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We study the Kerr-Schild-Kundt class of metrics in generic gravity theories with Maxwell’s field.
We prove that these metrics linearize and simplify the field equations of generic gravity theories with

Maxwell’s field.
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I. INTRODUCTION

In the last decade, in a series of papers [1-6], we showed
that the Kerr-Schild-Kundt (KSK) types of metrics are
universal. This means that the KSK metrics reduce the field
equations of any generic gravity theory to a linear equation
for the metric function V(x) (see below). By using this
result, we have studied some special cases, such as
quadratic gravity, F(Riemann) gravity, cubic gravity the-
ories, and found AdS-plane and pp-wave solutions of these
theories. For the universality and almost universality of the
KSK metrics, see also Refs. [7-12].

The KSK metrics are defined by the spacetime metric

G = gm/ + ZVIle (1)

which is in the “generalized” Kerr-Schild form [13,14].
Here, j,, represents the background spacetime, V/(x) is a
scalar field called the profile function, and /# is a null vector
field. The background metric g,, is assumed to be max-
imally symmetric, and as such, its Riemann tensor satisfies
the following property:

R

DD=1) =const.,, (2)

R/mt/ﬂ = K(Q/mgvﬂ - gbagﬂﬂ) . K=

where K is the curvature constant, and it is related to the
background Ricci scalar R and the spacetime dimension D,
as seen. Therefore, depending on the value of K, the
background might be either the Minkowski, de Sitter (dS),
or anti—de Sitter (AdS) spacetime, for which K = 0, K > 0,
or K < 0, respectively. The profile function V(x) and the
vector field /# in Eq. (1) together satisfy the relations
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LI =0,

u

1
vﬂll/ = 5 (lyéy =+ lv§p>7 (3)

1,g" =0, 9,V =0, (4)
with & being an arbitrary vector field which becomes
explicit for a specific background metric. With these
properties, one can show that the inverse metric ¢**, the
Einstein tensor G,,, and the trace-free Ricci tensor S, are

i)
(see, e.g., Ref. [2])

g =g =2V, (5)
(D-1)(D-2)
Gu = _fl{g/w + S Sw=-pll. (6)
where
- 1
p=|0+280y +56E" +2(D=2)K|V =-0V, (1)

with 00 = vﬁﬂ and Vﬂ being the covariant derivative with
respect to the background metric gy, .

In this work, we consider the most general gravity theory
coupled with an electromagnetic field. The Lagrange
function of the whole theory depends on the curvature
tensor, the electromagnetic field, and their covariant deriv-
atives at any order. We call such a theory a “generic
Einstein-Maxwell theory.” We then assume that the space-
time metric is of the KSK form defined above. With this
assumption, we prove a theorem stating that the KSK
metrics simplify the field equations of any generic Einstein-
Maxwell theory. To prove this theorem, we use the
technique that has been used in Ref. [6]. As an explicit
example, we examine the Horndeski vector-tensor theory
[15], which generalizes the Einstein-Maxwell theory by
adding some special curvature-electromagnetic couplings,
and we write its field equations in the KSK spacetimes.

© 2022 American Physical Society
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Our paper is structured as follows: In Sec. II, we review
the universality of the KSK metrics for a generic gravity
theory. In Sec. III, we give the generalization of the
universality property given in Sec. II by considering a
generic gravity theory with Maxwell’s field. In Sec. IV, we
present the Horndeski vector-tensor theory as an explicit
example for our formulation, and we conclude in Sec. V.

II. UNIVERSALITY OF KERR-SCHILD-KUNDT
METRICS

In a recent paper [6], it has been proved that the KSK
metrics given by the form in Eq. (1) satisfying Egs. (3)
and (4) simplify the field equations of any generic gravity
theory constructed from the Riemann tensor and its
covariant derivatives at any order. Here we shall now give
a brief review of this property—the universality of the KSK
metrics.

