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We study the Kerr-Schild-Kundt class of metrics in generic gravity theories with Maxwell’s field.
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I. INTRODUCTION

In the last decade, in a series of papers [1–6], we showed
that the Kerr-Schild-Kundt (KSK) types of metrics are
universal. This means that the KSK metrics reduce the field
equations of any generic gravity theory to a linear equation
for the metric function VðxÞ (see below). By using this
result, we have studied some special cases, such as
quadratic gravity, FðRiemannÞ gravity, cubic gravity the-
ories, and found AdS-plane and pp-wave solutions of these
theories. For the universality and almost universality of the
KSK metrics, see also Refs. [7–12].
The KSK metrics are defined by the spacetime metric

gμν ¼ ḡμν þ 2Vlμlν; ð1Þ

which is in the “generalized” Kerr-Schild form [13,14].
Here, ḡμν represents the background spacetime, VðxÞ is a
scalar field called the profile function, and lμ is a null vector
field. The background metric ḡμν is assumed to be max-
imally symmetric, and as such, its Riemann tensor satisfies
the following property:

R̄μανβ¼Kðḡμαḡνβ− ḡναḡμβÞ; K¼ R̄
DðD−1Þ¼ const:; ð2Þ

where K is the curvature constant, and it is related to the
background Ricci scalar R̄ and the spacetime dimension D,
as seen. Therefore, depending on the value of K, the
background might be either the Minkowski, de Sitter (dS),
or anti–de Sitter (AdS) spacetime, for whichK ¼ 0, K > 0,
or K < 0, respectively. The profile function VðxÞ and the
vector field lμ in Eq. (1) together satisfy the relations

lμlμ ¼ 0; ∇μlν ¼
1

2
ðlμξν þ lνξμÞ; ð3Þ

lμξμ ¼ 0; lμ∂μV ¼ 0; ð4Þ

with ξμ being an arbitrary vector field which becomes
explicit for a specific background metric. With these
properties, one can show that the inverse metric gμν, the
Einstein tensor Gμν, and the trace-free Ricci tensor Sμν are
(see, e.g., Ref. [2])

gμν ¼ ḡμν − 2Vlμlν; ð5Þ

Gμν ¼ −
ðD− 1ÞðD− 2Þ

2
Kgμν þ Sμν; Sμν ¼ −ρlμlν; ð6Þ

where

ρ ¼
�
□̄þ 2ξα∂α þ

1

2
ξαξ

α þ 2ðD − 2ÞK
�
V ≡ −OV; ð7Þ

with □̄≡ ∇̄μ∇̄μ and ∇̄μ being the covariant derivative with
respect to the background metric ḡμν.
In this work, we consider the most general gravity theory

coupled with an electromagnetic field. The Lagrange
function of the whole theory depends on the curvature
tensor, the electromagnetic field, and their covariant deriv-
atives at any order. We call such a theory a “generic
Einstein-Maxwell theory.” We then assume that the space-
time metric is of the KSK form defined above. With this
assumption, we prove a theorem stating that the KSK
metrics simplify the field equations of any generic Einstein-
Maxwell theory. To prove this theorem, we use the
technique that has been used in Ref. [6]. As an explicit
example, we examine the Horndeski vector-tensor theory
[15], which generalizes the Einstein-Maxwell theory by
adding some special curvature-electromagnetic couplings,
and we write its field equations in the KSK spacetimes.
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Our paper is structured as follows: In Sec. II, we review
the universality of the KSK metrics for a generic gravity
theory. In Sec. III, we give the generalization of the
universality property given in Sec. II by considering a
generic gravity theory with Maxwell’s field. In Sec. IV, we
present the Horndeski vector-tensor theory as an explicit
example for our formulation, and we conclude in Sec. V.

II. UNIVERSALITY OF KERR-SCHILD-KUNDT
METRICS

In a recent paper [6], it has been proved that the KSK
metrics given by the form in Eq. (1) satisfying Eqs. (3)
and (4) simplify the field equations of any generic gravity
theory constructed from the Riemann tensor and its
covariant derivatives at any order. Here we shall now give
a brief review of this property—the universality of the KSK
metrics.
A vacuum generic gravity theory can be described by

the action

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
fðg; R;∇R;…Þ; ð8Þ

where f is a smooth function of the metric tensor g, the
Riemann tensor R, the covariant derivative of the Riemann
tensor ∇R, and the higher-order covariant derivatives of R,
respectively. For the KSK metrics, it can be shown that
the field equations of the theory in Eq. (8), obtained by
variation with respect to the metric gμν, take the form (see,
e.g., Ref. [6])

