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It has been known for many years that the leading correction to the black hole entropy is a logarithmic
term, which is universal and closely related to conformal anomaly. A fully consistent analysis of this issue
has to take quantum backreactions to the black hole geometry into account. However, it was always unclear
how to naturally derive the modified black hole metric, especially from an effective action, because the
problem refers to the elusive nonlocality of quantum gravity. In this paper, we show that this problem can
be resolved within an effective field theory (EFT) framework of quantum gravity. Our work suggests that
the EFT approach provides a powerful and self-consistent tool for studying the quantum gravitational
corrections to black hole geometries and thermodynamics.
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I. INTRODUCTION

The study of black hole entropy plays a crucial role in the
understanding of the microscopic degrees of freedom
of quantum gravity. The famous Bekenstein–Hawking
entropy takes the form SBH ¼ A

4
. From a more general

viewpoint of quantum gravity, this entropy is only consid-
ered as the tree level result of the black hole entropy [1,2],
and the leading order quantum gravitational correction to
the entropy has been shown to be a logarithmic term.
The logarithmic correction is fundamental and universal,
since it can be derived from many different approaches
such as conical singularity and entanglement entropy [2,3],
Euclidean action method [4–7], conformal anomaly [8],
Cardy formula [9], quantum tunneling [10,11], and quan-
tum geometry [12]. See also the references therein.
A rapid dimensional analysis is sufficient to uncover this

logarithmic term of the entropy. Consider the leading order
quantum gravitational corrections to the thermodynamic
quantities of a Schwarzschild black hole. Since the first
order corrections should have an extra factor ℏG, we expect
the modified black hole temperature be written as
T ¼ 1

8πM ð1 − ℏG a1
M2Þ, where the 1

M2 scaling behavior is to
balance the dimension of ℏG, and the coefficient a1 is to be
fixed by a more fundamental analysis. Due to the thermo-
dynamic law TdS ¼ dM, it immediately leads to the
entropy S ¼ 4πM2 þ 4πa1ℏG lnðM2Þ up to an integration
constant. In fact, in the seminal paper by Fursaev [4], the

one-loop corrections to the thermodynamics of a
Schwarzschild black hole have been analyzed, and the
results are

T ¼ 1

8πM
− γ

2

M3
; S ¼ 4πM2 þ 64π2γ lnðM2Þ; ð1Þ

where we set G ¼ ℏ ¼ c ¼ 1 for simplicity, and the
coefficient γ is calculable and defined as Eq. (5).
However, the backreaction of the quantum effects to the

back hole geometry had not been taken into account.
In fact, the corrections to the thermodynamics must imply
the original Schwarzschild geometry also receives quantum
corrections. For example, the black hole temperature
should be related to the conical singularity of the metric;
the temperature of the form (1) cannot be consistent with
the original Schwarzschild metric. Fursaev stressed that it
would be incomplete without obtaining these thermody-
namic behaviors directly from the modified geometry [4].
Despite its significance, this question remained unan-

swered over decades, especially from the level of effective
action, and it appeared to be quite difficult and unlikely to
find any analytic solution [6,13]. Obviously, from the Wald
entropy formula, any possible higher order curvature terms
of a local form that can be added to the Einstein-Hilbert
action are unable to produce such a logarithmic term, so the
logarithmic correction has to be related to some kinds of
nonlocal effects of quantum gravity, as was alluded to in
the literature [8,14].
In this paper, we will show the problem can be resolved

in the framework of EFT of gravity. The paper is organized
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as follows. First, we display the one-loop effective action of
quantum gravity and show how the trace anomaly is
illustrated in this formalism. Then, we show that the
nonlocal terms in the effective action produce both the
quantum corrections to the geometry and the thermody-
namic quantities such as the temperature and entropy of the
Schwarzschild black hole, which resolves the above men-
tioned problem. Our approach can be easily generalized to
other types of black holes. We will provide the results
for the Reissner-Nordström (R-N) black hole and AdS-
Schwarzschild black hole. Everything fits together nicely,

even in the complicated cases, manifesting the self-
consistencies of our analysis.

