
Gravitational wave timing array
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We describe the design of a gravitational wave timing array, a novel scheme that can be used to search for
low-frequency gravitational waves by monitoring continuous gravitational waves at higher frequencies. We
show that observations of gravitational waves produced by Galactic binaries using a space-based detector
like LISA provide sensitivity in the nanohertz to microhertz band. While the expected sensitivity is several
magnitudes worse than what can be achieved by pulsar timing arrays, it supplements other recent proposals
for gravitational wave searches in the microhertz regime. This regime is below the frequencies to which
LISA is directly sensitive, and above the frequency range generally targeted by pulsar timing array
searches. The low-frequency extension of sensitivity does not require any experimental design change to
space-based gravitational wave detectors, and can be achieved with the data products that would already be
collected by them.
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I. INTRODUCTION

Current and future observatories probe gravitational
waves in several regimes of the frequency spectrum.
Ground-based gravitational wave detectors, such as the
Advanced LIGO [1], Advanced Virgo [2], and KAGRA [3]
detectors, cover the ∼20–2000 Hz range by measuring
induced gravitational wave strains of order 10−22 in their
kilometer-scale Fabry-Pérot interferometers. In the near
future, the Laser Interferometer Space Antenna (LISA) will
probe the millihertz regime, measuring gravitational waves
using million kilometer-scale arms [4]. At nanohertz
frequencies, pulsar timing arrays indirectly measure gravi-
tational waves by monitoring an array of pulsars which
serve as standard clocks [5–9]. Strongly lensed, repeating
fast radio bursts [10] can also be utilized to detect
gravitational waves in a similar manner to pulsar timing
arrays, by monitoring changes to the arrival times of the
lensed burst images [11]. Astrometric observations of
distant objects can be used to search for photon deflection
caused by gravitational waves in the nanohertz regime,
along with an integrated constraint on a background of
lower frequency gravitational waves [12–14]. A key goal of
current and future cosmic microwave background surveys
is the search for primordial gravitational waves with
frequencies in the attohertz range through measurements
of B-mode polarization [15,16].
These techniques, together with current and future

observatories, cover a wide swath of the gravitational wave
spectrum. A gap remains between the lowest frequencies
accessible on the ground,∼1 Hz, and the highest frequencies
accessible to LISA. Several proposed observatories plan to

cover the gap between ground-based interferometers and
LISA, including theDECi-hertz InterferometerGravitational
wave Observatory (DECIGO) [17,18] and the Big Bang
Observer [19], and that regime may also be accessible with
atom interferometry [20,21]. Meanwhile, the sensitivity of
LISA is limited to frequencies ≳10−5–10−4 Hz by accel-
eration performance [22,23], while pulsar timing arrays
usually focus on the frequency regime < 10−6 Hz, limited
by the cadence with which pulsars in the network are
observed. The sensitivity of pulsar timing arrays can be
extended to higher frequencies by timing pulsars at a higher
cadence [24]. A recent study demonstrates that staggered,
lower-cadence observations of many pulsars can also extend
the sensitivity of pulsar timing arrays to higher frequencies,
≳10−6 Hz [25]. This microhertz regime has been targeted by
at least one proposal [26] but remains unlikely to be covered
by direct gravitationalwave searches in the next fewdecades.
Additionally, an interesting recent proposal showed that
high-cadence astrometric measurements obtained from pho-
tometric surveys can be used to search for gravitational
waves with frequencies ranging from nanohertz to micro-
hertz [27]. Another recent proposal suggests that precise
tracking of orbital dynamics can be used to detect gravita-
tionalwaves over awide range of frequencies,10−8–10−4 Hz
[28,29]. Yet another recent proposal suggests using ∼10 km
diameter asteroids as natural test masses with low acceler-
ation noise to search for gravitationalwaveswith frequencies
in the 10−7–10−5 Hz range [30].
In this paper, we describe a new method that can be

used to search for gravitational waves in the microhertz
band. Gravitational waves emitted from Galactic binaries

PHYSICAL REVIEW D 105, 044005 (2022)

2470-0010=2022=105(4)=044005(19) 044005-1 © 2022 American Physical Society

https://orcid.org/0000-0001-8510-2812
https://orcid.org/0000-0003-4965-5633
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.044005&domain=pdf&date_stamp=2022-02-03
https://doi.org/10.1103/PhysRevD.105.044005
https://doi.org/10.1103/PhysRevD.105.044005
https://doi.org/10.1103/PhysRevD.105.044005
https://doi.org/10.1103/PhysRevD.105.044005


observed with space-based interferometers like LISA act as
stable oscillators that can be monitored to construct a
gravitational wave timing array. Within the LISA band, the
most common source of gravitational waves will be the
millions of white dwarf binaries present in the Milky Way.
About 10000 of them should be well resolved by the LISA
mission within its planned four-year lifetime. Additionally,
it is possible that LISAwill detect other classes of binaries
emitting in the mHz regime, such as mixed binaries of
white dwarfs and neutron stars or black holes [31,32].
Most of these Galactic binaries will emit nearly mono-
chromatic gravitational waves during LISA’s lifetime, with
the evolution of the binaries dominated by gravitational
wave radiation.
A gravitational wave background, either stochastic or

coherent, imprints correlated phase modulations on the
gravitational waves from the binaries, similar to the timing
delays measured in pulsar timing arrays. A gravitational
wave timing array like the one described here benefits from
the large number of sources and continuous monitoring of
the whole sky, and it provides sensitivity to gravitational
waves in a frequency range 10−9–10−5 Hz. The frequency
coverage of such a gravitational wave timing array is
illustrated in Fig. 1, along with several existing experiments
and future proposals for gravitational wave detection.
Constructing such an array with the observations from a
space-based interferometer like LISA requires no exper-
imental design changes nor a specialized observing cam-
paign. Gravitational waves are not subject to any plasma
dispersion effects in the interstellar medium or radio
interference at Earth that can complicate gravitational wave
searches with pulsar timing arrays [33]. On the other hand,
a gravitational wave timing array relies on intrinsically

weak gravitational waves as the primary signal to be
monitored, and this leads to lower sensitivity than direct
LISA measurements and pulsar timing arrays in the
regimes where those strategies are sensitive.
This paper is organized as follows. In Sec. II we discuss

the phase modulation induced on a gravitational wave
propagating in a flat spacetime which is perturbed by an
additional background gravitational wave. In Sec. III we
calculate the sensitivity of a gravitational wave timing array
using multiple methods. Section III A presents a timing
estimate approach leveraging existing results for pulsar
timing arrays [36], Sec. III B provides a matched filter
sensitivity estimate, and Sec. III C describes our most
complete frequency-domain Fisher estimates. Section IV
uses a mock Galaxy catalog and the results from Sec. III to
get realistic estimates of the sensitivity of a gravitational
wave timing array constructed from LISA observations
over a nominal four-year mission. Lastly, Sec. V discusses
the viability of such an array, the limitations of our
approximations, and future prospects.

II. MODULATION OF A CARRIER
WAVE BY A BACKGROUND WAVE

We consider an approximately monochromatic gravita-
tional wave with frequency ωc, which we refer to as the
carrier wave. This wave propagates in the presence of a
lower frequency, modulating gravitational plane wave, with
frequency ωm ≪ ωc. To leading order in the modulating
wave amplitude, the observed phase evolution of the carrier
wave is

dφ
dt

≈ ωc½1 − zðt; k̂Þ�; ð1Þ

where φ is the phase of the carrier, and z is a redshift
induced by the modulating gravitational wave. It is given
by [14,37]

zðt; k̂Þ ¼ n̂in̂j

2ð1þ k̂ · n̂Þ ½hijðt; k̂Þ − hijðtc; k̂Þ�; ð2Þ

where k̂ is the direction of propagation of the modulating
wave and n̂ is the unit vector pointing from the observer
towards the source of the carrier waves, as shown in Fig. 2.
The two terms hijðt; k̂Þ and hijðtc; k̂Þ are the metric

perturbations from the modulating wave at the observer
and at the source of the carrier wave, respectively. In the
context of pulsar timing arrays, the first term is called the
Earth term, and the second the pulsar term. The time tc ¼
t − dð1þ n̂ · k̂Þ=c incorporates the relative propagation
times of the carrier wave and modulating waves, where
d is the distance between the observer and the source of the
carrier waves.

FIG. 1. Targeted frequency range of several existing and
proposed gravitational wave detection methods. Direct detection
methods (red) include the existing ground-based detectors LIGO
[1], Virgo [2], and Kagra [3] (LVK), the space-based LISA, and
proposed DECIGO [18] detectors. Indirect methods (blue)
include existing pulsar timing arrays [5], astrometry with Gaia
observations [34], and proposed high-cadence astrometry with
the future Nancy Grace Roman Space Telescope [27,35]. The
gravitational wave timing array proposed here (purple) would use
LISA observations to detect gravitational waves indirectly.
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When considering the timing residuals of pulsars, the
redshift of Eq. (2) is derived by considering the propagation
of a null geodesic between the source of the pulse and the
observer [14,38]. The same result is arrived at in our case by
noting that forωm ≪ ωc, the carrier wave is in the geometric
optics limit, so that thewave fronts propagate along geodesic
null rays, as discussed further in the Appendix A. The phase
of the carrier wave is then given by

φðt; k̂Þ ≈ ωct − ωc

Z
t

0

zðt0; k̂Þdt0: ð3Þ

When searching for a stochastic background of gravitational
waveswith pulsar timing arrays, the pulsar term inEq. (2) is a
nuisance parameter that contributes to the timing noise for
each pulsar. It can often be neglected when estimating the
sensitivity of the array. Since we consider a binary source of
modulating waves, we find that this pulsar term potentially
contributes to the detected signal. Whether we can neglect
this term, which we call the carrier term, will thus depend on
the evolution of the modulating wave.

