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We study quasinormal modes related to gravitational and electromagnetic perturbations of spherically
symmetric charged black holes in nonlinear electrodynamics. Beyond the linear Maxwell electrodynamics,
we consider a class of Lagrangian with higher-order corrections written by the electromagnetic field
strength and its Hodge dual with arbitrary coefficients, and we parametrize the corrections for quasinormal
frequencies in terms of the coefficients. It is confirmed that the isospectrality of quasinormal modes under
parity is generally violated due to nonlinear electrodynamics. As applications, the corrections for
quasinormal frequencies in Euler-Heisenberg and Born-Infeld electrodynamics are calculated, then it is
clarified that the nonlinear effects act to lengthen the oscillation period and enhance the damping rate of the
quasinormal modes.
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I. INTRODUCTION

General relativity, which relates gravity to the geometry
of spacetime, has revealed a spacetime structure from
which nothing can escape, called a black hole. It is now
known that black holes are abundantly present in our
universe. Black holes are fascinating objects from an
observational point of view since they can be a source
of gravitational waves, for which observations have been
greatly advanced in recent years. Gravitational waves are
produced, for example, by coalescence of a binary and an
infalling of matters. An important feature of such waves
propagating from a black hole is that they undergo
characteristic damping oscillations, called quasinormal
modes, as it settles into a stationary state (for reviews,
see Refs. [1–4]). General relativity predicts that the
frequencies of the quasinormal modes are uniquely deter-
mined by a few black hole parameters, such as the mass,
charge, and spin. Therefore, quasinormal modes are
important observables for estimating parameters of black
holes in our universe and for testing the validity of general
relativity [5].
If once a deviation of quasinormal modes from the

prediction by general relativity is detected, it suggests the
need to take into account some new effects. To explore
physics beyond the standard theory, it is important to
investigate quasinormal modes of black holes taking in new
effects. In fact, there have been many attempts to extend the
theory of gravity, and the quasinormal modes of vacuum
black hole solutions have been studied in extensions of

general relativity [6–25]. On the other hand, for electrically
or magnetically charged black holes, the Einstein-Maxwell
theory is usually considered to be the standard theory and
leads to the so-called Reissner-Nordström solution, for
which the quasinormal frequencies are calculated in
Refs. [26–29]. However, the quasinormal modes may be
subject to corrections due to some effects of electrody-
namics beyond the Maxwell theory, which actually exist at
least when one considers quantum electrodynamics as we
will see below. With this in mind, this paper is devoted to
studying the quasinormal modes of charged black holes in a
framework beyond the standard Einstein-Maxwell theory.
Until today, there is no evidence for the existence of

charged black holes in our universe although there have
been attempts to search them e.g., by analyzing LIGO-
Virgo data [30]. However, the possibility of their existence
has often been discussed. For example, in Refs. [31,32], it
is pointed out that a black hole should have a slight electric
charge by assuming a balance between the number of
protons and electrons around the black hole. Furthermore, a
rotating black hole in a uniform magnetic field can have an
electric charge proportional to its spin, known as the Wald
solution [33]. On the other hand, magnetically charged
black holes may be produced in the early universe, and they
are more likely to retain the magnetic charge avoiding the
neutralization by ordinary matter accreting on them unlike
electrically charged counterparts [34]. Therefore, electri-
cally or magnetically charged black holes are not merely
objects of mathematical interest, and it is worth studying
the quasinormal modes of them to correctly capture the
parameters of realistic black holes from observations.
The effects of electrodynamics beyond the Maxwell

theory can appear, for example, when one considers
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quantum vacuum polarization. An example of the effective
Lagrangian taking in the electron one-loop corrections is
known as the Euler-Heisenberg Lagrangian [35]. It includes
higher-order terms of the electromagnetic field in addition
to the Maxwell Lagrangian, such as ðFμνFμνÞ2 and
ðFμνF̃μνÞ2 with suppressions proportional to m−4

e , where
Fμν is the electromagnetic field strength tensor, F̃μν is its
Hodge dual, and me is the electron mass. More generally,
the effective Lagrangian of electrodynamics incorporating
some high energy effects is considered to be given by a
general function of Fμν and F̃μν. Such a framework is
collectively referred to as nonlinear electrodynamics. An
old example of nonlinear electrodynamics is Born-Infeld
theory, which was proposed in the 1930s to remove the
divergence of the electron’s self-energy within classical
electrodynamics [36].
Then, it has been motivated to investigate black hole

solutions in general relativity coupled to such nonlinear
electrodynamics as in Refs. [37,38]. In fact, black hole
solutions are actively studied in the Euler-Heisenberg
theory [39–43] and in the Born-Infeld theory [44–49]. A
more interesting aspect of general relativity with nonlinear
electrodynamics is that one can construct black holes
without spacetime singularity, such as the Bardeen black
hole [50]. So far, various regular black holes have been
obtained as solutions in specific theories of nonlinear
electrodynamics [51–65]. For one of the models of such
regular black holes, quasinormal modes are also analyzed
in Ref. [66]. On the more general ground, one can study the
properties of black holes in nonlinear electrodynamics with
a Lagrangian given by a general function of the electro-
magnetic field. The perturbative stability of charged black
holes has been investigated in theories with a Lagrangian
being a general function of FμνFμν in Ref. [67]. Moreover,
recently the perturbative stability of charged black holes is
studied, and equations of motion for the perturbations on
them are derived, in general nonlinear electrodynamics
including FμνF̃μν dependence in Refs. [68,69].
In this paper, we study quasinormal modes related to

gravitational and electromagnetic perturbations of charged
black holes in general relativity with nonlinear electrody-
namics. In fact, quasinormal modes of black holes have
already been analyzed for some specific theories of non-
linear electrodynamics e.g., in Refs. [66,70–81]. On the
other hand, in this paper, we consider a general framework
of nonlinear electrodynamics as an extension of Maxwell
electrodynamics without specifying a certain theory, and
we aim to find the leading corrections for quasinormal
modes due to the nonlinear effects. As a useful way for this
purpose, we take the effective field theoretical approach;
i.e., we consider a Lagrangian with higher-order terms of
Fμν and F̃μν in addition to the Einstein-Maxwell
Lagrangian, and we calculate the corrections for quasinor-
mal frequencies due to such terms. The higher-order terms

possibly appear by integrating out some heavy degrees of
freedom. But, from a purely bottom-up point of view, we
take the coefficients of such terms to be arbitrary so that the
framework of nonlinear electrodynamics including the
Euler-Heisenberg and Born-Infeld theories can be treated
inclusively. For simplicity, we will introduce only the terms
of ðFμνFμνÞ2 and ðFμνF̃μνÞ2 with arbitrary coefficients,
which are expected to give the leading corrections to the
Maxwell electrodynamics in situations where the electro-
magnetic field strength is smaller than some cutoff. This
kind of effective field theoretical approach in pure gravi-
tational theory can be found in Ref. [11], where an
extension of general relativity with higher-order terms of
the Riemann tensor is considered, and quasinormal modes
of the vacuum solution are studied.
This paper is organized as follows. In Sec. II, spherically

symmetric black hole solutions in general relativity coupled
to general nonlinear electrodynamics are reviewed, and
master equations describing gravitational and electromag-
netic perturbations on them are given. In Sec. III, we
introduce the effective field theoretical approach in non-
linear electrodynamics. In Sec. IV, we calculate the
frequencies of quasinormal modes related to electromag-
netic and gravitational perturbations of charged black holes
in the effective field theory of nonlinear electrodynamics.
We independently use two calculation methods: numerical
integration and the continued fractions method. Then, we
apply the results to the Euler-Heisenberg and Born-Infeld
theories. SectionVis devoted to the summary anddiscussion.
In Appendix, we review the construction of magnetically or
electrically charged black holes in nonlinear electrodynam-
ics, and the dual relationship between them.
Throughout this paper, we take the following conventions.

The metric signature is ð−;þ;þ;þÞ, and the covariant
antisymmetric tensor is normalized as ϵ0123 ¼ ffiffiffiffiffiffi−gp

, where
g is the determinant of the metric. We set c ¼ ℏ ¼ μ0 ¼ 1,
where c, ℏ, and μ0 are the speed of light, reduced Planck
constant, and permeability in a vacuum, respectively.

II. BLACK HOLES IN NONLINEAR
ELECTRODYNAMICS: BACKGROUND AND

PERTURBATIONS

In this section, we briefly review spherically symmetric
black hole solutions in nonlinear electrodynamics coupled
to general relativity, and we write down master equations
describing gravitational and electromagnetic perturbations
on them. The descriptions here are almost based on the
previous work by the authors [68], and references therein.

A. Black hole background

We start with the action in general relativity with
nonlinear electrodynamics,
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S½gμν; Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R − LðF ;GÞ

�
; ð1Þ

where G is the gravitational constant, R is the Ricci scalar
calculated from the metric gμν, and LðF ;GÞ is an arbitrary
function of F and G defined by

F ≔
1

4
FμνFμν; ð2Þ

G ≔
1

4
FμνF̃μν ¼ 1

8
ϵμνρσFμνFρσ: ð3Þ

Here, Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor of the
electromagnetic (Abelian gauge) field Aμ, and F̃μν ¼
ð1=2ÞϵμνρσFρσ is the Hodge dual of Fμν. The Lagrangian
in terms of two scalars, LðF ;GÞ, is a generic one in
nonlinear electrodynamics in the sense that arbitrary
invariants constructed from Fμν and F̃μν can be reduced
to that form, as explained in Appendix A of Ref. [68].

