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We revisit a general minisuperspace (MSS) formalism for scalar tensor Friedmann-Lemaître-Robertson-
Walker type cosmological models in an arbitrary frame with a perfect fluid source. We discuss how to
impose Cauchy data on the corresponding dynamical system in order to reconstruct a standard (ΛCDM)
cosmological model. So far, the integrability of such models has been extensively studied in the Einstein or
Jordan frames mainly. We extend these studies to an arbitrary frame taking into account nonminimal
coupling between matter and gravity. To this aim we explore a gauge freedom associated with a choice of
lapse function. We show that particular isothermal MSS coordinates are related with Einstein frames
representing solution equivalent classes and have some invariant meaning. This provides a new universal
framework for investigating cosmic evolution in an arbitrary frame: analytical solutions obtained in the
Einstein frame can be transformed back to the physical frame by making use of a conformal transformation
and field redefinition. We also show how such a technique can be useful when applied to Wheeler-DeWitt
quantum cosmology.
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I. INTRODUCTION

Scalar-tensor theories (STT) introduce a nonminimally
coupled, dynamical scalar field that, together with the
metric tensor, mediates gravitational interaction [1–10].
They gained interest after certain shortcomings of general
relativity had become manifest, such as the need for an
inflationary period or the currently observed accelerated
expansion of the Universe. Introduction of a scalar field that
is nonminimally coupled to the curvature allows one to
create scenarios in which the dynamics of the field,
accounting for various phenomena, becomes an inherent
feature of the theory of gravity itself [11–27]. It was shown
that inflationary behavior can be realized by the addition of
a Higgs field [28–31], both in the metric and in the Palatini
approach, and the accelerated expansion is well described
by extended quintessence models [32–34], in which the
role of the cosmological constant is played by a dynamical
scalar field, whose energy density tracks density of radi-
ation and then density of dark matter.
In the most general case, the field can be coupled both to

the curvature and to matter fields present in the theory. By
means of Weyl (or conformal) transformation of the metric
tensor one can always choose a parametrization, in which
the scalar field is nonminimally coupled only to either the
gravitational or matter part of the action functional.
Different parametrizations are called “conformal frames,”

and the two most commonly used in the literature are the
Einstein frame, with the field coupled to matter, and the
Jordan frame, where nonminimal coupling to curvature is
present [35,36]. Usually, Weyl transformations are used as
a mathematical tool, allowing one to choose a frame in
which the calculations are easier, and then transforming
back to the frame considered to be physical. There is no
agreement as to which frame is the right one; various
arguments in favor of either can be found in the literature
[37–42]. Some authors, however, claim that all conformally
related frames are in fact different representations of the
same physical theory, and all quantities that can be
connected to observations should be expressed in terms
of variables invariant under Weyl rescaling [43,44].
A superspace formalism for general relativity was initially

introduced for the purposes of quantizing gravity and in
particular quantum cosmology. It originates from canonical
quantization of gravity by means of a functional Wheeler-
DeWitt Schrödinger type equation [45]. For Bianchi cos-
mological models however, it is possible to simplify some
considerations by replacing infinite dimensional (functional)
superspace with a finite dimensional minisuperspace. Thus
the MSS approach reduced the quantum cosmology to
quantum mechanical systems of a single particle with
different potentials and kinetic energy terms as a toy model;
see e.g., [46–50]. Later on, the corresponding classical
mechanical system in MSS formulation proved to be
extremely effective in studying (classical and quantum)
integrability of scalar-tensor cosmological models in a
specific (usually Einstein or Jordan) frame [51–56], and
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finding out their exact solutions; see e.g., [57–60] and
references therein. The Hamiltonian framework is also very
useful in dynamical system analysis of such systems. Our
aim in the present paper is to extend these considerations to a
broader frame-independent context.
Conformal transformations affect the MSS formulation

of theory, in particular in the case of the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric and the
description of cosmic evolution. Weyl rescaling changes
properties of geometry of the minisuperspace, as one can
always find such a parametrization for which its curvature
vanishes or the system possesses nontrivial first-order
integrals of motion. In this paper, we will investigate the
issue of dependence of MSS variables on the choice of
conformal frame. The outline of the work is the following:
first, we will write the most general action for STT and
obtain the equation of motion. Then, MSS formulation will
be presented. To make the considerations as general as
possible, we keep the lapse function arbitrary, which will
allow us to obtain the constraint (Friedmann) equation. It
will be shown that the lapse function can be thought of as a
conformal factor for the MSS metric. Introducing such a
metric and reparametrizing the potential will allow us to
simplify the resulting equations of motion for the scalar
field and the scale factor; for this purpose, making use of
the constraint equation will be necessary. Also, universal
coordinates will be introduced and used to construct an
MSS Lagrangian manifestly invariant under Weyl rescaling
of the space-time metric. At the end, we will focus on
analysis of metric fðRÞ and hybrid theories of gravity, and
show that it is possible to find first-order integrals of motion
by making a specific choice of the conformal variables.

II. EFFECTIVE MINISUPERSPACE DESCRIPTION
FOR SCALAR-TENSOR THEORIES OF GRAVITY

A. STT and FLRW cosmology with lapse function

The most general action for scalar-tensor theories of
gravity in the metric approach can be written as (see e.g.,
[10,43] for the same convention)1

S½gμν;Φ; χ� ¼ 1

2κ2

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p ½AðΦÞR − BðΦÞgμν∂μΦ∂νΦ

− VðΦÞ� þ Smatter½e2αðΦÞgμν; χ�; ð1Þ

where the given functions fAðΦÞ;BðΦÞ;VðΦÞ; αðΦÞg are
frame parameters. Usually AðΦÞ is assumed to be a
positive function as an effective gravitational constant,
and αðΦÞ describes nonminimal coupling between the
gravity and matter source. Varying the action (1) with
respect to the metric and the scalar field one obtains general
field equations for the theory

AGμν þ
�
1

2
B þA00

�
gμνgαβ∂αΦ∂βΦ − ðB þA00Þ∂μΦ∂νΦ

−A0ðgμν□ −∇μ∇νÞΦþ 1

2
Vgμν ¼ κ2Tμν; ð2aÞ

2½3ðA0Þ2 þ 2AB�□Φþ d½3ðA0Þ2 þ 2AB�
dΦ

ð∂ΦÞ2 þ 4A0V

− 2AV 0 ¼ 2κ2TðA0 − 2α0AÞ; ð2bÞ

where Tμν ¼ − 2ffiffiffiffi−gp δSmatter
δgμν denotes the source matter

stress-energy tensor and □ ¼ gμν∇μ∇ν. Remarkably,
their solutions can be transformed from one frame
to another by making use of metric conformal trans-
formation and scalar field redefinition. Thus the totality
of all frames can be divided into solution equivalent
classes.2

Here, we focus our attention on cosmological appli-
cations of the theory. To this end, we take the metric to
be a FLRW metric with a reparametrized time component
(lapse function), together with the assumptions of homo-
geneity and isotropy of the Universe, which means that
the only dynamical entities entering the action, the scale
factor and the scalar field, depend on the local (coor-
dinate) time t. The reparametrization will allow us to
assume gauges that will prove convenient when analyzing
different physical situations,

gμν ¼ diag

�
−NðtÞ2; aðtÞ2

1 − Kr2
; aðtÞ2r2; aðtÞ2r2sin2θ

�
: ð3Þ

For this metric (K ∈ f−1; 0; 1g denotes spatial curvature
corresponding to an open, flat, or closed universe), the

Ricci scalar reads as [ _ðÞ ¼ d
dt]

R ¼ 6K
a2

þ 6

N2

�
_a2

a2
þ ä
a
−

_a
a

_N
N

�
: ð4Þ

Due to diffeomorphism invariance, the lapse function
NðtÞ can be eliminated by setting N ¼ 1, i.e., if we

simply replace the (coordinate) time _ðÞ ¼ d
dt by

_ðÞ ¼ d
dT ,

where dT ¼ NðtÞdt denotes a unique cosmic (proper)
time. Remarkably, such redefinition does not change
three-dimensional foliation of spacetime by slices of
constant time. However, some other choices can be
useful. For example, NðτÞ ¼ aðτÞ provides a conformal
time while dn ¼ HdT ¼ d ln a is related with an e-fold
number. We stress that in MSS formulation, the lapse
function turns out to play a very important role.

1In fact, as shown recently [10], such metric STT allow one to
describe as well Palatini and hybrid metric-Palatini ST gravities.