II. THE ONE-LOOP EFFECTIVE ACTION OF
QUANTUM GRAVITY AND TRACE ANOMALY

In the EFT of gravity, starting from the action,
I ¼ R

M
1

16πRþ Im, and integrating out the quantum fluc-
tuations of matter and graviton at one-loop level, one
obtains the effective action of quantum gravity. At second
order in curvature, there is [15–19]

IEFT ¼
Z
M

R
16π

þ ½c1ðμÞR2 þ c2ðμÞRμνRμν þ c3ðμÞRμνρσRμνρσ�

−
�
αR ln

�
□

μ2

�
Rþ βRμν ln

�
□

μ2

�
Rμν þ γRμναβ ln

�
□

μ2

�
Rμναβ

�
; ð2Þ

where □≡ −gμν∇μ∇ν with the metric signature
ð−1; 1; 1; 1Þ. The first part is the classical Einstein-Hilbert
action, while the other part represents quantum effects. The
nonlocal operator ln□ is generated from the loop fluctua-
tions of the massless particles, and the coefficients α, β, and
γ are calculable and given as [16,20]

α¼ 1

11520π2
ð5ð6ξ−1Þ2Ns−5Nf−50Nvþ430NgÞ; ð3Þ

β ¼ 1

11520π2
ð−2Nsþ 8Nf þ 176Nv − 1444NgÞ; ð4Þ

γ ¼ 1

11520π2
ð2Ns þ 7Nf − 26Nv þ 424NgÞ; ð5Þ

where Ns, Nf, Nv, and Ng are the number of scalars, four-
component fermions, vectors, and gravitons in the low
energy particle spectrum in nature. These coefficients in
Eq. (2) represent the model-independent prediction of
EFT and should be obeyed by any candidate of a complete
quantum gravitational theory if only it admits the same
particle spectrum at a low energy limit. Notice the formal-
ism of EFT has already been renormalization group
invariant due to the property of the beta function of the

Wilson coefficients such as c3ðμÞ¼c3ðu�Þ−γ lnðμ2
μ2�
Þ etc [6].

The quantum vacuum is expected to be slightly shifted
away from the classical vacuum. Especially, after consid-
ering the quantum fluctuations of the vacuum, the Einstein
tensor is not necessarily traceless. This phenomenon is
called trace anomaly and is transparent from the perspective
of effective action (2). We abbreviate the effective action (2)
as the form, IEFT ¼ IEH þ Iq. The Einstein tensor comes
from the variation of the classical Einstein-Hilbert part
δIEH, which vanishes at the classical vacuum. However,
when the action is modified by quantum effects, we should

have δIEFT ¼ δIEH þ δIq ¼ 0, and generally, the two parts
do not vanish independently but cancel each other. Thus, to
extract the value of the trace of the Einstein tensor, we only
need to study δIq ¼ 1

2

R
d4x

ffiffiffiffiffiffi−gp
Tμνδgμν in detail, where

Tμν denotes the effective energy-momentum tensor caused
by quantum fluctuations. Considering a special variation of
Iq with respect to gμν → eϵgμν, it becomes

δIq ¼
1

2

Z ffiffiffi
g

p
Tμ

μϵ: ð6Þ

Concretely, due to δ ln□ ¼ ln□0 − ln□ ¼ −ϵ, the
variation δIq becomes αRðδ ln□ÞRþ βRμνðδ ln□ÞRμνþ
γRμναβðδ ln□ÞRμναβ ¼ −ðαR2 þ βRμνRμν þ γRμναβRμναβÞϵ.
It gives the trace anomaly,

Tμ
μ ¼ 2ðαR2 þ βRμνRμν þ γRμναβRμναβÞ: ð7Þ

In the above analysis, we temporarily omit the terms like
γðδRμναβÞ ln□Rμναβ in δIq, which may also contribute to
Tμ

μ. However, if variating the action around Ricci-flat
geometries, such as the original Schwarzschild metric,
these contributions vanish, as will see shortly.
We emphasize that, for the conformal fields, the well-

known effect of conformal anomaly has been contained
above. Taking ξ ¼ 1

6
for the conformally coupled scalars

and ignoring the gravitons in Eqs. (3)–(5), the coefficients
α, β, and γ are not independent with each other, then Eq. (7)
can be rewritten as the standard form of the conformal
anomaly [21],

Tμ
μ ¼ λ1F − λ2G; ð8Þ

where the two bases are the square of Weyl curvature
F ¼ CμνρσCμνρσ ¼ 1

3
R2 − 2RμνRμν þ RμνρσRμνρσ, and the
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Euler density G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ, with the
combination coefficients,

λ1 ¼
1

1920π2
ðNs þ 6Nf þ 12NvÞ; ð9Þ

λ2 ¼
1

5760π2
ðNs þ 11Nf þ 62NvÞ: ð10Þ

The first and the second part of Eq. (8) are often called the
type B and type A anomaly in conformal field theory.

