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We construct a Bayesian inference deep learning machine for parameter estimation of gravitational wave
events of binaries of black hole coalescence. The structure of our deep Bayesian machine adopts the
conditional variational autoencoder scheme by conditioning on both the gravitational wave strains and the
variations of the amplitude spectral density (ASD) of the detector noise. We show that our deep Bayesian
machine is capable of yielding posteriors compatible with the ones from the nested sampling method and
better than the one without conditioning on the ASD. Our result implies that the process of parameter
estimation can be accelerated significantly by deep learning even with large ASD drifting/variation. We
also apply our deep Bayesian machine to the LIGO/Virgo O3 events, the result is compatible with the one
by the traditional Bayesian inference method for the gravitational wave events with signal-to-noise ratios
higher than typical threshold value. We use one GPU device, NVIDIA RTX3090, to train the deep learning
machines, which takes about 12 hours. After training, it takes less than one second to generate the posterior
of a gravitational wave event and is far faster than the conventional nested sampling method.

DOI: 10.1103/PhysRevD.105.044016

I. INTRODUCTION

Detection of gravitational waves (GW) from the distant
compact binary coalescence has now become quite
common since the first operation runs of LIGO started
in 2015 [1], and up to now, about a hundred events have
been found [2,3]. Due to the extreme weakness of the GW
signal, the extraction of the source parameters from a given
strain data requires heavy computational cost based on
nested sampling [4–6] and Markov-Chain-Monte-Carlo
algorithm [7,8], and such task of parameter estimation
(PE) is very time consuming. This will then delay the
announcement of the discoveries and the public sharing of
the strain data for more general usages and PE results. Once
the event rate of detection increases from few events per
month to few events per day, this time delay issue of
parameter inference will be more severe. Therefore, the
acceleration of the PE for GWevents is an urgent task in the
vision of the improvement of the sensitivity for the new
generation of gravitational wave detectors [9]. The main
obstacle for accelerating the PE is the time-consuming scan
of the likelihood function for obtaining the posteriors in
Bayesian inference scheme [10–14]. One way to bypass
this issue is to find a way of performing likelihood-free
inference. This is indeed what deep learning can do by

training the Bayesian inference machine with lots of mock
data so that it can mimic the likelihood without event-by-
event scanning. This deep-learning-based machine (or deep
machine, for short) can then be implemented to extract the
parameters of the GW events in a very efficient way. Some
pioneer works in this direction have been done in [15,16]
by adopting the variational autoencoder (VAE) [17,18] or
the normalizing flow [19], and see [20,21] for the more
recent progress. However, in these works, all training data
share the same power spectral density (PSD) [or its square
root, the amplitude spectral density (ASD)] of the detector’s
noise, which may not be realistic since the detector noise
will drift in general. This means that the deep machine
should be retrained for the events with different ASDs.
In this work, we extend the conditional VAE (CVAE)

scheme developed in [15] to also conditioning on the ASD
of the detector noise so that the resultant deep machine can
deal with the GW events measured at different time
intervals, for which the ASD will drift accordingly.1

When finishing this note, we find that a similar consid-
eration is also adopted in recent work [21] in the scheme of
normalizing flow.

*Corresponding author.
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1Our machine-learning codes used for this work are imple-
mented based on TensorFlow [22] and can be found in the open
Gitlab forum: https://gitlab.com/hance30258/gwcvae. Besides,
we adopt BILBY [14] to perform conventional Nested Sampling
PE dynesty [6] to get the results for comparison.
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The remainder of this paper is organized as follows. In
the next section, we will sketch the scheme of CVAE for the
inference of the source parameters of the GW events
without or with the conditional ASD. In Sec. III we
describe how we prepare the training data, especially on
how to prepare the variations of ASD and the mock strain
data. In Sec. IV we describe the detailed structure of our
CVAE model, such as the layer structures and the hyper-
parameters. In Sec. V we first discuss the training pro-
cedure, including the way of avoiding KL collapse and the
learning rate decay, and carry out the self-check of our
Bayesian inference machine. We then show the performance
of our machine when applying to the mock data by
comparing it to the traditional PEmethod by their posteriors.
We also consider the endurance of our machine to the drift of
the ASD when compared to the CVAE model but without
conditional ASD. In Sec. VI, we apply our Bayesian
inference machine to LIGO/Virgo O3 events [23,24], and
show their performance. Finally, we conclude our paper in
Sec. VII.