2As discussed many times in the literature, see e.g., [37–42],
solution or mathematically equivalent frames are not physically
equivalent.
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Usually, one just assumes the form of a stress-energy
tensor for perfect fluid represented by the energy density ρ
and the pressure p to be3

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð5Þ

with a comoving observer velocity uμ ¼ ð1N ; 0; 0; 0Þ.
It remains unclear from what Lagrangian it might be
obtained. We know, however, that in the most general
case, the stress-energy tensor is not conserved, unless there
is no anomalous coupling between the matter part of the
action and the scalar field:

∇μTμν ¼ α0ðΦÞT∂νΦ: ð6Þ

Then substituting FLRW metric [assuming that Φ ¼ ΦðtÞ
and a barotropic perfect fluid p ¼ wρ as a source] one gets
the corresponding set of equations for the dynamical
variables a, Φ (cf. [10]):

3H2 ¼ κ2N2ρ

AðΦÞ −
3N2K
a2

þ 1

2

BðΦÞ
AðΦÞ

_Φ2 − 3
A0ðΦÞ
AðΦÞ H

_Φ

þ N2

2

VðΦÞ
AðΦÞ ; ð7aÞ

2 _H þ 3H2 − 2
_N
N
H ¼ −

wN2κ2ρ

AðΦÞ −
N2K
a2

−
BðΦÞ þ 2A00ðΦÞ

2AðΦÞ
_Φ2 þ N2VðΦÞ

2AðΦÞ

−
A0ðΦÞ
AðΦÞ

�
2H _Φþ Φ̈ −

_N
N

_Φ
�
; ð7bÞ

ð3ðA0ðΦÞÞ2 þ 2AðΦÞBðΦÞÞ
�
Φ̈ −

_N
N

_Φ
�

¼ −3ð3ðA0ðΦÞÞ2 þ 2AðΦÞBðΦÞÞH _Φ

− ððAðΦÞBðΦÞÞ0 þ 3A0ðΦÞA00ðΦÞÞ _Φ2

þ N2ð2VðΦÞA0ðΦÞ − V 0ðΦÞAðΦÞÞ
þ N2κ2ρð1 − 3wÞ½A0ðΦÞ − 2α0ðΦÞAðΦÞ�: ð7cÞ

Throughout this paper, prime ðÞ0 ¼ d
dΦ denotes differ-

entiation with respect to the current scalar field, overdot
_ðÞ ¼ d

dt, with respect to the current coordinate time cor-
responding to generic lapse function NðtÞdt ¼ dT , and
H ¼ _a=a the Hubble parameter as measured by the coor-
dinate observer. An observable (as measured by a comoving
observer) Hubble parameter H ¼ H

N is commonly used in
cosmology. In fact, Eqs. (7a)–(7c) can be expressed in

terms of gauge invariant quantities as N−1H;N−1 _Φ;
N−2ðΦ̈ − _N

N
_ΦÞ;…, i.e., they are equivalent to the equations

obtained by setting N ¼ 1; t ¼ T .
For the perfect fluid stress-energy tensor (5), after setting

ν ¼ 0 in (6), we get

_ρþ 3Hðpþ ρÞ ¼ − _αð3p − ρÞ; ð8Þ

which is valid for arbitrary local time variable t. It admits
the following solution:

ρða;ΦÞ ¼
X
i

ρ0;ia−3ð1þwiÞeð1−3wiÞαðΦÞ; ð9Þ

where i labels different components of energy density
content. We also assumed that, for each component, the
relation between energy density and pressure is given by
pi ¼ wiρi. The index “0” denotes the unknown value of
the density component ρ0;i at the epoch when a ¼ 1.4 This
solution depends on time implicitly only throughout
the dynamical variables ða;ΦÞ. Due to the coupling
αðΦÞ, it is possible to relate the effective mass of the
scalar field to the density of matter, so that its range is
influenced by the local environment. Such a process, called
the “Chameleon mechanism,” is responsible for hiding the
effects of a massive scalar field on scales smaller than
the Solar System, where it should be possible to detect its
presence [61].

B. MSS reformulation

In order to analyze different theories using methods of
dynamical systems, we need to obtain from the action (1)
the effective Lagrangian employing only the time-dependent
variables. This is known as a minisuperspace formalism
(there is a wide literature on the subject, see e.g., [51–60] and
references therein) which, upon substitution of the metric (3)
and integrating over the spatial variables reads as

SMSS½a;Φ� ¼ 1

2κ2

Z
dt

�
1

N
ð−6aA _a2 − 6a2A0 _a _Φþa3B _Φ2Þ

− NVMSS

�
; ð10Þ

where

VMSSða;ΦÞ ¼ −6KaAðΦÞ þ a3VðΦÞ þ Vmatterða;Φ; χÞ;
ð11Þ

where Vmatterða;Φ; χÞ ¼ −2κ2Lmatterða;Φ; χÞ. The effective
MSS Lagrangian

3In fact, one assumes a sum of noninteracting species ρ ¼P
i ρi; p ¼ P

i pi with different barotropic factors pi ¼ wiρi.

4In standard cosmology (α ¼ 0), after normalization of the
scale factor a ∈ ð0; 1�, this is a present-day epoch. Thus, in
cosmological applications, initial data are replaced by present-
day data.

SCALAR-TENSOR COSMOLOGIES IN A MINISUPERSPACE … PHYS. REV. D 105, 044011 (2022)

044011-3



LMSSðN; x; _xÞ ¼ 1

2N
mjkðxÞ_xj _xk − NVMSSðxÞ ð12Þ

lives in a three-dimensional configuration space, where
ðxjÞjj¼1;2 ¼ ða;ΦÞ, the dot denotes differentiation with
respect to the (local) Newtonian time t. In fact, due to the
nondynamical character of the variable N, for which the
momentum pN ≐ ∂LMSS

∂ _N
¼ 0, the Lagrangian (12) is singular

and can be reduced to the plane as a configuration space. The
kinetic energy term of such a reduced system is determined
by a metric mijðxÞ; i; j ¼ 1, 2:

mij ≡mijða;ΦÞ ¼
�
−12aAðΦÞ −6a2A0ðΦÞ
−6a2A0ðΦÞ 2a3BðΦÞ

�
; ð13Þ

providing the geometry to a two-dimensional configuration
ða;ΦÞ-plane ⊂ Rþ ×R also known as MSS. This metric

is proportional to the Hessian matrix ∂2LMSS∂ _xi∂ _xj . Thus the
action (10) describes a motion of a single particle in two-
dimensional configuration space; the space itself is a
Lorentzian or Euclidean manifold equipped with the metric
(13). We remark that the coordinate Φ should belong to a
maximal common domain of all functions fA;B;V; αg
determining the frame.
The first difficulty we encounter is writing an effective

Lagrangian for the matter source Tμν. However, using the
solution (9), this task simplifies to provide5

Vmatterða;ΦÞ ¼ −2κ2Lmatterða;ΦÞ ¼ 2κ2
ffiffiffiffiffiffi
−g

p
T00

¼ 2κ2a3ρ≡ 2κ2
X
i

ρi;0a−3wieð1−3wiÞαðΦÞ;

ð14Þ

the term contributing to the total MSS potential (11).
Curiously, the presence of nonminimally coupled “cosmic
strings” (w ¼ −1=3, αðΦÞ ¼ 1=2 lnAðΦÞ) in (14) can
cancel out the effect of the spacial curvature term
−6KaAðΦÞ for K > 0 in (11) and solves the so-called
flatness problem.
We are ready now to calculate Euler-Lagrange equations

of motion for (12). Since the lapse function N enters the
action in a nondynamical way, providing a constraint
equation which can be obtained from one of the Euler-
Lagrange equations: [Eq. (15)], equivalent to the condition:
[Eq. (16)]

δLMSS

δN
≡ ∂LMSS

∂N −
d
dt

∂LMSS

∂ _N
¼ ∂LMSS

∂N ¼ 0; ð15Þ

that is equivalent to the condition:

1

2N2
mij _xi _xj þ VMSS ¼ 0: ð16Þ

After choosing the gauge N ¼ const ¼ 1, the last equation
gives, on one hand, the Friedmann equation for a theory with
a scalar field [cf. (7a)]:

3H2 ¼ −3
A0

A
H _Φþ B

2A
_Φ2 −

3K
a2

þ V
2A

þ Vmatter

2a3A
: ð17Þ

On the other hand it represents a zero Hamiltonian energy
condition for the reduced Lagrangian system on a plane. The
Euler-Lagrange equations of motion for the remaining two
variables can be now easily obtained:

milẍl þ
1

2
δpi ð∂jmpk þ ∂kmpj − ∂pmjkÞ_xj _xk

¼ mil

_N
N

_xl − N2∂iVMSS: ð18Þ

In such an approach the lapse functionNðtÞ plays a role of an
additional gauge degree of freedomwhich is responsible for a
time reparametrization and suitably modifies the con-
straint6 (16).7

It is worth underlying that the above set of equations
[including (16)] which are obtained for a constrained
Newtonian mechanical system represented by the effective
MSS Lagrangian (12) is fully equivalent to the ones
obtained from the Einstein field equations imposed on
the FLRWmetric (3). Without taking into account the lapse
function it would not be possible since Eqs. (18) them-
selves are not the same as (7a)–(7c).
A more familiar form of (18) can be reached by an

assumption that the metric (13) is reversible, i.e., its
determinant

m ≔ detðmijÞ ¼ −12a4I ; I ¼ 2AB þ 3ðA0Þ2 ð19Þ

should not identically vanish; therefore, the case 2AB þ
3ðA0Þ2 ≡ 0 has to be excluded.8,9 In such a case one gets

5Let us remember that Lmatter is the Lagrangian density, which
means it already contains the determinant of the spacetime
metric (3).