Eμν ≡ egμν þ
XN
n¼0

an□nSμν ¼ 0; ð9Þ

where Sμν is the traceless Ricci tensor and □ is
the d’Alembertian with respect to gμν. The derivative order
of the theory becomes 2N þ 2, such that N ¼ 0 represents
the Einstein gravity and N ¼ 1 represents the quadratic
curvature gravity, or more generally FðRiemannÞ
theories. Taking the trace of Eq. (9) produces the scalar
equation

e ¼ 0; ð10Þ

which determines the effective cosmological constant in
terms of the parameters of the theory. Inserting Eq. (10) into
Eq. (9) produces the traceless part

XN
n¼0

an□nSμν ¼ 0; ð11Þ

which must be satisfied independently. This is a nontrivial
nonlinear differential equation which cannot be solved in
general, except for some trivial cases. However, it has been

shown in Ref. [4] that Eq. (11) can also be written as the
linear equation

lμlν
XN
n¼0

anð−1ÞnðO − 2KÞnOV ¼ 0; ð12Þ

since Sμν ¼ −ρlμlν and

□
nSμν ¼ ð−1ÞnlμlνðO − 2KÞnOV ð13Þ

for the KSK metrics. Here, O is the operator defined in
Eq. (7). This result is true for any ξμ satisfying lμξμ ¼ 0, the
first condition in Eq. (4). For N ≥ 1, it is further possible to
factorize Eq. (12) as

YN
n¼0

ðOþ bnÞOV ¼ 0; ð14Þ

where bn’s are related to an’s, and so to the parameters of
the theory. Now, if all bn’s are distinct and nonzero,
the most general solution of Eq. (14) can be given in the
form

V ¼ VE þ V1 þ V2 þ � � � þ VN; ð15Þ

where VE is the solution of the Einstein gravity equation

OVE ¼ 0; ð16Þ

and each Vn, for n ¼ 1; 2;…; N, is the solution of the
quadratic curvature gravity equation

ðOþ bnÞVn ¼ 0: ð17Þ

At this point, it is worth mentioning that there are some
special cases in which some or all of the bn’s coincide or
vanish. In these cases, fourth- or higher-power operators,
such as ðOþ bnÞ2, appear, and log-type solutions, which
exist in the so-called critical theories, arise in the solution
spectrum of the generic gravity theory. Equations (16) and
(17) can easily be solved for VE and Vn by using such
techniques as the method of separation of variables and the
method of Green’s function.
In the proof of the universality theorems for the KSK

metrics [6], we use some properties of the null vector lμ.
First, note that the contractions of lμ with lμ, ξμ, and ∂μV
yield zero. Second, the contractions of lμ with the first-
order derivatives of ξμ and ∂μV yield

lν∇μξν ¼ −
1

2
lμξνξν; ð18Þ

∇μξ
μ ¼ −

1

4
ξμξμ þ

2D − 3

DðD − 1ÞR; ð19Þ
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lμ∇μξα ¼ −lα
�
1

4
ξμξμ −

1

DðD − 1ÞR
�
; ð20Þ

lμ∇μ∂νV ¼ lμ∇ν∂μV ¼ −
1

2
lνξμ∂μV: ð21Þ

So, here are the important points to observe (see Ref. [6] for
more details):
(1) The number of l vectors is preserved, since a free-

index l always appears in the results.
(2) The contraction with the l vector removes the first-

order derivatives acting on ξμ and ∂μV.
(3) The contraction of the l vector with the higher-order

derivatives of ξμ and ∂μV produce free-indexed l
vectors.

We define the l-degree of a tensor as the number of free-
indexed l vectors contained. For example, the l-degree of
the Weyl tensor is 2 [6]. According to this definition, from
the above discussions, we can say that the contraction of the
lμ vector with the covariant derivatives of the vectors ξμ
and ∂μV preserves the l-degree of the relevant tensor. Our
definition of l-degree of a tensor is equivalent to the boost
weight of a tensor defined by Coley et al. [7] (and see the
references therein).