II. CVAE FOR BAYESIAN INFERENCE
OF GW EVENTS

The variational autoencoder (VAE) is a unsupervised
machine learning scheme, which can be used to reveal the
distribution functions of the input data. It first compresses
the input data into the hidden layer by its encoder part, and
then decompresses the hidden layer into the output by its
decoder part. For example, if we prepare many mock strains
as the training data, then the resultant well-trained machine
can learn the distribution of the strains, and the hidden
layers will encode the information about the distribution of
the source parameters. However, to make the VAE be useful
for the inference of the source parameters, we need to train
the machine by simultaneously providing the strains fyg
and the associated source parameters fxg as the input data
but feeding to different encoders. The schematic structure
of CVAE is similar to what is shown in Fig. 1. The loss
function of this machine can be thought of as the upper
bound on the negative of the posterior distribution pðxjyÞ,
i.e., the so-called evidence lower bound (ELBO) and
denoted by LELBO,

− logpðxjyÞ ≤ Ez∼Ew1
ðzjx;yÞ½− logDw3

ðxjy; zÞ�
þ DKL½Ew1

ðzjx; yÞkEw2
ðzjyÞ� ð1Þ

where Ewi
for i ¼ 1, 2 denote the distributions of the

encoders with the associated weights and biases denoted by
wi, and Dw3

the one of the decoder with w3 the associated
weights and biases. Moreover, the arguments and the
conditional arguments of the encoders and decoder denote
their outputs and inputs, respectively. The right-handed side
of the first line of (1) is the so-called reconstruction loss
measuring the difference between input and output, and the

second line is the KullbackLeibler (KL) loss measuring the
difference between the hidden layer distributions of the two
encoders.
After the training, we can remove the part associated

with the source parameters but keep only the one associated
with the strains, so that the remaining part (as shown on the
right part of Fig. 1) can be treated as the Bayesian inference
machine to output the posteriors of the source parameters
for a given input strain. Namely, we expect

pðxjyÞ ≈Ez∼Ew2
ðzjyÞ½Dw3

ðxjz; yÞ�: ð2Þ

Even though Dw3
ðxjz; yÞ is a Gaussian distribution, the

average over z ∼ Ew2
will lead to non-Gaussian posterior

approximation, as generally expected.
The above scheme was first proposed and implemented

in [15], and can be shown to produce compatible posteriors
in comparison to the conventional PE. However, in reality,
the ASD of the detector’s noise can drift so that ASD varies

FIG. 1. The schematic structure of CVAE for the inference of
source parameters of GW events. The goal is to generate the
posteriors pðxjyÞ of source parameters efficiently for a given
strain data without knowing the likelihood pðyjxÞ. Left: the
CVAE machine with two encoders Ew1

, Ew2
and one decoderDw3

.
Right: the Bayesian inference machine, which is obtained by
removing the Ew1

part of CVAE after the CVAE is well trained, so
that we expect pðxjyÞ ≈ Ez∼Ew2

ðzjyÞ½Dw3
ðxjz; yÞ�. Therefore, its

outputs are the posteriors of the source parameters. Our scheme
shown here is a generalization of [15] by adding the ASD of the
detector noise as the conditional inputs besides the associated
strain data.
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event by event. This drifting effect has not been taken into
account in [15]. In this work, we extend the CVAE scheme
of [15] to also include the variations of ASD as the
conditional input data. The new scheme is shown in
Fig. 1. This is the same as the one implemented in [15]
except that an ensemble of ASD is also conditioned when
training, and an ASD should be provided as the input along
with the corresponding strain data when generating the
posteriors of a GW event by the resultant Bayesian
inference machine, i.e., the right part of the Fig. 1.

III. PREPARATION OF TRAINING DATA

As discussed, the training data include both the strain
data and the ASD of the detector noise. As a proof-of-
concept study, we only consider the binaries of black holes
(BBH) without spin, which are labeled by two intrinsic
parameters, i.e., the component masses m1, m2. Besides,
we also have the extrinsic parameters describing the
locations of the binaries. For simplicity, we fix all the
extrinsic parameters except the luminosity distance dL,
which dictates the signal-to-noise ratio (SNR). Moreover,
in the usual conventional PE, we need to optimize the
matched filtering overlap by adjusting the time of coales-
cence tc and phase at coalescence ϕ0. Thus, we also include
tc and ϕ0 as the parameters for inference. In total, we have
five parameters for inference, and their ranges for flat priors
and the fixed values of other parameters are given in
Table I.
Unlike in [15], we adopt the frequency-domain templates

to generate the strain data of one-second duration, instead
of the time-domain ones as in [15]. We also change the
sampling rate from 256 Hz to 1024 Hz to yield waveforms
of 512 Hz bandwidth after fast Fourier transform and cover
the high-frequency part of typical real-data waveforms.
With the setup of priors given in Table I, we sample 2 × 106

sets of parameters to produce the theoretical waveforms by
the IMRPhnomPv2 waveform model [25], which later will

be used to superpose with the sample detector noise to
produce the mock strain data.
Now, we turn to the preparation of the set of ASD

templates used for training our CVAE. To take care of the
ASD variations in LIGO/Virgo detectors, we would like to
simulate an ASDmodel by fitting to a backbone set of 2000
sample ASDs, each of which is obtained from a 4096-
second segment of the O3a strain data. These 2000 seg-
ments released by LIGO Scientific Collaboration cover the
whole strain data of LIGO/Virgo’s O3a run-time. Each
4096-second segment is divided into 4096 one-second
pieces. Each piece is sampled with 1024 Hz to get a
component ASD. The mean of the 4096 component ASDs
yields a sample ASD in the backbone set. A 4096-second
segment seems too long for a typical one-second BBH
event due to significant noise-drifting. However, by taking
the mean to yield an ASD, the glitches could be averaged
out. Since our CVAE model is trained to combat ASD
variations, thus we choose such a long segment to eliminate
the glitches in advance.
To construct a stochastic ASD model to simulate ASD