A. Source of modulating waves

We assume that the source of the modulating wave is a
supermassive black hole binary, which produces a trans-
verse-traceless gravitational wave

hijðt; k̂Þ ¼ Aþ
mH

þ
ijðk̂Þ cosΦðtÞ þ A×

mH×
ijðk̂Þ sinΦðtÞ; ð4Þ

whereΦðtÞ is the phase of the modulating wave. The binary
has an inclination angle ι relative to the line of sight, so that
the amplitudes of the plus- and cross-polarized waves are
related to a characteristic amplitude Am through

Aþ
m ¼ Am

1þ cos2ι
2

; A×
m ¼ Am cos ι: ð5Þ

For later reference, we define two preferred transverse
polarization tensors ϵþijðk̂Þ and ϵ×ijðk̂Þ, and a polarization
angle ψ . Then

Hþ
ij ¼ cos 2ψϵþij þ sin 2ψϵ×ij; ð6Þ

H×
ij ¼ − sin 2ψϵþij þ cos 2ψϵ×ij: ð7Þ

Assuming that the modulating binary evolves only due to
the emission of gravitational waves, its frequency evolution
is given by

_ωm ¼ 12

5

�
GM
c3

�
5=3

ω11=3
m ; ð8Þ

where M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass of
the binary,m1 is the mass of the primary, andm2 that of the
secondary. The modulating wave is approximately mono-
chromatic with frequency ωm over the timescale of the
observation, which is of the order of years (the lifetime of
the LISA mission). Equations (2)–(8) show that the phase
of the carrier wave is modulated sinusoidally by the
background wave, potentially at two distinct frequencies,
one associated with the local term and one with the carrier
term. The rate of change of ωm is a steep function of ωm,
and so at a fixed chirp mass we see that there are two cases.
Either the frequency evolves very slowly, even on time-
scales sufficiently long for light to propagate across the
Galaxy (∼10 kyr), or else the frequency evolves rapidly
over such timescales. In the first case, we cannot neglect the
carrier term, while in the second we can. See Refs. [8,39]
for similar discussion of the monochromatic limit, as well
as [37] (Ch. 23.2).

B. Slow evolution of modulating source

First consider the case where we neglect the evolution of
the modulating binary. Then both the local (Earth) term
and the carrier (pulsar) term of the modulation have the
same frequency, but a relative phase difference due to

FIG. 2. Illustration of the proposed gravitational wave timing
array. An array of Galactic binaries within the Milky Way
produce gravitational waves whose frequencies are modulated
by a longer-wavelength gravitational wave, exemplified here by
one produced by a black hole binary. Unit vector n̂c points from
the observer (such as LISA) to each galactic binary, and k̂ denotes
the propagation direction of the modulating gravitational wave.
The inclination of the binary black hole is ι, such that the binary is
face on for ι ¼ 0. Ac, Am, ωc, ωm, αc, αm are the amplitudes,
angular frequencies, and phases of the carrier and modulating
gravitational waves, respectively.
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propagation effects. The various sinusoidal terms combine
to give a redshift

z ¼ AmF sin γ cosðωmt − δÞ; ð9Þ

where

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ

mHþ
nnÞ2 þ ðA×

mH×
nnÞ2

p
Amð1þ k̂ · n̂Þ ; ð10Þ

γ ¼ ωmd
2c

ð1þ k̂ · n̂Þ; ð11Þ

δ ¼ αm þ γ þ β −
π

2
; ð12Þ

tan β ¼ A×
mH×

nn

Aþ
mHþ

nn
; ð13Þ

and where Hþ
nn ¼ Hþ

ijn̂
in̂j is the plus-polarized component

of the wave projected onto n̂, and similarly for H×
nn. We

have introduced a phase αm, which is a reference phase for
the modulating binary, a phase β which varies with n̂ at
fixed k̂, and a phase γ which also depends on the distance to
the source of the carrier.
Overall this gives a modulated carrier wave phase

φðt; k̂Þ ≈ ωct − αc −
AmFωc

ωm
sin γ sinðωmt − δÞ; ð14Þ

where we have introduced another reference phase αc to
absorb the integration constant. Equation (14) shows that
the modulation of the phase is directly proportional to
number of cycles of the carrier that occur per half a cycle of
the modulating wave.
We mostly work in the frequency domain, where the

carrier signal is a sharp peak at a frequency f ¼ fc, and
another peak mirrored around zero at f ¼ −fc as required
for a real signal. The modulation produces a sideband peak
to each side of these carrier peaks, separated by fm as
shown in Fig. 3. The redshift phase δ introduces an
asymmetry in the two sideband peaks around each carrier
peak. Since we deal with a finite observation time T, these
peaks are sinc functions rather than delta functions, with
finite widths in frequency space of order 1=T.
In the limit that the modulating binary does not evolve,

both the phase and amplitude of the modulating signal
depend on d, through γ. Since the distance d to any Galactic
binary is unknown to the precision of a wavelength of the
modulating wave, γ is a nuisance parameter that degrades
our ability to detect the influence of a modulating wave
on the carrier waves coming from a network of Galactic
binaries, all at different unknown distances.
However, if the frequency of the modulating wave

evolves over typical timescales ∼d=c, then the local term
and the carrier term each produce distinct sidebands around

the carrier. When the frequency of the modulating wave
evolves fast enough that the sidebands produced by the
local term and the carrier term are well-separated in
frequency space, the local term will provide a pair of
sidebands around each carrier peak whose amplitude does
not depend on d=c. We turn to this case next.

C. Fast evolution of modulating source

For the range of frequencies that we are interested in, we
can determine the parameter space where the modulating
frequency evolves enough to separate the local and carrier
sidebands for each Galactic binary. The local term would
then be common to all the carrier waves, up to a phase and
geometric factors that do not depend upon the distance d to
any binary. Meanwhile the carrier terms differ in frequency
and amplitude among the Galactic binaries, and can be
neglected as extra noise.
In order to treat the local and carrier sidebands as well

separated, we require that the change in the modulation
frequency over the propagation time of the carrier wave be
larger than the full width at half maximum (FWHM) of the
sideband peak in the frequency domain:

FWHM½sincðπfmTÞ� < _fmd=c: ð15Þ

Combining with Eq. (8), we see that the modulating
frequencies for which the local and carrier terms are well
separated satisfy

fm > 0.46 μHz

�
0.1 kpc

d

�
3=11

�
106 M⊙

M

�
5=11

�
4 yr
T

�
3=11

:

ð16Þ

We have chosen a small fiducial chirp mass and distance to
display the largest frequency for which the carrier (pulsar)
terms can be neglected.

FIG. 3. Schematic representation of the signal in the frequency
domain. The full width at half maximum of each peak is ∼1=T
(highlighted with a red line), where T is the total observation
time.
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For modulating frequencies higher than this, the phase of
the Galactic binary wave in the presence of a modulating
wave simplifies to

φðt; k̂Þ ≈ ωct − αc −
AmFωc

2ωm
sinðωmt − αm − βÞ: ð17Þ

Comparing to the case where we include the carrier term,
we recover Eq. (17) from Eq. (14) by setting γ ¼ π=2 and
adding a factor of 1=2 to the modulating part. Further, if we
fix the location of the modulating binary along with its
inclination and polarization angles, F and β depend only on
the sky location of the white dwarf binary and not its
distance from Earth. In practice, the sky position of a white
dwarf binary detected by LISA can be determined to a few
square degrees (see Sec. IV), and so we treat F and β as
approximately known in what follows.
For later use, we define a convenient coordinate system

in which to evaluate the geometric quantities F and β.
Let the modulating wave propagate in the z direction, and
set the polarization tensors to be ϵþij ¼ êxi ê

x
j − êyi ê

y
j and

ϵþij ¼ êxi ê
y
j þ êyi ê

x
j , where ê

x and êy are unit vectors in the x
and y directions. In this basis, the redshift will be in terms
of θ and ϕ, the colatitude and longitude of the carrier
source,

F ¼ sin2
θ

2
ðcos2ð2ϕ − 2ψÞsin4ιþ 4cos2ιÞ1=2; ð18Þ

δ ¼ αm þ tan−1
�
2 cos ι tanð2ϕ − 2ψÞ

1þ cos2ι

�
: ð19Þ

We can further specialize to the two extremes of the
inclination. When the binary is face on, ι ¼ 0, the waves are
circularly polarized and

F ¼ 2sin2
θ

2
; β ¼ 2ðϕ − ψÞ: ð20Þ

When the binary is edge on, the modulating wave is linearly
polarized and

F ¼ sin2
θ

2
cosð2ψ − 2ϕÞ; β ¼ 0: ð21Þ

The amplitude of the modulation is maximized in the
face-on case, and each carrier’s longitude ϕ contributes
to the effective phase of the modulation. For the edge-on
case, the amplitude depends on the longitude of the carrier,
but the phase of the modulation is common among the
galactic binaries.

D. Total gravitational wave signal

Considering the results so far, we can write the total
gravitational wave signal produced by a network of

Galactic binaries. Each binary produces a carrier wave
contribution hi to the total measured strain h. Here i indexes
over theN Galactic binaries. If we account for both the local
and carrier terms of the modulation, in the limit that the
modulating frequency fm remains constant during time-
scales ∼di=c for all the Galactic binaries, we have

hiðtÞ ¼ Ai cos

�
2πfit− αi −

AmFifi
fm

sin γi sinð2πfmt− δiÞ
�
;

≈Ai cosð2πfit− αiÞ

þAiAmFifi
fm

sin γi sinð2πfit− αiÞ sinð2πfmt− δiÞ;

ð22Þ
and the total signal arising from the sum of carriers is

hðtÞ ¼
X
i

hiðtÞ: ð23Þ

In the opposite extreme,where fm evolves rapidly (but is still
approximately constant over the timescale T of the obser-
vations), we can neglect the effect of the carrier (pulsar)
terms. Then we can make the simple substitution γi → π=2
and divide Am by an additional factor of two to get hðtÞ.
Specifically,

hiðtÞ ≈ Ai cosð2πfit − αiÞ

þ AiAmFifi
2fm

sinð2πfit − αiÞ sinð2πfmt − αm − βiÞ

ð24Þ
in this case.