A vacuum generic gravity theory can be described by
the action

I:/de\/—_gf(g,R,VR,...), (8)

where f is a smooth function of the metric tensor g, the
Riemann tensor R, the covariant derivative of the Riemann
tensor VR, and the higher-order covariant derivatives of R,
respectively. For the KSK metrics, it can be shown that
the field equations of the theory in Eq. (8), obtained by
variation with respect to the metric g,,, take the form (see,
e.g., Ref. [6])

N
E, =eg, + ZanD”SﬂD =0, (9)
n=0

where §,, is the traceless Ricci tensor and [ is
the d’ Alembertian with respect to g,,. The derivative order
of the theory becomes 2N + 2, such that N = 0 represents
the Einstein gravity and N = 1 represents the quadratic
curvature gravity, or more generally F(Riemann)
theories. Taking the trace of Eq. (9) produces the scalar
equation

e =0, (10)

which determines the effective cosmological constant in
terms of the parameters of the theory. Inserting Eq. (10) into
Eq. (9) produces the traceless part

> a,0ns,, =0, (11)

which must be satisfied independently. This is a nontrivial
nonlinear differential equation which cannot be solved in
general, except for some trivial cases. However, it has been

shown in Ref. [4] that Eq. (11) can also be written as the
linear equation

N
L1 a,(-1)"(0=2K)"OV =0, (12)
n=0
since S, = —pl,l, and
0s,, = (=1)"1,1,(0 - 2K)"OV (13)

for the KSK metrics. Here, O is the operator defined in
Eq. (7). This result is true for any &, satisfying [,&* = 0, the
first condition in Eq. (4). For N > 1, it is further possible to
factorize Eq. (12) as

ﬁ(0+bn)OV:O, (14)

n=0

where b,,’s are related to a,,’s, and so to the parameters of
the theory. Now, if all b,’s are distinct and nonzero,
the most general solution of Eq. (14) can be given in the
form

V:VE+V]+V2+"'+VN, (15)
where V is the solution of the Einstein gravity equation
OVg =0, (16)

and each V,, for n =1,2,...,N, is the solution of the
quadratic curvature gravity equation

(O+b,)V,=0. (17)

At this point, it is worth mentioning that there are some
special cases in which some or all of the b,’s coincide or
vanish. In these cases, fourth- or higher-power operators,
such as (O + b,)?, appear, and log-type solutions, which
exist in the so-called critical theories, arise in the solution
spectrum of the generic gravity theory. Equations (16) and
(17) can easily be solved for Vg and V, by using such
techniques as the method of separation of variables and the
method of Green’s function.

In the proof of the universality theorems for the KSK
metrics [6], we use some properties of the null vector /.
First, note that the contractions of /* with /,, £,, and a,,v
yield zero. Second, the contractions of /¥ with the first-
order derivatives of £, and 9,V yield

1
VG = =5 LE, (18)

1 2D -3
Vﬂgﬂ = _fo‘gﬂ —i—mR, (19)
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I, G g, - ﬁR) (20)

1
I,V = 1V,0,V = =2 1LED,V. (21)

IV, &, =

So, here are the important points to observe (see Ref. [6] for
more details):

(1) The number of [ vectors is preserved, since a free-
index [ always appears in the results.

(2) The contraction with the [ vector removes the first-
order derivatives acting on &, and 9,V.

(3) The contraction of the [ vector with the higher-order
derivatives of &, and 9,V produce free-indexed /
vectors.

We define the /-degree of a tensor as the number of free-
indexed [ vectors contained. For example, the /-degree of
the Weyl tensor is 2 [6]. According to this definition, from
the above discussions, we can say that the contraction of the
I* vector with the covariant derivatives of the vectors &,
and 0,V preserves the [-degree of the relevant tensor. Our
definition of /-degree of a tensor is equivalent to the boost
weight of a tensor defined by Coley et al. [7] (and see the
references therein).

III. GENERIC GRAVITY THEORIES WITH
MAXWELL’S FIELD

Now, we wish to extend the theorem given in Sec. II on
the universality of the KSK metrics [6] to generic gravity
theories with the Maxwell field. The Lagrange function of
such a theory should contain the metric tensor g,, and its
inverse ¢, the Riemann tensor Rz, the Maxwell field
tensor F,,, and the covariant derivatives of these tensors of
all orders. That is, in D dimensions, the most general action
for the Einstein-Maxwell theory is

1:/de,/—-gL<g,R,vv...VR,F,vv...VF). (22)

Let the electromagnetic vector potential be given by
A, = @l,, where ¢ is a function satisfying the con-
dition /#¢ , = 0. Then, the Maxwell field tensor takes
the form

F/w = VMAD - VVAM = ¢,ﬂll/ - ¢~Vlﬂ’ (23)

which satisfies the following conditions:

F, F*" =0, (24)
1P =0, (25)
FﬂaFya = l//lylw (26)

where y = ¢"“¢ ,¢ ,. For the extension of the universality
theorem to generic gravity theories with an antisymmetric
tensor F4, we use the following notation:

(1) V'F denotes n-number of covariant derivatives of
the F' tensor—i.e., Vo Vo, -V, F,,.