6We stress that _ðÞ ¼ d
dt ðÞ denotes the differentiation with

respect to the local (coordinate observer) time dt ¼ dT =N.
The case N ¼ 1 corresponds to the cosmic time T and the
Friedmann equation (7a).

7For N ¼ const, a mechanical system represented by the
Lagrangian (12) is conservative, i.e., the Hamiltonian energy
H ¼ 1

2N mjk _xj _xk þ NVMSSðxÞ is conserved, cf. (16).
8This excludes, e.g., Palatini fðRÞ gravity, for which the

Lagrangian (12) for N ¼ 1 is still singular.
9Singular points Φs such that ð2AB þ 3ðA0Þ2ÞjΦ¼Φs

¼ 0,
which generate singular lines in MSS, could be allowed. There
is also a big bang type singularity at the origin a ¼ 0, cf. (19).
Notice that around singular points Eq. (20) should be replaced by
more general (18).
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ẍi þGi
jk _x

j _xk ¼
_N
N

_xi − N2mij∂jVMSS; ð20Þ

wheremij denotes the inverse metric andGi
kl are Christoffel

symbols:

mij ¼ −
1

12a4I

�
2a3B 6a2A0

6a2A0 −12aA

�
;

Gi
kl ¼

1

2
mipð∂kmlp þ ∂lmkp − ∂pmklÞ: ð21Þ

To be precise, one should distinguish two cases: I > 0
when the MSS metric has Lorentzian signature and the
opposite one with Euclidean signature. The latter one
results from “incorrect” kinetic energy sign in the
Einstein frame (see below) and is related to the presence
of a so-called ghost scalar field [62]. The change of
signature through a singular point I ¼ 0, if possible, could
also be of some interest.
Let us notice that Eq. (20) determines a geodesic

trajectory if VMSS ¼ const.10 It occurs when there is no
spatial curvature K, self-interaction potential of the scalar
field is constant (playing the role of cosmological constant),
and the only allowed form of matter is dust, since for this
particular type of matter, if there is no anomalous coupling
between the scalar field and matter (or the coupling
amounts to multiplying the energy density by a number),
Lmatter ¼ const. In general, the right-hand side represents,
besides the time reparametrization term, a Newtonian
potential force obtained from VMSSða;ΦÞ. More explicitly,
the equations of motion for a andΦ obtained from (20) take
the following form:

ä
a
¼ −

AB þ 3ðA0Þ2
I

��
_a
a

�
2

þ N2K
a2

�
þA0B

I
_a
a
_Φ

−
B2 −A0B0 þ 2A00B

2I
_Φ2 þ

_N
N

_a
a

þ N2

2I
½BV þA0V 0 þ ½A0ð1 − 3wÞα0 − wB�ρw�; ð22aÞ

Φ̈ ¼ 3AA0

I

��
_a
a

�
2

þ N2K
a2

�
−
6AB þ 6ðA0Þ2

I
_a
a
_Φ

−
3A0B þ 2AB0 þ 6A0A00

2I
_Φ2 þ

_N
N

_Φ

þ N2

2I
½3A0V − 2AV 0 − ½3wA0 þ 2Að1 − 3wÞα0�ρw�;

ð22bÞ

where ρw ¼ 2κ2ρ0;wa−3ðwþ1Þ exp ð1 − 3wÞαðΦÞ represents
dimensionless density of a single perfect fluid component

with the barotropic factor w or a sum over all barotropic
components otherwise.11 As already mentioned, we are
interested in solutions satisfying the zero (Hamiltonian)
energy constraint (7a), where H ¼ _a

a. The above formulas
significantly are simplified in the case of dust matter w ¼ 0,
and/or minimal coupling α0 ¼ 0.

C. Cauchy data

In order to solve the above, constrained system of
second-order ordinary differential equations (ODE) one
needs to choose the gauge and some initial data. Instead, in
cosmology, we are forced to use present-day astrophysical
data extracted from observation. Let us then discuss how
it is possible to replace unknown present-day values
ða0;Φ0; _a0; _Φ0Þ, at the cosmic time T 0 being the age of
our universe, by viable observational data. First of all, for
the cosmic time, N ¼ 1; H ¼ H and the Hamiltonian
energy (17) is conserved along each trajectory. This implies
that the zero energy level is preserved as well and has to be
used to constrain present-day data. [In fact, the only way a
condition (17) infers the system (22a)–(22b) is through
imposing constraints on the initial data.] For further
applications it is convenient to replace unknown constants
ρi;0 in (14) by dimensionless densities Ωi;0,

Vmatterða;ΦÞ ¼ 3H2
0

X
i

Ω0;ia−3wieð1−3wiÞαðΦÞ ð23Þ

that are constrained by observations [63] where

Ωi;0 ¼
2κ2ρ0;i
3H2

0

: ð24Þ

Here we used a usual textbook definition of Ωi;0.
As is customary, we firstly normalize the scale factor a in

such a way that a0 ¼ 1. It is possible since the derivatives
of aðtÞ are present in scale-invariant form _a=a; ä=a in
Eqs. (22a)–(22b), as well as in the constraint condition
(17). Then _a0 ¼ H0 takes the present-day value of the
Hubble parameter. Therefore the values ðΦ0; _Φ0Þ are con-
strained by the Hubble law (17)

3H2
0 ¼ −3

A0

A

����
Φ¼Φ0

H0
_Φ0 þ

B
2A

����
Φ¼Φ0

_Φ2
0 − K þ V

2A

����
Φ¼Φ0

þ Vmatter

2A

����
a¼1;Φ¼Φ0

ð25Þ

being a quadratic equation for _Φ0. Of course, the scalar
field self-interacting potential VðΦÞ should possess good
inflationary properties, cf. [64].

10 _N ¼ 0 means that the cosmic time parametrizes the temporal
component and it is the geodesic parameter.

11Further, in order to simplify the notation, we set 2κ2 ¼ 1 or
incorporate it into ρ0;w ↦ 2κ2ρ0;w.
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Remark: assuming further that the scalar field has no
dynamics at the present epoch, i.e., _Φ0 ¼ 0, one gets a
ΛCDM type relation

1 ¼ ΩΛ þΩK þ 1

2AðΦ0Þ
X
i

Ω0;ieð1−3wiÞαðΦ0Þ; ð26Þ

where ΩK ¼ − K
3H2

0

and ΩΛ ¼ VðΦ0Þ
6H2

0
AðΦ0Þ could play a role of

cosmological constant. In such a scenario the observed
matter Ω̃0;i could differ from “true” matter Ω0;i by a factor
exp ðð1−3wiÞαðΦ0ÞÞ

2AðΦ0Þ . In fact, this factor does not depend on a

numerical value of H0.
12 Some examples will be consid-

ered later on.

D. More on Lagrangian systems with zero
energy constraints

The absence of a _N
N _xi term in (20) means that a local time

t is proportional to the cosmological time T . However,
Eqs. (20) are still valid if we assume implicit time
dependence of the lapse function, i.e.:

NðtÞ ¼ NðaðtÞ;ΦðtÞÞ; _N ¼ _a∂aN þ _Φ∂ΦN: ð27Þ

In such case, Eq. (20) can be recast into a new equivalent
form

ẍi þ cNGi
jk _xj _xk ¼ −N2mij∂jVeff ; ð28Þ

where cNGi
kl ¼ Gi

kl − δiðk∂lÞ lnN are components of a pro-

jectively equivalent connection which in general is not
metric.13 Now the zero Hamiltonian energy constraint (16)
has to be imposed by hand.
Alternatively, if one incorporates the lapse function

into the metric mij ↦
fNmij ≡ 1

Nða;ΦÞmijða;ΦÞ and into

the potential VMSS ↦
fNVMSS ≡ Nða;ΦÞVMSSða;ΦÞ, then

the constrained system (16), (20) can be replaced by the
equivalent one

ẍi þ fNGi
jk _xj _xk ¼ −fNmij∂j

fNVMSS;

1

2
fNmij _xi _xj þ fNVMSS ¼ 0; ð29Þ

where fNGi
kl ¼ Gi

kl − δiðk∂lÞ lnN þ 1
2
mklmij∂j lnN are com-

ponents of the Levi-Civita connection of the conformally

related metric fNmij. Now, in contrast to the previous case,
the first equation comes from the nonsingular Lagrangian

system fNLMSS ¼ 1
2
fNmij _xi _xj − fNVMSS. This shows that any

choice of a gauge (27) provides an alternative classical
description of the original constrained system. In particular,
for N ¼ 1=VMSS one gets a Lagrangian with purely kinetic
energy (cf. [71]).
Before discussing further some particular choices for the

lapse function (27) we want to extend the techniques
known for kinetic energy Lagrangians, see e.g., [69,70]
and references therein, to our case including potential
energy. In this scenario, one makes the following choice
dT ¼ NðyÞdy, where the function NðyÞ has to be deter-
mined and y ¼ ðxiÞji¼2 is the second coordinate, while

x ¼ ðxiÞji¼1 is the first coordinate. Now [cf. (28), _ð Þ≡ d
dy

and _y ¼ 1],

ẍþ Ĝ1
11 _x

2 þ Ĝ1
12 _xþ Ĝ1

22 ¼ −N2m1j∂jVMSS;

