ψ will satisfy the same equation as uð3Þ, which
means the two vector-type polarizations of the massless
vector field become degenerate. For the massive case, the
factorization of H does not appear to be possible, which
makes the analytical decoupling difficult.

2. Monopole case

The monopole case l ¼ 0 for the massive vector field
simplifies the system considerably. Only the functions uð0Þ
and uð1Þ survive, and the functions uð2Þ and uð3Þ vanish
since Y00 is a constant. The equation for the function uð0Þ
can be obtained from Eq. (19) together with Eq. (23), to
give

−üð0Þ þ u00ð0Þ þ ð∂rfÞð _uð1Þ − u0ð0ÞÞ − fμ2uð0Þ ¼ 0: ð25Þ
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The equation for uð1Þ can be obtained from Eq. (20)
together with Eq. (23), i.e.,

u00ð1Þ − üð1Þ − f

�
μ2 þ 2

r2

�
1 −

3M
r

��
uð1Þ ¼ 0: ð26Þ

The Bianchi identity given in Eq. (24) is now

_uð0Þ ¼ u0ð1Þ þ
f
r
uð1Þ: ð27Þ

Note that for the l ¼ 0 case the function uð0Þ could be
written as uð0Þ ¼ uð0Þ sðrÞ þ uð0Þtðt; rÞ, where uð0Þ sðrÞ is
the static part of uð0Þ and can be obtained directly from
Eq. (25), and uð0Þtðt; rÞ is the dynamic part of uð0Þ and can
be obtained directly from the Bianchi identity given in
Eq. (27). The function uð1Þ is taken from Eq. (26). We
are not considering the static part which would give a
static spherically symmetric second-order perturbed
Schwarzschild-AdS geometry with a new Proca gravita-
tional term with the corresponding first-order Proca field
term, rather than the Schwarzschild-AdS background
geometry we are working with. By taking the zero-mass
field limit, the static part would give a static spherically
symmetric second-order perturbed Schwarzschild-AdS
geometry with a new Maxwell gravitational term, i.e., a
second-order Reissner-Nordström-AdS geometry, with
the corresponding first-order Maxwell field.

C. Quasinormal modes of Proca in Schwarzschild-AdS
in the VSH method

Having found the equations obeyed by the Proca field in
a Schwarzschild-AdS background, namely Eqs. (19)–(22)
for uðiÞ with i ¼ 0, 1, 2, 3, we can now study the
quasinormal modes of a Schwarzschild-AdS black hole
for a Proca field. The quasinormal modes are defined as
solutions that solve the equations of motion given in
Eqs. (19)–(22) with boundary conditions such that at the
event horizon there are only purely incoming waves and at
infinity the Proca field is zero, i.e., uðiÞ → 0 at infinity, with
i ¼ 0, 1, 2, and 3. The analysis of the system is concluded
by integrating the equations. To find the quasinormal
modes and the quasinormal frequencies in this spacetime,
we implement the numerical procedure used in [22] (see
also Ref. [2]). One can write uðiÞ, with i ¼ 0, 1, 2, and 3, as

uðiÞ ¼ UðiÞe−iðtþr�Þω; ð28Þ

where ω is a frequency and the UðiÞ are functions of r. This
transformation is useful since it expresses explicitly the
behavior of uðiÞ as an incoming wave at the event horizon.
Assuming analyticity, it is possible to write every UðiÞ as an
expansion series around the horizon rþ,

UðiÞ ¼
X∞
n¼0

aðiÞnðx − xþÞn; ð29Þ

where the aðiÞn are expansion coefficients, x ¼ 1
r,

and xþ ¼ 1
rþ
.

The functions uð0Þ, uð1Þ, and uð2Þ give the electric modes.
For uð0Þ, the equation to be solved is given in Eq. (19), and
one sees it is coupled to the equation for uð1Þ, Eq. (20). The
variables uð1Þ and uð2Þ are also coupled, see Eqs. (20) and
(21), and this means that careful treatment is required to
solve them. The strategy that we follow here is to determine
uð1Þ and uð2Þ from Eqs. (20) and (21) and then use the
Bianchi identity to determine Eq. (24) to determine uð0Þ.
Since the Horowitz-Hubeny numerical procedure [22] was
designed for decoupled equations, an extension is needed
for this case. Hence we substitute the number coefficients
by matrix coefficients (see also Ref. [24,25]). Let us first
define the following polynomials by

sðxÞ ¼ x4fðxÞ
x − xþ

; ð30Þ

tðxÞ ¼ x2∂xðx2fðxÞÞ þ 2iωx2; ð31Þ

uðxÞ ¼ −ðx − xþÞ½x2lðlþ 1Þ þ μ2�; ð32Þ

where fðxÞ is fðrÞ of Eq. (12) transformed to the variable x,
i.e.,

fðxÞ ¼ 1

x2

�
1

l2
þ x2 − 2Mx3

�
; ð33Þ

and the matrix K by

K ¼ ðx − xþÞ
�
−2x2ð1 − 3MxÞ 2x2ð1 − 3MxÞ
2x2lðlþ 1Þ 0

�
: ð34Þ

We then substitute Eq. (28) into Eqs. (20) and (21), finding
a matrix equation for the UðiÞ given by

ðx − xþÞsðxÞ∂2
xU þ tðxÞ∂xU þ uðxÞ

x − xþ
U

þ 1

x − xþ
K · U ¼ 0; ð35Þ

where the matrix U is defined in a natural way by

U ¼
�
Uð1Þ
Uð2Þ

�
: ð36Þ

Notice that in the polynomials above, there is only a linear
dependence in ω. This happens because the second time
derivative and the second r� derivative have different signs
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in Eq. (23), and when applying each of the derivatives to the
exponential in Eq. (28) the term in ω2 cancels. Now, to
solve the problem we have to expand the matrix U as it was
done in Eq. (29), i.e.,