variations from the above backbone set of ASDs, we first
construct a minimal ASD profile Am½f� obtained by
collecting the minimum of each frequency bin from the
above backbone set of ASDs. Based on Am½f� as shown in
Fig. 4, we assume that the variations of the logarithm of the
ASD A½f� mainly obey the chi-square distribution α≡
Z2
1 þ Z2

2 of two degrees of freedom with Z1;2 ¼ N ð0; 1Þ,
but with a small but uniform residual variation β≡
N ð0; 1=8Þ for all frequency bins. Noting that N ðμ; σÞ
denotes a Gaussian distribution with mean and variance
ðμ; σ2Þ. Thus, our ansatz stochastic ASD model is given by

δ logA½f�≡ logA½f� − logAm½f� ¼ α log r½f� þ β: ð3Þ

We then use the aforementioned backbone set of ASDs to
fit the overall variation factor r½f� of 513 frequency bins,

TABLE I. Ranges of the priors for the BBH GWevents adopted for the training data of the CVAE models used in
this paper.

Parameters Symbol Prior Rangea Units

Mass 1 m1 Uniform [20, 65] Solar masses
Mass 2 m2 Uniform [20, 65] Solar masses
Luminosity distance dL Uniform Volume [1200, 2200] Mpc
Time of coalescence tc Uniform [0.65, 0.85] Seconds
Phase at coalescence ϕ0 Uniform [0, 2π] Radians
Right ascension α · 1.84 Radians
Declination δ · −0.62 Radians
Inclination η · 0 Radians
Polarization ϕ · 0 Radians
Epoch · · 1242459857 GPS time
Detector · · Livingston ·

aThe prior ranges chosen here are aiming at performing the PE of the real LIGO/Virgo’s O3a events with some
adjustments due to the limitation of our computing resources.
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see more discussion of the fitting procedure in Appendix.
In Fig. 2, we show the chi-square distribution α and the
corresponding confidence level, and in Fig. 3 we show the
overall variation factor r½f� which turns out to be almost a
continuous function, and the histograms of the overall
drifting factor ðr½f�Þα. We see that the overall ASD
variation factor can be larger than 15 for some frequency
ranges at the 90% confidence level of the ASD variation.
Since our ASD model (3) is obtained by fitting the

sample ASDs of the whole LIGO/Virgo’s O3a run-time,
thus the ASDs generated from it can catch the generic
features of ASD variation/drifting during the O3a. In Fig. 4,
we show the range of the ASD variations generated by the
stochastic ASD model (3). However, we should also
caution the readers that the task of constructing a perfect
ASD model is almost impossible since not all origins of the

variations are well understood, e.g., the unexpected fre-
quent glitches. Our ASD model (3) is simple and may not
catch the full features of the ASD variations.
We will use the ASD model (3) to generate about two

million ASDs as the training set for our CVAE model.
Therefore, the resultant PE model will learn the generic
feature of ASDs and can endure the drifting of ASD. This
contrasts with the PE model considered in [15,16], in which
the ASD used to whiten the strain data is fixed so that the
model should be retrained if the drifting of the ASD is
significant.
Based on the above discussions, we can generate a mock

strain as follows. We randomly pick up a theoretical
waveform h½f� and ASD A½f� from the above prepared
sets, then we can form a noise n½f� and a strain d½f� in the
frequency domain as follows

d½f� ¼ h½f� þ n½f�; ð4Þ

n½f� ¼ 1

Δf
W½f� ⊙ A½f� ð5Þ

where Δf is the frequency bin size which we set to 1 Hz in
this work, and W½f� is the white noise in the frequency
domain, which is responsible for the unit Gaussian noise. In
Fig. 5, we show a typical example.
With the above procedure, we generate about 2 × 106

mock strains, of which 80%will be used as the training data
set for CVAE, and 20% as validation data set for the
resultant Bayesian inference machine. This amount of the
training data set is huge enough to exhaust almost all
possible strain data realizations.
Moreover, to quantify how the ASD variations affect the

quality of the strain data, we compare the histograms of the
SNR obtained from the 2 × 106 mock strain data with and
without ASD variation. The result is shown in Fig. 6, from

FIG. 2. Chi-square distribution for α used in (3), and the vertical
lines indicate the corresponding confidence levels.

FIG. 3. Profiles of ASD variations from the stochastic ASD
model (3). The blue curve is the fitted r½f�. The shaded pink
regions indicate the various profiles of the overall variation factor
ðr½f�Þα at 30%, 50%, 70% and 90% confidence levels, respec-
tively. We see that the overall ASD variation factor can be larger
than 15 for some frequency range.