III. GRAVITATIONAL WAVE TIMING ARRAY
SENSITIVITY

We now turn to the problem of estimating the sensitivity
of a network of nearly monochromatic carrier sources to
modulation by a background, low-frequency gravitational
wave. We carry out the sensitivity estimate in three ways.
First, we use time-domain techniques borrowed from the
familiarmethod of time-delaymeasurements in pulsar timing
arrays to estimate the sensitivity of the gravitational wave
timing array. We confirm this approach using frequency-
domain methods, employing matched filtering to create
simple signal-to-noise ratio (SNR) estimates of the sensi-
tivity of the array. Finally, we use a Fisher matrix approach to
arrive at a more complete frequency-domain estimate for the
sensitivity of a gravitational wave timing array, applicable at
both high and low modulating frequencies.

A. Timing sensitivity estimates

Although not as accurate as the frequency-based sensi-
tivity approaches presented in subsequent sections, a timing
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estimate of the gravitational wave timing array sensitivity
provides a good approximation to the more complete
results, and illustrates the function of the array in a way
most analogous to pulsar timing array methods.
We break up the full length of the observation period T

into a set of segments each with duration δt. Within each
observation period of length δt, we consider the question of
how well we can measure a time (or phase) delay in the
arrival of gravitational waves from a Galactic binary. This
time delay could be caused, for example, by a long-
wavelength gravitational wave that is modulating the
frequency of the carrier wave. Within a given time interval,
this would appear as a small phase shift in the carrier signal,
which would not be present if the carrier frequency were
fixed. Let σtd be the error with which we can measure such
a time delay.
We model the gravitational wave signal from a single

Galactic binary as a sinusoid with amplitude Ai and
frequency fi, and we denote the induced time delay by
td. This simplified model does not fully capture the signal
from Galactic binaries in the presence of modulating waves
and results in an optimistic sensitivity estimate. The signal
waveform from the binary is given by

hiðtÞ ¼ Ai cos ½2πfiðt − tdÞ�: ð25Þ

We assume that δt is small enough that any drift in the
frequency fi over the duration is negligible, and we treat
the amplitude Ai as constant during this window as well.
We approximate the noise on the observed gravitational

wave strain as white noise in the neighborhood of the
carrier frequency, since we treat fi as being nearly constant
over the period δt. Using SnðfÞ to denote the one-sided
power spectral density of the noise on the observed strain
(e.g., from the LISA mission [40]), we take SnðfiÞ to
denote the power spectral density of white noise with a
fixed value of Snðf ¼ fiÞ for all f.
From here, we take a Fisher matrix approach, where the

parameters θa that we would like to estimate from our
observations are td and fi. Then the elements of the Fisher
matrix for a waveform given in the time domain are [41]

Γab ¼
2

SnðfiÞ
Z

δt=2

−δt=2

∂hiðt; td; fiÞ
∂θa

∂hiðt; td; fiÞ
∂θb dt: ð26Þ

The lower bound on the variance of any unbiased estimator
of these parameters can be found from the covariance
matrix given by the inverse of the Fisher matrix Σab ¼ Γ−1

ab .
The Fisher matrix elements are straightforward to compute
and are given by

Σtdtd ¼
1

ð2πÞ2
SnðfiÞ
A2
i f

2
i δt

; ð27Þ

Σtdfi ¼ 0; ð28Þ

Σfifi ¼
3

π2
SnðfiÞ
A2
i δt

3
; ð29Þ

where we have assumed that the time delay td and the
period of the Galactic binary carrier wave are small
compared to δt. From here, we get the error in measuring
the time delay,

σtd ¼
ffiffiffiffiffiffiffiffiffi
Σtdtd

p ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðfiÞ
A2
i f

2
i δt

s
; ð30Þ

given some observing “cadence” 1=δt.
To determine the sensitivity of a gravitational wave

timing array to the presence of a modulating wave, we must
combine the information provided by timing measurements
from N binaries, each with a timing measurement error
of σtd , while the time-based subdivision of the full dataset
provides a cadence 1=δt. This is analogous to finding the
sensitivity of a pulsar timing array whose measurements
have a given timing error and cadence, and thus we can
apply existing estimates for pulsar timing array sensitivity
curves.
The total strain sensitivity of a pulsar timing array may

be approximated as the sum of two power laws, describing
the low- and high-frequency limit, and given, respectively,
by [36]

hLOWc ðfmÞ ≈
3

ffiffiffiffiffiffi
ϱth

p
27=4χπ3

�
13

NðN − 1Þ
�

1=4 σtd
f2mT3

ffiffiffiffi
δt
T

r
sec ξ

ð31Þ

and

hHIGHc ðfmÞ ≈
�

16ϱ2th
3χ4NðN − 1Þ

�
1=4

σtdfm

ffiffiffiffi
δt
T

r
; ð32Þ

where ϱth is the threshold SNR value above which a
detection is claimed, N is the number of pulsars in the
array, χ is a geometric factor which is 1=

ffiffiffi
3

p
for pulsar

timing arrays, T is the total time span of the observations,
and ξ is chosen such that hLOWc ¼ hHIGHc at a frequency of
2=T [36]. The spatially averaged geometric factor for the
gravitational wave timing array is χ ¼ hFi given by 4=3 for
face-on binaries and 1=6 for edge-on binaries. The char-
acteristic strain hc corresponds, up to factors of order unity,
with the amplitude of the modulating wave Am defined in
Eqs. (4) and (5). We can see from Eq. (30) that under the
approximations made in deriving that result, the resulting
gravitational wave timing array sensitivity curve does not
depend explicitly on δt.
We apply this estimate to the gravitational wave timing

array results with N Galactic binaries included in the array,
using the assumption of rapidly evolving sources so that we
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can neglect the pulsar term as in [36]. In order to apply this
approximation to the gravitational wave timing array, we
need to go beyond the simplifying assumption implicit in
Eqs. (31) and (32) to allow for different timing uncertainties
σtd for each binary. In Sec. IV we evaluate this sensitivity
estimate using a mock catalog of LISA sources, where σtd
varies significantly among the binaries.
We introduce a modification to Eqs. (31) and (32),

making the replacement

σtd
½NðN − 1Þ�1=4 →

�X
i
σ−2td;i

�
−1=2

: ð33Þ

This replacement agrees in the limit of many identical
binaries and weights the contribution of each binary
according to its SNR in the expected manner. However,
it highlights another difference in the assumptions made
in [36] and our work: Eqs. (31) and (32) are derived using
the cross-correlation among the pulsars in the network,
whereas our uncertainty estimates arising from Eq. (26)
come from an autocorrelation for each binary. As such, this
replacement is heuristic, and should not be taken as a
rigorous large-N limit.
We emphasize that due to differences in conventions and

definitions between our work and [36], we do not intend for
this to be a precise mapping onto their results. Our timing
estimate of the sensitivity is meant to illustrate the concept
of the gravitational wave timing array, and particularly, in a
way that is analogous to the measurements taken by pulsar
timing arrays. It does not match precisely with our results
from the more accurate frequency-domain approaches
given in subsequent sections. We compare this timing
estimate to frequency domain estimates using a mock
catalog of LISA detections in Sec. IV.

B. Matched filtering sensitivity estimate

A common approach to the detection of gravitational
waves is the use of matched filtering. We assume that the
noise in the gravitational wave detector is approximately
colored Gaussian noise, characterized by a one-sided
spectral noise density SnðfÞ. It is then natural to define a
noise-weighted inner product between two frequency-
domain signals g̃ðfÞ and h̃ðfÞ,

hg̃jh̃i ¼ 4Re
Z

fh

fl

g̃�h̃
SnðfÞ

df: ð34Þ

Here fl is a lower frequency cutoff for the integral, and fh
is an upper frequency cutoff which must be below the
Nyquist frequency (half the sampling rate of the time
series). We assume we work with the Fourier transforms of
real time-domain signals, so that the signals at negative
frequencies are given by the complex conjugate of the
signals at positive frequencies. The prefactors of Eq. (34)

account for these facts, and in what follows we write only
the positive-frequency parts of the signals h̃, with the
negative parts implied.
The optimal linear detection statistic for a signal h̃ in

the presence of such noise ñ is the matched filter between
data, d̃ ¼ h̃þ ñ, and h̃. Its expectation value is the squared
SNR (e.g., [42]),

ρ2 ¼ hd̃jh̃i ¼ hh̃jh̃i; ð35Þ

where the overbar denotes expectation value. Thus the
product of the signal with itself gives the (squared) SNR
that might be achieved by matched filtering.
We estimate the sensitivity of the gravitational wave

timing array by isolating the sideband contributions to the
gravitational waves of the array of monochromatic signals,
and squaring this contribution. We first treat the case where
we include the carrier (pulsar) terms in the modulation. Let
h̃ðfÞ be the total gravitational wave signal; a finite-time
Fourier transform over the period of observation applied to
Eqs. (22) and (23) gives

h̃ðfÞ ¼
X
i

½h̃iðfÞ þ s̃iðfÞ�; ð36Þ

where the carrier wave contributions are

h̃i ¼
Aieiαi

2
δTðf − fiÞ; ð37Þ

and around each carrier wave is a pair of sidebands whose
contributions are

s̃i ¼
AiAmFifi sin γieiαi

4fm
½e−iδiδTðf − fi þ fmÞ

− eiδiδTðf − fi − fmÞ�: ð38Þ

Here we write δTðfÞ for the finite-time delta function
following [36],

δTðfÞ ¼ TsincðπfTÞ; ð39Þ

with T the total observation time. When πfT ≫ 1, δT is
highly peaked around f ¼ 0. We emphasize again that we
write only the positive-frequency parts of these signals.
The squared SNR in the sidebands is