UðxÞ ¼
X∞
n¼0

anðx − xþÞn; ð37Þ

where an for the aðiÞn, i ¼ 1, 2, is given by

an ¼
�
að1Þn
að2Þn

�
: ð38Þ

It is helpful to write

an ¼ Mna0 ð39Þ

for some 2 × 2 matrix Mn that has to be found, with the
obvious definition that M0 is the identity matrix I, i.e.,
M0 ¼ I ¼ ½1

0
0
1
�. Note now that the polynomials defined in

Eqs. (30)–(32) can be expanded around xþ so that it is
possible to write

sðxÞ ¼
X∞
j¼0

sjðx − xþÞj; ð40Þ

tðxÞ ¼
X∞
j¼0

tjðx − xþÞj; ð41Þ

uðxÞ ¼
X∞
j¼0

ujðx − xþÞj; ð42Þ

where sj, tj, and uj are expansion coefficients that vanish
for j higher than some value, since sðxÞ, tðxÞ, and uðxÞ are
finite polynomials. We also can expand K in Eq. (34) as

KðxÞ ¼
X∞
j¼0

Kjðx − xþÞj; ð43Þ

where Kj are the expansion coefficients which also vanish
for j higher than some value, since the components of the
matrix K are finite polynomials. Equation (35), which is
equivalent to the Proca equations for uð1Þ and uð2Þ, is then
reduced to the recurrence relation

Mn ¼ −
1

Pn

Xn−1
j¼0

Vnj ·Mj; ð44Þ

where

Vnj ¼ ½jðj − 1Þsn−j þ jtn−j þ un−j�I þ Kn−j ð45Þ

and

Pn ¼ nðn − 1Þs0 þ nt0: ð46Þ

The quasinormal mode frequencies for the functions Uð1Þ
and Uð2Þ that appear in Eq. (29) and are put in matrix form
in Eq. (36) can be obtained by imposing that the series
appearing in Eq. (37) vanishes at x → 0, i.e., r → þ∞.
More specifically, from Eqs. (36)–(39), the series given in
Eq. (37) vanishes at x → 0 if either a0 ¼ 0, which means
the series vanishes everywhere trivially, or

P∞
j¼0Mjð−xþÞj

is singular, which means the determinant of the matrix
resulting from the sum is zero. Thus, discarding the trivial
solution, the boundary condition is satisfied when

det

�XN
j¼0

Mjð−xþÞj
�

¼ 0; ð47Þ

where N is in principle infinite. Then, for uð0Þ the quasi-
normal mode frequencies are directly determined through
the Bianchi identity, Eq. (24). Of course, the quasinormal
frequencies for uð0Þ, uð1Þ, and uð2Þ are the same, they are the
electric modes. We do not present the modes for l ¼ 0, but
they were calculated and agree with [8]. The modes for l ¼
1 are shown in Tables I and II, in particular the scalar-type
polarization is shown in Table I, and the vector-type
polarization is shown in Table II, where N ¼ 40was taken,
and we set rþ and ω in units of l and l−1, respectively. In the
tables we wrote the number 0 which in the numerical
procedure we use means a real number that is very close to
zero. This hints that the quasinormal modes are purely
imaginary.
The function uð3Þ gives the magnetic modes. For uð3Þ,

Eq. (22) can be written with the help of Eq. (28) and with
x ¼ 1

r and xþ ¼ 1
rþ

as

�
ðx − xþÞsðxÞ∂2

x þ tðxÞ∂x þ
uðxÞ
x − xþ

�
Uð3Þ ¼ 0; ð48Þ

TABLE I. Quasinormal mode frequencies ωl of the Proca field
electric modes uð0Þ, uð1Þ, and uð2Þ with l ¼ 1, using the VSH
method in Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for
several values of the Proca field mass μl. The frequencies of the
scalar-type polarization of the electric modes are displayed.

rþ ¼ l rþ ¼ 100l

μl ωl (VSH) ωl (VSH)

0.01 3.331 − 2.489i 184.968 − 266.394i
0.10 3.339 − 2.500i 185.604 − 267.461i
0.20 3.362 − 2.531i 187.452 − 270.612i
0.40 3.446 − 2.645i 193.925 − 282.119i
0.50 3.501 − 2.722i 198.077 − 289.799i
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where the polynomials sðxÞ, tðxÞ, and uðxÞ are in
Eqs. (30)–(32). Now to solve the problem we have to
expand Uð3Þ as in Eq. (29), i.e.,

Uð3Þ ¼
X∞
n¼0

að3Þnðx − xþÞn; ð49Þ

where the að3Þn are expansion coefficients. Using the expan-
sions for sðxÞ, tðxÞ, anduðxÞ given inEqs. (40)–(42), one finds
that Eq. (48) can then be reduced to the recurrence relation,

að3Þn ¼ −
1

Pn

Xn−1
j¼0

ðjðj − 1Þsn−j þ jtn−j þ un−jÞað3Þj: ð50Þ

The quasinormal mode frequencies ω can be found by
imposing that the series vanishes at x → 0, i.e., r → þ∞,

XN
j¼0

að3Þjð−xþÞj ¼ 0; ð51Þ

with N being again, in principle, infinite. The quasinormal
frequencies for uð3Þ, i.e., the magnetic mode frequencies, are

calculated numerically for l ¼ 1, where N ¼ 40 was taken,
and are displayed in Table III.We set rþ andω in units of l and
l−1, respectively.
A comment on the distinction of the polarizations of the

electric modes uð0Þ, uð1Þ, and uð2Þ is in order. Since Eqs. (20)
and (21) cannot be decoupled trivially, the distinction of the
modes for each polarization is made by inference. From
Tables I and II, the electric mode polarizations, namely the
scalar-type and vector-type, are difficult to distinguish at
small rþ

l , e.g., rþ ¼ l. A possible method to distinguish
them is to compare the frequencies at l ¼ 0, where only the
modes of the scalar-type polarization are present, with the
frequencies at l ¼ 1, as it is expected they have a higher
modulus for higher l. For large rþ, e.g., rþ ¼ 100l, the
distinction is easier since we can compare the frequencies
in Tables I and II with the frequencies in Table III, because
the modes in the vector-type polarizations have the same
behavior, namely, negligible real frequency. The reason for
this is that the mass of the field is very small compared with
the mass of the black hole, thus the effect of the field mass
on the vector-type modes is almost negligible. They also
approach the values computed for the massless case, done
in [2], which were confirmed by our numerics.