FIG. 4. Ranges of ASDs generated from our stochastic ASD
model (3) with the pink shaded regions indicating the profile
ranges at 30%, 50%, 70% and 90% confidence levels, respec-
tively. The brown curve is the minimal ASD profile Am½f�.
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which we can see that the SNR distribution is downshifted
by quite an amount. This is expected, as the drifting factor
at some particular frequency range can be as large as 15. It
implies that a well-trained CVAE model augmented by our
ASD model (3) should be able to combat the noise drifting
and yield reliable PE results.

IV. THE DETAILED STRUCTURE
OF CVAE MODEL

The schematic structure of our CVAE model and the
resultant Bayesian inference machine has been shown in
Fig. 1. Now we would like to expose its detailed structure.
For simplicity, our CVAE model is composed of only dense
layers but not other types of layers. However, it works. We
simply stack the dense layers to construct three neural
networks (NNs), i.e., two encoders and a decoder.
Moreover, we adopt almost the same layer structure for
all three NNs, see Fig. 7 for the details. The only

differences among them are the input data and the dimen-
sions and the realizations of the hidden layers. Specifically,
we use 8- and 5-dimensional multivariate Gaussian dis-
tributions for the hidden layers of Ew1

and Dw3
, and adopt a

more powerful mixture Gaussian distribution layer for Ew2
,

which has eight dimensions and each dimension is com-
posed of eight components of Gaussian normal distribu-
tions. From our experience, adopting the mixture Gaussian
for the hidden layer enhances a lot the performance of the
model. All hidden layers with Gaussian distributions are
realized by the standard reparameterization trick used for
variational autoencoder [17]. In Table II, we summarize
these differences.
Note that the latent vectors for the encoders Ew1

and Ew2

are denoted by z, which will then be input to the decoder.
However, the output of the decoder is again a random
vector, whose components are identified as the source
parameters, i.e., x ¼ θ. The distribution of x gives the
approximate posterior of the source parameter θ through
the averaging procedure given in (2).
The hyperparameters specified in Fig. 7 and Table II

achieve well training of our CVAE model, despite that they
can be varied. However, we find that it is sufficient for well

FIG. 5. A typical mock waveform h½f� (green) and noise n½f�
(orange). The latter is generated from a given ASD (blue)
obtained by (3). Here we only plot the amplitude part.

FIG. 7. Structure of neural network used in CVAE model of
Fig. 1. Note that we adopt this same NN for all three NNs, i.e.,
Ew1

, Ew2
, and Dw3

of Fig. 1. The ASD is the common input, and
there is an additional input denoted by Input=ASD. The
Input=ASD and the dimensions of the hidden layer vary for
different NNs, which we summarize in Table II. The output is a
random latent vector, z or x ∼ distribution which is also specified
in Table II. The dash-lined box contains the part associated with
the conditional ASD, which is absent in the CVAE model of [15].

FIG. 6. Histograms of SNRs for all the training strain data
generated by using the priors in Table I and the ASDs generated
by Am½f� (blue) and A½f� (orange) of (3). It shows a significant
down-shift of the SNR distribution due to the noise-drifting.
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training if the dimension of the hidden layer is greater than
the dimension of the target variable. Using more dimen-
sions may need a longer time to train but improve the
performance just slightly.

V. TRAINING THE CVAE MODEL AND THE
PERFORMANCE

With the above structure of the CVAE model, we train
the model by the aforementioned training data set of batch
size 2048. We then calculate the loss function, i.e., LELBO
and update the model by Adam optimizer [26] with
learning rate 10−4. The reconstruction loss is evaluated
by replacing x in Ez∼Ew1

ðzjx;yÞ½− logDw3
ðxjy; zÞ� by the

input source parameter θ. The averaging procedure over
z in the above and in evaluating the KL loss is done by the
Monte-Carlo method. There are two effective ways to
achieve well training. The first way is addressed to the
so-called KL collapse [27], which states that KL loss may
happen to be extremely small so that the variational nature
of CVAE is lost. To avoid the KL collapse, we can adopt the
annealing procedure by introducing an annealing factor b ∈
½0; 1� so that the ELBO is changed to

LðbÞ
ELBO ¼ Ez∼Ew1

½− logDw3
� þ bDKL½Ew1

kEw2
�: ð6Þ

In the early training phase, we slowly tune up the annealing
factor to avoid the KL collapse. When b is far smaller than
one, we are mainly training the VAE, i.e., ignoring the Ew2

which will be optimized again when b is close to one.
Specifically, we proceed the KL annealing for the first 5
epochs with the following annealing behavior

bðtÞ ¼ b0 sin

�
π

2
t=c

�
; ð7Þ

where t denotes the number of generations (each generation
means finishing a batch training) and c ≈ 103 is the number
of generations within an epoch, and the values of b0 for
these 5 epochs are set to ½10−2; 1