1. Magnetic black holes

Let us study spherically symmetric solutions with a
magnetic charge at first. To consider asymptotically flat
solutions for simplicity, we assume that the Lagrangian (1)
does not have a cosmological constant. While here we
simply show the results, the more detailed derivations can
be found in Appendix A 1 of the present paper, or Ref. [68].
We take the spherically symmetric configuration of the
magnetic field as

1

2
Fμνdxμ ∧ dxν ¼ q sin θdθ ∧ dϕ; ð4Þ

where q is a constant corresponding to the magnetic charge.
Note that on this magnetic configuration we have

F ¼ q2

2r4
; G ¼ 0: ð5Þ

Then, we obtain the spherically symmetric solution as

gμνdxμdxν ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

ð6Þ

where

fðrÞ ¼ 1 −
2GM
r

−
8πG
r

Z
r
dr0r02L

�
q2

2r04
; 0

�
: ð7Þ

Here, a constant M corresponds to the mass of the
gravitating object. When the function fðrÞ vanishes at
some point(s), the metric describes the magnetic black hole.

We write the position of the outer event horizon as rh; i.e.,
rh is the largest radial coordinate such that

fðrhÞ ¼ 0: ð8Þ
2. Electric black holes

To find electrically charged black hole solutions, it is
convenient to move from the original framework in terms of
LðF ;GÞ to an alternative framework by the Legendre
transformation; the explanation is given in Appendix A 2.
One important thing we should emphasize here is that an
electric black hole solution in some theory of nonlinear
electrodynamics can be translated into a magnetic black hole
solution in another theory via a kind of duality, and vice
versa, as mentioned in Appendix A 3. For this reason, we
thoroughly work on magnetic black holes below, and the
results can be rendered into those on the electric background
in an appropriate way. As a concrete example, we study the
duality for an effective Lagrangian up to the quadratic order
of F and G in Appendix A 4, and the results will be
mentioned in the next section.

B. Master equations for black hole perturbations

Here we review master equations which describe linear
perturbations of the metric and electromagnetic field on the
magnetic black hole background continuing to follow
Ref. [68]. On the spherically symmetric background, the
linear perturbations can be expanded on the basis of tensor
spherical harmonics. Moreover, on the magnetic back-
ground, the linear perturbations are separated into two
systems according to parity; on the one hand, the odd-parity
metric and the even-parity electromagnetic perturbations
are coupled, which we call type I; on the other hand, the
even-parity metric and the odd-parity electromagnetic
perturbations are coupled, which we call type II. In each
type of system, the master equation is reduced to a
Schrödinger-like equation in a matrix form with an effec-
tive potential, which we write as

�
d2

dr�2
þ ω2 − fVI;II

��
RI;II

EI;II

�
¼ 0 ð9Þ

with a Fourier mode ω. Here, r� is the tortoise coordinate
defined by

r� ¼
Z

r dr0

fðr0Þ ; ð10Þ

and then r ¼ rh corresponds to r� ¼ −∞. We write gauge
invariant perturbations of the metric and electromagnetic
field as RI;II and EI;II, respectively, where the subscripts I
and II represent that the quantities belong to each type.
The effective potentials fVI;II in Eq. (9) are given by

2 × 2 symmetric matrices. For the effective potential of
type I,
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fVI ¼ f

�
VI;11 VI;12

VI;21 VI;22

�
; ð11Þ

the components are given by

VI;11 ¼
lðlþ 1Þ þ 3ðf − 1Þ

r2
þ 8πGL; ð12Þ

VI;12 ¼ VI;21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGq2LF ðlþ 2Þðl − 1Þ

p
r3

; ð13Þ

VI;22 ¼
lðlþ 1Þ

r2
1

1 − q2LGG=ðr4LF Þ
þ 16πGq2LF

r4

−
�
8πGLþ 6f − 1

r2

�
q2LFF

r4LF

þ 3fq4L2
FF

r10L2
F

−
2fq4LFFF

r10LF
: ð14Þ

Here, L is interpreted as the background value obtained
by inserting Eq. (5), i.e., L ¼ LðF ¼ q2=ð2r4Þ;G ¼ 0Þ.
Similarly, we write as LF ¼ ð∂L=∂F Þðq2=ð2r4Þ; 0Þ,
LFF ¼ ð∂2L=∂F 2Þðq2=ð2r4Þ; 0Þ, etc. The integer l labels
the multipole of the perturbations. We are interested in the
modes of l ≥ 2 where both the metric and the electromag-
netic perturbations are dynamical. Note that we assume that
the Lagrangian satisfies LF > 0 to avoid the ghost insta-
bility, and LG ¼ 0 for the existence of the black hole
solution [68].
The effective potential of type II is given by

fVII ¼ f

�
VII;11 VII;12

VII;21 VII;22

�
ð15Þ

with

VII;11 ¼
ζðrÞ
r2

−
2ð2λ − f þ 1Þ

r2
þ 8λðλ − f þ 1Þ

r2ζðrÞ þ 8λ2f
r2ζ2ðrÞ þ

64πGfq2λLF

r4ζ2ðrÞ ; ð16Þ

VII;12 ¼ VII;21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πGq2λLF

q �
−

1

r3

�
1 −

2ð2λ − f þ 2Þ
ζðrÞ −

4λf
ζ2ðrÞ

�
þ 32πGfq2LF

r5ζ2ðrÞ þ 2fq2LFF

r7ζðrÞLF

�
; ð17Þ

VII;22 ¼
2ðλþ 1Þ

r2
−
16πGq2LF

r4

�
1 −

4ðλþ 1Þ
ζðrÞ −

4λf
ζ2ðrÞ

�
þ 512π2G2fq4L2

F

r6ζ2ðrÞ

−
q2LFF

r6LF
½ζðrÞ − 3f − 4ðλþ 1Þ� þ 64πGfq4LFF

r8ζðrÞ þ 2fq4LFFF

r10LF
−
fq4L2

FF

r10L2
F

; ð18Þ

where we defined

λ ≔
1

2
ðlþ 2Þðl − 1Þ; ð19Þ

ζðrÞ ≔ −3f þ 2λþ 3 − 8πGr2L: ð20Þ

III. EFFECTIVE FIELD THEORY IN NONLINEAR
ELECTRODYNAMICS

The master equations reviewed in the previous section
can be used to study linear perturbations on black holes for
any nonlinear electrodynamics, but the analysis is compli-
cated in general. However, to find the leading corrections
from nonlinear electrodynamics, it is reasonable to consider
the effective Lagrangian which consists of operators at the
quadratic order in F and G in addition to the Maxwell
Lagrangian. Thus, we consider the action

S½gμν; Aμ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R − LðF ;GÞ

�
ð21Þ

with

LðF ;GÞ ¼ F − αF 2 − βG2; ð22Þ

where α and β are parameters with the dimension −4. For
example, an effective Lagrangian of this form is obtained
from the electron one-loop corrections, which is known as
the Euler-Heisenberg Lagrangian and is given by

LðF ;GÞ ¼ F −
2

45m4
e

�
e2

4π

�
2

ð4F 2 þ 7G2Þ; ð23Þ

whereme is the mass of the electron and e2=ð4πÞ is the fine
structure constant. In this paper, we intensively study the
class of the effective field theory of electrodynamics (22)
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including the Euler-Heisenberg theory, and we aim to
parametrize the corrections to the Maxwell theory in terms
of α and β.
The magnetic black hole geometry in the effective theory

can easily be obtained via Eq. (7). For the Lagrangian (22),
we have

L
�
q2

2r4
; 0

�
¼ q2

2r4
−
αq4

4r8
; ð24Þ

so we obtain the function fðrÞ in the metric (6) as

fðrÞ ¼ 1 −
2GM
r

þ 4πGq2

r2
−
2πGαq4

5r6

¼ 1 −
2GM
r

þQ2

r2
−
ᾱQ2ðGMÞ4

10r6
; ð25Þ

where we defined

Q2 ≔ 4πGq2 ð26Þ

and introduced a dimensionless parameter

ᾱ ≔
αq2

ðGMÞ4 : ð27Þ

For later convenience, similarly we define

β̄ ≔
βq2

ðGMÞ4 : ð28Þ

We should note the validity of the effective Lagrangian
(22). Since the background value of F is given by Eq. (5),
we have

αF 2

F
¼ αq2

2r4
: ð29Þ

To justify the truncation of higher-order terms in the
Lagrangian, this ratio should be suppressed outside the
horizon rh ∼ GM; hence it is required that

ᾱ ≪ 1: ð30Þ

Similarly, it is natural to expect

β̄ ≪ 1: ð31Þ

Thus, the dimensionless quantities ᾱ and β̄ serve as the
perturbation parameters. Also note that we do not include
nonminimal couplings between the electromagnetic field
and spacetime curvature. In fact, up to four-derivative, such
couplings can be listed as

γ1RFμνFμν; γ2RμνFμρFν
ρ; γ3RμνρσFμνFρσ; ð32Þ

where γ1;2;3 are parameters with dimension −2. For
example, taking account of electron one-loop corrections
on curved spacetime yields γ1;2;3 ∼ ð10−3–10−2Þ ×
e2=ð4πm2

eÞ [82]. The contribution from γ1RFμνFμν would
generally be weaker than that from αF 2 since R vanishes in
the Reissner-Nordström case. Similarly, we can estimate
the ratio of contributions from the last two operators in
Eq. (32) to αF 2 on charged black holes as