(2) [(V*"F)(V"F)],, denotes a second-rank symmetric
tensor obtained from the product tensors
(V'F)(V™F) of rank (4 +m + n).

With all these, we now have the following theorem:

Theorem 1: Let the spacetime metric be given by the

Kerr-Schild-Kundt (KSK) type

9w = g/w + 2Vlylw
with the properties

FlL,=0, V=&, &I=0, 19,V=0,

and let the electromagnetic vector potential A, = ¢l,,, or
the Maxwell field tensor

F/w = ¢,Mlu - ¢,ulw

with the property /¢, = 0, where g,, is the metric of a
space of constant curvature (A)dS. Then, any second-rank
symmetric tensor constructed from the Riemann tensor,
Maxwell’s field tensor, and their covariant derivatives
can be written as a linear combination of g, S,
F,“F,,, and their higher derivatives in the forms [1"S,,
and [(V"F)(V"F)],, for all m and n, where [ represents

the d’Alembertian with respect to g,,; that is,

N M
Elll/ =€ + z anDnSﬂb + Z bm”Kv”F) (va>]!¢V’
n=0

m=0,n=0
(27)
and
M
Er=V, [Z e, Fow | (28)
n=0

where a,, b,,,, and c, are constants coming from the
parameters of the theory and N and M are numbers related
to the derivative orders in the theory. Then the associated
field equations of the generic Einstein-Maxwell theory are
E,, =0and E, =0.

Sketch of the Proof: The most general Lagrange
function for the generic Einstein-Maxwell theory given
in Eq. (22) can be written as follows:

L=1L,(9.R,VR,VVR, ...)

+Ly(9.R,VR,VVR,....F,VVF,..)
+ Ls(g.F,VF,VVF,..), (29)
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where L; is a function of the curvature tensor and its
covariant derivatives of any order, L, is a function
representing the coupling of the electromagnetic tensor
F and the curvature tensor R at any order, and Lj is a
function depending solely on F and its covariant derivatives
of any order. Then the field equations associated with the
above Lagrange function can be written as

El, +E,+E, =0, (30)
El+E5 =0, (31)
where E,,.E;, . E;, are the tensors obtained from the

variation of the action in Eq. (22) with respect to the
metric tensor, and E;, and E; are the vectors obtained from
the variation of the action with respect to the electromag-
netic vector potential vector A,. All of these two-rank
symmetric tensors and the vectors have the following forms
in general:

El, = eg, + Z C,,O,,]W_ [RMV™ RV™R - - . V' R]

>
g1y -
(32)
E/Zw = Z C%O,n],...nk,so,sl....sk
QT e Ty S05S Lo oS
X ROV RVER - VERFOVSIF -] (33)
= Z C3 i W [FOVIF - VUF],, (34)

fo.ty,-

where the coefficients C!, C2, and C? are all constants; e is
a function of scalars obtained from the Riemann tensor,
the electromagnetic field tensor, and their covariant deriv-
atives; and

2 _ 4
Eﬂ - Z Cng ny,.

NI g S0sS e Sk

X [R"VMRV™R .- - V“RFVF -],

Z Clo 1.

tostys.. Iy

TS0, .. S)

(35)

WJFOVIE V] (36)

*:m

where C* and C3 are constants. To proceed further, we now
consider typical monomials in each of £ Eﬁy, Ei,,, and in
E2 and EJ.