Ĝ2
11 _x

2 þ Ĝ2
12 _xþ Ĝ2

22 ¼ −N2m2j∂jVMSS;

where Ĝi
kl ¼ cNGi

kl for simplicity. These two can be
rearranged into a single equation:

ẍ ≔ Ĝ2
11 _x

3 − ðĜ1
11 − 2Ĝ2

21Þ_x2 − Ĝ1
22 − N2m1j∂jVMSS

þ ðĜ2
22 − 2Ĝ1

21 þ N2m2j∂jVMSSÞ_x: ð30Þ

In order to make this equation self-consistent, one needs to
specify NðyÞ. To this aim we use the constraint equa-
tion (16) from which one gets

N2 ¼ −
mij _xi _xj

2VMSS
¼ −

m11 _x2 þ 2m12 _xþm22

2VMSS
: ð31Þ

Substituting back to the last equation yields14

ẍ≔
�
G2

11þ
1

2
m11m2j∂j lnVMSS

�
_x3

þ
�
2G2

21−G1
11þ

�
1

2
m11m1j −m12m2j

�
∂j lnVMSS

�
_x2

þ
�
G2

22− 2G1
21þ

�
1

2
m22m2j −m12m1j

�
∂j lnVMSS

�
_x

−G1
22þ

1

2
m22m1j∂j lnVMSS: ð32Þ

Interchanging indices 1 ↔ 2 one can get similar expression
for y.12Therefore, recently reported tensions between different H0

measurements, see e.g., [65,66] (cf. also [67,68] for an alternative
explanations), are irrelevant in these considerations.

13We recall that two metrics are called projectively equivalent
if they have the same geodesics as unparametrized curves. The
metricity of such a connection is related with a Lie problem and
bi-Hamiltonian Stäckel systems; see e.g., [69,70].

14Notice, that elements Ĝ2
11 ¼G2

11; Ĝ
1
11 − 2Ĝ2

21 ¼G1
11 − 2G2

21;
Ĝ2

22 − 2Ĝ1
21 ¼G2

22 − 2G1
21; Ĝ

1
22 ¼G1

22 are invariant with respect to
the projective transformation Gk

ij ¼ Ĝk
ij þ δkiωj þ δkjωi, preserv-

ing unparametrized geodesics for any covector ωi.
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As a first example, one can use the so-called e-fold
number n ¼ ln a as dimensionless evolution parameter. In
this case N ¼ H−1, dn ¼ HdT, and da

dn ¼ a one finds

Φ̈≔ a−1
�
G1

22−
1

2
m22m1j∂j lnVMSS

�
_Φ3

þ
�
2G1

12−G2
22−

�
m12m1j−

1

2
m22m2j

�
∂j lnVMSS

�
_Φ2

þ
�
G1

11−2G2
12

þ
�
m12m2j−

1

2
m11m1j

�
∂j lnVMSSþa−1

�
a _Φ

þ
�
−G2

11þ
1

2
m11m2j∂j lnVMSS

�
a2: ð33Þ

E. MSS Hamitonian formalism and
Wheeler-DeWitt quantization

It is well known that Hamiltonian formalism replaces
second-order Euler-Lagrange equations for the Lagrangian
Lðx; _xÞ ¼ 1

2
mij _xi _xj − VðxÞ on a configuration manifold

by a first-order (autonomous) dynamical system on the
corresponding phase space (a cotangent bundle) with a
conserved Hamiltonian energy Hðx;pÞ¼ 1

2
mijpipjþVðxÞ.

This correspondence plays a fundamental role in a canoni-
cal quantization of such Lagrangian systems. For con-
strained systems the traditional relations between
Lagrangian and Hamiltonian formalism are broken. The
best way for a Hamiltonian description of constrained
systems is provided by the well-known Dirac formalism
[72]. In the previous sections we discussed how the singular
Lagrangian (12) in three-dimensional configuration space
ðN; a;ΦÞ can be reduced to a two-dimensional constrained
system with an additional gauge freedom. Here, for
the sake of completeness, we briefly presentan associated
Hamiltonian description and its application to the Wheeler-
DeWitt quantization procedure. In order to warm up, one
can directly check that if one takes the Hamiltonian

Hðxi; pi; NÞ ¼ NðtÞ
2

mjkðxÞpjpk þ NðtÞVMSSðxÞ; ð34Þ

where pi ¼ ∂Leff∂ _xi ¼ 1
N mij _xj then the Lagrangian constrained

system (16), (20) is equivalent to the first-order constrained
Hamiltonian one in the corresponding (reduced) phase
space ðxi; pkÞ:8>><>>:

_xi ¼ ∂H
∂pi

≡ Nmikpk;

_pi ¼ − ∂H
∂xi ≡ − N

2
∂imjkpjpk − N∂iVMSS;

∂H
∂N ¼ 1

NH ¼ 0 ⇔ 1
2
mjkpjpk þ VMSS ¼ 0:

ð35Þ

Now, changing the time variable d
dt ↦

d
dt̃ ¼ d

Ndt we are left
with the Hamiltonian autonomous dynamics corresponding
to N ¼ 1 in (35). The last equation (zero energy condition)
is equivalent to (16) and, in fact, constrains the initial
conditions only.
Similarly, assuming special form (27) of lapse function,

one can always find an equivalent constrained autonomous
dynamical system with the Hamiltonian [cf. (29)]

fNH ¼ 1

2
fNmijfNpi

fNpj þ fNVMSS;
fNH ¼ 0 ð36Þ

satisfying the zero energy condition.
An interesting question appears now in the context of

Wheeler-DeWitt MSS formalism: to what extent quantiza-
tion of such classically equivalent systems provides equiv-
alent quantum mechanical description. In more technical
terms one can ask how much a choice of gauge Nða;ΦÞ
changes physical output of the corresponding quantum
formalism. In order to answer this question let us recall that
the Wheeler-DeWitt canonical quantization of the original
system (34) (N ¼ 1) yields a Schrödinger type (stationary)
wave equation in the form (see e.g., [49,73–75])

HΨ≡ ð△m þ VMSSðxÞÞΨðxÞ ¼ 0; ð37Þ

with the aim to find a wave function of the Universe
ΨðxÞ. Here H stands for quantum Hamiltonian and
△mΨ¼ 1ffiffiffi

m
p ∂ið

ffiffiffiffi
m

p
mij∂jΨÞ denotes MSS Laplace-Beltrami

operator.15 Specifically, in two dimensions, one has
△ωm ¼ 1

ω△m, where ωðxÞ is an arbitrary conformal factor.
This implies that after Wheeler-DeWitt quantization of (36)
in different gauges

fNH ¼ NH; ð38Þ

the wave function Ψ remains the same. This answers the
questions. Moreover, any two-dimensional metric is con-
formally flat, i.e. in a suitable (isothermal, see the next
section) coordinate frame, the metric takes a diagonal form
ds2 ¼ ωðx; yÞ × ðdx2 þ signðmÞdy2Þ. Now, combining the
use of these coordinates and gauge freedom N ¼ ωðx; yÞ
allows one to perform Wheeler-DeWitt quantization by
making use of flat Laplacian ∂2

x þ signðmÞ∂2
y and modified

potential VMSSðxÞ ↦ fωVMSSðxÞ ¼ ωðxÞVMSSðxÞ. In such
way one can obtain a preferred operator ordering and
elude the problem mentioned in [73].

15One should remember that a canonical MSS quantization
causes the problem of operator ordering in the Laplace-Beltrami
part which according to Hawking and Page [73] can be resolved.
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F. Universal coordinates