γ2RμνFμρFν
ρ

αF 2
∼ 32π

Gγ2
α

; ð33Þ

γ3RμνρσFμνFρσ

αF 2
∼ −64π

Gγ3
α

þ 128π

�
GM
Q

�
2Gγ3

α
; ð34Þ

where each quantity is evaluated at rh ∼ GM since we are
interested in dynamics around the horizon. It is natural to
consider the ratio Gγ1;2;3=α to be generally tiny in light of
the example of the electron one-loop corrections, in which
Gγ1;2;3=α ∼ 10−1Gm2

eð4π=e2Þ ∼ 10−44. Therefore, it is
expected that all three terms in Eq. (32) are suppressed
enough compared to Eq. (22), except for a case that the
black hole is nearly free of charge. Furthermore, higher-
derivative terms such as γ4∇μFμν∇ρFρ

ν with a dimension
−2 parameter γ4 are also possible in the Lagrangian, but
they are reduced to higher-order operators in perturbation
parameters by means of equations of motion. Therefore,
from here we concentrate on the effective Lagrangian (22)
as giving the leading corrections, for simplicity.
The position of the event horizon, rh, can be found

perturbatively with respect to ᾱ. In the linear order of ᾱ,
we have

rh ¼ r0 þ ᾱr1 þOðᾱ2Þ; ð35Þ

where

r0 ¼ GM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 −Q2

q
;

ᾱr1 ¼ ᾱ
Q2ðGMÞ4

20r30ðr0GM −Q2Þ : ð36Þ

The effective potentials in the master equations are
immediately obtained by plugging

L ¼ q2

2r4
−
αq4

4r8
¼ Q2

8πGr4
−
ᾱQ2ðGMÞ4
16πGr8

; ð37Þ

LF ¼ 1 −
αq2

r4
¼ 1 −

ᾱðGMÞ4
r4

; ð38Þ

LFF ¼ −2α ¼ −
8πGᾱðGMÞ4

Q2
; ð39Þ
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LGG ¼ −2β ¼ −
8πGβ̄ðGMÞ4

Q2
; ð40Þ

LFFF ¼ 0; ð41Þ

into Eqs. (12)–(14) for type I, and into Eqs. (16)–(18) for
type II. For convenience, here let us explicitly show them:
for type I,

VI;11 ¼
lðlþ 1Þ þ 3ðf − 1Þ

r2
þQ2

r4
−
ᾱQ2ðGMÞ4

2r8
; ð42Þ

VI;12 ¼ VI;21 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 1ÞQ2½1 − ᾱðGMÞ4=r4�

p
r3

;

ð43Þ

VI;22 ¼
lðlþ 1Þ

r2

�
1þ 2β̄ðGMÞ4=r4

1 − ᾱðGMÞ4=r4
�−1

þ 4Q2

r4

�
1 −

ᾱðGMÞ4
r4

�

þ 2ᾱðGMÞ4
r6

�
1 −

ᾱðGMÞ4
r4

�−1�
6f − 1þQ2

r2
−
ᾱQ2ðGMÞ4

2r6

�
þ 12ᾱ2fðGMÞ8

r10

�
1 −

ᾱðGMÞ4
r4

�−2
; ð44Þ

and for type II,

VII;11 ¼
ζðrÞ
r2

−
2ð2λ − f þ 1Þ

r2
þ 8λðλ − f þ 1Þ

r2ζðrÞ þ 8λ2f
r2ζ2ðrÞ þ

16λfQ2

r4ζ2ðrÞ
�
1 −

ᾱðGMÞ4
r4

�
; ð45Þ

VII;12 ¼ VII;21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λQ2

�
1 −

ᾱðGMÞ4
r4

�s �
−

1

r3

�
1 −

2ð2λ − f þ 2Þ
ζðrÞ −

4λf
ζ2ðrÞ

�
þ 8fQ2

r5ζ2ðrÞ
�
1 −

ᾱðGMÞ4
r4

�

−
4ᾱfðGMÞ4
r7ζðrÞ

�
1 −

ᾱðGMÞ4
r4

�−1�
; ð46Þ

VII;22 ¼
2ðλþ 1Þ

r2
−
4Q2

r4

�
1 −

ᾱðGMÞ4
r4

��
1 −

4ðλþ 1Þ
ζðrÞ −

4λf
ζ2ðrÞ

�
þ 32fQ4

r6ζ2ðrÞ
�
1 −

ᾱðGMÞ4
r4

�
2

þ 2ᾱðGMÞ4ðζðrÞ − 3f − 4ðλþ 1ÞÞ
r6

�
1 −

ᾱðGMÞ4
r4

�−1
−
32ᾱfQ2ðGMÞ4

r8ζðrÞ −
4ᾱ2fðGMÞ8

r10

�
1 −

ᾱðGMÞ4
r4

�−2
; ð47Þ

FIG. 1. The components of the effective potentials in the master equations (9) for l ¼ 2 in the Maxwell electrodynamics are shown in
blue, and those in the Euler-Heisenberg nonlinear electrodynamics are shown in red, as functions of r. (The quantities are normalized in
terms ofGM.) The left panel is for type I, and the right panel is for type II. In each panel, and for each color, from top to bottom, the fV22

component (solid curve), the fV11 component (long dashed curve), and the fV12 ¼ fV21 component (short dashed curve) of the
effective potential are shown. Here we take the charge-to-mass ratio of the black hole to be Q=ðGMÞ ¼ 0.9, and we choose the
parameters in the Euler-Heisenberg nonlinear electrodynamics as ᾱ ¼ 0.5 and β̄ ¼ 0.875 to clarify the Euler-Heisenberg corrections.
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where

ζðrÞ ¼ −3f þ 2λþ 3 −
Q2

r2
þ ᾱQ2ðGMÞ4

2r6
; ð48Þ

and fðrÞ is given by Eq. (25).
In Fig. 1, the potential components for the l ¼ 2mode on

a magnetic black hole in the Maxwell electrodynamics (i.e.,
α ¼ β ¼ 0) and in the Euler-Heisenberg nonlinear electro-
dynamics are shown as functions of r. We can see that the
Euler-Heisenberg correction given by α ¼ ð4=7Þβ > 0
works to lower the height of the potential component
V22, while there are no noticeable corrections for V11 and
V12. The lowering of the height of V22 due to the Euler-
Heisenberg correction also appears for other modes of l.
So far we have focused on magnetically charged black

holes, but electrically charged black holes in the effective
theory (22) are also given by the same geometry (25) up to
the linear order in α and β, as explained in Appendix A 4 of
the present paper, and Ref. [40].

IV. QUASINORMAL MODES

A. Definition

Quasinormal modes are characteristic damping oscilla-
tion modes with complex eigenfrequencies of master
equations, which are singled out by physically motivated
boundary conditions. In this section, we analyze quasinor-
mal modes of the metric and electromagnetic perturbations
on charged black holes in effective field theory of nonlinear
electrodynamics defined by Eq. (22). Discrete complex
eigenfrequencies corresponding to quasinormal modes are
determined by boundary conditions at infinity and the event
horizon as follows [66]. First, we let fRðω; rÞ be a 2 × 2
matrix-valued solution of the master equation which
satisfies a boundary condition at infinity,

lim
r�→∞

fRðω; rÞ ¼ eþiωr�1; ð49Þ

where 1 is the 2 × 2 identity matrix. On the other hand, we
let fLðω; rÞ be a 2 × 2 matrix-valued solution of the master
equation which satisfies a boundary condition at the event
horizon,

lim
r�→−∞

fLðω; rÞ ¼ e−iωr
�
1: ð50Þ

For ImðωÞ < 0, if there exist constant complex vectors
ða; bÞT and ðc; dÞT such that

ψðω; rÞ ¼ fLðω; rÞ
�
a

b

�
¼ fRðω; rÞ

�
c

d

�
; ð51Þ

the ω is the quasinormal frequency and e−iωtψðω; rÞ
represents the corresponding quasinormal mode.

As mentioned in Sec. II B, the system of perturbations on
black holes is separated into two types according to parity:
type I and type II. Each type has two families of
quasinormal modes which we write as Z1 and Z2 with
corresponding quasinormal frequencies ω1 and ω2, respec-
tively. In the Reissner-Nordström case, i.e., without non-
linear electrodynamics corrections, the effective potential
matrices in the master equations can be diagonalized by
constant matrices; thus Z1 and Z2 become decoupled and,
respectively, obey single-component master equations
[66,83,84]. On the other hand, in nonlinear electrodynam-
ics, the decoupling does not work in general, so we utilize
calculation methods valid for coupled systems as we will
see below.