After inserting the KSK metric tensor into Eq. (32) and
USing R;waﬂ = K(.gﬂ(lgl/ﬂ - gvagﬂﬂ) + Tywaps where r uvaf isa
tensor depending on the vectors &,, 9,V and their covariant
derivative at any order (see Ref. [6] for the explicit
expression), one can reduce E,, to

W’

E = ey + Z Cnonl [FoVm N2y ..

ng.ny,... .0

Vir]

(37)

where e, is a constant and C' are constants. A typical
monomial in E}, is, therefore,
(o Ny (38)
Since the [-degree of r,, 4 is 2, the number of free [ vectors
in such a monomial is 2n + 2k. Since the contraction of
the I vector with &, and 0,V yields zero, and with their
covariant derivatives of any order, this keeps the number of
free [-vectors unchanged, in order to have a nonzero term in
the monomial [Eq. (38)] at the end of the contractions, it
must be that 2ny + 2k = 2, which can only be satisfied
either when ny = 1 or when k = 1. This means that [6]
E;lw = €09 + plS/w +p2[vv U erw’ (39)
where p; and p, are some scalars containing V, ¢, and their
partial derivatives. This result is equivalent to (by the use of
Bianchi identities) [6]

N
E}w =eg, + Z a,"S,
n=0

(40)

A typical monomial of E,zw can be written from Eq. (33) as

[R"OVMRV™R ... VRFOVIF ... V%F| . (41)
When we insert R,,.5 = K(9ua9up = Guadup) + Tuwap into
the above monomial, the terms coming from the K part of
the curvature tensor reduce to monomials with fewer r
tensors, and also to the monomials containing only
Maxwell fields—i.e., they join with Efw. There will be
no contributions to the ¢, part of the field equations E}, in
Eq. (39) from such monomials. The remaining part of the
monomial will therefore be exactly of the above form, but
instead of R’s we now have r’s:

(oM Ny N POV E - VE] L (42)
For the KSK ansatz, we let A, = ¢l,, where ¢ is a function
satisfying /#0,¢ =0, and F,, = ¢ I, — ¢ ,1,. Then, the
l-degrees of r,,.; and F,, are 2 and 1, respectively.
The number of free ! Vectors in the bracket is
2ny + 2k + sg + k, which must be equal to 2 for
having nonvanishing terms. Since these monomials must
contain both r and F tensors, it is easy to see that
2ng + 2k + sy + k > 2; for this reason, all such coupling
terms must vanish. This means that, for KSK metrics and
for ¥, = ¢ ,l, — ¢ 1, there will be no coupling of the
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tensors r and F; such terms vanish identically. A typical
monomial of Efw in Eq. (34) can be given as
[FoVIE - V&F] . (43)

The number of free [ vectors in this expression is ¢y + k.
After contractions, this number will be preserved, and
hence, for nonvanishing terms, we must have 7, + k = 2.
This means that either 7, =2 (F> term), or k=2
(VV...VFVV...VF terms), or ty=1,k=1 (sym-
metrized FVV - .- VF terms). Combining these, we get

E;34y = m:OZn:O bmn[<vnF) (va)]yw (44)

where b,,,’s are constants. This completes the proof of the
first part of Theorem 1.

To prove the second part of the theorem, we use the same
approach. A typical monomial of E,% in Eq. (35) can be
written as

[RVMRV™R - V“RFOVSF - V%F],.  (45)

After inserting R;wa/} = K(g;mgp/} - gl/agy/}) + ryuaﬁs the
terms related to the K part of the curvature tensors in
the above monomials reduce either to the same type of
monomials with fewer r’s or to monomials of Ei in
Eq. (36). Hence, we can study the above monomials,
only with 7’s instead of R’s. In such a case, the number
of free [ vectors is 2ny + 2k + sg + k. To have nonzero
terms in the monomial, we must have 2nq + 2k + 5o +
k =1, but this is not possible, because such monomials
represent couplings between r and F tensors, and so
2ng + 2k +sqg+ k#1 for all cases. That is to say,
E; = 0 identically. Finally, a typical monomial of E; in
Eq. (36) can be given by

[FoVF ... V4 F],. (46)

The number of free / vectors in the above expression is
to + k. For nonzero terms, this number must be equal to 1;
therefore, we must have either 7, = 1 (not possible) or
k=1 (VV...VF terms). Thus, we obtain, by the use of
Bianchi identities,

M
E, =V, [Z c,,D"F"’M] =0. (47)
n=0

This completes the proof of Theorem 1.