IV. PROCA FIELD PERTURBATIONS IN
SCHWARZSCHILD-AdS: THE FKKS METHOD

A. Kerr-AdS metric and the principal tensor
in Kerr-AdS

We now employ another, very interesting, method to find
the quasinormal modes of the Proca field in a
Schwarzschild-AdS background. The method relies on
symmetries for a rotating body in general relativity,
specifically on the symmetries of the Kerr-NUT-AdS and
of the Kerr-NUT-dS. To use this formalism in the
Schwarzschild-AdS background we display it for the
Kerr-AdS putting zero NUT charge from the start and
then take the limit a ¼ 0 of the Kerr-AdS.
Symmetries are important in the analysis of physical

systems as they can allow for separability of field equations
or the integrability of equations of motion for test particles.
There are explicit symmetries and hidden symmetries. The
quantity of interest related to hidden symmetries is the
principal tensor hab, a nondegenerate closed conformal
Killing-Yano two-form, i.e., an antisymmetric tensor. The
principal tensor hab is nondegenerate when its matrix
representation in any coordinate system has maximal rank.
Denoting i as the imaginary unit, and denominating for
convenience the eigenvalues of hab in four-dimensional
spacetime as�ixA, where A ¼ 1, 2, nondegeneracy implies
that the xA are functionally independent and nonvanishing,
i.e., the Jacobian matrix of X ¼ ðx1; x2Þ is nonsingular.
The principal tensor is able to generate the Killing tower

[13], a set of symmetries that allows the integration of the
Hamilton-Jacobi and the Klein-Gordon equations in

TABLE II. Quasinormal mode frequencies ωl of the Proca field
electric modes uð0Þ, uð1Þ, and uð2Þ with l ¼ 1, using the VSH
method in Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for
several values of the Proca field mass μl. The frequencies of the
vector-type polarization of the electric modes are displayed.

rþ ¼ l rþ ¼ 100l

μl ωl (VSH) ωl (VSH)

0.01 1.554 − 0.542i 0 − 149.984i
0.10 1.557 − 0.552i 0 − 152.099i
0.20 1.568 − 0.583i 0 − 158.432i
0.30 1.585 − 0.633i 0 − 168.817i
0.40 1.607 − 0.699i 0 − 183.291i
0.50 1.634 − 0.777i 0 − 202.684i

TABLE III. Quasinormal mode frequencies ωl of the Proca
field magnetic modes uð3Þ with l ¼ 1, using the VSH method in
Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for several
values of the Proca field mass μl. Magnetic modes only have
vector-type polarization.

rþ ¼ l rþ ¼ 100l

μl ωl (VSH) ωl (VSH)

0.01 2.163 − 1.699i 0 − 150.069i
0.10 2.171 − 1.710i 0 − 152.187i
0.20 2.193 − 1.743i 0 − 158.526i
0.30 2.228 − 1.795i 0 − 168.922i
0.40 2.273 − 1.863i 0 − 183.419i
0.50 2.327 − 1.944i 0 − 202.860i
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spinning geometries. It was shown in [14] that Kerr-NUT
with a cosmological constant, a family of solutions of the
Einstein vacuum equations valid in four and higher
dimensions, is the unique family of spacetimes with a
principal tensor, under the condition that the gradient of the
eigenvalues of the principal tensor are spacelike vectors, or
timelike via Wick rotation. Principal tensors are very
interesting quantities. As reviewed in [16], they have
applications in the Kerr-NUT-AdS and Kerr-NUT-dS fam-
ilies, as well as in another set of spacetimes with Lorentzian
signature with a principal tensor built from eigenvalues
with null gradient, an issue that it is far from being fully
understood, and is currently an open problem [15].
Here we are interested in a particular case of the

four-dimensional Kerr-NUT-AdS spacetime which is the
four-dimensional Kerr-AdS spacetime. In Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ, the Kerr-AdS spacetime has line
element given by

ds2 ¼ −
ΔΛ

Σ
½dt − asin2θdϕ�2

þ Δθsin2θ
Σ

½adt − ða2 þ r2Þdϕ�2

þ Σ
ΔΛ

dr2 þ Σ
Δθ

dθ2; ð52Þ

where ΔΛ ¼ r2 − 2Mrþ a2 þ r2

l2 ðr2 þ a2Þ, Σ ¼ r2þ
a2 cos2 θ, Δθ ¼ 1 − a2

l2 cos
2 θ, and a is related to the angular

momentum of the black hole, J, by J ¼ aM, with M being
the spacetime mass. The principal tensor hbc obeys the
following equation in this spacetime ∇ahbc ¼ 2ga½bξc�,
where ξb is defined by ξb ¼ 1

3
∇chcb, and square brackets

mean antisymmetrization on the indices. In addition, hbc
obeys the following integrability conditions: ∇a∇bhcd ¼
−ðRa

eδ
b
½ch

e
d� þ 1

2
Rfe

a
½cδ

b
d�h

feÞ, R½a
e δ

b�
½ch

e
d� − Rab

e½ched�þ
Rfe

½a
½cδ

b�
d�h

fe ¼ 0, with Rabcd being the spacetime

Riemann tensor. From these conditions it follows both
that the principal tensor commutes with the Ricci tensor
and that ξc is a Killing vector field. The principal tensor
having these properties is given by

h ¼ −ðrdrþ a2 cos θ sin θdθÞ ∧ dt

þ a sin θðr sin θdrþ ðr2 þ a2Þ cos θdθÞ ∧ dϕ: ð53Þ

The components hab of the principal tensor can be extracted
directly from Eq. (53). From ξb ¼ 1

3
∇chcb one then finds

ξa∂a ¼ ∂t. The eigenvalues of hab given by �ixA as
referred to above have the following functions x1 ¼ ir
and x2 ¼ a cos θ.