So far we have used a natural MSS coordinate system
ða;ΦÞ inherited from dynamical variables associated with
the initial action (1). Thus the MSS Lagrangian (12) is
determined by the frame fA;B;V; αg functions and the
matter content (14). Since the Lagrangian formalism is
(diffeomorphism) invariant with respect to any (local)
coordinate change in a configuration MSS, we might be
tempted to use it in order to simplify calculations. On the
other hand, such transformation takes us away from
physical variables ða;ΦÞ and should be used with care.
The first idea is to diagonalize the metric mab by means

of a conformal factor, since every two-dimensional pseudo-
Riemannian manifold is conformally flat. We start by
eliminating the off-diagonal terms in the metric (13) by
a simple change of variables: aðΦ; yÞ ¼ AðΦÞ−1=2aðyÞ,
where the function aðyÞ is to be determined. This can be
done locally, around any nonsingular point a > 0;Φ ≠ Φs.
The metric will assume the following form:

ds2ð2Þ ¼ A−5
2a3ð3ðA0Þ2 þ 2ABÞdΦ2 − 12A−1

2aða0Þ2dy2:
ð39Þ

It can be inferred from the transformation properties (see
the Appendix for details) that the unknown function aðyÞ is
frame independent. Moreover a ¼ awheneverA ¼ 1 (e.g.,
in Einstein frame). For these reasons, we shall call a a
universal scale factor.
We redefine the scalar field, introducing a new one, ψ ,

called a “universal scalar field” due to the fact that it is
conformally invariant under transformations of the space-
time metric gμν and redefinition ofΦ. The field is defined as
follows16:

dψ
dΦ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�IA−2

p
: ð40Þ

Requiring themetric (39) to be conformally flat one can solve
a to be

aðyÞ ∼ e�
ffiffi
3

p
y

6 : ð41Þ

The� sign above is due to convention.ChoosingaðyÞ ¼ e
ffiffi
3

p
y

6

one can interpret y as a universal e-fold number for a. With
this choice, the metric will be of the following conformally
flat form17:

ds2ð2Þ ¼ −A−1
2ðψÞe

ffiffi
3

p
y

2 ðdy2 þ signðmÞdψ2Þ: ð42Þ

Remarkably, it depends only on one frame function AðψÞ
and describes the evolution of the universal scale factor a as a
function of the universal e-fold number y ¼ 2

ffiffiffi
3

p
ln a. We

shall call ðy;ψÞ universal MSS coordinates. Its physical
meaning will be explained in the next section. The corre-
sponding Levi-Civita coefficients can be found in the
Appendix.
The same change of variables has to be applied to the

MSS effective potential [cf. (22a), (14)]:

VMSSðy;ψÞ ¼ −6Ke
ffiffi
3

p
y

6 A
1
2ðψÞ þ e

ffiffi
3

p
y

2 A−3
2ðψÞVðψÞ

þ e−
ffiffi
3

p
yw
2 A

3w
2 ðψÞeð1−3wÞαðψÞρ0;w; ð43Þ

where the last term can be a sum of terms with different
barotropic factor w. Finally, the MSS Lagrangian (12)
takes, in these coordinates, the form

LMSS ¼ −
1

2N
A−1

2ðψÞe
ffiffi
3

p
y

2 ð_y2 þ signðmÞ _ψ2Þ
− NVMSSðy;ψÞ: ð44Þ

Now, the constrained dynamical system (16), (20) with the
Lagrangian (44) can be replaced by a dynamically equiv-
alent one with conformally rescaled MSS metric which
turns out to be MSS flat (N ¼ A−1

2ðψÞ, see the Appendix):

L̃MSS ¼ −
1

2
e
ffiffi
3

p
y

2 ð_y2 þ signðmÞ _ψ2Þ − ṼMSSðy;ψÞ: ð45Þ

where the potential is

ṼMSSðy;ψÞ ¼ A−1
2ðψÞVMSSðaðyÞ;ψÞ

¼ −6KaðyÞ þ a3ðyÞṼðψÞ þ a3ðyÞρ̃w; ð46Þ

and ρ̃w¼ρ0.wa−3ðwþ1Þeð1−3wÞα̃ðψÞ, α̃ðΦÞ ¼ αðΦÞ− 1
2
lnAðΦÞ,

ṼðψÞ ¼ VðψÞA−2ðψÞ. Applying the formalism introduced
previously, one may write down the equation of motion for

y as a function of the invariant scalar field ψ [now _ðÞ≡ d
dψ]:

2ÿ¼ signðmÞ
�
A0ðψÞ
2AðψÞ− ∂ψ lnVMSS

�
_y3

þ
� ffiffiffi

3
p

2
þ ∂y lnVMSS

�
_y2−

�
A0ðψÞ
2AðψÞ− ∂ψ lnVMSS

�
_y

þ signðmÞ
� ffiffiffi

3
p

2
− ∂y lnVMSS

�
: ð47Þ

We remark that for the purpose of the Wheeler-
DeWitt quantization it would be more convenient to take

N ¼ −A−1
2ðψÞe

ffiffi
3

p
y

2 in the formula (44).

16An expression under the square root must be positive;
therefore, � corresponds to signðIÞ ¼ −signðmÞ, cf. (19). We
stress that signðmÞ is invariant with respect to MSS coordinate
change.

17In Riemannian geometry such kind of orthogonal coordinates
are also known as isothermal coordinates. They are preserved
under the following coordinate change: ψ̃ ¼ fðψ þ yÞ þ
gðψ − yÞ; ỹ ¼ fðψ þ yÞ − gðψ − yÞ, where f, g are two differ-
entiable functions of one variable.
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III. SOLUTION-EQUIVALENT FRAMES
IN MSS FORMALISM

Consider ST action functional (1). As it is well known,
the totality of all frames splits into solution-equivalent
classes linked by the following transformations:

ḡμν ¼ e2γðΦÞgμν; ð48aÞ

Φ̄ ¼ fðΦÞ; ð48bÞ

applied to the solution of field equations in a given frame
fA;B;V; αg. It consists of a conformal metric transforma-
tion implemented by an arbitrary function18 γðΦÞ accom-
panied by a redefinition of the scalar field.19 Moreover, the
Jacobian of this transformation is allowed to be singular at
some isolated points.
Thus barred fields are solutions of corresponding equa-

tions of motion in a new frame fĀ; B̄; V̄; ᾱg:

ĀðΦ̄Þ ¼ e2γ̌ðΦ̄ÞAðf̌ðΦ̄ÞÞ; ð49aÞ

B̄ðΦ̄Þ ¼ e2γ̌ðΦ̄Þ
��

dΦ
dΦ̄

�
2

Bðf̌ðΦ̄ÞÞ − 6

�
dγ̌
dΦ̄

�
2

Aðf̌ðΦ̄ÞÞ

− 6
dγ̌
dΦ̄

dA
dΦ

dΦ
dΦ̄

�
; ð49bÞ

V̄ðΦ̄Þ ¼ e4γ̌ðΦ̄ÞVðf̌ðΦ̄ÞÞ; ð49cÞ

ᾱðΦ̄Þ ¼ αðf̌ðΦ̄ÞÞ þ γ̌ðΦ̄Þ; ð49dÞ

where f̌ ¼ f−1 denotes the inverse transformation and
γ̌ðΦ̄Þ ¼ −γðf̌ðΦ̄ÞÞ. In physical terms invariance of the
metric tensor means that if observers of different conformal
frames being related to each other by means of (48a) and
(48b) agree on using one of the above metrics, then the
distances measured by them will be the same.
The following invariants of frame transformations (49)

are well known:

α̃ðΦÞ ¼ 1

2
ln
e2αðΦÞ

AðΦÞ ¼ αðΦÞ − 1

2
lnAðΦÞ; ð50aÞ

ṼðΦÞ ¼ VðΦÞ
ðAðΦÞÞ2 ; ð50bÞ

dψðΦÞ
dΦ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2

A2ðΦÞ

s
: ð50cÞ

It is to be noticed that starting from an arbitrary
frame fA;B;V; αg and choosing Φ̄ ¼ ψðΦÞ and γðψÞ ¼
− 1

2
lnAðΦðψÞÞ in (48a)–(48b) we end up in the Einstein

frame with the following data fĀ ¼ 1; B̄ ¼ �1=2;
V̄ðψÞ ¼ ṼðΦðψÞÞ; ᾱðψÞ ¼ α̃ðΦðψÞÞg. For B≡ 0 one
gets B̄ ¼ 1=2.20 This is the canonical Einstein frame.
Conversely, assume we know the solution in the Einstein
frame with some arbitrary self-interacting potential V̄ðψÞ
and nonminimal coupling ᾱðψÞ. Then by making use of the
inverse transformation, one can get a solution in a frame
parametrized by arbitrary functions fA;Bg with suitably
calculated Φ, V, α.
In application to ST cosmology one can observe that

the form of the metric (3) remains invariant while its
components transform accordingly: N ↦ N̄ ¼ eγðΦÞN and
a ↦ ā ¼ eγðΦÞa. Particularly, changing a frame we respec-
tively change the notion of cosmic time: dT̄ ¼ eγðΦÞdT .
Furthermore, we can introduce an invariant (universal)
FLRW metric

g̃μν ¼ AðΦÞgμν
¼ diag

�
−1;

a2ðtÞ
1 − Kr2

; a2ðtÞr2; a2ðtÞr2sin2θ
�

ð51Þ

with invariant (universal) cosmic time t and universal scale
factor a (invariance of this metric simply means that
Āḡμν ¼ Agμν). Comoving spacial coordinates ðr; θ;ϕÞ
remain unchanged.
More explicitly, the equations of motion for a and ψ

obtained from (51), cf. (22a)–(22b), take the following
form [signðIÞ ¼ �1, _ðÞ≡ d

dt ; NðtÞdt ¼ dt, ðÞ0 ≡ d
dψ]:

ä
a
¼ −

1

2

��
_a
a

�
2

þ N2K
a2

�
−
signðIÞ

8
_ψ2 þ

_N
N

_a
a

þ N2

4
½Ṽ − wρ̃w�; ð52aÞ

ψ̈ ¼ −3
_a
a
_ψ þ

_N
N

_ψ − N2signðIÞ½Ṽ 0 þ ð1 − 3wÞα̃0ρ̃w�;
ð52bÞ

where ρ̃w ¼ ρ0.wa−3ðwþ1Þeð1−3wÞα̃ðΦÞ represents dimension-
less density of a single perfect fluid component with the
barotropic factor w or a sum over all barotropic components
otherwise. It turns out that all quantities in (52a) and (52b)
have invariant (frame independent) meaning, cf. (50a)–(50c).
Moreover, natural coordinates in Einstein frame ða;ψÞ
become, after the substitution aðyÞ ¼ e�

ffiffi
3

p
y

6 , just universal
coordinates ðy;ψÞ. The cosmic time in this frame has also

18It is generally assumed that the first and second derivatives of
γ̄ exist.