B. Calculation methods

1. Numerical integration

To compute quasinormal frequencies, we first use the
numerical method developed in Refs. [66,85]. While we
here give the outline of methodology briefly, see the
references for details. We first define an operator TR;ω
which acts on a 2 × 2 matrix-valued function ξ as

ðTR;ωξÞðrÞ ¼ 1 −
1

2iω

Z
γθ1

dr0
�
1 − exp

�
2iω

Z
r0

r

dr00

fðr00Þ
��

× Vðr0Þξðr0Þ: ð52Þ

Here, VðrÞ is the 2 × 2 potential matrix in the master
equation. The integration path γθ1 is drawn in the complex
r-plane and parametrized as

γθ1∶ r0ðλÞ ¼ rþ eiθ1λ; ð53Þ

where λ runs from zero to positive infinity and θ1 is an angle
slightly larger than −π=2. The integration from r to r0 in the
exponential is also performed along γθ1 . Then, it is ensured
that the integral converges for all ω with ImðωÞ < 0 and
ReðωÞ < 0. Note that the solution satisfying the boundary
condition at infinity, Eq. (49), is obtained by the iterating
operation of TR;ω as

fRðω; rÞ ¼ eþiωr� lim
k→∞

ððTR;ωÞk1ÞðrÞ: ð54Þ

Similarly, we define an operator TL;ω which acts on a
2 × 2 matrix-valued function ξ as

ðTL;ωξÞðrÞ¼ 1þ 1

2iω

Z
Γθ2

dr0
�
1− exp

�
−2iω

Z
r0

r

dr00

fðr00Þ
��

×Vðr0Þξðr0Þ: ð55Þ

Here, the integration path Γθ2ðλÞ is in the complex r-plane
and is parametrized as
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Γθ2∶ r0ðλÞ ¼ rh þ ðr − rhÞ expð−eiθ2λÞ; ð56Þ

where λ runs from zero to positive infinity and the constant
θ2 is slightly larger than −π=2. The integration from r to r0
in the exponential is also done along Γθ2 . The path Γθ2 ,
which draws a counterclockwise spiral around the point rh,
is chosen so that the integral converges for all ω with
ImðωÞ < 0 and ReðωÞ < 0. Then, the solution satisfying
the boundary condition at the event horizon, Eq. (50), can
be constructed by the iterating operation of TL;ω as

fLðω; rÞ ¼ e−iωr
�
lim
k→∞

ððTL;ωÞk1ÞðrÞ: ð57Þ

The quasinormal frequencies are singled out by the
satisfaction of Eq. (51), which implies that the Wronskian
of the matrix-valued solutions fLðω; rÞ and fRðω; rÞ
vanishes:

WðωÞ ¼ det

�
fLðω; rÞ fRðω; rÞ

∂r�fLðω; rÞ ∂r�fRðω; rÞ

�
¼ 0: ð58Þ

Therefore, we need to find ω such that WðωÞ ¼ 0, where
fRðω; rÞ and fLðω; rÞ are constructed by Eqs. (54) and
(57), respectively.
To find the solutions fLðω; rÞ and fRðω; rÞ numerically

for a given ω with ImðωÞ < 0 and ReðωÞ < 0 according to
the above procedure, we take the following treatments.
First, we fix as θ1 ¼ −1.57 and θ2 ¼ −1.5 following
Refs. [66,85]. We set a point for evaluating the
Wronskian to be r ¼ 1.5rh, at which we start the integra-
tions. We take the integration path γθ1 , which should run
infinitely in principle, to end at some point around jr0j ∼ 15
(in the unit ofGM), where the potential Vðr0Þ is sufficiently
small so that the integral does not result in the considerable
value. Also, we take the end of the path Γθ2 at a point close
enough to rh. The integrations along the paths are per-
formed by trapezoidal approximation with about 5 × 104

steps. We truncate the iterations after about 20 times, where
the resulting values sufficiently converge. In the end, we
find quasinormal frequencies, i.e., zeros of the Wronskian,
by Newton’s method for complex ω.
We are interested in quasinormal frequencies of black

holes in effective nonlinear electrodynamics (22). Thus, for
magnetic black holes, the potentials VðrÞ in Eqs. (52)
and (55) are given by Eqs. (42)–(44) for type I, and
Eqs. (45)–(47) for type II. We use these components for
numerical calculations. As explained at the end of Sec. III,
we can expect that the results are the same for electric black
holes for sufficiently small ᾱ and β̄. Taking GM as the unit,
the system of our interest is characterized by three
parameters: the black hole charge Q, and perturbation

parameters ᾱ and β̄. We compute quasinormal frequencies
as varying these three parameters.

2. Continued fractions method

Apart from the numerical integration above, the con-
tinued fractions method is also known to be powerful to
find quasinormal modes in a semianalytical way, which is
first applied to black hole perturbation theory by Leaver
[86]. In a coupled system such as we are considering, the
continued fractions method extended to a matrix-valued
version is needed, some applications of which can be found
in Refs. [87–89].
First, let us assume that eigenfunctions of master

equations (9) are given by the following series:

�
RðrÞ
EðrÞ

�
¼

�
r

2GM

�
2GMiω

eiωrub
X∞
n¼0

�
að1Þn

að2Þn

�
un; ð59Þ

where u ≔ ðr − rhÞ=r, b ≔ −iω=f0ðrhÞ, and að1;2Þn are
series coefficients. The above ansatz takes account of the
boundary conditions for quasinormal modes (49) and (50).
Indeed, at infinity, since fðrÞ ≃ 1–2GM=r, the tortoise
coordinate is approximately given by

r� ≃ rþ 2GM ln

�
r

2GM

�
; r → ∞; ð60Þ

and thus the eigenfunctions corresponding to quasinormal
modes should behave as

eiωr
� ∼

�
r

2GM

�
2GMiω

eiωr; r → ∞: ð61Þ

On the other hand, near the horizon, since approximately
fðrÞ ≃ f0ðrhÞðr − rhÞ, we have

r� ≃
1

f0ðrhÞ
ln u; r → rh; ð62Þ

and eigenfunctions should behave as

e−iωr
� ∼ ub; r → rh: ð63Þ

Then, one can see that the ansatz (59) reproduces these
asymptotic behaviors appropriate to quasinormal modes.
Now, inserting the series (59) into master equations and
extracting the homogeneous terms with respect to u, we can
obtain a finite k-term recurrence relation for series coef-
ficients as

A1;0a1 þA2;0a0 ¼ 0; ð64Þ
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A1;1a2 þA2;1a1 þA3;1a0 ¼ 0; ð65Þ

..

.

A1;k−3ak−2 þA2;k−3ak−3

þA3;k−3ak−4 þ � � � þAk−1;k−3a0 ¼ 0; ð66Þ

A1;nanþ1 þA2;nan þA3;nan−1

þ � � � þAk;nan−kþ2 ¼ 0; n ≥ k − 2; ð67Þ

where

an ≔
�
að1Þn

að2Þn

�
ð68Þ

and A1;n;…;Ak;n are 2 × 2 matrices in terms of ω and
black hole parameters. The number of terms, k, depends on
the potential in the master equation considered, but it can be
reduced by the matrix-valued Gaussian elimination. In fact,
defining new matrices by

Ã1;n ≔ A1;n; n ≥ 0; ð69Þ

Ã2;n ≔
�A2;n; 0 ≤ n ≤ k − 3;

A2;n −Ak;nÃ
−1
k−1;n−1Ã1;n−1; n ≥ k − 2;

ð70Þ

Ã3;n ≔
�A3;n; 1 ≤ n ≤ k − 3;

A3;n −Ak;nÃ
−1
k−1;n−1Ã2;n−1; n ≥ k − 2;

ð71Þ

..

.

Ãk−1;n ≔
�Ak−1;n; n ¼ k − 3;

Ak−1;n −Ak;nÃ
−1
k−1;n−1Ãk−2;n−1; n ≥ k − 2;

ð72Þ

one can show that the coefficient vectors an satisfy a
(k − 1)-term recurrence relation in terms of the new
matrices:

Ã1;0a1 þ Ã2;0a0 ¼ 0; ð73Þ

Ã1;1a2 þ Ã2;1a1 þ Ã3;1a0 ¼ 0; ð74Þ

..

.

Ã1;k−4ak−3 þ Ã2;k−4ak−4

þ Ã3;k−4ak−5 þ � � � þ Ãk−2;k−4a0 ¼ 0; ð75Þ

Ã1;nanþ1 þ Ã2;nan þ Ã3;nan−1

þ � � � þ Ãk−1;nan−kþ3 ¼ 0; n ≥ k − 3: ð76Þ

Repeating the eliminations, the recurrence relation even-
tually settles into a three-term one,

A1;0a1 þA2;0a0 ¼ 0; ð77Þ

A1;nanþ1 þA2;nan þA3;nan−1 ¼ 0; n ≥ 1; ð78Þ

where we redefined finally resulting matrices via a repeat of
Eqs. (69)–(72) as A1;n, A2;n, and A3;n. Let us introduce a
ladder matrix Rþ

n such that

anþ1 ¼ Rþ
n an: ð79Þ

Then, Eq. (78) leads to a recurrence relation for Rþ
n ,

Rþ
n ¼ −ðA2;nþ1 þA1;nþ1R

þ
nþ1Þ−1A3;nþ1; ð80Þ

and Eq. (77) is reduced to

Ma0 ¼ 0; M ≔ A2;0 þA1;0R
þ
0 : ð81Þ

Finally, by requiring the existence of nontrivial eigenfunc-
tions corresponding to quasinormal modes, the quasinor-
mal frequencies can be found as ω satisfying

detM ¼ 0: ð82Þ

We should note that M can be expressed as the matrix-
valued continued fractions by means of the recurrence
relation (80):

M ¼ A2;0 þA1;0R
þ
0

¼ A2;0 −A1;0ðA2;1 þA1;1R
þ
1 Þ−1A3;1

¼ A2;0 −A1;0

× ðA2;1 −A1;1ðA2;2 þA1;2R
þ
2 Þ−1A3;2Þ−1A3;1

¼ � � � : ð83Þ

Practically, we can truncate the substitution of Eq. (80) at
some large number of times N and take Rþ

N to be arbitrary.
The N must be large enough so that the obtained quasi-
normal frequencies converge.
The continued fractions method is useful when the

potential in the master equation is given by powers of
1=r. To take advantage of the method, we expand the
expressions of the potential components (42)–(47) with
respect to ᾱ and β̄, and pick up only the terms up to the
linear order of ᾱ or β̄. Moreover, we use Eq. (35) to
approximate rh up to the linear order of ᾱ for simplicity.
These approximations are valid for finding the leading
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corrections from nonlinear electrodynamics, which is our
main purpose.
Under the above approximations, we find that the

recurrence relations (67) are first given by a k ¼ 9-term
one for type I and a k ¼ 13-term one for type II. The
explicit expressions are terribly long, so we do not write
them down here, but one can obtain them by direct
insertions. We take the order of continued fractions to
be large enough so that the results converge within the
desired precision, which is typically N ∼ 101–102. Given
parameters Q, ᾱ, and β̄ (taking GM as the unit), we find
quasinormal frequencies, i.e., zeros of detM, by a numeri-
cal way such as Newton’s method.