III. THE MODIFIED BLACK HOLE GEOMETRY
AND THERMODYNAMICS

Starting from the effective action (2), the gravitational
field equations can be derived by its variation with respect
to the metric, which can be put into the form,

Rμν −
1

2
Rgμν ¼ 8πTμν; ð11Þ

where Tμν represents the quantum corrections to the
classical vacuum, as stated in last section. In the following,
our main aim is to solve the corrections to the original
Schwarzschild geometry from the field equations (11) and
analyze the modified black hole thermodynamics.

A. Quantum corrections to the Schwarzschild metric

The difficulty is that the effective action is complicated,
and the nonlocal operator ln□ is intricate. We split Tμν ≡
2ffiffi
g

p δ
δgμν

Iq into two portions: Tμν ¼ Hμν þ Kμν. Here, Hμν

collects all the terms related to the variation of
ffiffiffiffiffiffi−gp

and
Rμναβ in the quantum part of the Lagrangian

ffiffiffi
g

p
Lq, which

is written explicitly as

Hμν ≡ 2ffiffiffi
g

p
�
δ

ffiffiffi
g

p
δgμν

Lq þ � � � − ffiffiffi
g

p
2γ

δRαβρσ

δgμν
ln

�
□

μ2

�
Rαβρσ

�
;

ð12Þ

wherein the “� � �” represent the contributions from other
curvature terms in the Lagrangian, andKμν collects only the
terms coming from δ ln□; that is,

Kμν ≡ −2
�
αR

δ ln□
δgμν

Rþ βRμν
δ ln□
δgμν

Rμν

þ γRαβρσ
δ ln□
δgμν

Rαβρσ

�
: ð13Þ

The portion Hμν can be derived straightforwardly,
though its form is rather lengthy [18]. We are only
interested in the corrections around the Schwarzschild
black hole metric at the first order in the Wilson coefficients
α, β, γ, so a lot of terms in Hμν vanish, and it reduces to

Hμν ¼ 4γð∇α∇β þ∇β∇αÞ ln
�
□

μ2

�
Rμανβ: ð14Þ

A subtlety is that there has already been a coefficient γ in
Eq. (14), so we only need to use the original Schwarzschild
metric to evaluate it. Clearly, Hμν is traceless for all the
Ricci-flat geometries,

Hμ
μ≡gμνHμν ¼ γð∇α∇βþ∇β∇αÞ ln

�
□

μ2

�
Rαβ ¼ 0: ð15Þ

Concretely speaking, the metric gμν can commute
with the covariant derivative operators ∇μ and □ [notice
ln□ can be formally represented as the form ln □

μ2
¼R∞

0 dsð 1
μ2þs −

1
□þsÞ] and contract with Rμανβ, so the trace

vanishes due to Ricci-flat condition Rαβ ¼ 0.
At present, there is no available technique to deal with

lnð□
μ2
ÞRμανβ in a curved spacetime in evaluating Eq. (14), but

− lnðr2μ2ÞRμανβ would be the only conceivable result by
dimensional argument, which is also supported by the
calculation in flat spacetime [22]. Thus, we obtain

Hμ
ν ¼ γ

��
−
32Mð5M − 2rÞ

r6
; 0; 0; 0

�
;

�
0;−

32Mð3M − rÞ
r6

; 0; 0

�
;

�
0; 0;

16Mð8M − 3rÞ
r6

; 0

�
;

�
0; 0; 0;

16Mð8M − 3rÞ
r6

��
: ð16Þ

One can easily check it is traceless as promised, by adding
all the diagonal elements together.
The variation of ln□ in Eq. (13) is even more difficult to

evaluate, and no one knows how to calculate it directly and
explicitly. However, it doesn’t mean we know nothing
about Kμν. For example, its trace should be the anomalous
term as analyzed in Sec. II; that is,

Kμ
μ ¼ 2ðαR2 þ βRμνRμν þ γRμναβRμναβÞ ¼ γ

96M2

r6
; ð17Þ

where, in the last step, we provided the value for the
Schwarzschild case. On the other hand, since both Hμν and
Kμν are generated from the variation of the same
Lagrangian, they have to be correlated with each other.
Especially, according to Bianchi Identity, there should be