ρ2side ¼
X
ij

hs̃ijs̃ji: ð40Þ

In evaluating this product, we consider observation times T
long compared to the periods of any of the carrier waves, so
πfiT ≫ 1. Then the products of sidebands around distinct
carrier signals have negligible overlaps, so that the product
vanishes when i ≠ j. Similarly, when πfmT ≫ 1 we expect
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each of the two sidebands around each carrier to be well
separated, and the products of different sidebands vanish.
However, when we consider modulating waves with very
long periods of order T, the two sidebands around each
carrier can have nonzero overlap with one another and with
the carrier peak.
It is convenient to first compute the squared SNR of a

single carrier wave peak,

ρ2i ¼ hh̃ijh̃ii ¼
A2
i

4
heiαiδTðf − fiÞjeiαiδTðf − fiÞi;

≈
A2
i T

πSnðfiÞ
Z

∞

−∞
sinc2xdx ¼ A2

i T
SnðfiÞ

: ð41Þ

In going to the second line we made a coordinate trans-
formation x ¼ πðf − fiÞT, which centers the integral on
the location of the carrier wave peak and stretches out a
small region around that peak to a large domain. This
allows us to approximate SnðfÞ in the integral with its
constant value at the peak, and extend the integral over an
infinite range of x. We then used an integral identity for the
square of a sinc function.
Using the same approximations, we compute

hδTðf − fi þ fmÞjδTðf − fi þ fmÞi

≈
4T

πSnðfiÞ
Z

∞

−∞
sinc2ðxþ xmÞdx ¼ 4T

SnðfiÞ
: ð42Þ

The overlap of two factors of δTðf − fi − fmÞ gives the
same result, but the overlap of neighboring sidebands is

hδTðf − fi þ fmÞjδTðf − fi − fmÞi

≈
4T

πSnðfiÞ
Z

∞

−∞
sincðxþ xmÞsincðx − xmÞdx: ð43Þ

To resolve this we need the identityZ
∞

−∞
sincðxþ aÞsincðxþ bÞdx ¼ πsincða − bÞ: ð44Þ

With these results we find

ρ2side ≈
A2
m

2f2m

X
i

ðρiFifi sin γiÞ2

−
A2
m

2f2m
sincð2πfmTÞ

X
i

ðρiFifi sin γiÞ2 cosð2δiÞ:

ð45Þ

This shows that the squared SNR is the weighted square-
sum of the individual carrier wave SNRs, so that the
sideband SNR grows with

ffiffiffiffi
N

p
. The terms are enhanced by

the factors f2i =f
2
m, which count the number of cycles of the

carrier wave over which we accumulate the modulating

signal. At high modulating frequencies, πfmT ≫ 1, we can
neglect the second term in Eq. (45), and we see that ρside
decreases as 1=fm, limiting sensitivity at high modulating
frequencies. For a generic modulating wave, we also expect
that δi varies randomly among the Galactic binaries, and so
this second sum also tends to be suppressed by contribu-
tions with different signs.
We also expect the gravitational wave timing array loses

sensitivity at very low modulating frequencies, a behavior
that is not captured in Eq. (45). We return to this issue in
Sec. III C and use only the high-frequency approximation
to Eq. (45) for the moment.
To get a sensitivity estimate, we can set a threshold SNR

ρth above which we claim a detection of the sideband power.
Then the required modulating amplitude for detection is

Am ≳ ρth
2ffiffiffiffi
N

p fm
ρrmsFrmsfrms

∼ 10−7
�
ρth
1

��
fm
μHz

��
100

ρrms

��
1

Frms

��
mHz
frms

��
102ffiffiffiffi
N

p
�

× ðfmT ≫ 1Þ; ð46Þ

where rms is the root-mean-squarevalueof thegivenquantity
over the array, assuming thesevariables are uncorrelatedwith
each other. Here we averaged over γi assuming a uniform
distribution of angles, appropriate for the case where we
include the carrier (pulsar) contributions to the modulation.
Since we are in the high-frequency limit, it is more

appropriate to assume that fm evolves rapidly enough that
we can neglect the carrier term contributions to the side-
bands. In the case where we neglect the carrier terms, the
sideband signal is then

s̃i ¼
AiAmFifieiαi

8fm
½e−iðαmþβiÞδTðf − fi þ fmÞ

− eiðαmþβiÞδTðf − fi − fmÞ�: ð47Þ

Making the appropriate substitutions and taking the high-
frequency limit,

ρ2side ≈
A2
m

8f2m

X
i

ðρiFifiÞ2; ðfmT ≫ 1Þ: ð48Þ

Overall, the threshold modulating amplitude is increased
by a factor

ffiffiffi
2

p
compared to the case including the carrier

terms. The network is slightly less sensitive, because the
carrier terms do not (incoherently) contribute to the
measured signal in this regime.

C. Fisher matrix sensitivity estimate

The sensitivity estimate using the sideband SNR thresh-
old, Eq. (46), gives a reasonable result for modulating
waves with high modulating frequencies. However, our
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SNR estimate predicts ever-improving sensitivity at lower
fm, even for fm < 1=T. This is because the estimate
assumes more information can be extracted from the signal
than is actually available at these low frequencies. In reality,
uncertainties in the estimated parameters of the binaries in
the array and in the modulating wave itself correlate with
the uncertainty in the measured amplitude Am, limiting our
ability to distinguish Am from zero.
To capture these effects, we turn to a Fisher-based

estimate of the measurement uncertainties of the gravita-
tional wave timing array. In this language, we can detect the
modulating wave if the posteriors for Am peak sufficiently
far from zero relative to their width. To estimate the width,
we need the relevant terms of the covariance matrix Σab for
our signal model. As in Sec. III A the covariance matrix is
the inverse of the Fisher matrix Γab, whose entries are given
here by

Γab ¼
� ∂h̃
∂θa

���� ∂h̃∂θb
	
; ð49Þ

where θa is the vector of model parameters for the array.
In addition, when considering the sensitivity of this array

at low frequencies fm, the effect of a slow drift in the carrier
frequencies fi becomes important. This is true when
estimating the sensitivities of pulsar timing arrays, where
the low-frequency sensitivity of Eq. (31) is limited by the
need to fit the pulsar spin down rate. In binaries the
frequency can change due to the slow gravitational-wave
driven inspiral, and in the case of stellar binaries it can also
occur due to tidal interactions and mass transfer [43]. To
capture these effects, we allow for the slow evolution _fi of
the carrier frequencies and compute the Fisher matrix
including these parameters, but we take only the leading
(zeroth) order results in small _fi for Γab. Our model for hðtÞ
and h̃ðfÞ when including nonzero _fi is described in
Appendix B.

1. Fast evolution of the modulating wave

We first treat the case where the evolution of fm is fast
enough that we can neglect the carrier terms, as discussed
in Sec. II C. In this case, the model parameters are
θa ¼ fA1; α1; f1; _f1; A2;…; Am; αmg. The first 4N entries
correspond to the parameters of the N Galactic binaries,
and the final two entries correspond to the parameters of the
modulating wave. For simplicity we do not incorporate
the Fi and βi terms into the Fisher analysis in this case,
instead fixing the direction of propagation, polarization
angle ψ , and inclination ι of the source of the modulation,
and assuming that the sky locations of the binaries are
relatively well measured. For the modulating wave, we
include only the modulating amplitude Am and common
phase term αm as parameters in the Fisher matrix, meaning
that we marginalize over the phase to get a sensitivity

estimate of the gravitational wave timing array at a fixed
frequency fm.
We compute the entries of the Fisher matrix using the

same approximations as we did for ρside, but the compu-
tations are more involved. Some details and all the entries
of Γab are given in Appendix C. Our goal is to compute the
component of the covariance matrix ΣAmAm

, describing
uncertainty in the measurement of Am. At high modulating
frequencies, we find

ΣAmAm
≈ 8f2m

�X
i
ðρiFifiÞ2

�
−1
; ðfmTÞ ≫ 1; ð50Þ

in agreement with our SNR threshold estimate. The
dependence on the common phase αm vanishes in this
limit, which is expected—for times long compared to the
period of modulation, the δT terms become very sharp, and
one can check that a global time shift will remove the αm
phases from the gravitational-wave signal. In the case
where fm is smaller, we cannot execute this global shift,
since the center of our observing window is used as our
origin of time, and the relative phase of the modulating
wave can change its impact on the carrier signals.
At low frequencies, we find

ΣAmAm
≈

396900

ðπTÞ8f6m

�X
i

½ρiFifi cscðαm þ βiÞ�2
�
−1
;

ðfmTÞ ≪ 1: ð51Þ

We see that there is a steep loss in sensitivity towards very
small fm, in agreement with expectations that the array is
insensitive to very low frequency waves. Note that the
apparent singularities at δi ¼ αm þ βi ¼ 0 and π are
artifacts of the expansion in small fmT, which does not
hold for these values of δi. Instead, the power law becomes
f−4m , shallower than f−6m , for these cases.
The full expression for ΣAmAm

is given by

ΣAmAm
¼ 4

�X
i
ρ2i F

2
i ðπfiTÞ2gðπfmT; αm þ βiÞ

�
−1
; ð52Þ

where the definition of the function g is given in
Appendix E, Eq. (E1), and is nonsingular for all δi. In
Fig. 4 we plot ½gðπfmT;αm þ βiÞ�−1, which controls the
shape of the sensitivity curve of the array, as a function of
the dimensionless parameter πfmT. We plot the extreme
cases αm þ βi ¼ π=2, which gives the generic power law
behavior ΣAmAm

∝ f−6m , and αm þ βi ¼ 0, which displays
the shallower power law behavior at low fm. This sensi-
tivity curve transitions from the high-frequency to low-
frequency limit around the frequency where the sidebands
plotted in Fig. 3 begin to blend with the main peaks, which
occurs when fm ∼ 1=T.
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Wecan repeat our Fisher analysiswhile alsomarginalizing
over fm, which gives a conceptually different sensitivity
estimate. Namely, rather than an estimate of the sensitivity to
a fixed frequency of gravitational waves, it incorporates the
uncertainties inherent in a search over modulating frequen-
cies. In this case, the high-frequency sensitivity estimate of
Eq. (51) remains unchanged, while the low-frequency
behavior becomes steeper, with ΣAmAm

∝ f−8m .