C. Results

Here we show calculation results for the quasinormal
frequencies by means of the methods in Sec. IV B. In
particular, we present only fundamental frequencies in
l ¼ 2, 3 modes, which are expected to be observationally
important. As mentioned above, the perturbations are
separated into type I and type II according to parity, and
in each type there are two families of quasinormal modes
Z1 and Z2, with corresponding quasinormal frequencies ω1

and ω2, respectively. In practical calculations, we always
work with quantities in the unit of GM, such as r=ðGMÞ,

Q=ðGMÞ, and ω1;2GM. The calculations are performed for
black holes with various charges Q as varying perturbation
parameters ᾱ and β̄.
The fundamental quasinormal frequencies calculated by

the numerical integration in Sec. IV B 1 are plotted in
figures: Fig. 2 is for the mode Z1 of l ¼ 2, Fig. 3 is for the
mode Z2 of l ¼ 2, Fig. 4 is for the mode Z1 of l ¼ 3, and
Fig. 5 is for the mode Z2 of l ¼ 3. For different Q, the
results calculated as varying either ᾱ or β̄ (while the other is
fixed to be zero) are plotted as colored lines. Specifically, in
each figure, red solid lines denote the frequencies of type I
with ᾱ varying from −0.5 to 0.5 while β̄ is fixed to be zero,
blue solid lines denote the frequencies of type I with β̄
varying from −0.5 to 0.5 except for Q=GM ¼ 0.8 and 0.9
while ᾱ is fixed to be zero, and red dashed lines denote the
frequencies of type II with ᾱ varying from −0.5 to 0.5 while
β̄ is fixed to be zero. (Only the ranges −0.4 ≤ β̄ ≤ 0.5 and
−0.2 ≤ β̄ ≤ 0.5 are plotted for Q=GM ¼ 0.8 and 0.9,
respectively, for the technical reason that our numerical
integration cannot give results with the desired accuracy
when β̄ is negatively too large.) Note that the quasinormal
frequencies in type II are insensitive to β̄ since the potential
components (45)–(47) do not depend on β̄. Also note that
“Q=GM ¼ 0” in the figures indicates the case with
extremely small charge Q compared to GM: we calculate

FIG. 2. Fundamental quasinormal frequencies of the mode Z1 of l ¼ 2 for magnetic black holes with different charges Q, which are
calculated by the numerical integration in Sec. IV B 1. For different Q, the fundamental frequencies calculated as varying either ᾱ or β̄
are plotted: red solid lines denote the frequencies of type I with ᾱ varying from −0.5 to 0.5 from top to bottom while β̄ is fixed to be zero;
blue solid lines denote the frequencies of type I with β̄ varying from −0.5 to 0.5 for Q=GM ¼ 0, 0.2, 0.4, 0.6, from −0.4 to 0.5 for
Q=GM ¼ 0.8, and from −0.2 to 0.5 for Q=GM ¼ 0.9, from top-left to bottom-right while ᾱ is fixed to be zero; red dashed lines denote
the frequencies of type II with ᾱ varying from −0.5 to 0.5 from left to right while β̄ is fixed to be zero. The dots on the colored lines are
marked for each 0.1 change in ᾱ or β̄. A gray dashed curve represents a series of quasinormal frequencies of Reissner-Nordström black
holes (ᾱ ¼ β̄ ¼ 0).
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this case bearing in mind that, even if Q=GM is extremely
small, the parameters ᾱ and β̄ can take finite values to give
nontrivial corrections depending on the black hole mass
since our definitions of ᾱ and β̄, Eqs. (27) and (28), are
rewritten as

ᾱ ¼ α

4πGðGMÞ2
�

Q
GM

�
2

;

β̄ ¼ β

4πGðGMÞ2
�

Q
GM

�
2

: ð84Þ

When Q=GM is infinitely small, the off-diagonal compo-
nents of the potential matrix, VI=II;12 ¼ VI=II;21 in Eqs. (43)
and (46), vanish so that the master equations become
decoupled. Furthermore, as Q=GM → 0, the metric com-
ponent fðrÞ and potential component VI=II;11 lose the
dependence on ᾱ and β̄; see Eqs. (25), (42), and (45).
Then, the master variable R purely represents the gravi-
tational perturbation on the Schwarzschild black hole,
which corresponds to the mode Z2 of “Q=GM ¼ 0” shown
in Figs. 3 and 5. On the other hand, even if Q=GM is

FIG. 3. Fundamental quasinormal frequencies of the mode Z2 of l ¼ 2 for magnetic black holes with different chargeQ. Descriptions
of lines are the same as in Fig. 2.

FIG. 4. Fundamental quasinormal frequencies of the mode Z1 of l ¼ 3 for magnetic black holes with different chargesQ. Descriptions
of lines are the same as in Fig. 2.
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extremely small, the ᾱ- and β̄-dependence of the potentials
VI=II;22 does not vanish explicitly; see Eqs. (44) and (47).
Therefore, we can obtain the nontrivial correction for the
electromagnetic quasinormal mode E due to ᾱ and β̄ even in
the limit Q=GM → 0, which corresponds to Z1 of
“Q=GM ¼ 0” shown in Figs. 2 and 4.
From Figs. 2–5, it turns out that the quasinormal

frequencies can be linearly approximated with respect to
ᾱ and β̄, at least for sufficiently small ᾱ and β̄. Let us
parametrize the quasinormal frequencies as

ω ¼ ωRN þ ᾱκα þ β̄κβ ð85Þ

for small ᾱ and β̄, where κα and κβ are complex coefficients.
Then ωRN corresponds to the case without a nonlinear
electrodynamics correction, i.e., one of the Reissner-
Nordström black hole. The coefficients κα and κβ can be
obtained by fitting the calculated frequencies with respect
to ᾱ and β̄, which are shown in Table I for l ¼ 2 and in
Table II for l ¼ 3. We find that the results for the
frequencies obtained by the numerical integration in
Sec. IV B 1 and those by the continued fractions method
in Sec. IV B 2 are in agreement within the desired
precision. Although we take the linear approximation for
the master equations with respect to ᾱ and β̄ in the
continued fractions method for simplicity as mentioned

FIG. 5. Fundamental quasinormal frequencies of the mode Z2 of l ¼ 3 for magnetic black holes with different chargesQ. Descriptions
of lines are the same as in Fig. 2.

TABLE I. ωRN, κα, and κβ in Eq. (85) for fundamental quasinormal frequencies of the mode l ¼ 2 of black holes with different
charges Q.

Z1 Z2

l ¼ 2 Type I Type II Type I Type II

Q=GM ωRNGM καGM κβGM καGM κβGM ωRNGM καGM κβGM καGM κβGM

0 −0.45760 −0.00071 0.00643 0.00713 0 −0.37367 0 0 0 0
−0.09500i −0.00058i −0.00057i þ0.00001i þ0i −0.08896i þ0i þ0i þ0i þ0i

0.2 −0.46297 −0.00068 0.00660 0.00735 0 −0.37474 −0.00003 0.00011 0.00012 0
−0.09537i −0.00060i −0.00058i −0.00001i þ0i −0.08907i −0.00001i −0.00003i −0.00001i þ0i

0.4 −0.47993 −0.00061 0.00727 0.00819 0 −0.37844 −0.00012 0.00043 0.00046 0
−0.09644i −0.00068i −0.00061i −0.00010i þ0i −0.08940i −0.00003i −0.00014i −0.00003i þ0i

0.6 −0.51201 −0.00041 0.00896 0.01032 0 −0.38622 −0.00030 0.00101 0.00111 0
−0.09802i −0.00091i −0.00073i −0.00035i þ0i −0.08981i −0.00008i −0.00039i −0.00014i þ0i

0.8 −0.57013 0.00036 0.01363 0.01637 0 −0.40122 −0.00072 0.00220 0.00249 0
−0.09907i −0.00168i −0.00119i −0.00135i þ0i −0.08964i −0.00019i −0.00113i −0.00061i þ0i

0.9 −0.61940 0.00180 0.01980 0.02469 0 −0.41357 −0.00130 0.00340 0.00391 0
−0.09758i −0.00314i −0.00208i −0.00349i þ0i −0.08833i −0.00032i −0.00226i −0.00156i þ0i

KIMIHIRO NOMURA and DAISUKE YOSHIDA PHYS. REV. D 105, 044006 (2022)

044006-12



in Sec. IV B 2, it turns out that the approximation is valid
for finding κα and κβ with sufficient accuracy.
From these results, we can easily read off the violation of

isospectrality between type I and type II due to nonlinear
electrodynamics: quasinormal frequencies of type I and
type II coincide for each charge Q in the Reissner-
Nordström (ᾱ ¼ β̄ ¼ 0) case, but this is no longer true
once ᾱ or β̄ is nonvanishing. Our analysis confirms
previous results in Ref. [66] where the violation of
isospectrality has been found for black holes in a certain
theory of nonlinear electrodynamics.