∇μTμν ¼ ∇μðHμν þ KμνÞ ¼ 0; ð18Þ

which leads to
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∇μKμν ¼ −∇μHμν ¼
�
0;
96M2ð2M − rÞγ

r8
; 0; 0

�
: ð19Þ

From the two conditions (17) and (19), we get the form of
Kμν as

Kμ
ν ¼

�
ð0; 0; 0; 0Þ; ð0; 0; 0; 0Þ;

�
0; 0;

48M2γ

r6
; 0

�
;

�
0; 0; 0;

48M2γ

r6

��
: ð20Þ

Actually, the above two conditions are not enough to
determine the form of Kμν completely, and one can still
add a symmetric, divergence free, and trace free tensor to it.
An explanation of what happens in adding such tensors and
why we adhere to the choice of the form (20) will be
provided at the end of Sec. III B to avoid diverging too
much from the main thread.
Then, we can solve the gravitational field equations

around the Schwarzschild metric under the ansatz,

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ; ð21Þ

where fðrÞ ¼ 1 − 2M
r þ γaðrÞ, gðrÞ ¼ 1 − 2M

r þ γbðrÞ.
Substituting Eqs. (16), (20), and (21) into (11) and only
keeping the terms linear in γ, we get the tt and rr
components of the gravitational field equations as

ðbðrÞ þ rb0ðrÞÞγ
r2

¼ 256πMð2r − 5MÞγ
r6

; ð22Þ

ð−2MaðrÞþrðr−2MÞa0ðrÞþrbðrÞÞγ
r2ðr−2MÞ ¼256πMðr−3MÞγ

r6
;

ð23Þ

from which we find the solution,

fðrÞ ¼ 1 −
2M
r

þ γℏG

�
−
512πM
3r3

þ 256πM2

r4

�
;

gðrÞ ¼ 1 −
2M
r

þ γℏG

�
−
256πM

r3
þ 1280πM2

3r4

�
; ð24Þ

where have temporarily restored ℏG to highlight that this is
a quantum-gravitational correction to the metric. The other
components of the field equations (11) are satisfied
automatically.
By hindsight, we don’t need to worry too much about

the annoying Kμν in the above procedure. An easier way is
to solve the field equations directly from the tt and rr
components of Hμν [two independent components of the
field equations are enough to solve the two unknown
functions aðrÞ and bðrÞ in the modified metric], and then
with the derived metric, to check that the trace of the

Einstein tensor is the same as that required by the trace
anomaly. We have to stress that it is just a technical trick
using solely Hμν to solve the field equations. In principle, a
consistent calculation requires one to use the complete
form of Tμν ¼ Hμν þ Kμν to solve the field equations. The
reason why such a trick works is because the tt and rr
components of Kμν vanish in this case [see Eq. (20)], and
then the two components of Hμν are equal to those of Tμν.
Needless to say, unless adding Kμν to it, the angular
components of Hμν will cause trouble in solving the field
equations. In a word, we propose such a trick with the
purpose to simplify the complicated calculation. In general
cases, when a metric has been successfully solved, one
must check that the trace anomaly pops out correctly (by
calculating the trace of Einstein tensor and subtracting
other possible sources of the nonzero trace). If not, a
detailed analysis of Kμν is unavoidable. We have further
considered the R-N and AdS black holes (not Ricci-flat)
and carried out higher order calculations. It is an astonish-
ing (unexpected) fact that the trick works even in these
cases. This may imply some nice property of the operators
ln□ and δ ln□ underlying the intricate problems.
There were some controversies around the quantum

corrections to the black hole metrics from various moti-
vations in the literature [23–25]. In particular, it was argued
in a recent paper [26] that Tμν generated from the action (2)
is only at OðR3Þ or higher order in curvature; hence, it is
dropped off at second order. Accordingly, the gravitational
field equations and the Schwarzschild metric receive no
corrections there. The main distinction between the present
work and [26] is that Tμν doesn’t vanish from our own
analysis. The differences may be fixed in future with more
powerful tools being developed in dealing with the non-
local operator ln□ especially in curved spacetimes. At
present, we emphasize that the feature and advantage of our
result (24) is that both the modified thermodynamics (1)
and the trace (conformal) anomaly (7) can be realized
simultaneously.