4
; 1
2
; 1; 1�. Note that the

annealing rate gradually approaches zero at the end of each

epoch. After these 5 epochs, b will be set to one for the
remaining training period, which is about 103 epochs.
The second effective way to achieve well training more

efficiently is to reduce the learning rate gradually. We
reduce the learning rate lr at every generation at such a rate

lrðtÞ ¼ 2
− t
2×105 lr0 in the total training period of 106 gen-

eration. With the implementation of the above two effective
ways, we can achieve well training of our CVAE model. A
typical example for the evolution of the reconstruction
and KL losses at the training and validation periods is
shown in Fig. 8, which indicates the KL annealing
at the early training phase. Moreover, the perfect overlap
between training and validation losses indicates there is no
overfitting.
In the following, we will compare our conditional-ASD

CVAE model, which we denote as CVAEASD, and the one
used in [15] but with KL annealing and learning rate decay
incorporated, which we denote as CVAEnc-ASD with “no-
conditioning” short-handed by nc. That is, CVAEnc-ASD has
the same layer structure as shown in Fig. 7 except for the part
inside the dash-lined box, which is used for conditioning on
ASD.2 Note that we implement CVAEnc-ASD by our own
code and then train it with strain data whitened by stationary
ASD, i.e., theAm½f� given in (3). Also, the mixture Gaussian
distribution is used for Ew2

in CVAEnc-ASD rather than the
simple diagonal Gaussian distribution used in [15]. Here, the
over-line is to remind that the KL annealing and learning rate
decay are implemented in the training procedure. This is in
contrast to the CVAEmodel used in [15], whichwe denote as
CVAEnc-ASD. It turns out that the implementation of KL
annealing and learning rate decay in the training procedure is
important in achieving better accuracy of final posteriors, as
shown below in comparing the P-P plots and histograms of
KL divergences.

TABLE II. Input and hidden layers of the CVAE model.

Ew1
ðzjx; yÞa Ew2

ðzjyÞ Dw3
ðxjz; yÞ

Input=ASDb ½θ; d� d ½z; d�
Hiddenc Dense½16; linear� Dense½24; linear� Dense½10; linear�
Distributiond Gaussianð8Þ MixtureNormalð8; 8Þe Gaussianð5Þ

aHere x ¼ θ denoting the source parameters, y ¼ ðASD; dÞ with d the strain, and z the random latent vector.
bThis means the additional input other than ASD.
cThis is the hidden layer whose outputs are means and variances.
dThis is the distribution used to generate the random latent vector z, whose means and variances are given by the

outputs of the hidden layers.
eThis is the linear combination of 8 Gaussian distributions.

2This is the layer structure used in the version 1 and 2 of [15].
In the latest version (version 3) of [15], a more complicated
structure with convolutional neural networks is adopted. How-
ever, the performance of P-P plot [29] and KL divergence [30]
of CVAEnc-ASD shown below is still better than the latest ones
in [15].
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Our models are all trained by one GPU device, NVIDIA
RTX3090, where the training time is 12 hours for
CVAEASD and 6 hours for CVAEnc-ASD. However, the
computational time for generating the posterior of a GW
event by evaluating 105 distribution samples is less than
1 second for both models. This is far faster than the time
required by dynesty running on a single CPU core, which is
about 12 hours.
After training the CVAE models, the first thing is to

check the self-consistency of the resultant Bayesian infer-
ence machine, i.e., calculating the P-P plot, which is the
cumulative distribution function of the p-value of the
posteriors, i.e., p-value ¼ p½pðxjyÞ > xjnull hypothesis�.
By construction, the distributions of the input parameters
should equal the posteriors, so that p-value should be the
uniform of unity. Thus, the P-P plot should be diagonal for
self-consistency. The result is shown in Fig. 9 and indicates
that our Bayesian inference machine CVAEASD is self-
consistent. Compared to the P-P plot shown in Fig. 4 of
[15] obtained for CVAEnc-ASD, the one shown here is far
more convergent. This is due to the implementation of KL
annealing and learning rate decay, and also to the condi-
tional ASDs.
Next, we compute the posterior of a typical mock GW

event by CVAEASD. To produce this posterior, we need to
sample about 8 × 104 latent vectors from z ∼ Ew2

ðzjyÞ, and
then use (2) to average over z by Monte-Carlo method to
obtain the posterior pðθjd;ASDÞ for the source parameters
θ.3 The results are shown in Fig. 10, in which we also
compare with the results obtained from the traditional PE

algorithm dynesty. We can see that the marginal posteriors
from both methods are compatible.
One essential question about the performance of our

CVAE Bayesian machine CVAEASD is how good it is
when compared to CVAEnc-ASD. One way to characterize
such a performance is to compare their KL divergences
with the posterior obtained from dynesty, i.e., to compare
DKLðpdynestykpASDÞ, and DKLðpdynestykpnc-ASDÞ, where

FIG. 8. Training and validation loss for each generation. The
variation at early stage are caused by cyclic KL annealing [28].
The perfect overlap between training and validation loss indicates
there is no overfitting.