2. Slow evolution of the modulating wave

When the modulating frequency evolves sufficiently
slowly, the sidebands produced by the local term and
carrier terms overlap. In this case, the carrier terms also
contribute to the modulating signal, and two complications
arise in the Fisher analysis. First, the phases δi are no longer
determined by the common phase αm and a function of sky
location βi. Instead, they depend on the unknown distance
to each Galactic binary di through the phase γi. Second, the
amplitude of the modulation also varies with di, due to the
presence of the factors sin γi: see Eq. (14).
In this case we must consider an expanded vector of

parameters given by θa ¼ fA1; α1; f1; _f1; δ1; Am1; A2;…g,
where we have defined Ami ¼ Am sin γi. So long as we treat
the common modulating frequency fm as a fixed parameter,
the resulting Fisher matrix is block diagonal, with a 6 × 6
block for each carrier. We can therefore invert each block
independently to find the uncertainties σAmi

on each of

the Ami. The resulting expression for σ2Ami
is similar to the

expression for ΣAmAm
in Eq. (52), but without the sum over

binaries. This means that, at high frequencies,

σ2Ami
≈ 2f2mðρiFifiÞ−2; ðfmTÞ ≫ 1 ð53Þ

and, at low frequencies,

σ2Ami
≈

99225

ðπTÞ8f6m
½ρiFifi cscðδiÞ�−2; ðfmTÞ ≪ 1: ð54Þ

The full expression, valid for all frequencies and values of
the phases δi, is given in Appendix E, Eq. (E2).
In order to compute the sensitivity of the whole array to a

common modulating wave with amplitude Am, we must
combine the sensitivities from each of the carriers. We have
observations of N individual Ami, and we would like to
determine the error on Am, given that Ami ¼ Am sin γi.
However, this constitutes N measurements with which to
constrain N þ 1 correlated parameters, and it is straightfor-
ward to see that the Fisher matrix including Am and all of
the γi is singular. This suggests that there is no unbiased
estimator with finite variance for the quantity Am (without
imposing additional constraints). This is due simply to the
fact that a very large value of Am could always be
compensated by some choice of the γi to produce the
same data. On the other hand, it is still possible to estimate
our sensitivity to detecting the presence of a modulating
wave. One procedure to do so is to compute the Moore-
Penrose pseudoinverse of the singular Fisher matrix, which
would allow us to find the constrained Cramer-Rao bound
on the variance of the modulating amplitude [44].
We will proceed by a different route, and utilize the

likelihood ratio test to compare a model that accounts for
the presence of a modulating wavewith amplitude Am and a
set of phases γi to the null hypothesis with no parameters.
Under the null hypothesis, any apparent modulation results
purely from noise. The log-likelihood ratio for these two
models is given by

D ¼ −2 ln
�

L0

maxθLðθÞ
�
; ð55Þ

where we estimate the likelihood as a Gaussian

L ¼
Y
i

1ffiffiffiffiffiffi
2π

p
σAmi

exp

�
−
ðAmi þ ni − Am sin γiÞ2

2σ2Ami

�
; ð56Þ

where ni is the Gaussian noise with variance σ2Ami
in the

measurement of each Ami. The null hypothesis has Am ¼ 0.
Plugging this in to the likelihood ratio, and maximizing the
likelihood in the modulation model, we find

FIG. 4. Generic shape of the variance of the amplitude of a
modulating wave as a function of modulating frequency after
marginalizing over fAi; αi; fi; _fi; αmg, for the two limiting cases
in which all carrier phases are chosen such that αm þ βi ¼ π=2 or
αm þ βi ¼ 0. The functional form of g is given in Eq. (E1). The
low- and high-frequency limits are shown with dashed lines. The
low-frequency limit of the variance has the generic form ∝ f−6m ,
with a different scaling of f−4m when αm þ βi approaches 0 or π.
The variance scales as f2m in the high-frequency limit.
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D ¼
X
i

ðAmi þ niÞ2
σ2Ami

; ð57Þ

which, according to Wilks’s theorem, is asymptotically χ2

distributed with N þ 1 degrees of freedom [45]. The
expectation value of this likelihood ratio when a modulat-
ing wave is present is given by

hDi ¼
�X

i

ðAm sin γi þ niÞ2
σ2Ami

	
¼ N þ

X
i

A2
m

2σ2Ami

; ð58Þ

where we have used the fact that the γi are uniformly
distributed and taken the average over the network,
hsin2 γii ¼ 1=2.
Now since DðAmÞ ∼ χ2ðN þ 1Þ, after choosing a detec-

tion threshold we can write the sensitivity of the array as
the value of Am that exceeds the threshold. In the limit of
large N, the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðAmÞ

p
is approximately Gaussian

distributed,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðAmÞ

p
∼N ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p

; 1Þ.We can therefore
approximate the threshold value of themodulating amplitude
Am;th for a j-σ detection as

Am;th ≈
�
j2 þ 2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p þ 1P
iσ

−2
Ami

�
1=2

: ð59Þ

We find Eq. (59) to be a very good numerical fit to the
threshold derived when using the χ2ðN þ 1Þ distribution for
DðAmÞ, even for small N. As such, we use this more
transparent expression in Sec. IV when deriving the sensi-
tivity of the array in the limit of a slowly evolving
modulation.
Note that for an array of equally constraining binaries,

where all σAmi
are equal, the threshold Am;th scales roughly

as N−1=4, as is apparent from Eq. (59) in the large-N limit.
However, when the σAmi

are taken to be different for each
binary, the addition of poorly measured binaries to the array
can lead to an increased detection threshold by increasing
N (and thus the number of degrees of freedom of the
modulation model) without a significant change to

P
i σ

−2
Ami

.
In practice, the maximum sensitivity of the array in the case
of slow evolution of the modulating wave is obtained by
retaining only the binaries that provide the most significant
contribution, those with the largest values of ρifi.

IV. GRAVITATIONAL WAVE TIMING ARRAY
USING MOCK LISA CATALOG

With the analytic sensitivity estimates in hand, we can
calculate the sensitivity of a gravitational wave timing array
based on LISA measurements of gravitational waves from
Galactic white dwarf binaries. The binary white dwarf
population in the Milky Way has been estimated to number
on the order of millions. It is expected that data from LISA
will be sufficient to individually resolve the gravitational

waves from about 104 white dwarf binaries with SNR > 7
over its planned four-year mission. Most of these binaries
would be very nearly monochromatic for the extent of the
LISA mission. The main source for their frequency
evolution is likely to be gravitational wave radiation, with
tides and mass transfer being effects only dominant in the
later stages of inspiral (at frequencies above 1 mHz [43]).
In order to have realistic inputs for white dwarf binary

parameters and their SNR as measured by LISA over a
four-year mission, we used the Radler dataset [46] created
for the LISA Mock data challenges, in combination with
the GBFISHER code [47]. GBFISHER computes the spacecraft
ephemerides during the observation time and, in combi-
nation with input sources, creates a time delay interferom-
etry data stream for the mission. After estimating the
confusion noise, it proceeds to give a matched-filter
SNR for each source. In this analysis, we only use white
dwarf binaries that GBFISHER identifies with SNR > 7 over
a four-year LISA mission. The median error on the sky
localization of these binaries is 3 square degrees, which
justifies our assumption that localization errors are negli-
gible in our analysis.
For each sensitivity estimate, we calculate the modulat-

ing amplitude needed for a 3-σ detection. We denote this
threshold as Am;th. The timing estimate of the gravitational
wave timing array sensitivity curve is calculated as the sum
of Eqs. (31) and (32), using the timing residuals given by
Eq. (30), with ξ chosen to match the contributions at
fm ¼ 2=T. In order to correctly weight the binaries con-
tained in the mock LISA catalog, we implement the
substitution shown in Eq. (33) as described in Sec. III A.
We use a detection threshold of ϱth ¼ 3 to roughly match
the 3-σ criterion, and we average over the two limits of
face-on and edge-on inclinations.
For the frequency-domain analysis, as stated in Sec. III C,

we consider two extreme cases for the evolution of the
modulating wave: the fast case, when we can neglect the
carrier term, and the slow case, when the carrier term has
the same frequency as the local term. In the case of fast
evolution, we use the Fisher estimate for σAm

, given in full by
Eq. (52), and set Am;th ¼ 3σAm

. We average over the phases
δi, as well as the properties of the modulating wave: its
inclination ι, polarization angle ψ , and direction of propa-
gation k̂. For the case of slow evolution,we use the likelihood
ratio threshold of Eq. (59), with j ¼ 3 and the full expression
for σAmi

from Eq. (E2).We average over the same parameters
as for the fast case. Furthermore, as discussed in Sec. III C 2,
in the slow case we select only the binaries with the highest
ρifi, since includingpoorlymeasured binarieswouldworsen
the forecasted sensitivity of the array. We find that using the
ten best binaries from the mock catalog gives the optimal
estimate, and discuss this choice further below.
Figure 5 shows the estimated sensitivity curve for a

gravitational wave timing array based on LISA observa-
tions given by each treatment. We also include for
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comparison an estimate of pulsar timing array sensitivity,
which is calculated from Eqs. (31) and (32) assuming an
array of 36 pulsars timed once per fortnight, with a total
observation baseline of 5 years, a timing precision of
100 ns, and a sky-averaged geometric factor χ ¼ 1=

ffiffiffi
3

p
;

this offers a direct comparison with results from [36]. In
dashed light blue is the timing sensitivity estimate of the
gravitational wave timing array. The light and dark blue
correspond respectively to the fast- and slow-evolution case
evaluated with the mock catalog.
The timing estimate of the gravitational wave timing

array shows a higher sensitivity than the more complete
frequency-domain estimates. This higher sensitivity is to be
expected, since the timing estimate is an order of magnitude
calculation and includes fewer parameters that correlate
with the amplitude of the modulation. In the regime where
both the gravitational wave timing array and pulsar timing
arrays have sensitivity, the pulsar timing array is about 7
orders of magnitude more sensitive. However, the sensi-
tivity of the gravitational wave timing array extends above
the maximum frequency of the pulsar timing array, all the
way to the lower end of the LISA band (∼2 × 105 Hz).
The sensitivity of the gravitational wave timing array can

be improved in various ways, including via longer obser-
vation times or by monitoring a larger number of Galactic
binaries with lower detector noise. With a fixed number
of binaries in the array, the threshold Am;th scales with

observation time as T−1=2 due to the linear increase in ρ2i
with mission time. In general this provides a lower bound
on the improvement, since additional Galactic binaries will
be resolved above the SNR threshold with increased
observational time and can thus be added to the array.
Figure 6 shows how Am;th changes with the number of

detected binaries in each of the frequency-domain estimates,
starting from thosewith the highest ρifi.We use the standard
four-year mission duration and plot Am;th at a frequency
fm ¼ 10−6 Hz (the high-frequency limit). For the fast-
evolution case, we use the high-frequency approximation
for the measurement error, so that Am;th ∝ ðPi ρ

2
i F

2
i f

2
i Þ−1=2,

and again average over fι;ψ ; k̂g. As can be seen in the
figure, as few as 10 binaries (about 1=1000 of the total
resolved population) can account for almost half of the
sensitivity of the gravitational wave timing array in this
case. The threshold continues to improvewithN evenwhen
binaries with low ρifi are included, but those with the
highest ρifi contribute significantly more to the sensitivity
of the array. In the slow-evolution case, the sensitivity
decreaseswhenmore than the 10 best binaries are included,
and so we use only these best 10 in the corresponding
sensitivity curve of Fig. 5.