B. The modified black hole thermodynamics

With the quantum corrections to the black hole metric
(24), we can further analyze the modified thermodynamics.
Requiring fðrhÞ ¼ gðrhÞ ¼ 0, we find the radius of the
horizon,

rh ¼ 2M þ γ
32π

3M
; ð25Þ

so we still have a well-defined horizon of radius rh on
which the thermodynamics can be constructed. By analyz-
ing the conical singularity of the metric, the black hole
temperature is

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrhÞg0ðrhÞ

p
4π

¼ 1

8πM
− γ

2

M3
: ð26Þ

YONG XIAO and YU TIAN PHYS. REV. D 105, 044013 (2022)

044013-4



We also verified it by calculating the surface gravity at the
horizon. The black hole entropy can be derived from the
Wald formula, which reads [27]

SW ¼ −2π
I � ∂L

∂Rμνρσ

�ð0Þ
ϵμνϵρσdΣ; ð27Þ

where dΣ ¼ r2 sin θdθdϕ, L is the Lagrangian of the
theory, and ϵμν should be normalized with ϵμνϵ

μν ¼ −2,
which means ϵtr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ=gðrÞp

etc. Using the effective
action (2) and the metric (24), we derive the entropy,

SW ¼ πr2h þ 64π2c3ðμÞ þ 64π2γ lnðr2hμ2Þ

¼ 4πM2 þ 64π2γ lnð4M2μ2Þ þ 64π2c3ðμÞ þ γ
128π2

3
:

ð28Þ

The three terms in the first line, respectively, come from the
Einstein-Hilbert part, the other local part, and the nonlocal
part of the EFTaction.Note the entropy (28) has already been
renormalization group invariant, i.e., μ-independent, and
c3ðμÞ þ γ lnðμ2Þ should correspond to some characteristic
scale ls of the complete quantum gravity [6]. If one believes
no new scales other than the Planck scale lp, Eq. (28) would
be written as a neat form, SW ¼ A

4l2p
þ 64π2γ lnðAl2pÞ.

Now, we have found the quantum corrections to the
original Schwarzshild metric, black hole temperature, and
entropy at the first order in the Wilson coefficients. Next,
we illustrate that the modified black hole geometry and
thermodynamics are self-consistent. First, we can check
easily from Eqs. (26) and (28) that the thermodynamic
equation TdS ¼ dM holds. Second, we check the Euler
characteristic is still χ ¼ 2þOðγ2Þ; that is,

χ ¼ 1

32π2

Z
1=T

0

dtE

×
Z

∞

rH

drdθdϕ
ffiffiffiffiffiffi
−g

p ðR2 − 4RμνRμν þ RμνρσRμνρσÞ ¼ 2:

ð29Þ

In the above expression, we used all the corrected values offfiffiffiffiffiffi−gp
, curvature tensors, the horizon radius, and the temper-

ature. It is amazing to see all these complicated numbers
interacting with each other to produce 0 at first order in γ.
This is a rather stringent examination, since that if we got
any of these quantities incorrect, χ ¼ 2 couldn’t come out.
Third, we redid the calculation [6,7] using the Euclidean
action approach. Now, the Euclidean action is evaluated
and explained as the thermodynamic partition function,

IEFT ¼ −
β2

16π
þ 64π2γ ln

�
β2μ2

16π2

�
þ 128π2γ

3
; ð30Þ

where β≡ 1=T. Then, the black hole mass can be
calculated by MðβÞ ¼ − ∂

∂β IEFT, which conversely leads
to the relation between the black hole temperature and
mass,

T ¼ 1

8πM
− γ

2

M3
: ð31Þ

Then, the Euclidean entropy is

SE ¼ βM þ IEFT

¼ 4πM2 þ 64π2γ lnð4M2μ2Þ þ 64π2c3ðμÞ

þ γ
128π2

3
: ð32Þ

The Euclidean entropy exactly matches with the Wald
entropy (28), including the constant term γ 128π2

3
. The

temperature (31) is also the same as Eq. (26) and implies
a modified geometry from the original Schwarzschild
metric.
The thermodynamic behaviors (26) and (28) and their

variants have been given in the earlier literature [2–7].
However, using the EFT formalism, we have also provided
the quantum corrections to the black hole geometry,
accompanied by a fully consistent analysis. The higher
order corrections to the black hole thermodynamics caused
by the effective action can be computed as well [28].
Finally, we come to discuss the freedom of choosing Kμ