D. Applications

So far, we have treated α and β in the effective
Lagrangian (22) as free parameters and derived quasinor-
mal frequencies of black holes with various charges in
terms of α and β. By specifying α and β, we can obtain
quasinormal frequencies in various theories of nonlinear
electrodynamics. Below, as examples of the application, we
calculate the quasinormal frequencies in two nonlinear
electrodynamics: the Euler-Heisenberg theory, and the
Born-Infeld theory.

1. Euler-Heisenberg electrodynamics

First, let us find the corrections for quasinormal frequen-
cies due to the Euler-Heisenberg nonlinear electrodynamics
taking in electron one-loop corrections [35]. Up to the
quadratic order of F and G, the Euler-Heisenberg
Lagrangian is given by

LðF ;GÞ ¼ F −
2

45m4
e

�
e2

4π

�
2

ð4F 2 þ 7G2Þ; ð86Þ

whereme is the mass of the electron and e2=ð4πÞ is the fine
structure constant. In this case, the perturbation parameters
introduced in Eqs. (27) and (28) read

ᾱ ¼ 8

45m4
e

�
e2

4π

�
2 1

4πG3M2

�
Q
GM

�
2

; β̄ ¼ 7

4
ᾱ: ð87Þ

First of all, the parameter ᾱ should be sufficiently small to
ensure the validity of the effective theory. Inserting the
physical constants, ᾱ in Eq. (87) can be rewritten as

ᾱ ¼ 2.9 × 10−5
�
106 M⊙

M

�
2
�

Q
GM

�
2

: ð88Þ

Therefore, in the case of a charged supermassive black
hole, we can expect that the Euler-Heisenberg electrody-
namics effectively holds around the horizon, and we can
calculate the corrections for the quasinormal modes. Let us
linearly approximate the fundamental quasinormal frequen-
cies with the Euler-Heisenberg corrections as

ω ¼ ωRN þ ᾱκEH; ð89Þ

for small ᾱ. Here, the coefficient κEH can be found as

κEH ¼ κα þ
7

4
κβ ð90Þ

in terms of κα and κβ given by Table I for l ¼ 2 and Table II
for l ¼ 3. We explicitly show the values of κEH in Table III
for l ¼ 2 and in Table IV for l ¼ 3. From the tables, it can
be seen that the Euler-Heisenberg corrections reduce the
oscillation frequency jReðωÞj and enhance the damping

TABLE II. ωRN, κα, and κβ in Eq. (85) for fundamental quasinormal frequencies of the mode l ¼ 3 of black holes with different
charges Q.

Z1 Z2

l ¼ 3 Type I Type II Type I Type II

Q=GM ωRNGM καGM κβGM καGM κβGM ωRNGM καGM κβGM καGM κβGM

0 −0.65690 −0.00059 0.00868 0.00927 0 −0.59944 0 0 0 0
−0.09562i −0.00031i −0.00067i −0.00036i þ0i −0.09270i þ0i þ0i þ0i þ0i

0.2 −0.66437 −0.00054 0.00872 0.00935 0 −0.60103 −0.00005 0.00035 0.00035 0
−0.09597i −0.00032i −0.00067i −0.00038i þ0i −0.09279i −0.00001i −0.00005i −0.00003i þ0i

0.4 −0.68728 −0.00041 0.00921 0.00998 0 −0.60706 −0.00018 0.00118 0.00121 0
−0.09697i −0.00037i −0.00069i −0.00046i þ0i −0.09306i −0.00004i −0.00019i −0.00011i þ0i

0.6 −0.72919 −0.00015 0.01101 0.01218 0 −0.62066 −0.00039 0.00244 0.00250 0
−0.09837i −0.00053i −0.00083i −0.00073i þ0i −0.09341i −0.00008i −0.00046i −0.00031i þ0i

0.8 −0.80284 0.00069 0.01644 0.01888 0 −0.64755 −0.00082 0.00484 0.00497 0
−0.09911i −0.00111i −0.00140i −0.00176i þ0i −0.09312i −0.00020i −0.00121i −0.00100i þ0i

0.9 −0.86376 0.00216 0.02365 0.02807 0 −0.67002 −0.00133 0.00741 0.00758 0
−0.09752i −0.00223i −0.00245i −0.00381i þ0i −0.09164i −0.00037i −0.00238i −0.00219i þ0i

QUASINORMAL MODES OF CHARGED BLACK HOLES WITH … PHYS. REV. D 105, 044006 (2022)

044006-13



rate jImðωÞj compared to the linear Maxwell theory, except
for the mode Z1 in type II of l ¼ 2 for Q=GM ¼ 0. In other
words, by the Euler-Heisenberg corrections, the oscillation
period of the quasinormal modes become longer, and the
black hole settles into a stationary state more quickly, in
almost all cases. The decreasing of jReðωÞj can be under-
stood from the lowering of the height of the effective
potential in the master equations as drawn in Fig. 1. This
tendency of the oscillation frequency anddamping rate due to
the Euler-Heisenberg corrections is consistent with the result

of Ref. [43], where the quasinormal modes of Euler-
Heisenberg black holes are studied by the eikonal
approximation.
For example, if we consider the quasinormal mode of

l ¼ 2 on a charged black hole with Q=ðGMÞ ¼ 0.9, the
Euler-Heisenberg corrections contribute as

Z1∶
ReðᾱκEHÞ
ReðωRNÞ

¼
�
−1.4 × 10−6ð106 M⊙=MÞ2 ðtype IÞ;
−9.5 × 10−7ð106 M⊙=MÞ2 ðtype IIÞ;

ImðᾱκEHÞ
ImðωRNÞ

¼
�
1.7 × 10−6ð106 M⊙=MÞ2 ðtype IÞ;
8.5 × 10−7ð106 M⊙=MÞ2 ðtype IIÞ;

Z2∶
ReðᾱκEHÞ
ReðωRNÞ

¼
�
−2.7 × 10−7ð106 M⊙=MÞ2 ðtype IÞ;
−2.3 × 10−7ð106 M⊙=MÞ2 ðtype IIÞ;

ImðᾱκEHÞ
ImðωRNÞ

¼
�
1.2 × 10−6ð106 M⊙=MÞ2 ðtype IÞ;
4.2 × 10−7ð106 M⊙=MÞ2 ðtype IIÞ;

for l ¼ 2; and Q=GM ¼ 0.9: ð91Þ

This implies that the Euler-Heisenberg electrodynamics
taking in the electron one-loop corrections would yield
∼0.1%–1% modifications for the quasinormal frequencies
of a black hole withM ∼ 104 M⊙ and Q=ðGMÞ ¼ 0.9, if it
exists.
There are some discussions on a possible electric charge

of realistic black holes. In Ref. [32], assuming that the
number of electrons and of protons are balanced under the
gravitational and electric potentials, the plausible electric
charge of the black hole is estimated. The resulting charge-
to-mass ratio of the black hole can be written as

Q
GM

¼ 2π

�
e2

4π

�−1=2 ffiffiffiffi
G

p
ðmp −meÞ

¼ 5.7 × 10−18; ð92Þ

where mp is the mass of the proton. This ratio is extremely
small; thus the possible corrections to the quasinormal
frequencies can be estimated by utilizing the row of
Q=GM ¼ 0 in the tables. However, in this case, ᾱ given
by Eq. (88) would also be extremely small for astrophysical
black holes, and thus we can expect no significant
corrections from the observational point of view.

2. Born-Infeld electrodynamics

As another example, let us apply our results to Born-
Infeld nonlinear electrodynamics, which was originally
proposed to remove the divergence of the self-energy of a
charged particle within classical electrodynamics [36]. The
complete Lagrangian is given by

L ¼ μ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2F

μ4
−
G2

μ8

s
− μ4; ð93Þ

TABLE III. The correction coefficients due to Euler-Heisen-
berg electrodynamics κEH in Eq. (89) for fundamental quasinor-
mal frequencies of the mode l ¼ 2 of black holes with different
charges Q.

Z1 Z2

EH, l ¼ 2 Type I Type II Type I Type II

Q=GM κEHGM κEHGM κEHGM κEHGM

0 0.01054 0.00713 0 0
−0.00157i þ0.00001i þ0i þ0i

0.2 0.01087 0.00735 0.00016 0.00012
−0.00161i −0.00001i −0.00007i −0.00001i

0.4 0.01211 0.00819 0.00062 0.00046
−0.00175i −0.00010i −0.00028i −0.00003i

0.6 0.01528 0.01032 0.00147 0.00111
−0.00218i −0.00035i −0.00077i −0.00014i

0.8 0.02422 0.01637 0.00312 0.00249
−0.00376i −0.00135i −0.00217i −0.00061i

0.9 0.03644 0.02469 0.00466 0.00391
−0.00678i −0.00349i −0.00427i −0.00156i

TABLE IV. The correction coefficients due to Euler-Heisenberg
electrodynamics κEH in Eq. (89) for fundamental quasinormal
frequencies of the mode l ¼ 3 of black holes with different
charges Q.