FIG. 5. Forecasted sensitivity curves for a gravitational wave
timing array based on the mock LISA catalog assuming a four-
year mission. For the frequency-domain estimates, we show the
case where the modulation has a slow evolution in dark blue and
the case of fast evolution in light blue. The approximate
sensitivity in the fast-evolution case from the timing estimate
is shown in dashed light blue. For comparison, we also plot the
sensitivity of a pulsar timing array (PTA) assuming 5 years of
monitoring 36 pulsars with timing error 100 ns in dashed
light green.

FIG. 6. Dependence of the sensitivity of a gravitational wave
timing array on the number of Galactic binaries used in the array,
using a mock catalog of LISA observations [46,47] assuming a
four-year mission. The binaries are ordered by decreasing ρifi,
which controls the contribution of each binary to the sensitivity.
We use a 3-σ detection threshold at a characteristic frequency of
10−6 Hz, and average over fι;ψ ; k̂g. In the slow-evolution case,
adding “noisy” observations degrades the sensitivity, and we find
that utilizing only the best 10 binaries gives the most sensitivity.
In the fast-evolution case, the best 10 binaries (about 0.08% of the
total resolved population) can account for ∼40% of the con-
straining power on Am, but adding binaries always improves the
sensitivity for the fast-evolution case.
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V. DISCUSSION

In this paper we have discussed the concept of a gravi-
tational wave timing array. The array is composed of a large
number of Galactic binaries, observed continuously through
their gravitational wave emission by future detectors. Lower
frequency gravitational waves impact the propagation of
the signals from these binaries, modulating their phase.
This effect can be used to search for these low-frequency
gravitational waves in a matter directly analogous to pulsar
timing array searches for gravitational waves.
We have specialized our results to the gravitational

waves emitted by binary white dwarfs as measured by
LISA, using a mock galaxy catalog and a mock LISA
pipeline to estimate their properties. In this case, the array
provides sensitivity in the microhertz frequency regime, as
illustrated in Fig. 1. Our main analysis is in the frequency
domain, although we have also included an approximate
timing estimate to allow for direct comparison with the
standard pulsar timing array approaches. Our results show
that a gravitational wave timing array based on the nominal
four-year LISAmission lifetime would provide a sensitivity
to long-wavelength gravitational waves that is about 7
orders of magnitude worse than pulsar timing arrays in the
overlapping region. Despite being a much lower sensitivity,
an entirely independent probe into the nanohertz gravita-
tional wave sky may prove useful, since it is unaffected by
some of the major sources of noise for pulsar timing arrays,
including electromagnetic propagation effects in the inter-
stellar medium and radio interference at Earth. The gravi-
tational wave timing array also requires no change of
design for the LISA mission, since it can be achieved by
analyzing data that is already planned to be collected.
It is worth considering whether LISA or pulsar timing

arrays could measure the microhertz regime directly, since
their strain sensitivity is many orders of magnitude better
than would be achieved by the indirect analysis with a
gravitational wave timing array. As currently designed, the
low-frequency sensitivity of LISA is significantly limited
by acceleration performance, which effectively forms a
frequency cutoff for the mission at ∼10−4–10−5 Hz [22,23].
Pulsar timing arrays can extend their sensitivity into the
microhertz regime by timing pulsars at a higher cadence
than ∼2 weeks, as demonstrated by [24], achieving a strain
sensitivity of better than ∼10−12 at 10−6 Hz. Staggered
observation of a large number of pulsars would also
provide sensitivity to gravitational waves with frequency
of several microhertz [25]. An interesting recent proposal
demonstrated that high-cadence photometric observations
may be useful for astrometric gravitational wave searches
in the microhertz regime [27]. Relative astrometry of
stars in the Galactic bulge with the Nancy Grace Roman
Space Telescope [35] may be capable of providing sensi-
tivity to gravitational waves in the microhertz regime.
High precision monitoring of orbital dynamics is another
avenue to search for microhertz gravitational waves [28,29].

In any case, the gravitational wave timing array provides
a valuable independent probe in the microhertz regime,
using data products which the LISA mission already plans
to produce.
Our sensitivity estimates could be improved by including

a more complete analysis of the effect of the carrier term
(the pulsar term in pulsar timing array literature) on our
sensitivity, possibly by modeling the frequency evolution
of the modulating wave explicitly. We do incorporate the
presence of a slow evolution of the frequency of each
binary in the array, whether it comes from gravitational-
wave driven inspiral or from effects such as mass transfer
or tides. Improvements could also be made with a more
realistic observing scenario for the LISA mission, taking
into account nonstationary noise [48] and the mission’s
duty cycle, as well as the need to demodulate the orbital
motion of the satellites from the raw data.
While we focused on the sensitivity of the array to a

coherent source of low-frequency gravitational waves,
it would be natural to also provide sensitivity estimates
for a stochastic background of low-frequency gravitational
waves, bursts of gravitational waves, and gravitational
wave memory. It would also be interesting to consider
the impact of additional sources of sidebands in the binaries
observed by LISA, such as orbital eccentricity, or inter-
actions with a companion star in triple systems. These
effects would not generate sidebands at a common spacing
for all the members of the gravitational wave timing array,
but they may contribute an important source of noise for
some of the binaries.
Although we have concentrated on the idea of a gravita-

tional wave timing array using LISA observations, the idea
may be applied to other situations. For example, the detection
of continuous wave sources by ground-based detectors
(see e.g., [49]), such as pulsars with some small equatorial
ellipticity, would open up an additional avenue. Searches for
common modulations in a collection of such sources could
benefit from the higher frequencies fi of the carrier waves,
since the sensitivity scales as fi=fm, and could potentially
access the entire range of sub-Hz frequencies not directly
accessible to ground-based detectors. Previous work has
shown that observations of gravitational waves from cos-
mological neutron star binaries with a future observatory like
the Big BangObserver or DECIGO could provide sensitivity
to a background of very low frequency gravitational waves
with fm < 10−12 Hz [50].
Gravitational wave astronomy is a rapidly evolving field

that has already provided important insights that would
not have been possible with electromagnetic observations
alone. New direct detection experiments and indirect
detection schemes are under development that will greatly
expand the frequency coverage and sensitivity with which
we can search for gravitational waves. The gravitational
wave timing array described here is a novel proposal that
offers a nearly cost-free extension of the sensitivity of
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future detectors to a currently unconstrained regime of
gravitational wave frequencies.
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APPENDIX A: MODULATION
OF A CONTINUOUS SIGNAL

In this Appendix we briefly discuss the geometric optics
formalism required to derive the phase modulation of a
monochromatic gravitational wave propagating in the
presence of another, lower frequency gravitational wave.
The high-frequency carrier wave propagates in a perturbed
flat spacetime gμν ¼ ημν þ hμν and is itself a tensor per-
turbation γμν. We use a gauge such that hμν is transverse and
traceless with propagation vector kμ. The carrier wave is
emitted at a stationary source, and received by a stationary
observer at the origin of our coordinate system.
The curvature scale of the perturbation is given by the

wavelength of the modulating wave L ∼ λm, and so
λm ≫ λe. This is the geometric optics limit, where high-
frequency waves propagate along null geodesics in the
curved spacetime, regardless of whether they are scalar,
vector, or tensor fields. The amplitude of these waves
decreases as the wave front expands, in order to conserve
quanta (see e.g., [51]).
More precisely, we augment our gauge such that γμν is in

Lorenz gauge and traceless with respect to gμν, so that
gαβγαβ ¼ 0 and ∇αγμ

α ¼ 0. Then in vacuum γμν obeys the
wave equation

∇α∇αγμν ¼ 0: ðA1Þ

To implement the geometric optics limit we expand the
carrier wave as

γμν ¼ Aeμνe−iφ=ϵ; ðA2Þ

where the phase function φ varies rapidly over scales L, the
polarization tensor is normalized as eαβeαβ ¼ 2, and ϵ is a
bookkeeping parameter which tracks orders in the rapidly
varying phase. The wave equation and gauge conditions are
then solved order by order in the parameter ϵ. At leading
order, the result is

gαβð∂αφÞð∂βφÞ ¼ 0; gαβð∂αφÞ∇βð∂μφÞ ¼ 0; ðA3Þ

where the second equation is arrived at by differentiating
the first and commuting the derivatives on the scalar φ.