19This implies that the corresponding Levi-Civita connection
undergoes the Weyl transformation Γ̄α

μν ¼ Γα
μν þ 2δαðμ∂νÞγðΦÞ−

gμνgαβ∂βγðΦÞ.
20If B̄ ¼ 0 then such system is MSS degenerate, i.e.,

IðψÞ ¼ 0.
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invariant meaning. Choosing fA;Bg with the proper value
of signðIÞ one can reconstruct the original model.

A. f ðRÞ theories of gravity
It is well known that metric fðRÞ theories of gravity have

a scalar-tensor representation, which can be achieved by
means of a Legendre transformation. We will present here
only the final result, as the process of deriving the ST
representation can be found in many papers, for example,
in [5]:

S½gμν;Φ; χ� ¼ 1

2κ2

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p ½ϕRðgÞ − VfðRÞðΦÞ�

þ Smatter½gμν; χ�; ð53Þ

where VfðRÞðΦÞ ¼ ΦRðΦÞ − fðRðΦÞÞ, Φ ¼ f0ðRÞ.21 The
four functions of the scalar field we identified at the
beginning of the paper, present in action (1), are

AðΦÞ ¼Φ; BðΦÞ ¼ 0; VðΦÞ ¼ VfðRÞðΦÞ; αðΦÞ ¼ 0:

The metric mij on the minisuperspace is

m ¼
�
−12aΦ −6a2

−6a2 0

�
; ð54Þ

which, upon diagonalization, yields the following
Lagrangian density:

Leffðψ ; yÞ ¼
1

N
e
ffiffi
3

p ð−ψþ3yÞ
6 ð−_y2 þ _ψ2Þ

− Nð−6Ke
ffiffi
3

p ðψþyÞ
6 þ e

ffiffi
3

p ðy−ψÞ
2 VfðRÞðψÞÞ; ð55Þ

with the following redefinition of the variables:

�
Φ ¼ e

ffiffi
3

p
3
ψ ;

a ¼ e
ffiffi
3

p ðy−ψÞ
6 :

ð56Þ

For N ¼ 1 and the metric present in (55), the Christoffel
symbols are the following:

G1
11 ¼ G1

22 ¼ G2
12 ¼ G2

21 ¼
ffiffiffi
3

p

4
;

G1
12 ¼ G1

21 ¼ G2
11 ¼ G2

22 ¼ −
ffiffiffi
3

p

12
; ð57Þ

which means that the curvature on the minisuperspace
vanishes.

1. Class of f ðRÞ theories with a first-order
integral of motion

Let us now consider a spacetime with vanishing spatial
curvature. The function N in the denominator of the kinetic
coupling of (55) remains unspecified and can be treated as a
function of the MSS coordinates ψ and x [which, in turn,
depend on the parameter t, as shown in (27)]. By perform-
ing a coordinate transformation (which is not canonical),
we are able to bring the metric to the Lorentzian form. This
is, of course, not possible for every theory, unless we
exercise the freedom given by arbitrariness of the gauge in
the theory defined on a four-dimensional manifold, and fix
the lapse function in such a way that the conformal factor
multiplying the metric will be brought to a constant. Such a
procedure will change the geometric properties of MSS, but
the formalism defined on that space has only operational
meaning, with no physical relevance. Fixing the lapse will
be then equivalent to a conformal transformation of the
MSS metric.
For the metric case, let us notice that after choosing the

following lapse:

Nðψ ; yÞ ¼ 2A−1
2ðΦðψÞÞa3ðyÞ; ð58Þ

the potential for STT with no matter included:

VMSSðψ ; yÞ ¼ a3ðψ ; yÞVðψÞ ¼ a3ðyÞA−3
2ðψÞVðψÞ

¼ e
ffiffi
3

p
y

2 A−3
2ðψÞVðψÞ; ð59Þ

is brought to the form:

Uðψ ; yÞ ¼ Nðψ ; yÞVMSSðψ ; yÞ ¼ 2e�
ffiffi
3

p
y VðψÞ
A2ðψÞ : ð60Þ

Therefore, it becomes clear that any theory with the MSS
Lagrangian of the form

L ¼ 1

2
ð−_y2 þ _ψ2Þ − e

ffiffi
3

p
yCðψÞ ð61Þ

(with C being an arbitrary function of ψ) in the gauge (58) is
equivalent to some metric fðRÞ gravity. The identification

2e−
2
ffiffi
3

p
ψ

3 VfðRÞðψÞ≡ CðψÞ ð62Þ

will provide us with a direct relationship between the f
function and the scalar field ψ . This is of course a
consequence of the fact that we neglected the matter part
of the action, so that by means of conformal transforma-
tions and redefinition of the initial scalar field, we can
establish equivalence of any STT with some fðRÞ theory.

21There is no one-to-one correspondence between the func-
tions fðRÞ and VfðRÞðΦÞ. In fact VfðRÞðΦÞ ¼ R

gðΦÞdΦ depends
on a choice of some (local) inverse function R ¼ gðΦÞ, where
f0ðgðΦÞÞ ¼ Φ, cf. Appendix A in [9].
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It is the addition of matter that severely limits the number of
equivalent models.
As an example, let us consider the following Lagrangian

in (58) gauge:

L ¼ 1

2
ð−_y2 þ _ψ2Þ − 2e

ffiffi
3

p ðλ1y−λ2ψÞ ð63Þ

where λ1; λ2 ∈ R. From the comparison with (61), it is clear
that λ1 ¼ 1must hold for the equivalence to be present. The
Hamiltonian is easily constructed:

H ¼ 1

2
ð−p2

y þ p2
ψ Þ þ 2e

ffiffi
3

p ðλ1y−λ2ψÞ: ð64Þ

This Hamiltonian admits a first-order integral of motion of
the form [58]

I ¼ αpψ þ βpy; ð65Þ

with α; β ∈ R if α ¼ λ2
λ1
β≡ λ2β. Now, if we want to

reproduce the original scalar-tensor theory from which
the Hamiltonian (64) originates, we must compare the
functions of corresponding separated variables in (62).
For a general case, one cannot determine the functions V
and A uniquely using the condition:

VðψÞ
A2ðψÞ ¼ e−

ffiffi
3

p
λ2ψ ; ð66Þ

but for fðRÞ gravity, it becomes possible to obtain a direct
relation between the λ2 and a particular choice of the f
function. To achieve this goal, we need to remember
that the A function for fðRÞ theories is not arbitrary, but
equal to

AðψÞ ¼ ΦðψÞ ¼ e
ffiffi
3

p
3
ψ ; ð67Þ

which leaves us with

VðψðΦÞÞ ∝ e
ffiffi
3

p ð2−3λ2Þ
3

ψ ¼ e
ffiffi
3

p ð2−3λ2Þ
3

ffiffi
3

p
lnΦ ∝ Φ2−3λ2 : ð68Þ

But we know that R ¼ dV
dΦ and Φ ¼ df

dR, so

R ∝ Φ1−3λ2 → Φ ∝ R
1

1−3λ2 ; ð69Þ

which means that (cf. [60])

fðRÞ ¼ c1R
2−3λ2
1−3λ2 þ c2: ð70Þ

Therefore, the exponent of the curvature can take all
possible values except for unity, excluding general rela-
tivity with cosmological constant (since it does not fulfill
the requirement d2f=dR2 ≠ 0).