ν

as mentioned. The form of Kμ
ν in Eq. (20) is determined up

to adding a symmetric, divergence free, and trace free
tensor to it. Below, we make two comments on this issue.
First, adding such tensors will not change the main
thermodynamic behaviors (1) that we intend to reproduce.
For instance, we add to Eq. (20) an extra divergence free
and trace free tensor,

c1

��
Mð7M−4rÞγ

r6
;0;0;0

�
;

�
0;
Mð3M−2rÞγ

r6
;0;0

�
;

�
0;0;

Mð−5Mþ3rÞγ
r6

;0

�
;ð0;0;0;Mð−5Mþ3rÞγ

r6

�
; ð33Þ

where c1 is a free parameter. Applying the alternative
choice of Kμ

ν, the solved metric has to be modified
accordingly, and the horizon radius becomes rh ¼ 2M þ
γ 32π
3M − γ 5π

3M c1 compared to Eq. (25). Substituting it into the
first line of the Wald entropy (28), the first term gives
πr2h ¼ 4πM2 þ γ 128π2

3
− γ 20π2

3
c1 þOðγ2Þ, and the last two

terms do not change at this order. So, it only brings about an
extra constant term −γ 20π2

3
c1 to the entropy. The temper-

ature can be calculated straightforwardly from the corre-
sponding metric, which is still the form (26). This is
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understandable since TdS ¼ dM must hold if the calcu-
lation is executed correctly. Though the above analysis is
for a concrete example, the conclusion doesn’t change by
adding more complicated divergence free and trace free
tensors. The key point is that γ is dimensionless, so the
extra shift to the horizon radius is destined to be propor-
tional to γℏG=M, which only causes an extra constant term
to the entropy. Obviously, this is a specialty of the present
theory at hand. For cubic gravity or higher order gravity,
where the coupling coefficients are dimensional, adding
such tensors to the original energy-momentum tensor
should modify the black hole thermodynamics more
obviously. Second, we explain why we adhere to the
choice of Eq. (20). The Euclidean integral approach is
an independent way to deal with black hole thermody-
namics, and generally, one expects an agreement between
the Wald entropy and the Euclidean entropy [29]. Below
Eq. (32), we have emphasized such a nice agreement
between Eq. (28) and Eq. (32). In a word, we don’t have
a strict proof of choosing Eq. (20) as Kμ

ν but fixed it by the
requirement of consistency. It turns to be that the simplest
choice is the most consistent one.

IV. GENERALIZATIONS TO OTHER TYPES
OF BLACK HOLES

Our formalism can be straightforwardly generalized to
study the quantum gravitational corrections to the geom-
etries and thermodynamics of other types of black hole. In
this section, we will consider the R-N black hole and AdS-
Schwarzschild black hole as the examples. The calculations
are more complicated and involved, but the procedures are
much alike, so we only list the results as below. Notice that
we will omit the local Wilson coefficients c1ðμÞ, c2ðμÞ, and
c3ðμÞ to simplify the expressions. One can easily retrieve
them because they always come together with α lnðμ2Þ,
β lnðμ2Þ, and γ lnðμ2Þ, and upon doing this, all the results
are renormalization group invariant, i.e., μ-independent, as
explained earlier.

A. Quantum corrections to the R-N black hole

Adding an electromagnetic field part to the effective
action (2), around a R-N black hole geometry, the metric
with quantum corrections can be solved as

fðrÞ ¼ 1 −
2M
r

þ q2

r2
−

32π

75r6
½200Mr2ð−3M þ 2rÞγ þ 25q2ð2Mr − 9r2Þγ þ 3q4ð2β − 47γÞ

þ15q2ðq2 − 5Mrþ 5r2Þðβ þ 4γÞ lnðr2μ2Þ�;

gðrÞ ¼ 1 −
2M
r

þ q2

r2
þ 32π

75r6
½200Mr2ð5M − 3rÞγ þ 75q2rð−4Mβ þ 2rβ − 29Mγ þ 12rγÞ

þ48q4ð3β þ 17γÞ − 15q2ð6q2 − 15Mrþ 10r2Þðβ þ 4γÞ lnðr2μ2Þ�: ð34Þ

The relation between the mass M and the outer horizon
radius rþ of the R-N black hole can be obtained by
requiring fðrþÞ ¼ gðrþÞ ¼ 0, which gives