III. GENERIC GRAVITY THEORIES WITH
MAXWELL’S FIELD

Now, we wish to extend the theorem given in Sec. II on
the universality of the KSK metrics [6] to generic gravity
theories with the Maxwell field. The Lagrange function of
such a theory should contain the metric tensor gμν and its
inverse gμν, the Riemann tensor Rαβμν, the Maxwell field
tensor Fμν, and the covariant derivatives of these tensors of
all orders. That is, inD dimensions, the most general action
for the Einstein-Maxwell theory is

I ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
Lðg; R;∇∇…∇R;F;∇∇…∇FÞ: ð22Þ

Let the electromagnetic vector potential be given by
Aμ ¼ ϕlμ, where ϕ is a function satisfying the con-
dition lμϕ;μ ¼ 0. Then, the Maxwell field tensor takes
the form

Fμν ¼ ∇μAν −∇νAμ ¼ ϕ;μlν − ϕ;νlμ; ð23Þ

which satisfies the following conditions:

FμνFμν ¼ 0; ð24Þ

lμFμν ¼ 0; ð25Þ

FμαFν
α ¼ ψlμlν; ð26Þ

where ψ ¼ gμνϕ;μϕ;ν. For the extension of the universality
theorem to generic gravity theories with an antisymmetric
tensor Fαβ, we use the following notation:
(1) ∇nF denotes n-number of covariant derivatives of

the F tensor—i.e., ∇α1∇α2 � � �∇αnFμν.
(2) ½ð∇nFÞð∇mFÞ�μν denotes a second-rank symmetric

tensor obtained from the product tensors
ð∇nFÞð∇mFÞ of rank ð4þmþ nÞ.

With all these, we now have the following theorem:
Theorem 1: Let the spacetime metric be given by the

Kerr-Schild-Kundt (KSK) type

gμν ¼ ḡμν þ 2Vlμlν;

with the properties

lμlμ¼0; ∇μlν¼ ξðμlνÞ; ξμlμ¼0; lμ∂μV¼0;

and let the electromagnetic vector potential Aμ ¼ ϕlμ, or
the Maxwell field tensor

Fμν ¼ ϕ;μlν − ϕ;νlμ;

with the property lμϕ;μ ¼ 0, where ḡμν is the metric of a
space of constant curvature (A)dS. Then, any second-rank
symmetric tensor constructed from the Riemann tensor,
Maxwell’s field tensor, and their covariant derivatives
can be written as a linear combination of gμν, Sμν,
Fμ

αFνα, and their higher derivatives in the forms □
nSμν

and ½ð∇nFÞð∇mFÞ�μν for all m and n, where □ represents
the d’Alembertian with respect to gμν; that is,

Eμν ≡ egμν þ
XN
n¼0

an□nSμν þ
XM

m¼0;n¼0

bmn½ð∇nFÞð∇mFÞ�μν;

ð27Þ

and

Eμ ≡∇α

"XM
n¼0

cn□nFαμ

#
; ð28Þ

where an, bmn, and cn are constants coming from the
parameters of the theory and N and M are numbers related
to the derivative orders in the theory. Then the associated
field equations of the generic Einstein-Maxwell theory are
Eμν ¼ 0 and Eμ ¼ 0.
Sketch of the Proof: The most general Lagrange

function for the generic Einstein-Maxwell theory given
in Eq. (22) can be written as follows:

L ¼ L1ðg; R;∇R;∇∇R;…Þ
þ L2ðg; R;∇R;∇∇R;…; F;∇∇F;…Þ
þ L3ðg; F;∇F;∇∇F;…Þ; ð29Þ
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where L1 is a function of the curvature tensor and its
covariant derivatives of any order, L2 is a function
representing the coupling of the electromagnetic tensor
F and the curvature tensor R at any order, and L3 is a
function depending solely on F and its covariant derivatives
of any order. Then the field equations associated with the
above Lagrange function can be written as

E1
μν þ E2

μν þ E3
μν ¼ 0; ð30Þ

E2
μ þ E3

μ ¼ 0; ð31Þ

where E1
μν; E2

μν; E3
μν are the tensors obtained from the

variation of the action in Eq. (22) with respect to the
metric tensor, and E2

μ and E3
μ are the vectors obtained from

the variation of the action with respect to the electromag-
netic vector potential vector Aμ. All of these two-rank
symmetric tensors and the vectors have the following forms
in general:

E1
μν ¼ egμν þ

X
n0;n1;…;nk

C1
n0;n1;…nk ½Rn0∇n1R∇n2R � � �∇nkR�μν;

ð32Þ

E2
μν ¼

X
n0;n1;…;nk;s0;s1;…sk

C2
n0;n1;…nk;s0;s1;…sk

× ½Rn0∇n1R∇n2R � � �∇nkRFs0∇s1F � � ��μν; ð33Þ

E3
μν ¼

X
t0;t1;…tk

C3
t0;t1;…tk ½Ft0∇t1F � � �∇tkF�μν; ð34Þ

where the coefficients C1, C2, and C3 are all constants; e is
a function of scalars obtained from the Riemann tensor,
the electromagnetic field tensor, and their covariant deriv-
atives; and