Z1 Z2

EH, l ¼ 3 Type I Type II Type I Type II

Q=GM κEHGM κEHGM κEHGM κEHGM

0 0.01461 0.00927 0 0
−0.00149i −0.00036i þ0i þ0i

0.2 0.01472 0.00935 0.00055 0.00035
−0.00149i −0.00038i −0.00010i −0.00003i

0.4 0.01571 0.00998 0.00189 0.00121
−0.00158i −0.00046i −0.00036i −0.00011i

0.6 0.01912 0.01218 0.00388 0.00250
−0.00199i −0.00073i −0.00089i −0.00031i

0.8 0.02947 0.01888 0.00766 0.00497
−0.00357i −0.00176i −0.00232i −0.00100i

0.9 0.04355 0.02807 0.01164 0.00758
−0.00652i −0.00381i −0.00453i −0.00219i
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where μ is a parameter with a mass dimension. Then, the
upper bound for the electric field strength is set as μ2 so that
the self-energy of a charged particle becomes finite. By
expanding the Lagrangian (93) up to the quadratic order in
F and G, we have

L ¼ F −
F 2

2μ4
−

G2

2μ4
: ð94Þ

This case corresponds to

α ¼ β ¼ 1

2μ4
ð95Þ

in the effective Lagrangian (22). To ensure the validity of
the perturbative expansion, we expect

ᾱ ¼ 1

8πGμ4ðGMÞ2
�

Q
GM

�
2

≪ 1: ð96Þ

For small ᾱ, we can linearly approximate the quasinormal
frequencies with the Born-Infeld corrections as

ω ¼ ωRN þ ᾱκBI; ð97Þ

where κBI is given by

κBI ¼ κα þ κβ; ð98Þ

in terms of κα and κβ, which are obtained in the previous
section for fundamental modes. The values of κBI derived
from Tables I and II are shown in Table V for l ¼ 2 and in
Table VI for l ¼ 3. From the tables, we can see that the
Born-Infeld electrodynamics contributes to reduce the

oscillation frequency jReðωÞj and enhance the damping
rate jImðωÞj compared to the linear Maxwell electrody-
namics in almost all cases, as in the Euler-Heisenberg case.
If we take μ and M in Eq. (93) to be the Planck scale

MPl ¼ G−1=2 ¼ 1.2 × 1019 GeV ¼ 2.2 × 10−5 g as a refer-
ence, the parameter ᾱ given by Eq. (96) can be written as

ᾱ ¼ 0.040 ×

�
MPl

M

�
2
�
MPl

μ

�
4
�

Q
GM

�
2

: ð99Þ

In particular, for the mode l ¼ 2 on a charged black hole
with Q=ðGMÞ ¼ 0.9 and M ¼ MPl, the Born-Infeld cor-
rections with μ ¼ MPl contribute as

Z1∶
ReðᾱκBIÞ
ReðωRNÞ

¼
�
−1.1×10−3 ðtypeIÞ;
−1.3×10−3 ðtypeIIÞ;

ImðᾱκBIÞ
ImðωRNÞ

¼
�
1.7×10−3 ðtypeIÞ;
1.2×10−3 ðtypeIIÞ;

Z2∶
ReðᾱκBIÞ
ReðωRNÞ

¼
�
−1.6×10−4 ðtypeIÞ;
−3.0×10−4 ðtype IIÞ;

ImðᾱκBIÞ
ImðωRNÞ

¼
�
9.4×10−4 ðtypeIÞ;
5.7×10−4 ðtypeIIÞ;

for l¼2; M¼MPl; Q=GM¼0.9; μ¼MPl:

ð100Þ

In this case, the relative corrections to the quasinormal
frequencies can reach ∼0.1%.

TABLE V. The correction coefficients due to Born-Infeld
electrodynamics κBI in Eq. (97) for fundamental quasinormal
frequencies of the mode l ¼ 2 of black holes with different
charges Q.

Z1 Z2

BI, l ¼ 2 Type I Type II Type I Type II

Q=GM κBIGM κBIGM κBIGM κBIGM

0 0.00572 0.00713 0 0
−0.00115i þ0.00001i þ0i þ0i

0.2 0.00592 0.00735 0.00008 0.00012
−0.00117i −0.00001i −0.00004i −0.00001i

0.4 0.00666 0.00819 0.00030 0.00046
−0.00129i −0.00010i −0.00018i −0.00003i

0.6 0.00856 0.01032 0.00071 0.00111
−0.00163i −0.00035i −0.00048i −0.00014i

0.8 0.01399 0.01637 0.00148 0.00249
−0.00287i −0.00135i −0.00132i −0.00061i

0.9 0.02159 0.02469 0.00210 0.00391
−0.00522i −0.00349i −0.00257i −0.00156i

TABLE VI. The correction coefficients due to Born-Infeld
electrodynamics κBI in Eq. (97) for fundamental quasinormal
frequencies of the mode l ¼ 3 of black holes with different
charges Q.

Z1 Z2

BI, l ¼ 3 Type I Type II Type I Type II

Q=GM κBIGM κBIGM κBIGM κBIGM

0 0.00809 0.00927 0 0
−0.00099i −0.00036i þ0i þ0i

0.2 0.00818 0.00935 0.00029 0.00035
−0.00099i −0.00038i −0.00006i −0.00003i

0.4 0.00880 0.00998 0.00100 0.00121
−0.00106i −0.00046i −0.00022i −0.00011i

0.6 0.01086 0.01218 0.00205 0.00250
−0.00136i −0.00073i −0.00054i −0.00031i

0.8 0.01714 0.01888 0.00402 0.00497
−0.00251i −0.00176i −0.00141i −0.00100i

0.9 0.02581 0.02807 0.00608 0.00758
−0.00468i −0.00381i −0.00275i −0.00219i
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V. SUMMARY AND DISCUSSION

In this paper, we analyzed quasinormal modes related to
gravitational and electromagnetic perturbations of static
and spherically symmetric charged black holes in general
relativity with nonlinear electrodynamics. In particular, we
considered the effective field theory in nonlinear electro-
dynamics given by Eq. (22) as giving the leading correc-
tions to the Maxwell electrodynamics. The coefficients α
and β in the effective Lagrangian (22) were treated as
arbitrary parameters throughout the analysis so that the
framework of nonlinear electrodynamics was inclusively
treated. As commented in Sec. III and Appendix A 4, note
that a magnetically charged black hole and an electrically
charged black hole can be treated in parallel up to the linear
order of the parameters α and β. To obtain the quasinormal
frequencies, we independently used two calculation meth-
ods, the numerical integration and the continued fractions
method, which are useful even for a multicomponent
system as in our case. In particular, we calculated quasi-
normal frequencies of the fundamental modes for l ¼ 2, 3,
and linearly parametrized the corrections for the frequencies
in terms of the perturbation parameters as Eq. (85). The
results by the two calculation methods agree, and they are
listed in Tables I and II. Given a certain nonlinear electro-
dynamics with specific α and β, and given the mass and
charge of the black hole, the perturbation parameters are
given by Eq. (84), and then the corrections for the funda-
mental quasinormal frequencies can be calculated immedi-
ately from Eq. (85) and Tables I and II. As examples, we
calculated the corrections in Euler-Heisenberg and Born-
Infeld electrodynamics in Sec. IVD.
From Tables I and II, we can see that the imaginary part

of the correction coefficients κα and κβ is negative in almost
all cases. This means that if α and β in the effective
Lagrangian are positive, the magnitude of the damping rate
of the quasinormal modes will be enhanced due to the
nonlinear electrodynamics corrections. One should note
that α and β must be positive if the effective theory has an
ultraviolet completion which satisfies the basic require-
ments of physics, such as unitarity, causality, and local-
ity [90].
The system of electromagnetic and gravitational pertur-

bations of black holes is separated into two types according
to parity. For the Reissner-Nordström black hole in
Einstein-Maxwell theory, the isospectrality of quasinormal
modes under parity holds; i.e., the quasinormal frequencies
of the two types exactly coincide [91]. On the other hand,
the results of the present paper show that the isospectrality
is violated due to nonlinear electrodynamics corrections.
This isospectrality violation was found in a specific model
of nonlinear electrodynamics giving a regular black hole in
Ref. [66], but in this paper we have confirmed that the
violation occurs in the general case. As pointed out in that
paper, this isospectrality violation would be partly
explained in the eikonal limit, in which the quasinormal

modes in the large l are associated with unstable circular
null orbits. In nonlinear electrodynamics, light rays follow
null geodesics in effective metrics which are different from
the spacetime metric and depend on the background
electromagnetic field. The fact that two different effective
metrics are possible according to the polarization would be
related to the violation of isospectrality under parity. In fact,
two different quasinormal frequencies of the Euler-
Heisenberg black hole in the eikonal limit have been
studied in Ref. [43] based on the effective metrics, and
the tendency of the corrections, such as the enhancement of
the damping rate, is consistent with the results of the
present paper.
Throughout this paper, we have concentrated on the case

where the effective electrodynamics characterized by
ðFμνFμνÞ2 and ðFμνF̃μνÞ2 gives the leading corrections
for the quasinormal modes. More generally, it will be
important to study quasinormal modes of charged black
holes in effective theories with higher-order corrections
including spacetime curvature, such as RμνρσFμνFρσ.
Furthermore, there are Lagrangians of nonlinear electro-
dynamics without a power series expansion in the scalarsF
and G unlike the framework treated in the present paper. In
fact, in Ref. [92], a theory of nonlinear electrodynamics
with electromagnetic duality invariance and conformal
invariance has been found as an extension of Maxwell
electrodynamics, which does not have such an expansion.
Black holes or other gravitating objects in this theory have
been studied in Refs. [93–97]. It will be interesting to
analyze the quasinormal modes of black holes in such a
theory. We leave these issues as future works.
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APPENDIX: MAGNETIC/ELECTRIC BLACK
HOLES AND FP DUALITY

In this Appendix, we review the constructions of spheri-
cally symmetric magnetic or electric black hole solutions in
nonlinear electrodynamics and the relationship between
them known as FP duality.
We start with the action (1). Taking variation of the action

with respect to the metric yields the Einstein equations,

Gμ
ν ¼ 8πGTμ

ν; ðA1Þ

where the left-hand side is theEinstein tensor calculated from
gμν, while the right-hand side is the energy-momentum tensor
of the electromagnetic field in nonlinear electrodynamics,
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Tμ
ν ¼ LFFμλFνλ þ δνμðLGG − LÞ
¼ LFFμλFνλ þ LGFμλF̃νλ − δνμL; ðA2Þ

whereLF ¼ ∂L=∂F and LG ¼ ∂L=∂G. On the other hand,
by taking variation of the action with respect to Aμ, we have
the equations of motion for the electromagnetic field,

∇μðLFFμν þ LGF̃μνÞ ¼ 0: ðA3Þ

The electromagnetic field strength tensor also satisfies the
Bianchi identity,

∇μF̃μν ¼ 0: ðA4Þ

To find static and spherically symmetric solutions, we
put an ansatz for the metric as

gμνdxμdxν ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ:

ðA5Þ

Then, the components of the Einstein tensor read

Gt
t ¼ Gr

r ¼ −
1

r2
þ f
r2

þ f0

r
; ðA6Þ

Gθ
θ ¼ Gϕ

ϕ ¼ f00

2
þ f0

r
; ðA7Þ

where a prime denotes the derivative with respect to r.