M¼ r2þþq2

2rþ
þ 8π

75r5þ
½−100r4þγþ25q2r2þγ−q4ð12βþ43γÞ

þ15q2ð3q2−5r2þÞðβþ4γÞ lnðr2þμ2Þ�: ð35Þ

Obviously, it will be more convenient to use rþ instead of
M as the variable to do the analysis. The electrostatic
potential at the horizon is

Φ ¼ q
rþ

þ 16πq
75r5þ

½25r2þγ − 2q2ð12β þ 43γÞ

þ 15q2ðβ þ 4γÞ lnðr2þμ2Þ�: ð36Þ

The modified temperature is calculated by analyzing the
conical singularity of the metric,

T¼ 1

4πrþ
−

q2

4πr3þ

−
4ðr2þ−q2Þ

3r7þ
½ð8r2þ−q2Þγ−3q2ðβþ4γÞ lnðr2þμ2Þ�: ð37Þ

The modified entropy is calculated by the Wald entropy
formula,

SW ¼ πr2þ þ 32π2

r2þ
½2r2þγ − q2ðβ þ 4γÞ� lnðr2þμ2Þ: ð38Þ

Though there are always the weird ln rþ terms rambling
around in the above expressions, the analysis of the
thermodynamics goes smoothly. The complete calculation
is tedious, but the reader can easily check the thermody-
namic law TdSþΦdq ¼ dM holds using rþ and q as the
independent variables.
A known result for the R-N black hole coupled with

massless scalar field is SRN ¼ A
48πϵ2

þ 2rþ−3r−
90rþ

ln rþ
ϵ , where ϵ

is an ultraviolet cutoff, in the language of entanglement
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entropy. And, in the limit r− → rþ, it gives the entropy for
the extremal case [2]. When dealing with the Schwarzschild
black hole, one can derive the expression of temperature
TðMÞ from that of entropy or vice versa because of TdS ¼
dM [4,13]. This doesn’t work for the R-N black hole due to
the presence of the extra term Φdq. So, the expressions for
the thermodynamic quantities other than the entropy SRN
were simply absent in the literature. For comparison,
setting Ns ¼ 1, Nf ¼ Nv ¼ Ng ¼ 0 (solely a scalar field)
in Eqs. (3)–(5), our result (38) soon reduces to a rather
similar form, SRN ¼ A

4l2p
þ 2rþ−3r−

90rþ
lnðrþμÞ. In addition, all

the thermodynamic quantities have been obtained inde-
pendently, and the thermodynamic law TdSþΦdq ¼ dM
is only used for checking the consistency.

B. Quantum corrections to the
AdS-Schwarzschild black hole

In this case, the classical part of the effective action (2)
becomes S ¼ R

M
1

16π ðR − 2ΛÞ. The methods of analyzing
the thermodynamics of an AdS-Schwarzschild black hole
often require a procedure of subtracting a pure AdS
geometry as the background. Therefore, in order to avoid
unnecessary subtleties, we keep the pure AdS geometry
still being a saddle point (solution) of the total effective
action, and this can be fulfilled under the constraint,

12αþ 3β þ 2γ ¼ 0: ð39Þ

Notice it includes the case of type B anomaly, where α ¼ 1
3
,

β ¼ −2, γ ¼ 1; see Eq. (8). Applying the constraint (39) to
the effective action and solving the corresponding gravi-
tational field equations, the direct calculation gives the
metric,

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
− γ

c0M
r

− γ
256πM
9r4

ð−9M þ 6rþ r3Λþ 3Λr3 ln rÞ;

gðrÞ ¼ 1 −
2M
r

−
Λr2

3
− γ

c0M
r

− γ
256πM
3r4

ð−5M þ 3rþ Λr3 ln rÞ; ð40Þ

where we take Λ < 0, and c0 is a constant of integration.
The relation between the mass M and the outer horizon
radius rþ can be obtained by requiring fðrþÞ ¼ gðrþÞ ¼ 0,
which gives

M¼ð3−Λr2þÞrþ
6

− γ
1

108rþ
ð3−Λr2þÞ

× ð9c0r2þþ128πð3þ5Λr2þÞþ768πr2þΛ lnrþÞ: ð41Þ

The modified temperature is calculated by analyzing the
conical singularity of the metric,