E2
μ ¼

X
n0;n1;…;nk;s0;s1;…sk

C4
n0;n1;…nk;s0;s1…sk

× ½Rn0∇n1R∇n2R � � �∇nkRFs0∇s1F � � ��μ; ð35Þ

E3
μ ¼

X
t0;t1;…tk

C5
t0;t1;…tk ½Ft0∇t1F � � �∇tkF�μ; ð36Þ

where C4 and C5 are constants. To proceed further, we now
consider typical monomials in each of E1

μν; E2
μν; E3

μν, and in
E2
μ and E3

μ.
After inserting the KSK metric tensor into Eq. (32) and

using Rμναβ ¼ Kðgμαgνβ − gναgμβÞ þ rμναβ, where rμναβ is a
tensor depending on the vectors ξμ, ∂νV and their covariant
derivative at any order (see Ref. [6] for the explicit
expression), one can reduce E1

μν to

E1
μν ¼ e0gμν þ

X
n0;n1;…;nk

C̄1
n0;n1;…nk ½rn0∇n1r∇n2r � � �∇nkr�μν;

ð37Þ

where e0 is a constant and C̄1 are constants. A typical
monomial in E1

μν is, therefore,

½rn0∇n1r∇n2r � � �∇nkr�μν: ð38Þ

Since the l-degree of rμναβ is 2, the number of free l vectors
in such a monomial is 2n0 þ 2k. Since the contraction of
the l vector with ξμ and ∂μV yields zero, and with their
covariant derivatives of any order, this keeps the number of
free l-vectors unchanged, in order to have a nonzero term in
the monomial [Eq. (38)] at the end of the contractions, it
must be that 2n0 þ 2k ¼ 2, which can only be satisfied
either when n0 ¼ 1 or when k ¼ 1. This means that [6]

E1
μν ¼ e0gμν þ ρ1Sμν þ ρ2½∇∇ � � �∇r�μν; ð39Þ

where ρ1 and ρ2 are some scalars containing V, ϕ, and their
partial derivatives. This result is equivalent to (by the use of
Bianchi identities) [6]

E1
μν ¼ egμν þ

XN
n¼0

an□nSμν: ð40Þ

A typical monomial of E2
μν can be written from Eq. (33) as

½Rn0∇n1R∇n2R � � �∇nkRFs0∇s1F � � �∇skF�μν: ð41Þ

When we insert Rμναβ ¼ Kðgμαgνβ − gναgμβÞ þ rμναβ into
the above monomial, the terms coming from the K part of
the curvature tensor reduce to monomials with fewer r
tensors, and also to the monomials containing only
Maxwell fields—i.e., they join with E3

μν. There will be
no contributions to the e0 part of the field equations E1

μν in
Eq. (39) from such monomials. The remaining part of the
monomial will therefore be exactly of the above form, but
instead of R’s we now have r’s:

½rn0∇n1r∇n2r � � �∇nkrFs0∇s1F � � �∇skF�μν: ð42Þ

For the KSK ansatz, we let Aμ ¼ ϕlμ, where ϕ is a function
satisfying lμ∂μϕ ¼ 0, and Fμν ¼ ϕ;μlν − ϕ;νlμ. Then, the
l-degrees of rμναβ and Fμν are 2 and 1, respectively.
The number of free l vectors in the bracket is
2n0 þ 2kþ s0 þ k, which must be equal to 2 for
having nonvanishing terms. Since these monomials must
contain both r and F tensors, it is easy to see that
2n0 þ 2kþ s0 þ k > 2; for this reason, all such coupling
terms must vanish. This means that, for KSK metrics and
for Fμν ¼ ϕ;μlν − ϕ;νlμ, there will be no coupling of the
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tensors r and F; such terms vanish identically. A typical
monomial of E3

μν in Eq. (34) can be given as

½Ft0∇t1F � � �∇tkF�μν: ð43Þ

The number of free l vectors in this expression is t0 þ k.
After contractions, this number will be preserved, and
hence, for nonvanishing terms, we must have t0 þ k ¼ 2.
This means that either t0 ¼ 2 (F2 term), or k ¼ 2
(∇∇ � � �∇F∇∇ � � �∇F terms), or t0 ¼ 1; k ¼ 1 (sym-
metrized F∇∇ � � �∇F terms). Combining these, we get