B. Proca field and FKKS Ansatz

1. Kerr-AdS

The Kerr-AdS spacetime is axisymmetric which by itself
is not enough to separate the equations for the Proca field.
For instance, for the massless vector field in the Kerr
spacetime one needs to use a null frame to have a neat
separation of the equations [9]. Extending this result to the
massive case has been a hard task. Nevertheless, an Ansatz,
called the FKKS Ansatz [18], has been discovered and it is
able to separate the Proca equations in Kerr-AdS. This
approach uses the principal tensor, i.e., a nondegenerate
closed conformal Killing-Yano antisymmetric two tensor.
For Kerr-AdS the Ansatz is given by

Aa ¼ Bab∇bZ; ð54Þ

with Bab being given implicitly in terms of the metric gbc
and the principal tensor hbc by

Babðgbc − βhbcÞ ¼ δac; ð55Þ

where β is a complex constant with discrete values to be
found, and Z is a function given by

Z ¼ RðrÞSðθÞ exp ð−iωtþ imϕÞ: ð56Þ

The polarization tensor defined in Eq. (55) in Kerr-AdS,
where the metric gab is taken from the line element given in
Eq. (52) and the principal tensor hab is taken from Eq. (53),
can be written as a symmetric part BS and an antisymmetric
part BA, namely,

BS ¼ ΔΛ

qrΣ
∂2
r þ

qΛ
qθΣ

∂2
θ −

1

qrΔΛΣ
½ðr2 þ a2Þ∂t þ a∂ϕ�2

þ 1

ΣqθqΛsin2θ
½asin2θ∂t þ ∂ϕ�2; ð57Þ

BA ¼ βr
qrΣ

½ðr2 þ a2Þð∂r∂t − ∂t∂rÞ þ að∂r∂ϕ − ∂ϕ∂rÞ�

− βa sin2θ
2Σqθ

�
að∂t∂θ − ∂θ∂tÞ þ

1

sin2θ
ð∂ϕ∂θ − ∂θ∂ϕÞ

�
;

ð58Þ

with qΛ ¼ 1 − a2

l2 cos
2 θ, qr ¼ 1 − β2r2, and qθ ¼ 1þ

β2a2 cos2 θ. The components BSab and BAab can be
extracted directly from Eqs. (57) and (58), respectively.
One can now put the Bab found in Eqs. (57) and (58) and

the Ansatz Eq. (56) for Z into the Proca field equation given
in Eq. (54), and then into the Proca equations given in
Eq. (9), to get the following equations that RðrÞ and SðθÞ of
Z must obey:
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∂r

�
ΔΛ

qr
∂rRðrÞ

�
þ
�

K2
r

qrΔΛ
þ i

2−qr
q2rβ

σþμ2

β2

�
RðrÞ¼ 0; ð59Þ

1

sin θ
∂θ

�
qΛ sin θ

qθ
∂θSðθÞ

�

−
�

K2
θ

qθqΛsin2θ
þ i

2 − qθ
q2θβ

σ þ μ2

β2

�
SðθÞ ¼ 0; ð60Þ

with Kr ¼ am − ða2 þ r2Þω, Kθ ¼ m − aω sin2 θ, and
σ ¼ aβ2ðm − ωaÞ − ω. Then, with the solution found,
one obtains the Proca field as

AaðβÞ ¼ Bab∂bZðβÞ ð61Þ

for each value β. Note that one may interpret the different
values of β found from the equations as corresponding to
different polarizations. This can be seen by putting Eq. (61)
in the form Aa ¼ P

β cβB
ab∂bZðβÞ, where cβ are constants

and each ZðβÞ is a different independent solution since they
obey different equations. It is unclear whether or not all
solutions can be described using this Ansatz. It will be seen
now that at least in the Schwarzschild limit there are
solutions that are not described by the Ansatz.

2. Schwarzschild-AdS limit

The special case of Schwarzschild-AdS can be obtained
by taking the limit a ¼ 0. The Kerr-AdS line element given
in Eq. (52) reduces to the Schwarzschild-AdS line element
given in Eq. (11). In addition, from Eqs. (57) and (58), the
tensor Bab in the nonrotating a ¼ 0 limit becomes

BS ¼ −
1

qrf
∂2
t þ

f
qr

∂2
r þ

1

r2
∂2
θ þ

1

r2 sin2 θ
∂2
ϕ; ð62Þ

BA ¼ βr
qr

ð∂r∂t − ∂t∂rÞ: ð63Þ

Equation (59) for RðrÞ is now given by

∂r

�
r2f
qr

∂rR

�
þ
�
ω2r2

fqr
− iω

2 − qr
q2rβ

þ μ2

β2

�
R ¼ 0: ð64Þ

The angular equation (60) turns into

1

sin θ
∂θ½sin θ∂θS� −

m2

sin2θ
Sþ

�
i
ω

β
−
μ2

β2

�
S ¼ 0: ð65Þ

The solutions for this equation are the spherical harmonics
Ylm. Thus, it is possible to obtain the expression for the
covariant components of the massive vector field as a
function of the scalar RðrÞ and the spherical harmonics Ylm

for each β. In the Schwarzschild-AdS background, i.e.,
a ¼ 0, Eq. (61), with the help of Eqs. (62) and (63), give