T ¼ 1

4πrþ
−
Λrþ
4π

− γ
32

9r3þ
ð3 − 4Λr2þ þ Λ2r4þÞ: ð42Þ

The modified entropy is calculated by the Wald entropy
formula,

SW ¼ πr2þ þ γ
64π2

3
ð3 − Λr2þÞ lnðr2þμ2Þ: ð43Þ

The thermodynamic law TdS ¼ dM fixes the constant
c0 ¼ 128πΛ

3
ð−2þ lnðμ2ÞÞ. Substituting it into Eq. (40), the

form of the metric can be improved as

fðrÞ¼ 1−
2M
r

−
Λr2

3

þ γ
128πM
9r4

ð18M−12rþ4r3Λ−3Λr3 lnðr2μ2ÞÞ;

gðrÞ¼ 1−
2M
r

−
Λr2

3

þ γ
128πM
3r4

ð10M−6rþ2Λr3−Λr3 lnðr2μ2ÞÞ: ð44Þ

To verify the consistency, we further analyze the
thermodynamics of the modified AdS-Schwarzschild black
hole using the standard Euclidean action approach [29,30].
Evaluating the effective action at the saddle point (44) and
canceling its divergences by subtracting the contribution
from the pure AdS geometry, the Euclidean action can be
obtained and explained as the partition function. We find
the thermodynamic quantities from the Euclidean approach
exactly matches with the above formulas.

V. CONCLUSIONS

In this paper, we have solved the quantum corrections to
the black hole geometries and thermodynamics from the
one-loop effective action of quantum gravity, with the
Schwarzschild, R-N, and AdS-Schwarzschild black holes
as the examples. In particular, the logarithmic corrections
to the black hole entropy have been obtained, and the
consistencies of the thermodynamics have been examined.
Our work suggests that the EFT approach provides a
powerful and self-consistent tool for studying the quantum
corrections even for more complicated types of black holes
and to higher orders in the perturbation theory of quantum
gravity. The three main progresses of the paper are
summarized as below.
First, we have identified the nonlocal effective action

that is related to the logarithmic correction to the black hole
entropy, which was not clear in most previous literature.
Interestingly, the nonlocal terms in (2) are not added by
hand; they naturally emerge from integrating out the
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massless sector of the particle spectrum. In fact, the
nature has provided another clue for such a nonlocality.
As mentioned in the Introduction, this logarithmic correc-
tion cannot be derived from local curvature terms added to
the effective action. Schematically, if one starts from
an action of the form, I ¼ R

M Rþ R2
μνρσ þ R3

μνρσ þ � � �,
the black hole temperature will be of the form,
T ¼ 1

8πM þ 1
M5 þ 1

M7 þ � � �. It seems that there is a “mys-
terious” missing piece proportional to 1

M3 in this expression
[31]. Disturbed for a long time by the faith of the perfection
of the mathematical form, one may choose to argue for the
existence of the 1

M3 term in the temperature, which should
be attached to the Rμνρσðln□ÞRμνρσ correction to the
Einstein-Hilbert action according to our analysis. So, this
may serve as an alternative way to discover the nonlocal
operator ln□.
Second, we have solved the quantum correction to the

geometry of the Schwarzschild black hole, which naturally
leads to the modified thermodynamics (1) and the anoma-
lous trace (7). This could be a good complement to the
previous scaling analysis by Fursaev in [4].
Third, we have further obtained the results for R-N black

hole and AdS-Schwarzschild black hole. Because the
modified geometries were unknown before, there were
only limited results on the corrections to the entropy (see
the last paragraph of Sec. IVA). In contrast, all thermo-
dynamic quantities can be calculated consistently from our

approach, which accommodates previously known results
as specific examples.
At this stage, we only considered the quantum correc-

tions to the static spherically symmetric black holes, so the
rotating or other types of black holes can be analyzed in
future. It was suggested that the quantum aspects of gravity
could have observational results, for example, in the
gravitational wave signals [32] and the black hole shadows
[33]. In addition, our formalism may be also useful in
studying the conformal anomaly for black holes in even
dimensions other than 4. And, from the spirit of AdS=CFT,
it is worthy to explore the meaning of the modified black
hole geometry at the CFT side [34]. In cosmology,
conformal anomaly could provide an explanation for the
cosmological constant problem and has experimental
predictions [35,36].
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