If we define the normal vector to the wave fronts of
constant phase as ζμ ¼ ∂μφ, we see that ζμ is a null
geodesic in the perturbed flat space, along which the carrier
wave propagates.
From here, we can quote the standard results for such a

null geodesic, perturbed by the modulating wave hμν, see
e.g., Refs. [14,38]. We expand φ ¼ φ0 þ φ1 þ � � � and so
ζμ ¼ ζμ0 þ ζμ1 þ � � �, counting orders in the small modulat-
ing wave amplitude. If the spatial normal from the observer
to the carrier source is n̂i, we have

ζμ0 ¼ ωcð1;−n̂iÞ; ðA4Þ

and ζμ1 given by Eq. (16) of [14].
The observed frequency at the origin is given by

contracting the observer’s 4-velocity uμ ¼ δμt with the
phase derivative

dφ
dt

����
obs

≈ −uαgαβðζβ0 þ ζβ1Þ ¼ ωcð1 − zÞ; ðA5Þ

where the redshift z is quoted in Eq. (2). This expression is
used to compute the modulated phase φ.

APPENDIX B: INCLUDING THE SLOW
EVOLUTION OF THE CARRIER FREQUENCIES

In this Appendix we consider the possibility that the
gravitational waves from Galactic binaries are not purely
monochromatic, and allow for a small linear time depend-
ence in their instantaneous frequency, so that the carrier
phase expands as φi ¼ −αi þ 2πfitþ π _fit2. This consid-
eration is motivated both by the fact that we expect some
non-negligible frequency drift over the lifetime of our
observations and also that we expect low frequency
modulating waves to be degenerate with the frequency
drift (as in the case of pulsar timing arrays).
When we include the slow evolution of the carrier

frequencies, the modulated signal from a single Galactic
binary is

hðtÞ ¼ Ai cos

�
2πfitþ π _fit2 − αi

−
AmFifi
fm

sin γi sinð2πfmt − δiÞ
�
;

≈ Ai cosð2πfit − αiÞ − π _fit2Ai sinð2πfit − αiÞ

þ AiAmFifi
fm

sin γi sinð2πfmt − δiÞ

× ½sinð2πfit − αiÞ þ π _fit2 cosð2πfit − αiÞ�: ðB1Þ

In the frequency domain, the carrier wave and sideband
signals are then
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h̃i ¼
Aieiαi

2
½δTðf − fiÞ þ iπ _fiδ00Tðf − fiÞ�; ðB2Þ

s̃i¼
AiAmFifi sinγieiαi

4fm

× ½e−iδiðδTðf−fiþfmÞþ iπ _fiδ00Tðf−fiþfmÞÞ
−eiδiðδTðf−fi−fmÞþ iπ _fiδ00Tðf−fi−fmÞÞ�: ðB3Þ

Since we work to leading order in the slow frequency
evolution, we generally set _f ≈ 0 in our final expressions.
This means we only need to consider the additional terms
involving _fi when taking derivatives with respect to those
parameters,

∂ _fi
h̃i ¼ iπ

Aieiαi

2
δ00Tðf − fiÞ: ðB4Þ

These results are needed for approximating entries in the
Fisher matrix Γa _fi

, as described below.

APPENDIX C: DETAILS ON THE FISHER
MATRIX APPROACH

In this Appendix we give more detail on the Fisher
matrix approach for estimating the sensitivity of the
gravitational wave timing array.

1. Slow evolution of modulating wave

We treat first the case where both the local term (the
Earth term in the pulsar timing array literature) and carrier
term (the pulsar term in the pulsar timing array literature)
contribute to the sidebands with the same frequency offsets
(but differing phases). We define Ami ¼ Am sin γi, and our
parameter set is θa ¼ fA1; f1; α1; _f1; δ1; Am1; A2;…g. We
hold fm, the sky locations of the binaries, and the other
properties of the incident modulating wave fixed. The
resulting Fisher matrix is block diagonal, with one 6 × 6
block for each Galactic binary. To leading order in the small
Ami, the entries in each block are given by

ΓAiAi
¼ ρ2i

A2
i
; ðC1Þ

Γαiαi ¼ ρ2i ; ðC2Þ

Γfifi ¼
ðπTÞ2ρ2i

3
; ðC3Þ

Γ _fi _fi
¼ π2

5
ðπTÞ4ρ2i ; ðC4Þ

Γδiδi ¼
A2
miρ

2
i F

2
i f

2
i

2f2m
½1þ cosð2δiÞ sin cð2πfmTÞ�; ðC5Þ

ΓAmiAmi
¼ ρ2i F

2
i f

2
i

2f2m
½1 − cosð2δiÞ sincð2πfmTÞ�; ðC6Þ

for the entries on the diagonal, and

Γαiδi ¼ −ρ2i FiAmi
fi
fm

cosðδiÞsincðπfmTÞ; ðC7Þ

Γfiδi ¼ −πTρ2i FiAmi
fi
fm

sinðδiÞsinc0ðπfmTÞ; ðC8Þ

Γ _fiδi
¼ −πðπTÞ2ρ2i FiAmi

fi
fm

cosðδiÞsinc00ðπfmTÞ; ðC9Þ

ΓαiAmi
¼ −ρ2i Fi

fi
fm

sinðδiÞsincðπfmTÞ; ðC10Þ

ΓfiAmi
¼ πTρ2i Fi

fi
fm

cosðδiÞsinc0ðπfmTÞ; ðC11Þ

Γ _fiAmi
¼ −πðπTÞ2ρ2i Fi

fi
fm

sinðδiÞsinc00ðπfmTÞ; ðC12Þ

for the off-diagonal entries in each block. The remaining
terms are zero to leading order.
Computing these entries requires the application of the

various approximations stated in the text, in particular that
fiT ≫ 1 in all cases, resulting in narrow carrier wave
peaks, all well separated from each other. For example,
we have

ΓAiAj
¼ h∂Ai

h̃j∂Aj
h̃i ¼ hh̃ijh̃ji

AiAj
≈
δijhh̃ijh̃ii

A2
i

þOðAmÞ;

¼ δij
ρ2i
A2
i
þOðAmÞ: ðC13Þ

For those terms which involve derivatives of the finite-time
delta functions, the following identities are useful:

Z
∞

−∞

dsincðxþ aÞ
dx

sincðxþ bÞdx ¼ πsinc0xjx¼a−b; ðC14Þ
Z

∞

−∞

dsincðxþ aÞ
dx

dsincðxþ bÞ
dx

dx ¼ −πsinc00xjx¼a−b:

ðC15Þ

These can be derived by differentiating Eq. (44) under the
integral.

2. Fast evolution of the modulating wave

In the case where we neglect the carrier term of the
modulation (the pulsar term in the pulsar timing array
literature), the parameters γi which differentiate the Ami
and add an unmeasurable phase term to the δi are absent.
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While the amplitude of the sideband varies from carrier to
carrier, this variation depends only on the Fi, which can be
determined from the sky location and which we therefore
neglect from our analysis. Meanwhile, the phase of the
modulation encoded in δi depends only on a common phase
αm and the phases βi, which depend on sky location and
polarization content of the modulating wave. Thus for our
analysis, the sidebands of all the carriers share a common
unknown amplitude parameter Am and phase term αm. Our
parameter set is θa ¼ fA1; α1; f1; _f1; A2;…; Am; αmg.
The Fisher matrix for our total signal h̃ breaks into a

4N × 4N block describing the Galactic binary parameters,
a rectangular 4N × 2 matrix mixing the binary parameters
with those of the modulating wave, and a final 2 × 2 block
with the modulating wave parameters. We need to keep
terms only to leading order in Am. The 4N × 4N block is
block diagonal with a 4 × 4 sub-block for each carrier.
These sub-blocks have diagonal entries

ΓAiAi
¼ ρ2i

A2
i
; ðC16Þ

Γαiαi ¼ ρ2i ; ðC17Þ

Γfifi ¼
ðπTÞ2ρ2i

3
; ðC18Þ

Γ _fi _fi
¼ π2

5
ðπTÞ4ρ2i ; ðC19Þ

and nonvanishing off-diagonal entries

Γαi _fi
¼ −

π

3
ðπTÞ2ρ2i : ðC20Þ

The off-diagonal terms that couple the 4N binary param-
eters with Am and αm are

ΓαiAm
¼ −ρ2i Fi

fi
2fm

sinðδiÞsincðπfmTÞ; ðC21Þ

ΓfiAm
¼ πTρ2i Fi

fi
2fm

cosðδiÞsinc0ðπfmTÞ; ðC22Þ

Γ _fiAm
¼ −πðπTÞ2ρ2i Fi

fi
2fm

sinðδiÞsinc00ðπfmTÞ; ðC23Þ

Γαiαm ¼ −ρ2i FiAm
fi
2fm

cosðδiÞsincðπfmTÞ; ðC24Þ

Γfiαm ¼ −πTρ2i FiAm
fi
2fm

sinðδiÞsinc0ðπfmTÞ; ðC25Þ

Γ _fiαm
¼−πðπTÞ2ρ2i FiAm

fi
2fm

cosðδiÞsinc00ðπfmTÞ: ðC26Þ

Finally, the terms that involve only the modulating
source are

ΓAmAm
¼

X
i

ρ2i F
2
i f

2
i

8f2m
½1 − cosð2δiÞ sin cð2πfmTÞ�; ðC27Þ

ΓAmαm ¼
X
i

Amρ
2
i F

2
i f

2
i

8f2m
sinð2δiÞsincð2πfmTÞ; ðC28Þ

Γαmαm ¼
X
i

A2
mρ

2
i F

2
i f

2
i

8f2m
½1þ cosð2δiÞ sin cð2πfmTÞ�:

ðC29Þ

APPENDIX D: INVERTING THE
FISHER MATRIX

In Appendix C we provide the Fisher matrix entries for
the measurement of the gravitational wave timing array
signal h̃. There we treat two extreme cases, the fast and
slow cases for the evolution of the modulating wave. Here
we discuss the aspects of inverting these matrices needed
for our sensitivity estimates.
In the slow case, our goal is to compute the entries

ΣAmiAmi
of the covariance matrix Σab ¼ ðΓ−1Þab. These

entries are the squared measurement errors σAmi
of the

amplitudes Ami. Since the Fisher matrix is block diagonal in
this case, inversion can be carried out blockwise, and it is
straightforward to get the entries ΣAmiAmi