B. Hybrid theories

Let us consider the hybrid metric-Palatini theories of
gravity described by the action

S½gμν;Γα
μν; χ� ¼

1

2κ2

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p ðΩARðgÞ þ fðRðg;ΓÞÞ

þ Smatter½g; χ�: ð71Þ

Here,ΩA is a parameter and the f function is a correction
term depending on the curvature scalar constructed à la
Palatini, i.e., being a function of the metric and the
connection, treated now as an independent quantity.
The connection turns out to be an auxiliary field and
can be eliminated, but unlike in the Palatini fðRÞ gravity,
the scalar field is dynamical. Therefore, hybrid theory is in
fact a metric one, and has the following scalar-tensor
representation:

S½gμν;Φ;χ� ¼ 1

2κ2

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p �
ðΩAþΦÞRðgÞ

þ 3

2Φ
gμν∂μΦ∂νΦ−VhybridðΦÞ

�
þSmatter½g;χ�:

ð72Þ

We can immediately identify the four functions of the
scalar field:

AðΦÞ ¼ ΩA þΦ; BðΦÞ ¼ −
3

2Φ
;

VðΦÞ ¼ VhybridðΦÞ; αðΦÞ ¼ 0:

For this set of functions, we choose Φ > 0 to avoid
dealing with phantom field and, consequently, signðIÞ ¼
−1 (see Sec. III C). Upon integrating, the invariant scalar
field we will have the following form:

ψ ¼ �2
ffiffiffi
3

p
arctan

ffiffiffiffiffiffi
Φ
ΩA

s
ð73Þ

which, after inverting the relation, will allow us to express
the initial scalar field in terms of the invariant one:

Φ ¼ ΩA tan2
�

ψ

2
ffiffiffi
3

p
�
: ð74Þ

Let us now consider the Starobinsky-like quadratic cor-
rection of the Palatini form, i.e., fðRÞ ¼ βR2. For this
theory, the invariant potential can be also written as a
function of the invariant scalar field:

ṼðψÞ ¼ VðΦðψÞÞ
AðΦðψÞÞ ¼

1

4β
sin4

�
ψ

2
ffiffiffi
3

p
�
: ð75Þ
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Therefore, the MSS Lagrangian density, in the gauge

N ¼ A−1
2ðψÞe

ffiffi
3

p
2
y, will be

LMSS ¼ −
1

2
ð_y2 þ _ψ2Þ − 1

4β
e

ffiffi
3

p
y sin4

�
ψ

2
ffiffiffi
3

p
�
: ð76Þ

We perform one more coordinate change:

y ¼ 1ffiffiffi
3

p ðŷ − ln 3Þ; ð77Þ

ψ ¼ iffiffiffi
3

p ψ̂ ð78Þ

so that the MSS Lagrangian density will get a multiplicative
factor of 1

3
, which will be omitted in the following

calculations, and the sine function will be changed to its
hyperbolic counterpart:

LMSS ¼
1

2
ð− _̂y

2 þ _̂ψ2Þ − 1

4β
e�ŷ sinh4

�
ψ̂

6

�
: ð79Þ

This Lagrangian is a special case of a more general family
of Lagrangians [58]:

L ¼ 1

2
ð−_x2 þ _y2Þ − cex sinh

−2μ−1
μ ðμyÞ; ð80Þ

where c, μ are real numbers, possessing first-order integral
of motion of the form

I ¼ eμx½cosh ðμyÞpx þ sinh ðμyÞpy�: ð81Þ

The hybrid theories in the parametrization (77) and (78)
correspond to μ ¼ − 1

6
and c ¼ 1

4β, as it can be easily seen by
comparing (80) and (79). In this case, the integral of motion
takes the form22

I ¼ e−
1
6
ŷ

�
cosh

�
ψ̂

6

�
pŷ − sinh

�
ψ̂

6

�
pψ̂

�
: ð82Þ

It can be easily shown that the quadratic correction is the
only one of the form fðRÞ ¼ βnRn leading to the integral
of motion of the form (82).

1. Example: Choice of initial condition in hybrid gravity

As an example illustrating how the choice of present-day
values of scalar field affects the late-time expansion of the
Universe, let us consider the following model, which can be
obtained from a hybrid fðRÞ gravity:

S½gμν;Φ; χ� ¼ 1

2κ2

Z
Ω
d4x

ffiffiffiffiffiffi
−g

p �
ðΦþ ΩAÞRþ 3

2Φ
ð∂ΦÞ2

−
σ

λþΦ

�
þ Smatter½gμν; χ�; ð83Þ

where σ, λ are real numbers. In order to obtain realistic
solutions, one needs to use the Friedmann constraint
equation (17), with an additional assumption that H0¼1
at present, which amounts to rescaling the cosmic time in
an appropriate way (by choosing the lapse function to
be N ¼ H0). Then, the equation is a simple algebraic
equation forΦ0, relating the current value of the field to the
remaining parameters and the “real” matter content Ω0;m,
which is related to the observed one Ω̃0;m via

Ω̃0;m ¼ Ω0;m

2AðΦ0Þ
: ð84Þ

IfΩ0;m ¼ 0.05, then there is only baryonic luminous matter
present in the observable Universe; any other number
between 0.05 and 0.3 denotes a mixture of the normal
matter and the dark component.
We present various possibilities for ΩA ¼ 1, σ ¼ 52 and

λ ¼ 10 in the diagrams below. In order to obtain the
solutions, we used the Friedmann equation (17), together
with equations (22a) and (22b). We note that the unit time is
simply 1=H0 in the rescaled units. The present moment
corresponds to t ¼ 0.
Figure 1 represents the evolution of the scale factor. We

see that the more dark matter in the universe, the less steep
the slope of the curve for negative values of the cosmic time
(corresponding to moments preceding the present), there-
fore, the older the universe. Also, in the model we present,
the universe is going to expand slightly faster than
predicted by the ΛCDM model in the near future. As far
as the second derivative of the field is concerned, shown in
Fig. 2, its zero marks the moment when the universe
stopped being matter dominated (and thus the expansion
decelerated) and started being dominated by dark energy.
Its role is played here by the potential of the scalar field,
which converges to a constant value for a large time. The
scalar field, presented in Fig. 3, takes only negative values
and approaches zero at larger times.

C. A comment on Einstein frame representation
of different theories

It turns out that, when matter is not taken into account,
any ST theory becomes equivalent to some fðRÞ gravity.
Any (nondegenerate) STT in the Einstein frame has B̄ ¼ 1

2

or B̄ ¼ − 1
2
. The first case corresponds to metric fðRÞ

theory and to a subclass of hybrid metric-Palatini gravity.
Following our earlier paper [10], the second case corre-
sponds to a different subclass of hybrid metric-Palatini
formulation (discussed below). Finally, in degenerate case

22Although the momentum pψ̂ is imaginary, its composition
with the hyperbolic sine, having as an argument an imaginary
quantity ψ̂, will produce a real quantity. Therefore, the change of
coordinates (77) and (78) does not entail any physical conse-
quences and can be viewed as a mathematical trick only.

A. BOROWIEC and A. KOZAK PHYS. REV. D 105, 044011 (2022)

044011-12



B̄ ¼ 0 not studied in this paper, one can find the relation
with purely Palatini fðRÞ theory. This corollary follows
directly from analysis of the sign of I :

signðIÞ ¼ −signðmÞ ¼
8<:

þ1 metric and hybrid;

0 Palatini;

−1 hybrid;

ð85Þ

which is related to the Einstein frame kinetic coupling
through (49b) and (50c). The quantity I cannot change the
sign under conformal transformation and/or redefinition of
the scalar field, since it transforms in the following way:

ĪðΦ̄Þ ¼ e2γ̌ðΦ̄Þ
�
dΦ
dΦ̄

�
2

Iðf̌ðΦ̄ÞÞ: ð86Þ

In case of the metric fðRÞ gravity, one can always choose

the Einstein frame with B̄ ¼ signðIÞ
2

¼ 1
2
by performing the

following transformation:

Φ̄ðΦÞ ¼ �
ffiffiffi
3

p
ln

Φ
Φ0

; ð87aÞ

γ̌ðΦ̄Þ ¼∓ Φ̄
2

ffiffiffi
3

p −
1

2
lnΦ0: ð87bÞ

FIG. 2. Second derivative of the scale factor as a function of dimensionless cosmic time for ΩA ¼ 1, σ ¼ 52, and λ ¼ 10. Different
colors represent different amounts of “true” matter content.

FIG. 1. Scale factor as a function of dimensionless cosmic time for ΩA ¼ 1, σ ¼ 52, and λ ¼ 10. Different colors represent different
amounts of “true” matter content Ω0;m. The red curve represents ΛCDM model.
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On the other hand, hybrid formalism introduces two
possible ways of choosing a self-consistent transformation
for the scalar field, depending on its sign. To get the
Einstein frame from (72), one needs to perform a conformal
transformation defined by

γ̌ðΦ̄Þ ¼ −
1

2
lnðΩA þΦðΦ̄ÞÞ; ð88Þ

where the dependence between the new and old field needs
to be determined using (49b). One gets

� 1

2
¼

�
dΦ
dΦ̄

�
2 3ΩA

2ΦðΩA þΦÞ2 ; ð89Þ

where the minus sign is chosen when −ΩA < Φ < 0, and
the plus sign if Φ > 0,23 resulting in [76]

Φ̄ðΦÞ ¼
8<:�2

ffiffiffi
3

p
arctanh

ffiffiffiffiffi
−Φ
ΩA

q
; −ΩA < Φ < 0;

�2
ffiffiffi
3

p
arctan

ffiffiffiffiffi
Φ
ΩA

q
; Φ > 0:

ð90Þ

We note that the possibility of Φ crossing zero is not
analyzed here. It is however possible that dynamically,
for certain classes of scalar-tensor theories, the effective
gravitational constant becomes negative [77] when an
appropriate choice of initial conditions is made.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we revisited MSS formalism and presented
a methodology allowing one to analyze any scalar-tensor
theory in such a way, that the resulting two-dimensional
MSS metric has a vanishing curvature allowing for intro-
ducing flat (Cartesian) coordinates. This was achieved by
exercising the freedom of choosing the lapse function,
which played the role of a conformal factor on the MSS
after an appropriate change of variables. Such a choice
amounts to performing a conformal transformation of the
(four-dimensional) spacetime metric, bringing any theory
defined by an initially unspecified set of four functions of
the scalar field to the so-called invariant Einstein frame.
In the Einstein frame, the kinetic terms for the metric and
the scalar field do not mix, so the Cauchy problem becomes
easier to formulate. Also, the Einstein frame seems “natu-
ral” since it introduces conformal invariants as dynamic
variables. Such invariants preserve their functional form
under Weyl rescaling of the metric tensor and redefinition
of the scalar field; therefore, they can be used to classify
mathematically equivalent theories. Using the Einstein
frame comes at a price—the Einstein frame, due to the
presence of anomalous coupling between the matter and
scalar field, leads to violation of the weak equivalence
principle. Therefore, in the paper we did not consider the
Einstein frame to be physical, and warned against giving
physical meaning to transformed variables, in which the
equations appear easier.
A considerable amount of attention was dedicated to the

lapse function. It was shown that some class of singular
mechanical systems with a lapse function can be equiv-
alently represented by the constrained conservative
mechanical systems which incorporate the lapse function
into both MSS metric and potential. Also, the lapse

FIG. 3. Scalar field as a function of dimensionless cosmic time for ΩA ¼ 1, σ ¼ 52, and λ ¼ 10. Different colors represent different
amounts of “true” matter content.

23We neglect the case when Φ < −ΩA, as it would lead to a
negative effective gravitational constant.
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function can be changed in an arbitrary way (since the
theory is invariant under spacetime diffeomorphisms),
providing more convenient parametrization when inves-
tigating behavior of the Universe at various energy scales.
When an implicit dependence on the time is assumed, one
can use the lapse function to bring the MSS metric to the
Lorentzian form.
Particularly, this technique turns out to be useful in the

Wheeler-DeWitt quantization allowing one to obtain a
preferred operator ordering and elude the problem men-
tioned in [73].
Any scalar tensor theory in the cosmological context can

be analyzed using the mathematical formalism describing
motion of a particle moving in a four-dimensional phase
space. Applying the Hamiltonian analysis, one can ask
whether there exist integrals of motion for a given potential.
Existence of such integrals constrains the motion of the
particle, since it imposes additional conditions the particle
must fulfill. Therefore, since the number of solutions
becomes reduced, the system of equations is easier to
solve. For example, one can always use the zero-energy
condition (Friedmann equation) to determine the value of
one of the parameters characterizing motion of the particle,
when the remaining three are given. This was shown in the
last part of the paper, when based on the current value of
the scale factor, Hubble parameter, and rate of change of
the scalar field, its possible value was determined (after
specifying the amount of dark matter). It was shown that
for some (exotic) potential, de Sitter phase emerged and the
expansion became accelerated. The question of whether
such potential produces viable inflationary parameters
remains open.
As far as the integrals of motion are concerned, choosing

an appropriate gauge (the lapse function) allowed us to
establish a class of fðRÞ theories of gravity which possess an
additional first-order integral, analogous to the total momen-
tum of the particle. The same procedure was repeated for
hybrid theories of gravity, and it turned out that the only
theory admitting a first-order integral of motion is the
Starobinsky model. It must be noted, however, that the
integrals of motion were found for coordinates that did not
have a physical interpretation (one of thembeing imaginary).
Therefore, after finding such solutions, one must transform
back to the physical frame. The analysis of hybrid theories
revealed an interesting problemof the possibility of changing
sign of the gravitational constant caused by the scalar field
crossing the zero value. Such a change of signwould lead to a
change of the MSS metric signature. The possibility of
signature change for the spacetimemetric has been discussed
for a long time in the literature, see for example in [78–81],
but the issue remains unexplored for hybrid models.
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APPENDIX: MSS CHRISTOFFEL SYMBOLS,
GAUSS CURVATURE IN DIFFERENT

COORDINATE SYSTEMS

We began with the MSS metric (13) written down in
canonical coordinates that are natural coordinates ða;ΦÞ
inherited from the four-dimensional STT in a specific
frame. Not all functions determining a frame enter the
metric. Christoffel symbols can be decomposed, for con-
venience, into a and Φ dependent parts:

G1
11 ¼

AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2
að2AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2Þ

≐ a−1γ111ðΦÞ; ðA1aÞ

G1
12 ¼ G1

21 ¼ −
A0ðΦÞBðΦÞ

4AðΦÞBðΦÞ þ 6ðA0ðΦÞÞ2
≐ γ112ðΦÞ; ðA1bÞ

G1
22¼

aðBðΦÞ2−B0ðΦÞA0ðΦÞþ2BðΦÞA00ðΦÞÞ
4AðΦÞBðΦÞþ6ðA0ðΦÞÞ2

≐aγ122ðΦÞ; ðA1cÞ

G2
11 ¼ −

3AðΦÞA0ðΦÞ
a2ð2AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2Þ

≐ a−2γ211ðΦÞ; ðA1dÞ

G2
12 ¼ G2

21 ¼
3AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2

að2AðΦÞBðΦÞ þ 3ðA0ðΦÞÞ2Þ
≐ a−1γ212ðΦÞ; ðA1eÞ

G2
22 ¼

3A0ðΦÞBðΦÞ þ 2AðΦÞB0ðΦÞ þ 6A0ðΦÞA00ðΦÞ
4AðΦÞBðΦÞ þ 6ðA0ðΦÞÞ2

≐ γ222ðΦÞ: ðA1fÞ

Since in two dimensions the Einstein tensor vanishes,
the Ricci tensor takes the form RMSS

ij ¼ 1
2
mijRMSS, where

the Ricci scalar (double of Gauss curvature)

RMSSða;ΦÞ ¼ −ðAA0BÞ0 þ 3AA00B
2a3ð2AB þ 3ðA0Þ2Þ ðA2Þ

determines Riemann curvature tensor: RMSS
1212 ¼ 1=2RMSS×

ðm11m22 −m2
12Þ. It implies that RMSS is singular at a ¼ 0 or

when IðΦÞ ¼ 0, i.e., at Φs. For checking the MSS flatness
condition, i.e., RMSS ≡ 0, we switch to the universal
isothermal coordinates setting the metric (13) into a
conformally flat form (42) with two possibilities for the
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signature Euclidean or Lorentzian ones. The last depends
on the signature of the original metric (13).
In these coordinates, the connection coefficients take

very simple, yet general forms (57),

G2
11 ≔ signðmÞ A

0ðψÞ
4AðψÞ ; ðA3aÞ

G2
22 ≔ G1

12 ¼ G1
21 ¼ −

A0ðψÞ
4AðψÞ ; ðA3bÞ

G2
12 ≔ G2

21 ≔ G1
11 ≔

ffiffiffi
3

p

4
; G1

22 ≔ −signðmÞ
ffiffiffi
3

p

4
: ðA3cÞ

The MSS Ricci scalar

RMSSða; yÞ ¼ −signðmÞe−
ffiffi
3

p
y

2
ð−A0ðψÞ2 þAðψÞA00ðψÞÞ

2AðψÞ3=2
ðA4Þ

cannot take constant value unless RMSS ¼ 0 which is
possible only for AðψÞ ∼ exp ðσψÞ, where σ ∈ R.24 In this
case the metric is flat and, for signðmÞ ¼ −1, can be
reduced further (locally) to the Lorentzian form du2 − dv2

by the following change of coordinates (for σ ≠ β ¼ � ffiffi
3

p
4
):

u ¼ eðσ−βÞðψ−yÞ þ eðβþσÞðψþyÞ;

v ¼ −eðσ−βÞðψ−yÞ þ eðβþσÞðψþyÞ;

then e2σψþ2βyð−dy2 þ dψ2Þ ¼ 1
4ðσ2−β2Þ ð−dv2 þ du2Þ.

For σ ¼ β ¼ �
ffiffi
3

p
4
one takes

u ¼ � 1ffiffiffi
3

p e�
ffiffi
3

p
2
ðψþyÞ þ 1

2
ðψ − yÞ;

v ¼ � 1ffiffiffi
3

p e�
ffiffi
3

p
2
ðψþyÞ −

1

2
ðψ − yÞ

so that

e�
ffiffi
3

p
2
ðψþyÞð−dy2 þ dψ2Þ ¼ ð−dv2 þ du2Þ:

If signðmÞ ¼ 1, then the metric is Euclidean, but one
can define ψ ¼ iψ̄ , and use the following change of
coordinates:

u ¼ eðiσ−βÞðψ̄−yÞ þ eðiσþβÞðψ̄þyÞ;

v ¼ −eðiσ−βÞðψ̄−yÞ þ eðiσþβÞðψ̄þyÞ:

As it was mentioned above, such coordinates, mixing the
scale factor with the scalar field, are not interesting from the
point of view of physical interpretation.
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