FIG. 9. P-P plot for our CVAE model. The CDF is calculated by
103 mock data. For each mock data, we use 2 × 104 samples to
estimate the p-value of each parameter.

FIG. 10. The marginal posteriors of a typical mock GW event
evaluated from CVAEASD (red) and the traditional PE method,
i.e., dynesty (blue). The contour represents 50% and 90%
credible level and the true parameter are shown by the blue
lines. The KL divergences between posteriors of these two
method are (0.0005, 0.0061, 0.0184, 0.0262, 0.0010) in the
following order of the parameters: ðq;M;ϕ0; tc; dLÞ.

3The amount of the samples, i.e., 8 × 104, used here to obtain
the posterior is chosen to be the same as in [15] so that we can
compare the performance of our CVAE model with theirs on an
equal footing. Later on, we will also use the same amount of
samples to obtain the posterior by the nested sampling method
dynesty for comparisons.
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pdynesty, pASD and pnc-ASD denote the posteriors obtained
from dynesty, CVAEASD and CVAEnc-ASD, respectively.
Note that smaller KL divergence means the posteriors from
both CVAE models are close to the one from dynesty.
Usually, the threshold for an acceptable “nice” result is for
the KL divergence to be smaller than 0.1. Moreover,
compared to the KL divergences shown in Fig. 5 of [15]
obtained for CVAEnc-ASD, the results shown here are about
one to two orders better. Again, this is due to the
implementation of KL annealing and learning rate decay
in the training procedure.
We prepare 512mockGWstrains as the inputs to the three

Bayesian machines for comparison. These mock GW strains
are generated according to the BBH priors in Table I and the
ASDs obtained from (3). We then evaluate the distributions
of DKLðpdynestykpASDÞ, and DKLðpdynestykpnc-ASDÞ for all
five parameters ðq;M;ϕ0; tc; dLÞ over the above mock
strains. To obtain pdynesty we use BILBY to perform the
dynesty sampling [14] with 5000 live points and dlogz equal
to 0.1. The results are shown in Fig. 11. We see that
CVAEASD performs better than CVAEnc-ASD, especially
for dL at DKL ∼Oð1Þ by about one order of improvement.
Besides the histograms of KL divergences shown in

Fig. 11, we also list these KL divergences according to the
SNR of each mock event, and the result is shown in Fig. 12.

FIG. 12. Comparison of the dependence on SNR for the two
KL divergences for all five parameters ðq;M;ϕ0; tc; dLÞ, i.e.,
DKL½pdynestykpASD� (blue) and DKL½pdynestykpnc-ASD� (orange),
which are already evaluated in Fig. 11. We see that our CVAE
model has better performance, especially at low SNR.

FIG. 13. Comparison of the capability of CVAEASD and
CVAEnc-ASD in fighting against the ASD variations at various
confidence levels (CLs): 0% < CL < 30% (red), 30% < CL <
50% (blue), 50% < CL < 70% (green) and 70% < CL < 90%
(orange). This is characterized by plotting the cumulative
distribution functions (CDFs) of KL divergences
DKL½pdynestykpASD� (solid line) and DKL½pdynestykpnc-ASD�
(dashed line) of parameters ðq;M;ϕ0; tc; dLÞ. The plots show
that CVAEASD is better than CVAEnc-ASD in fighting against
ASD variations. Besides, CVAEASD is also less sensitive to the
ASD variations than CVAEnc-ASD.

FIG. 11. Histograms of KL divergences, i.e.,
DKLðpdynestykpASDÞ (blue) and DKLðpdynestykpnc-ASDÞ (orange)
for all five parameters ðq;M;ϕ0; tc; dLÞ over 512 mock GW
strains of BBH with ASD variations similar to the one in Fig. 4.
The preparation of these mock strains is described in the main
text. Note that pdynesty, pASD and pnc-ASD are the posteriors
obtained from dynesty, CVAEASD, and CVAEnc-ASD, respec-
tively. We see that CVAEASD performs better than CVAEnc-ASD,
especially for ϕ0 and dL at DKL ∼Oð1Þ.
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In general, the CVAE models perform better at higher SNR
when benchmarking by the dynesty results. This could be
expected for the CVAE models with primitive structures.
We can also see that CVAEASD has better overall perfor-
mance than CVAEnc-ASD, especially for M, tc and dL, and
at low SNR. The improvement of PE performance by
conditioning on ASDs seems quite uniform for all SNR.
This implies that our scheme can help to sort out more GW
events of low SNR.
Finally, we would like to compare the capability of

CVAEASD and CVAEnc-ASD in fighting against ASD
variations by tuning the confidence level of the overall
variation factor shown in Fig. 4. To proceed, we first
classify the mock strains used in Figs. 11 and 12 by the
confidence level of A½f�=Am½f�, and then plot the KL
divergences DKL½pdynestykpASD� (solid line) and
DKL½pdynestykpnc-ASD� (dashed line) for each class. We
show the results in Fig. 13 for four different ranges of
confidence level. We see that CVAEASD is always better
than CVAEnc-ASD in fighting against ASD variations, as
expected. Especially, the PE results of CVAEnc-ASD are
quite sensitive to the confidence level of ASD variations,
however, the ones of CVAEnc-ASD are not. This indicates
the superiority of our CVAE model due to conditioning on
an extensive set of ASDs generated by our ASD model (3).