Remark 1: In the case of the KSK metrics, it is
straightforward to show that the Maxwell equations in
Egs. (28) and (47) can also be written as

=Y ¢,0(V,F#) =0. (48)

M=

i
o

n

For the KSK metrics, the trace of Eq. (27) reduces to e = 0,
which gives a relation between the parameters of the theory
and the cosmological constant, and the remaining part of
Eq. (27) gives

N
> a,0m1V +p, =0, (49)
n=0

where p, is the source term for the equation of V, and the

operator O is defined in Eq. (7)—namely, it is given by

- 1
oV = — [D + 2£%0, + E.faé" +2(D-2)K|V. (50)

On the other hand, Eq. (28) reduces to

M
> R =0, (51)
n=0

where

n="0Up+E%, (52)

and the operator R is defined by
Ry = [0+ &9, + (D - 1)K]n. (53)

To derive the above operators, we used the following
identities:

0, = (D — 1)KL, (54)

- 1
lavaé‘ﬂ = <K - Zéaga) l,u’ (55)
vafa + %5(15(1 - (2D - 3)K = O’ (56)

and

Vg = %ébéﬂ + 2K G5 + n,lg + 2npl, — pl, 1y, (57)
where p is a function and n,, is a vector satisfying
In, = —152 - K,
4
where £2 = £%¢,. We also have

V& = (& +4K)E, +4(&ny)l,.
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Since p,I* = 0, where p, = 0,¢, itis now easy to calculate

(V&) p"p* =5 (E,0")* + 2K pip,,. (58)

N =

As a final remark, by using the three steps below, we can
express [(V"F)(V"F)], in Eq. (27) for any n and m
proportional to /,1,:

(1) The number of [ vectors is preserved, since a free-
index [ always appears in the results.

(2) The contraction with the [ vector removes the first-
order derivatives acting on &,, 9,V, and 0,¢.

(3) The contraction of the / vector with the higher-order
derivatives of &,, 0,V, and 0,¢ produces free-
indexed [ vectors.

For illustration, we give the special cases where (i) the
Lagrange function depends only on F, and (ii) the Lagrange
function depends on F up to the first-order covariant
derivatives as the following corollaries.

Corollary 1: If the Lagrange function contains only F’s

(no derivatives), then the reduced field equations are

uv

N
E,=egy+Y a8, +br, =0 (59
n=0

and
E' =V, F* =0, (60)
where 7, = F,“F,, = yl,1,.

Corollary 2: If the Lagrange function contains F’s and
first derivatives of F’s, then the reduced field equations are

N
E, =eg, + Z a,t1"S,, + byt,, + bz,
n=0

+ b3V, F, V'F,* + b4V”FﬂaVDFﬂ“
+ b5V, Fy,VPF*, =0 (61)
and
Bt = |V F* + ¢,V ,OF* = 0. (62)
Remark 2: In Corollary 2, there are five different

symmetric tensors obtained by the first derivatives of F’s:

1) (OF,0)F," + F,0F,° (63)
2) O(Fuf,, (64)
3) V,F,,V'Ff (65)
4) V,FuV,Fre, (66)

5) V,F,VPFe, (67)

But the first and second terms are not independent; they can
be expressed in terms of the others:

O(F,oF,%) = 2V, F

7 na

VIF,* + (OF ) F,* + F,,[F,°.
Using the Bianchi identity for F’s, we get

V,F sV, FP @ =2V F

JF VI E,5 =2V Fy VPFC,

On the other hand, for the KSK metric and M =2,
we find

V,FVIF,% = pL,l,. (68)
vﬂFﬂava/j 4= pzlﬂll/’ (69)
vaF/}ﬂvﬂFau = p3lﬂlb7 (70)

where

1 1 1
P1==3 (Pal®)? + (vapﬂ + 5Pafﬂ> (Vapﬂ + Epafﬂ>,

(71)

1
P2 = _(paéa)z + 5 (papa)(éﬂéﬁ)7 (72)
P3 = vap/ivap/} + pagﬂvap/}v (73)

so that p, = 2(p; — p3), and hence we can set b5 = 0. Here
we have defined p, = 0,¢.