. In the fast case,
the common parameters αm and Am couple together the N
blocks which correspond to each Galactic binary, and the
inversion of Γab to get ΣAmAm

is more involved.
In the fast case, the Fisher matrix breaks into pieces as

follows. The parameters describing the individual binaries
form a 4N × 4N block a at the upper left of Γ, and this
submatrix is itself block diagonal, since the individual
binaries do not correlate with each other in our approxi-
mation. Denote each of the N 4 × 4 blocks as ai, with i
indexing the Galactic binaries. Next, the last M columns
of the first 4N rows of Γ form a 4N ×M matrix b, which
couples the binaries into the parameters of the modulating
wave. This array itself breaks into N 4 ×M blocks bi, with
entries such as ðb1ÞA1Am

¼ ΓA1Am
. Since Γ is symmetric,

the first 4N columns of the final M rows are b⊤, made up
of N arrays b⊤i . Finally, in the lower right we have an
M ×M matrix c which covers only the modulating wave
parameters.
Now ΣAmAm

sits in the lower-right M ×M block of
Σ ¼ Γ−1. Denote theseM ×M entries of Σ as s. A standard
matrix identity, when applied to our decomposition of Γ,
yields

s ¼ d−1; ðD1Þ
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d ¼ c − b⊤a−1b ¼ c −
XN
i¼1

b⊤i a−1i bi; ðD2Þ

where we have defined a useful auxiliary matrix d. The
decomposition of the inverse into sums over the contribu-
tion from each Galactic binary makes the inversion of the
Fisher matrix straightforward: the Fisher matrix can be built
using a single Galactic binary and inverted, and in the final
solution we need only to sum over the binary indices.
For example, consider a Fisher matrix where we include

two parameters of the modulating wave, Am and αm, and for

brevity remove _fi from our parameter list. Then, recalling
that ΓAiAm

¼ 0 ¼ ΓAiαm at leading order, the covariance
ΣAmAm

is given by

ΣAmAm
¼

�
dAmAm

−
d2Amαm

dαmαm

�−1
; ðD3Þ

dAmAm
¼ ΓAmAm

−
X
i

�Γ2
Amαi

Γαiαi

þ Γ2
Amfi

Γfifi

�
; ðD4Þ

d2Amαm

dαmαm
¼

�
Γαmαm −

X
i

�
Γ2
αmαi

Γαiαi

þ Γ2
αmfi

Γfifi

��−1�
ΓAmαm −

X
i

�
ΓAmαiΓαmαi

Γαiαi

þ ΓAmfiΓαmfi

Γfifi

��
2

: ðD5Þ

Similar, but more involved expressions give the case we
treat in the text, where we include _fi, but the main point
remains: the inversion can be carried out as if for a single
Galactic binary and the common parameters, and then
summing any term involving the binary parameters over
all the binaries in the network. This approach gives us the
full expressions for our measurement uncertainties given
below.

APPENDIX E: FULL EXPRESSION FOR THE
VARIANCE OF THE MODULATING

AMPLITUDE

In order to present the full expressions for the covariance
matrix entry ΣAmAm

(in the case of a source of modulating
waves with fast evolution) and the variance σAmi

(in the case
of a source of modulating waves with slow evolution), it is
useful to define an auxiliary function,

gðxm; δiÞ ¼ ½ðx6m − 6x4m − 15x2m þ ð6x4m − 75x2m þ 45Þ cosð2xmÞ þ ðx4m − 60x2m þ 180Þxm sinðxmÞ cosðxmÞ − 45Þ
× ð−xmðx2m − 12Þ sinð2xmÞ − 6ðx2m − 1Þ cosð2xmÞ þ 2ðx4m − 3x2m − 3ÞÞ�
× ½2x6mð2 cosð2δiÞððx2m − 3Þ sinðxmÞ þ 3xm cosðxmÞÞð3ð5 − 2x2mÞ sinðxmÞ þ xmðx2m − 15Þ cosðxmÞÞ
þ ðx2m − 6Þð2x2m þ 3Þx2m þ 6ð15 − 4x2mÞxm sinð2xmÞ þ 3ðx4m − 24x2m þ 15Þ cosð2xmÞ − 45Þ�−1; ðE1Þ

with xm ¼ πfmT.
Then in the case of a source with fast evolution, our

estimate for the measurement uncertainty comes from
ΣAmAm

, where we marginalize over fAi; αi; fi; _fi; αmg with
a ð4N þ 2Þ × ð4N þ 2Þ Fisher matrix. It is given by
Eq. (52). In the case where the source of modulating
waves evolves slowly, we need the uncertainty on each Ami

measurement, so we compute the entry ΣAmiAmi
arising

from a 6 × 6 Fisher matrix, where we marginalize over
fAi; αi; fi; _fi; δig, for each binary. The result is

σ2Ami
¼ ΣAmiAmi

¼ ½ρ2i F2
i ðπfiTÞ2gðxm; δiÞ�−1: ðE2Þ

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (VIRGO Collaboration), Advanced Virgo:
A second-generation interferometric gravitational wave
detector, Classical Quantum Gravity 32, 024001 (2015).

[3] T. Akutsu et al. (KAGRA Collaboration), Overview of
KAGRA: Detector design and construction history, Prog.
Theor. Exp. Phys. 2021, 05A101 (2021).

[4] P. Amaro-Seoane et al. (LISA Collaboration), Laser inter-
ferometer space antenna, arXiv:1702.00786.

GRAVITATIONAL WAVE TIMING ARRAY PHYS. REV. D 105, 044005 (2022)

044005-17

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1093/ptep/ptaa125
https://arXiv.org/abs/1702.00786


[5] J. P. W. Verbiest, S. Oslowski, and S. Burke-Spolaor, Pulsar
timing array experiments, in Handbook of Gravitational
Wave Astronomy (Springer, Singapore, 2021), pp. 1–42,
10.1007/978-981-15-4702-7_4-1.

[6] M. F. Alam et al. (NANOGrav Collaboration), The NANO-
Grav 12.5 yr data set: Wideband timing of 47 millisecond
pulsars, Astrophys. J. Suppl. Ser. 252, 5 (2021).

[7] M. Kerr et al., The parkes pulsar timing array project: Second
data release, Pub. Astron. Soc. Aust. 37, e020 (2020).

[8] S. Babak et al., European Pulsar Timing Array Limits on
Continuous Gravitational Waves from Individual Super-
massive Black Hole Binaries, Mon. Not. R. Astron. Soc.
455, 1665 (2016).

[9] G. Hobbs et al., The international pulsar timing array
project: Using pulsars as a gravitational wave detector,
Classical Quantum Gravity 27, 084013 (2010).

[10] E. Petroff, J. W. T. Hessels, and D. R. Lorimer, Fast radio
bursts, Astron. Astrophys. Rev. 27, 4 (2019).

[11] N. Pearson, C. Trendafilova, and J. Meyers, Searching for
gravitational waves with strongly lensed repeating fast radio
bursts, Phys. Rev. D 103, 063017 (2021).

[12] V. B. Braginsky, N. S. Kardashev, A. G. Polnarev, and I. D.
Novikov, Propagation of electromagnetic radiation in a
random field of gravitational waves and space radio inter-
ferometry, Nuovo Cimento B Ser. 105, 1141 (1990), https://
inspirehep.net/literature/288801.

[13] T. Pyne, C. R. Gwinn, M. Birkinshaw, T. M. Eubanks, and
D. N. Matsakis, Gravitational radiation and very long base-
line interferometry, Astrophys. J. 465, 566 (1996).

[14] L. G. Book and E. E. Flanagan, Astrometric effects of a
stochastic gravitational wave background, Phys. Rev. D 83,
024024 (2011).

[15] M. Kamionkowski, A. Kosowsky, and A. Stebbins, A Probe
of Primordial Gravity Waves and Vorticity, Phys. Rev. Lett.
78, 2058 (1997).

[16] U. Seljak and M. Zaldarriaga, Signature of Gravity Waves in
Polarization of the Microwave Background, Phys. Rev. Lett.
78, 2054 (1997).

[17] M. Musha et al. (DECIGO Working Group Collaboration),
Space gravitational wave antenna DECIGO and B-DECIGO,
CEAS Space J. 9, 371 (2017).

[18] S. Kawamura et al. (DECIGO Working Group Collabora-
tion), Current status of space gravitational wave antenna
DECIGO and B-DECIGO, Prog. Theor. Exp. Phys. 2021,
05A105 (2021).

[19] J. Crowder and N. J. Cornish, Beyond LISA: Exploring
future gravitational wave missions, Phys. Rev. D 72, 083005
(2005).

[20] B. Canuel et al., Exploring gravity with the MIGA large
scale atom interferometer, Sci. Rep. 8, 14064 (2018).

[21] B. Canuel et al., ELGAR—a european laboratory for
gravitation and atom-interferometric research, Classical
Quantum Gravity 37, 225017 (2020).

[22] S. Larson, Lisa: A modern astrophysical observatory, in
Proceedings of the 33rd SLAC Summer Institute on Particle
Physics (2005), https://www.slac.stanford.edu/econf/
C0507252/papers/T023.PDF.

[23] S. Babak, A. Petiteau, and M. Hewitson, LISA sensitivity
and SNR calculations, arXiv:2108.01167.

[24] B. B. P. Perera et al., Improving timing sensitivity in the
microhertz frequency regime: Limits from PSR J1713þ
0747 on gravitational waves produced by super-massive
black-hole binaries, Mon. Not. R. Astron. Soc. 478, 218
(2018).

[25] Y. Wang, S. D. Mohanty, and Z. Cao, Extending the
frequency reach of pulsar timing array based gravitational
wave search without high cadence observations, Astrophys.
J. Lett. 907, L43 (2021).

[26] A. Sesana et al., Unveiling the gravitational universe at μ-Hz
frequencies, Exp. Astron. 51, 1333 (2021).

[27] Y. Wang, K. Pardo, T.-C. Chang, and O. Doré, Gravitational
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