Aa¼
�
−
iω
qr

þβrf
qr

∂r;
1

qr
∂r− i

ωβr
qrf

;∂θ;∂ϕ

�
RðrÞYlm; ð66Þ

where we have dropped the explicit dependence on β to not
overcrowd the notation. Moreover, from Eq. (65) the values
for the parameter β can then be found by setting

i ωβ −
μ2

β2
¼ lðlþ 1Þ. Thus, there are two different values

for β for each l > 0. Calling these values βþ and β−, one
has

β� ¼ iω
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2lðlþ1Þ

ω2

q
2lðlþ 1Þ : ð67Þ

The two different β values each correspond to a different
polarization. A further analysis on the expression suggests
that β− describes the scalar-type polarization, since setting
the Proca mass μ ¼ 0makes it vanish as one expects for the
massless Maxwell field. Moreover, setting the Proca l to

zero yields a definite value for β−, namely βmonopole ¼ −i μ
2

ω,
so that β− is the polarization that contains the monopole
case. The case βþ describes then the vector-type polariza-
tion, since setting the Proca mass μ ¼ 0 yields
βþ ¼ iω 1

lðlþ1Þ, as one expects for the massless Maxwell

field, whereas setting the Proca l to zero, l ¼ 0, gives an
infinite β which seems to have no meaning.
Two important features can be drawn from the FKKS

Ansatz of Eq. (66). The first is that there is a natural
decoupling of the two polarizations related to the electric
modes, in contrast to the VSH method of Sec. III. The
second feature is that when comparing Eq. (66) with
Eq. (14), it can be seen that the Ansatz in the
Schwarzschild-AdS limit, a ¼ 0, does not describe the
vector-type polarization related to the magnetic modes,
i.e., it does not describe the function uð3Þ in Eq. (14), again
in contrast to the VSH method of Sec. III. By inspecting the
principal tensor in Eq. (53), two of the eigenvalues of hab are
given by �ix2 ¼ �ia cos θ. By taking the Schwarzschild-
AdS limit, both eigenvalues go to zero and so the principal
tensor becomes degenerate. This violates the initial require-
ment that the principal tensor needs to be nondegenerate in
order to characterize all the symmetries of the spacetime.
This fact surely has implications on the absence of the
magnetic modes of the Proca field in the FKKS approach.

C. Quasinormal modes in Schwarzschild-AdS in the
FKKS method

The aim now is to solve Eq. (64) for R. Note beforehand
that, as proved analytically in [25], the Ansatz of Eq. (66)
continues to obey the Proca equations given in Eqs. (20) and
(21), and the Bianchi identity given in Eq. (24), by consid-

ering the correspondence uð0Þ ¼ − iωr
qr
RðrÞ þ βr2f

qr
∂rRðrÞ,

uð1Þ ¼ rf
qr
∂rRðrÞ − i ωβr

2

qr
RðrÞ, and uð2Þ ¼ lðlþ 1ÞRðrÞ,
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for each β. This remarkable correspondence between the
VSH method and the FKKS method, given by these trans-
formations, decouples the two polarizations in the Proca
equations with the relevant scalar function still obeying a
second-order partial differential equation, a result that has
also been shown in [21].
We can now solve Eq. (64) for R. Indeed, in Eq. (64), we

must swap the derivatives in r in terms of derivatives in r�.
Afterwards by multiplying the obtained equation by a factor
qrf
r2 , we obtain Eq. (21) with uð1Þ and uð2Þ given by the

correspondenceabove, i.e.,uð1Þ ¼ rf
qr
∂rRðrÞ − i ωβr

2

qr
RðrÞand

uð2Þ ¼ lðlþ 1ÞRðrÞ. We then write R ¼ Re−iωðtþr�Þ and
substitute it intoEq. (21)with thegivencorrespondence toyield

�
ðx − xþÞvðxÞ∂2

x þ wðxÞ∂x þ
yðxÞ
x − xþ

�
R ¼ 0; ð68Þ

where again x ¼ 1
r and xþ ¼ 1

rþ
, and the polynomials are

vðxÞ ¼ x2
f
r2
ðx2 − β2Þ
x − xþ

; ð69Þ

wðxÞ ¼ ðx2 − β2Þð2iωx2 þ 2x3 − 6Mx4Þ − 2x3
f
r2

; ð70Þ

yðxÞ ¼ ðx − xþÞ½ðx2 − β2Þðμ2 þ lðlþ 1Þx2Þ
− 2iωðx3 þ βx2Þ�: ð71Þ

The clear differences between the above polynomials and the
ones in Eqs. (30)–(32) are, first, the dependence on the
parameter β, which is characteristic for each polarization
and second, the higher order in x. The explicit dependence of
the polynomials onω, without considering the β dependence,
at first glancewill be atmost linear for the same reasons stated
for the polynomials in Eqs. (30)–(32). Another difference,
perhaps more concealed, is that when introducing β, using
Eq. (67), into Eq. (68) together with Eqs. (69)–(71), one finds
that the polynomials will also have a different dependence on
ω, l, and μ compared with the ones in Eqs. (30)–(32). The
polynomials defined in Eqs. (69)–(71) can be expanded
around xþ so that it is possible to write

vðxÞ ¼
X∞
j¼0

vjðx − xþÞj; ð72Þ

wðxÞ ¼
X∞
j¼0

wjðx − xþÞj; ð73Þ

yðxÞ ¼
X∞
j¼0

yjðx − xþÞj; ð74Þ

respectively, where vj, wj, and yj are expansion coefficients
that vanish for jhigher than somevalue.Then the scalarR can
be expanded as