IV. HORNDESKI’S VECTOR-TENSOR THEORY:
AN EXPLICIT EXAMPLE

As an explicit example, we shall consider Horndeski’s
vector-tensor theory, which is a generalization of Einstein-
Maxwell theory that leads to second-order equations of
motion and satisfying charge conservation. This theory is
described, in D dimensions, by the action [15]

R-2A

1 Vo e
1= / dPx\/=g {Z—H—ZFWF"“raRZﬁFWFﬁ . (74)

where the parameters k2, A, and o are the gravitational
constant, the cosmological constant, and the Horndeski
coupling constant, respectively, and

F,=V,A -V,A,, (75)
1 VAC ppt
RIY = -2 gﬂf”R/ o (76)
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Making explicit use of the generalized Kronecker delta
defined by

35 = ket ..o

... la
5;,,:__/4 = k!éﬁll.. B Op (77)

one can show that the Horndeski interaction term in
Eq. (74) can also be written as

RM oF  F¥ = —RF2 +-4R ' F,,F** — R* ,,F,,F | (78)

where F2 = F,,F*, and R," is the Ricci tensor. The field
equations derived from the action (74) are

G+ A8, =T} +o1,0), (79)
V,Fm =0, (80)
where
T, =F,F" - 15;F2, (81)
T} = SN FOVPFy, — 4RV F \ F™,  (82)
FH = FW — 46RM ,F. (83)

Now, using the KSK ansatz [Eq. (1)] having the proper-
ties in Egs. (2)—(6) together with the electromagnetic vector
potential of the form

A, =X)L, (84)
where [, and p, = 0,¢ satisty [, p* = 0, one can show that

F, = pu,—pl, T, =wl,l, (85)
v "/ L f 1 ] )2
Ty = —4 vap/fv P +§§ aal//_ (fap )
1
+5 [+ (D-2)(D - 3)1(]1//}1,,1”, (86)

FH =[1+46(D-2)(D-3)K|F*", (87)
where y = p,p”. Then, Egs. (79) and (80) become
{A_w,(}éz iy
{ [ «PsVP’ 45 é“é’av/ (Eap™)?
1
2

24 (- mw—amﬂ}ua (88)

—[1 +46(D -2)(D - 3)K]|[O¢ + &p,JI* =0. (89)

From these, we find that

(D-1)(D-2)

A=
2

K, (90)
OV +2£49,V + E EL7+2(D - 2)1(} 1%
_ 1
—i? {u/ —4o {Vapﬂv“pﬂ + 58" 0w = (Eap”)?

#3184+ (D =20 - 3K |, o1

O+ &p, =0. (92)

Observe that, in writing the last equation, we assume the
coefficient in Eq. (89) is nonzero—i.e.,

1 4+ 46(D = 2)(D = 3)K #0. (93)

Using the relation

. 1. 1 _
VappVep' =50y + 58 0ay — (D = Ky + pp'Vady
— PPVs(O¢ + &0,4). (94)

together with Egs. (58) and (92), we can equivalently write
Eq. (91) as

OV +2£49,V + B EL4+2(D - 2)4 1%
2 1 - a 1 a\2
—Kk*qy — 4o —Dw+§80w—5(§ap)

318+ (D=3 - 4K |. (95)
Note that when £, =0 and K = 0, all these expressions
recover the flat background (pp wave) case in Horndeski
theory [16]. In a recent paper [17], we studied a modified
version of this theory by adding extra couplings to Eq. (74)
of the form R* sF, F % and obtained exact plane wave
solutions to its field equations.

Remark 3: Equations (91) and (92) are special cases
of the general field equations (49) and (51) for n = 0.
Furthermore, the Horndeski theory is a special case of
Corollary 2 with no derivatives of F,.

V. CONCLUSION

In this work, we considered the most general Einstein-
Maxwell theory in which the pure gravity and Maxwell
parts and their couplings are thought to be arbitrary. The
Lagrange function associated with such a theory is any
function of the curvature tensor, the electromagnetic field,
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and their covariant derivatives of any order. When the
metric of the spacetime is assumed to be the Kerr-Schild-
Kundt type of metrics, we proved a theorem stating that the
most general Einstein-Maxwell field equations reduce to
two coupled simple equations for the functions V and ¢
representing the gravitational and electromagnetic poten-
tials, respectively. As an explicit application of the theorem,

we presented the field equations of the Horndeski vector-
tensor theory in the KSK spacetimes.
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