VI. APPLICATION TO LIGO/VIRGO’S O3A
EVENTS

In the previous section, we have shown that our CVAE
model can in general perform better in obtaining PE results
for the mock events than the one without conditioning on
ASD variations. We now would like to continue the similar
comparison for the real LIGO/Virgo’s 39 BBH O3a events,
from each of which we take one-second event strain data,
along with the 64-second surrounding data to construct the
corresponding ASD for the standard PE practice. For
simplicity, we only use the strain data from LIGO/
Livingston. We choose the same priors as listed in I to
perform PE of the parameters ðq;M;ϕ0; tc; dLÞ for these
39 BBH events.4 Of course, the result will depend on how
well our ASD model (3) can catch the ASD variation of
these 39 BBH events with respect to Am½f�. We will first
present the PE results and the comparison with ones
obtained from CVAEnc-ASD, and then discuss the effect
of the quality of our ASD model on the results.
In Fig. 14 we show the marginal posteriors of the O3a

event GW190910_112807, of which the SNR is 12.6, one
of few events with SNR larger than 10 among 39 BBH
events. We see that the results obtained by CVAEASD are

compatible with the ones obtained from the ones from the
dynesty. This can be more precisely characterized by the
values of the KL divergence for the parameters
ðq;M;ϕ0; tc; dLÞ, which are (0.088, 0.29, 0.12, 0.12,
0.12). The PE performance of CVAEASD varies event by
event, and the resultant KL divergencesDKL½pdynestykpASD�
and DKL½pdynestykpnc-ASD� plotted according to the SNR for
all 39 BBH O3a events are summarized in Fig. 15. The
results show that overall CVAEASD performs better than
CVAEnc-ASD. However, the superiority of CVAEASD is not
as impressive as in the case of mock events, for which the
ASDs are generated simply by our ASD model (3). On the
other hand, the key feature of the ASDs for these 39 O3a
events could deviate from the ones given by (3).
In Fig. 16 we compare the ASDs of the 39 O3a BBH

events with the range of ASD variations from our ASD
model (3), which is fitted by 2000 4096-second segments
of O3a strain data. We can see that the ASDs of the GW
events fall within the range of model ASD variations at the
confidence level below 34%. This means that our ASD
model indeed generates a far wider spectrum of ASD
variations needed for the PE of these 39 GW events. It

FIG. 14. Marginal posteriors of GW190910_112807 event
obtained by CVAEASD (red) and the dynesty (blue). The SNR
of this event is 12.6. The KL divergences, i.e.,
DKL½pdynestykpASD�, of this event for the parameters
ðq;M;ϕ0; tc; dLÞ are (0.088, 0.29, 0.12, 0.12, 0.12). It shows
that the PE results obtained by CVAEASD are compatible with the
ones by dynesty. The values and the error margins of the
parameters shown in this figure are the ones obtained by
CVAEASD, and the ones obtained by the dynesty are
q ¼ 0.67þ0.13

−0.08 , M ¼ 42.4þ0.90
−0.92 , ϕ0 ¼ 3.07þ1.22

−2.62 , tc ¼ 0.75þ4e−4
−4e−4

and dL ¼ 2175.77þ17.8
−36.88.

4The prior ranges listed in Table I, especially the one for dL, are
narrower than the ones used by standard LIGO/Virgo’s data
analysis. However, as a proof-of-concept study, we just trade the
prior range/accuracy for efficiency.
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implies that we may need to enlarge our machine structure
for training to suppress the unnecessary ASD uncertainty
for achieving higher PE accuracy. The wider range of ASD
variation can be attributed to the long 4096-second duration
of the segments, which are taken to average out the glitches
but then introduce large variations away from the 64-
second ASD segment of the GW events.
As curiosity about the effect of changing the duration of

segments for the conditional ASD variations, in Fig. 17 we

show the ASD variations obtained from the collection of
16000 32-second ASDs of O3a data.5 Compared to the
results in Fig. 16, we can see that the new ASD distribution
produces far tighter ASD variations to the 64-second ones
surrounding the GW events. However, we may expect that
the glitches in the ASDs may not be suppressed as much as
for the 4096-second ones. Moreover, in order to compare
with the 4096-second ones shown in Fig. 15, in Fig. 18 we

FIG. 15. KL divergences, i.e., DKL½pdynestykpASD� (orange) and
DKL½pdynestykpnc-ASD� (blue) listed according to the SNRs of the
39 BBH LIGO/Virgo O3 events. The result shows that CVAEASD

is better than CVAEnc-ASD in the overall PE performance.
However, the PE superiority of CVAEASD is not as impressive
as in the cases of mock events shown in Fig. 12.