R ¼
X∞
n¼0

aðRÞnðx − xþÞn; ð75Þ

where the coefficientsaðRÞ are calculated using the recurrence
relation

aðRÞn ¼ −
1

Pn

Xn−1
j¼0

ðjðj − 1Þvn−j þ jwn−j þ yn−jÞaðRÞj; ð76Þ

where Pn is given by

Pn ¼ nðn − 1Þv0 þ nw0; ð77Þ

and the vj,wj, and yj are the coefficients of the expansion in
Eqs. (72)–(74), considering the polynomials in Eqs. (69)–
(71). In putting the problem in this way we have just
shown that the quasinormal modes derived from the FKKS
Ansatz in the nonrotating limit of Kerr-AdS, i.e., for
Schwarzschild-AdS, can now be computed by applying
the Horowitz-Hubeny numerical procedure. This means
that the quasinormal modes can be computed by requiring
that R vanishes at x → 0, thus

XN
j¼0

aðRÞjð−xþÞj ¼ 0; ð78Þ

where N is formally infinite but for numerical purposes is a
large integer.We do not present themode frequencies forl ¼
0which would be taken from β−, but they were calculated by
us using this method and they agree with frequencies
calculated using the VSH method of Sec. III and with the
results in [8]. The numerical calculations of the quasinormal
modes forl ¼ 1 forSchwarzschild-AdS in theFKKSmethod
are presented in Tables IV and V. These quasinormal modes
were computed for each of the two values of β taken from

TABLE IV. Quasinormal mode frequencies ωl of the Proca
field electric modes with l ¼ 1, using the FKKS method in
Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for several
values of the Proca field mass μl. The frequencies of the scalar-
type polarization β− of the electric modes are displayed.

rþ ¼ l rþ ¼ 100l

μl ωl (FKKS) ωl (FKKS)

0.01 3.330 − 2.489i 184.968 − 266.395i
0.10 3.339 − 2.501i 185.578 − 267.524i
0.20 3.362 − 2.534i 187.355 − 270.817i
0.40 3.444 − 2.652i 193.650 − 282.498i
0.50 3.498 − 2.729i 197.761 − 290.138i
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Eq. (67). Since β− can be identified as corresponding to the
scalar-type polarization, and βþ can be identified as
corresponding to the vector-type polarization, the modes
for each polarization are easily distinguished. The mode
frequencies for the scalar-type polarization β− are shown in
Table IV and the mode frequencies for vector-type polari-
zationβþ are shown inTableV. Itwas takenN ¼ 40, and the
method seems to converge even though the polynomials
given in Eqs. (69)–(71) have higher order dependence in x.
The values of the quasinormal mode frequencies for other
higher monotones, higher values of μ and rþ, are found in
[25]. We must emphasize that the quasinormal modes for the
other vector-type polarization, encoded in uð3Þ, cannot be
found since the FKKSAnsatz in the Schwarzschild-AdS limit
does not describe the magnetic modes.

V. COMPARISON OF RESULTS BETWEEN THE
VSH METHOD AND THE FKKS METHOD

The computations of the quasinormal modes were
performed numerically using Mathematica. In the compu-
tations we have put N ¼ 40, and higher N would not
change the results as presented.
The quasinormal modes for the monopole, l ¼ 0, using

both the VSH method and the FKKS method were
calculated by us and are consistent with [8], so we do
not need to present them here.
The quasinormal modes for l ¼ 1, in the electric mode

sector using both the VSH and the FKKS Ansätze, are put
together and displayed in Tables VI and VII for a
comparison between both methods. The values shown in
Tables VI and VII are taken directly from Tables I, II, IV,
and V. In Table VI the quasinormal frequencies for the
scalar-type polarization are shown, and in Table VII the
quasinormal frequencies for the vector-type polarization are
shown. The magnetic sector does not appear in the FKKS
method so there is no possibility of comparison in this
sector.
In the VSH method it is hard to distinguish the polar-

izations in the electric modes for low rþ, an example being

rþ ¼ l. On the other hand, for large rþ, rþ ≥ 100l, one
can distinguish them by comparison with the frequencies
of the modes in the magnetic sector, since here both
vector-type polarizations have modes with negligible real
frequency. In the FKKS method polarization is well
characterized by the different values of β, allowing a
direct distinction. By convenience, our strategy to dis-
tinguish the electric modes in the VSH method was to use
the frequencies given by the FKKS Ansatz and check if
they were present.
The massless limit μ ¼ 0 of the quasinormal modes shall

now be analyzed in detail. As referred to in Sec. III, when
analyzing the quasinormal modes in the VSH method, the
μ ¼ 0 scalar-type polarization becomes nonphysical but its
quasinormal modes, which correspond to the ones of mass-
less Klein-Gordon scalar field as it can be checked both
analytically and numerically, will not disappear automati-
cally.We now proceed to explain how this polarization can be
removed. We notice that for μ ¼ 0, i.e., for a Maxwell field,
there are only two physical degrees of freedom, and the
corresponding equations are governed by the μ ¼ 0 Proca
equations with the Bianchi identity of Eq. (24) now being a
gauge condition, specifically, the Lorenz condition. But even
with the Lorenz condition being imposed, one is still left with
a spurious degree of freedom which corresponds to the
contribution of a gradient of a scalar field which obeys
the massless Klein-Gordon equation. By counteradding the
gradient of this scalar field with the same modes, one is able
to remove the spurious degree of freedom and reset the results
for the quasinormal modes of a Maxwell field in
Schwarzschild-AdS. As referred to in Sec. IV, when analyz-
ing the quasinormal modes in the FKKS method, the μ ¼ 0
scalar-type polarization becomes nonphysical as it should.
Here, we note that Eq. (35) is equivalent to Eq. (21) with

the correspondence uð1Þ ¼ rf
qr
∂rRðrÞ − i ωβr

2

qr
RðrÞ, uð2Þ ¼

lðlþ 1ÞRðrÞ. Setting μ ¼ 0 one has from Eq. (67) that
β− ¼ 0, and then Eq. (67) turns into an equation for a
massless Klein-Gordon scalar field. The same reasoning that
we have performed for the VSH method applies now, and
again one is able to remove the spurious degree of freedom
and reset the results for the quasinormal modes of a Maxwell
field in Schwarzschild-AdS.
The maximum relative deviation between the quasinor-

mal frequencies of both treatments was found to be 0.2%
which is the case of the last row of Table VI for rþ ¼ l. The
relative deviation σ was calculated through the formula