1. Magnetic black holes

We first consider static and spherically symmetric
solutions with a magnetic charge. We take the magnetic
field configuration as

1

2
Fμνdxμ ∧ dxν ¼ q sin θdθ ∧ dϕ; ðA8Þ

where q is a constant corresponding to the magnetic charge.
On this magnetic configuration, we have

F ¼ q2

2r4
; G ¼ 0: ðA9Þ

This configuration gives the energy-momentum tensor as

Tt
t ¼ Tr

r ¼ −L; ðA10Þ

Tθ
θ ¼ Tϕ

ϕ ¼ −Lþ q2LF

r4
: ðA11Þ

Then, under an appropriate scaling of the time coordinate,
the Einstein equations can be solved as

f ¼ 1 −
2GM
r

−
8πG
r

Z
r
dr0r02L

�
q2

2r04
; 0

�
; ðA12Þ

with a constant M.
The static configuration should satisfy the equations of

motion for the electromagnetic field, from which we can
read off a constraint to the Lagrangian,

LFG

�
q2

2r4
; 0

�
¼ 0: ðA13Þ

This implies that the Lagrangian does not have linear terms
with respect to G.

2. Electric black holes

Next, let us find electrically charged solutions. For this
purpose, it is convenient to define the “conjugate” field
Pμν as1 [48]

Pμν ≔ 2
∂L
∂Fμν ¼ LFFμν þ LGF̃μν ðA14Þ

and introduce the “Hamiltonian” H by the Legendre
transformation

H ≔
1

2
PμνFμν − L

¼ 2LFF þ 2LGG − L: ðA15Þ

Just as L is written in terms of two invariants F and G, we
can regard H as the function of two invariants defined by

P ≔
1

4
PμνPμν; Q ≔

1

4
PμνP̃μν: ðA16Þ

Then, we can move from the original F framework, in
which one uses the Lagrangian LðF ;GÞ in the analysis, to
the so-called P framework, in which HðP;QÞ is alter-
natively utilized. Note that if the transformation is invert-
ible, which we assume unless otherwise noted, we can
recover the F framework from the P framework through

Fμν ¼ 2
∂H
∂Pμν ¼ HPPμν þHQP̃μν; ðA17Þ

L ¼ 1

2
PμνFμν −H

¼ 2HPP þ 2HQQ −H; ðA18Þ

where HP ¼ ∂H=∂P and HQ ¼ ∂H=∂Q.
Performing the Legendre transformation, the Einstein

equations are rewritten in the P framework with the energy-
momentum tensor

1Here, we defined ∂Fμν=∂Fαβ ≔ ð1=2Þðδμαδνβ − δναδ
μ
βÞ.
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Tμ
ν ¼ HPPμλPνλ − δνμð2HPP þHQQ −HÞ: ðA19Þ

Similarly, the equations of motion and the Bianchi identity
for the electromagnetic field are rewritten as

∇μPμν ¼ 0; ðA20Þ

∇μðHPP̃μν −HQPμνÞ ¼ 0; ðA21Þ

respectively.
To find static and spherically symmetric solutions with

an electric charge, we set

1

2
Pμνdxμ ∧ dxν ¼ −

q
r2
dt ∧ dr: ðA22Þ

Here, q is a constant corresponding to the electric charge.
On the configurations (A5) and (A22), the invariants read

P ¼ −
q2

2r4
; Q ¼ 0; ðA23Þ

and the components of the energy-momentum tensor are
given by

Tt
t ¼ Tr

r ¼ H; ðA24Þ

Tθ
θ ¼ Tϕ

ϕ ¼ Hþ q2HP

r4
: ðA25Þ

Then, the Einstein equations are solved by

f ¼ 1 −
2GM
r

þ 8πG
r

Z
r
dr0r02H

�
−

q2

2r04
; 0

�
; ðA26Þ

where M is a constant.
The fact that the electric configuration satisfies

Eq. (A21) gives the constraint to the Hamiltonian as

HPQ

�
−

q2

2r4
; 0
�

¼ 0; ðA27Þ

from which we can see that the Hamiltonian should not
depend on Q linearly for the existence of the electric black
hole solution.

3. FP duality

From the above analysis, one can read off a duality
relation between the F framework and the P framework,
which is known as the FP duality. To see this, let us
consider P̃μν as a new electromagnetic field strength F0

μν:

F0
μν ≔ P̃μν; ðA28Þ

which leads to

F̃0
μν ¼ −Pμν; ðA29Þ

F 0 ¼ −P; ðA30Þ

G0 ¼ −Q: ðA31Þ

Furthermore, we define a new Lagrangian L0 by using the
original Hamiltonian H as

L0ðF 0;G0Þ ≔ −HðP;QÞ
¼ −Hð−F 0;−G0Þ: ðA32Þ

Consequently, we have

L0
F 0 ¼ HP; ðA33Þ

L0
G0 ¼ HQ: ðA34Þ

Then, we can see that the equations of motion in the P
framework for the original theory defined by LðF ;GÞ are
equivalent to those in the F framework for the new theory
defined by L0ðF 0;G0Þ.2 This relation suggests that the
electric solution in the original theory LðF ;GÞ can be
obtained as the magnetic solution in the new theory
L0ðF 0;G0Þ, and vice versa.
Similarly, the analysis of perturbations on magnetic

black holes in a given theory can be translated into that
on electric black holes in another theory. In fact, the master
equations with translations L → −H, LF → HP , etc., for
potentials (12)–(14), (16)–(18) describe perturbations on
the electric black hole in another theory, in which the
Lagrangian is given by Eq. (A18).
Note that the FP duality relates a magnetic black hole in

a given theory to an electric black hole in a different theory
in general. The FP duality is reduced to the symmetry of
the theory only if LðF ;GÞ ¼ L0ðF ;GÞ ¼ −Hð−F ;−GÞ.
This is true in specific cases, such as the Maxwell
electrodynamics LðF ;GÞ ¼ F (up to a constant) and
Born-Infeld electrodynamics given by Eq. (93) [98].

4. FP duality in effective field theory

Here we study the FP duality for the effective field
theory in nonlinear electrodynamics as an example. We
consider an effective Lagrangian,

LðF ;GÞ ¼ F − αF 2 − βG2: ðA35Þ

The magnetic black hole solutions in this theory are
subjects of the analysis in Sec. III and subsequent sections

2One should note that

P̃μλP̃νλ ¼ −2Pδνμ þ PμλPνλ;
1

4
P̃μλP̃μλ ¼ −P:
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of this paper. Here let us construct the Hamiltonian for this
effective theory and obtain the dual theory with a
Lagrangian L0ðF 0;G0Þ via Eq. (A32). Then, the magnetic
black holes in the dual theory describe the electric black
holes in the original effective theory. Note that we will
always ignore nonlinear terms with respect to α and β in the
following descriptions.
First, from Eq. (A14), the conjugate field Pμν in the

effective theory (A35) is given by

Pμν ¼ ð1 − 2αF ÞFμν − 2βGF̃μν: ðA36Þ

Then we have

P ≃ F − 4αF 2 − 4βG2; ðA37Þ

Q ≃ G − 4αFGþ 4βFG; ðA38Þ

at the linear order in α and β. Equations (A37) and (A38)
can be inverted to obtain

F ≃ P þ 4αP2 þ 4βQ2; ðA39Þ

G ≃Qþ 4αPQ − 4βPQ: ðA40Þ

From the definition (A15), at the linear order in α and β, the
Hamiltonian in the effective theory is given by

H ¼ 2LFF þ 2LGG − L

¼ F − 3αF 2 − 3βG2

≃ P þ αP2 þ βQ2; ðA41Þ
where Eqs. (A39) and (A40) are used in the last line. Thus,
fromEqs. (A30) and (A32), theLagrangianof the dual theory
to the effective theory (A35) is approximately given by

L0ðF 0;G0Þ ≃ F 0 − αF 02 − βG02; ðA42Þ
which coincideswith the original effective Lagrangian (A35)
up to the linear order of α and β. This means that, in the
effective theory (A35), a black hole with magnetic charge q
and a black hole with electric charge q are described by the
same geometry, e.g., Eq. (25), up to the linear order of α and
β. This fact is consistent with the analysis of charged black
holes in Euler-Heisenberg electrodynamics in Ref. [40].
Furthermore, it is expected that the calculation results for
quasinormal frequencies with corrections proportional to α
and β formagnetic black holes,which are shown in Sec. IVin
the present paper, are equally valid for electric black holes.
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