FIG. 17. Similar to Fig. 16 but now the ASD variations are
given by 16000 32-second ASDs. The legends are the same as
in Fig. 16.

FIG. 18. The PE result of our CVAE model trained by 16000
32-second ASDs. The ASD for CVAEnc-ASD is just Am½f�
obtained from the minimum of the collection of 32-second
ASDs. This is to compare with its counterpart trained by
4096-second ASDs as shown in Fig. 15.

FIG. 16. Comparison of the ASDs surrounding the 39 O3a
BBH events (red) and from the ASD model (3) simulated from
2000 4096-second segments (blue). The ASD for each GWevent
is constructed from a surrounding 64-second segment. From the
bottom to the top, the blue curves show the range of ASD
variations at the confidence levels of ½1%; 10%; 34%; 50%; 76%;
90%; 99%�.

5In this case, we do not try to construct a stochastic ASD
model like (3) as done for the 4096-second ones. Instead, we just
treat these 16000 32-second ASDs as the training set for the
CVAE model. A more sophisticated ASD model based on this
collection is wanted to generate more amount of variational ASDs
for future improvement.
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show the PE results obtained from our CVAE models by
conditioning on this collection of ASDs. On the other hand,
the ASD for CVAEnc-ASD is just Am½f� obtained from the
minimum of this new collection of 32-second ASDs. We
find that the overall PE performances of both models are
not much different. This suggests that one will face the
trade-off between the long-time variations and short-time
glitches when simulating an ASD model to take care of its
drifting. To further improve the PE performance of our
CVAE model, we may either construct a more sophisticated
ASDmodel than the simple (3) or enlarge the complexity of
the neural network to accommodate more subtle ASD
variations. Either way needs more trials and errors, such as
the one done by [21].

VII. CONCLUSION

In this work, we construct a deep Bayesian machine
conditioning on the variations of the detector’s noise to
perform the parameter estimation (PE) of binary black
holes’ gravitational wave (GW) events based on the deep
learning scheme of conditional variational autoencoder
(CVAE). This is a simple extension of the CVAE model
proposed in [15] in which only strains but not the amplitude
spectral density (ASD) of the detector noise are adopted as
the conditional inputs to CVAE. Our motivation is to
demonstrate the viability of a deep Bayesian machine that
can adapt to the variations or drift of the detector’s noise.
This kind of machine can save time for retraining when
performing PE for various GWevents with slight variations
of the detector noise.
As a proof of concept study, we choose a very simple

layer structure, i.e., three dense layers, for two encoders and
one decoder of CVAE. Despite such a humble deep
machine, we show that the PE results for the mock strains
with variations from a theoretical ASD are compatible with
the ones obtained from the traditional PE method such as
the dynesty once the tricks of KL annealing and learning-
rate decay are implemented in the training procedure.
Besides, we also show that our CVAE machine is better
than the one of [15] in fighting against the ASD variations.
To test our CVAE model for real events and demonstrate

the relevance of conditioning on the detector’s noise, we
also apply our CVAE Bayesian machine to 39 BBH LIGO/
Virgo O3 GWevents. We find that our PE performance can
be compatible with the traditional nested sampling method
for SNR larger than some threshold value, and overall is
better than the CVAE model without conditioning on the

ASDs. We also discuss the possible ways to further
improve the PE performance of our CVAE model by
constructing more sophisticated ASD models or more
complicated neural networks. Finally, we hope that what
we have considered in this paper can help to boost the PE
tasks by deep learning for future GW events.
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APPENDIX: FITTING A STOCHASTIC ASD
MODEL FOR O3a RUN

Here we present the method about how we fix the
drifting factor r½f� in (3). We would like to simulate the
ASD of O3a and its variations so that we can rewrite (3)
into:

logAO3a½f� ¼ α log r½f� þ logAm½f�; ðA1Þ

where AO3a½f� is picked up from the 2000 samples of O3a
ASD curves, and r½f� is a function of frequency bins to be
fixed. Here we neglect the residual variation β since it
introduces a small variation relative to the distribution
α log r½f�. On the left side of (A1), we can form a
probability density functions (PDF) out of the 2000
samples of AO3a½f�, and on the right side, it is a PDF
associated with the chi-square distribution α. The overlap
between these two PDFs then depends on log r½f�. By
maximizing the overlap, we can determine log r½f� bin by
bin. In this way, we obtain our stochastic ASD model (3).
The above construction has assumed the PDF of

logAO3a½f� is nothing but a chi-square distribution, which
is however justified by the fact that the maximal overlap is
almost perfect, i.e., almost 100%. Besides, the bin-by-bin
construction may also ignore the correlations between
different bins, such that our ASD model (3) may not
capture the full characteristics of O3a’s ASD and its
variations. Despite that, the fitted r½f� shown in Fig. 3 is
indeed a smooth function of frequency. This suggests that
the above construction is reasonable.
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