σð%Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωVSH−ωFKKSj

jωVSHj
q

× 100. This confirms that the electric

modes of the VSH method are described in the FKKS
Ansatz. We should also add that the Horowitz-Hubeny
numerical procedure applied to the VSH and the FKKS
methods for the electric modes in obtaining the quasinor-
mal frequencies work fine with the FKKS method con-
verging faster (see the Appendix). Furthermore, the VSH
method does not capture part of the quasinormal modes for

TABLE V. Quasinormal mode frequencies ωl of the Proca field
electric modes with l ¼ 1, using the FKKS method in Schwarzs-
child-AdS for rþ ¼ l and rþ ¼ 100l and for several values of the
Proca field mass μl. The frequencies of the vector-type polari-
zation βþ of the electric modes are displayed.

rþ ¼ l rþ ¼ 100l

μl ωl (FKKS) ωl (FKKS)

0.01 1.554 − 0.542i 0 − 149.984i
0.10 1.557 − 0.552i 0 − 152.099i
0.20 1.568 − 0.584i 0 − 158.432i
0.30 1.584 − 0.633i 0 − 168.817i
0.40 1.606 − 0.699i 0 − 183.291i
0.50 1.632 − 0.777i 0 − 202.684i
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the same N of the FKKS method. These modes certainly
should appear for the ideal N → ∞ limit. Surely, this adds
value to the FKKS decomposition of the vector Aa,
Eq. (66), in the electric mode sector to decouple the two
polarizations.
In Ref. [25], the quasinormal modes for each method

were computed for higher monotones for different values of
μl and for different values of rþ

l . There were higher
monotones of the quasinormal modes of uð0Þ, uð1Þ, and
uð2Þ in the VSH method that could not be found, but which
were present within the FKKS Ansatz. The same occurred
when computing the frequencies for higher values of μ, for
example μl ¼ 8. The convergence of the VSH method,
generalized here for a system of equations, was not
demonstrated, thus it may be possible that the fact of
having two polarizations in the system requires a much
higher value of N so that these monotones can be found in
the VSH method. To show rigorously that both the VSH
and FKKS methods describe the same quasinormal modes,
we would need to compare every frequency, for all the
space of variables μl and rþ

l , and also compare all the higher
monotones. This is an impossible task but the fact that it
was shown that RðrÞ obeys Eqs. (20), (21), and (24)

with the correspondence uð0Þ ¼ − iωr
qr
RðrÞ þ βr2f

qr
∂rRðrÞ,

uð1Þ ¼ rf
qr
∂rRðrÞ − i ωβr

2

qr
RðrÞ, and uð2Þ ¼ lðlþ 1ÞRðrÞ

substantiates that such is the case [25].

VI. CONCLUSIONS

We have separated the Proca equations in a
Schwarzschild-AdS spacetime by using the VSH method,
which employs vector spherical harmonics in a spherically
symmetric spacetime, in our case in the Schwarzschild-
AdS spacetime. Specifically, the Proca field was taken to
satisfy an Ansatz in terms of the vector spherical harmonics
and of time and radial dependent functions uðiÞ, with i ¼ 0,
1, 2, and 3. These functions can be classified into electric
modes (uð0Þ, uð1Þ, and uð2Þ) and magnetic modes (uð3Þ). The
Proca equations thus separate and give a system of partial
differential equations which are coupled for the electric
modes and decoupled for the magnetic modes. The
dynamical solutions of the system will have three degrees
of freedom which we call polarizations, and each polari-
zation will have its sets of eigenvectors. The polarization is
of scalar-type if the set of eigenvectors corresponding to it
behave similarly to a scalar, otherwise the polarization is
vector-type. The electric modes have a scalar and a vector-
type polarization, whereas the magnetic modes have the
remaining vector-type polarization. Since the equations for

TABLE VI. Quasinormal mode frequencies ωl of the Proca field electric modes uð0Þ, uð1Þ, and uð2Þ with l ¼ 1,
comparing the VSH and FKKS methods in Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for several values of
the Proca field mass μl. The frequencies of the scalar-type polarization of the electric modes in both methods are
displayed. The numbers are taken from Tables I, II, IV, and V.

rþ ¼ l rþ ¼ 100l

μl ωl (VSH) ωl (FKKS) ωl (VSH) ωl (FKKS)

0.01 3.331 − 2.489i 3.330 − 2.489i 184.968 − 266.394i 184.968 − 266.395i
0.10 3.339 − 2.500i 3.339 − 2.501i 185.604 − 267.461i 185.578 − 267.524i
0.20 3.362 − 2.531i 3.362 − 2.534i 187.452 − 270.612i 187.355 − 270.817i
0.40 3.446 − 2.645i 3.444 − 2.652i 193.925 − 282.119i 193.650 − 282.498i
0.50 3.501 − 2.722i 3.498 − 2.729i 198.077 − 289.799i 197.761 − 290.138i

TABLE VII. Quasinormal mode frequencies ωl of the Proca field electric modes uð0Þ, uð1Þ, and uð2Þ with l ¼ 1,
comparing the VSH and FKKS methods in Schwarzschild-AdS for rþ ¼ l and rþ ¼ 100l and for several values of
the Proca field mass μl. The frequencies of the vector-type polarization of the electric modes in both methods are
displayed. The numbers are taken from Tables I, II, IV, and V.

rþ ¼ l rþ ¼ 100l

μl ωl (VSH) ωl (FKKS) ωl (VSH) ωl (FKKS)

0.01 1.554 − 0.542i 1.554 − 0.542i 0 − 149.984i 0 − 149.984i
0.10 1.557 − 0.552i 1.557 − 0.552i 0 − 152.099i 0 − 152.099i
0.20 1.568 − 0.583i 1.568 − 0.584i 0 − 158.432i 0 − 158.432i
0.30 1.585 − 0.633i 1.584 − 0.633i 0 − 168.817i 0 − 168.817i
0.40 1.607 − 0.699i 1.606 − 0.699i 0 − 183.291i 0 − 183.291i
0.50 1.634 − 0.777i 1.632 − 0.777i 0 − 202.684i 0 − 202.684i
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the electric modes are coupled, it is hard to distinguish their
polarizations. In the massless limit, the equations can be
decoupled without increasing their order and the two
vector-type polarizations degenerate, while the scalar-type
polarization is described by a gradient of a massless scalar
field which obeys the Klein-Gordon equation. The quasi-
normal modes for the Proca field can then be found and
were displayed. In the limit of massless field with
rþ ¼ 100l, the quasinormal modes of the vector-type
polarizations approach the values given in [2]. For the
monopole mode l ¼ 0 we have not shown the values but
our calculations agree with those in [8]. The quasinormal
modes were found using an extension of the Horowitz-
Hubeny numerical procedure [22] for the electric modes
and the original method to the magnetic modes.
We have also studied the Proca equations in a

Schwarzschild-AdS spacetime using the FKKS method.
The complete set of the spacetime symmetries is generated
by the principal tensor and allows a separation of the
Proca equations for generic spinning geometries, in
particular in the Kerr-AdS spacetime [18]. The Ansatz
describes the Proca field as a contraction of the polari-
zation tensor with the gradient of a complex scalar and
enables the Proca equations to reduce to an angular and
radial equation for that complex scalar. The polarization
tensor depends on the principal tensor and a complex
constant β, whose discrete values are determined by the
equations and each value corresponds to a different
polarization. It remains unclear whether the FKKS
Ansatz captures all the degrees of freedom of the Proca
vector field. In order to study this issue, an analysis of the
Proca system in the nonrotating limit of the Kerr-AdS
spacetime, i.e., in the Schwarzschild-AdS spacetime, was
made. We analyzed this Ansatz in Schwarzschild-AdS to
check if it is able to describe all the polarizations. We
showed that the FKKS Ansatz in the Schwarzschild-AdS
limit describes two polarizations of the massive vector
field, namely the scalar-type and the vector-type polar-
izations corresponding to the electric modes of the field,
and it was verified that the method allows for an easier
identification of each polarization. Moreover, for these
electric modes an analytical correspondence between the
VSH method and the FKKS method was obtained,
revealing a remarkable transformation that decouples
the two polarizations in the Proca equations with the
relevant scalar function still obeying a second-order
partial differential equation. In the massless limit, we
observed that the complex scalar field of the FKKS Ansatz
associated to the scalar-type polarization obeys the Klein-
Gordon equation and the expression for the vector field is
equivalent to the gradient of this complex scalar. Thus, the
FKKS method in the massless limit yields the same result
as the VSH method. On the other hand, the FKKS Ansatz
does not capture the magnetic modes. Since it is known
that magnetic modes are present in the Kerr geometry in

the FKKS Ansatz [19–21], the reason for the absence of
the magnetic modes may be due to the degeneracy of the
principal tensor in the nonrotating limit. The quasinormal
modes of the electric sector of the Proca field with the
FKKS Ansatz were computed using the Horowitz-Hubeny
numerical procedure.
We performed a numerical comparison of the quasinormal

modes of the electric sector that were obtained by the VSH
method and the FKKS method. The quasinormal modes of
the electric sector in both methods coincide well, having a
maximum relative deviation of 0.2%. Even though only the
fundamental quasinormal modes are displayed here for
l ¼ 1, this corroborates that the FKKS method is not only
able to describe the electric modes but also is able to
decouple both polarizations naturally in the electric mode
sector. In the massless limit, the quasinormal modes for the
scalar-type polarization do not vanish in both methods,
coinciding with the quasinormal modes of a Klein-Gordon
scalar field. Nevertheless, these modes are nonphysical since
they can be removed by the gauge freedom. Since the FKKS
Ansatz does not describe the magnetic modes, the quasi-
normal modes associated to this sector cannot be compared.
Further study of the polarizations described by the FKKS

Ansatz in spinning geometries should be undertaken. For
the Kerr metric an analytical comparison between the
Teukolsky method and the FKKS method in the massless
limit was presented in Ref. [19], and so it would be
interesting to see an extension of such a comparison for
Kerr-AdS, and even for Kerr-dS. This is achievable since
the Newman-Penrose formalism used by Teukolsky in Kerr
can in principle be extended to Kerr-AdS.
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APPENDIX: COMPARISON OF NUMERICAL
CONVERGENCE BETWEEN THE VSH AND

FKKS METHODS

In Sec. V, when comparing the VSH and FKKS methods
we made notice that the FKKS method converges faster. To
see this convergence explicitly we show two figures, Figs. 1
and 2, where the quasinormal modes corresponding to the
last row of Table VI are computed with varying N. The
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value obtained by the VSH method seems to converge to
the value obtained by the FKKS method. Even though the
value corresponding to the FKKSmethod also changes, this

change only occurs in the fifth significant digit. It was not
possible to compute for higher N since it requires higher
machine precision.
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