E3
μν ¼

XM
m¼0;n¼0

bmn½ð∇nFÞð∇mFÞ�μν; ð44Þ

where bmn’s are constants. This completes the proof of the
first part of Theorem 1.
To prove the second part of the theorem, we use the same

approach. A typical monomial of E2
μ in Eq. (35) can be

written as

½Rn0∇n1R∇n2R � � �∇nkRFs0∇s1F � � �∇skF�μ: ð45Þ

After inserting Rμναβ ¼ Kðgμαgνβ − gναgμβÞ þ rμναβ, the
terms related to the K part of the curvature tensors in
the above monomials reduce either to the same type of
monomials with fewer r’s or to monomials of E3

μ in
Eq. (36). Hence, we can study the above monomials,
only with r’s instead of R’s. In such a case, the number
of free l vectors is 2n0 þ 2kþ s0 þ k. To have nonzero
terms in the monomial, we must have 2n0 þ 2kþ s0 þ
k ¼ 1, but this is not possible, because such monomials
represent couplings between r and F tensors, and so
2n0 þ 2kþ s0 þ k ≠ 1 for all cases. That is to say,
E2
μ ¼ 0 identically. Finally, a typical monomial of E3

μ in
Eq. (36) can be given by

½Ft0∇t1F � � �∇tkF�μ: ð46Þ

The number of free l vectors in the above expression is
t0 þ k. For nonzero terms, this number must be equal to 1;
therefore, we must have either t0 ¼ 1 (not possible) or
k ¼ 1 (∇∇ � � �∇F terms). Thus, we obtain, by the use of
Bianchi identities,

E3
μ ¼ ∇α

�XM
n¼0

cn□nFα
μ

�
¼ 0: ð47Þ

This completes the proof of Theorem 1.
Remark 1: In the case of the KSK metrics, it is

straightforward to show that the Maxwell equations in
Eqs. (28) and (47) can also be written as

Eμ ≡XM
n¼0

c̄n□nð∇αFαμÞ ¼ 0: ð48Þ

For the KSK metrics, the trace of Eq. (27) reduces to e ¼ 0,
which gives a relation between the parameters of the theory
and the cosmological constant, and the remaining part of
Eq. (27) gives

XN
n¼0

anOnþ1V þ ρe ¼ 0; ð49Þ

where ρe is the source term for the equation of V, and the
operator O is defined in Eq. (7)—namely, it is given by

OV ¼ −
�
□̄þ 2ξα∂α þ

1

2
ξαξ

α þ 2ðD − 2ÞK
�
V: ð50Þ

On the other hand, Eq. (28) reduces to

XM
n¼0

cnRnη ¼ 0; ð51Þ

where

η ¼ □̄ϕþ ξαϕ;α; ð52Þ

and the operator R is defined by

Rη ¼ ½□̄þ ξα∂α þ ðD − 1ÞK�η: ð53Þ

To derive the above operators, we used the following
identities:

□lμ ¼ ðD − 1ÞKlμ; ð54Þ

lα∇̄αξμ ¼
�
K −

1

4
ξαξα

�
lμ; ð55Þ

∇̄αξα þ
1

4
ξαξα − ð2D − 3ÞK ¼ 0; ð56Þ

and

∇̄νξβ ¼
1

2
ξνξβ þ 2Kḡνβ þ nνlβ þ 2nβlν − μlνlβ; ð57Þ

where μ is a function and nμ is a vector satisfying

lαnα ¼ −
1

4
ξ2 − K;

where ξ2 ¼ ξαξα. We also have

∇νξ
2 ¼ ðξ2 þ 4KÞξν þ 4ðξαnαÞlν:
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Since pμlμ ¼ 0, where pμ ≡ ∂μϕ, it is now easy to calculate

ð∇̄μξνÞpμpν ¼ 1

2
ðξμpμÞ2 þ 2Kpμpμ: ð58Þ

As a final remark, by using the three steps below, we can
express ½ð∇nFÞð∇mFÞ�μν in Eq. (27) for any n and m
proportional to lμlν:
(1) The number of l vectors is preserved, since a free-

index l always appears in the results.
(2) The contraction with the l vector removes the first-

order derivatives acting on ξμ, ∂μV, and ∂μϕ.
(3) The contraction of the l vector with the higher-order

derivatives of ξμ, ∂μV, and ∂μϕ produces free-
indexed l vectors.

For illustration, we give the special cases where (i) the
Lagrange function depends only on F, and (ii) the Lagrange
function depends on F up to the first-order covariant
derivatives as the following corollaries.
Corollary 1: If the Lagrange function contains only F’s

(no derivatives), then the reduced field equations are

Eμν ¼ egμν þ
XN
n¼0

an□nSμν þ bτμν ¼ 0 ð59Þ

and

Eμ ¼ ∇αFαμ ¼ 0; ð60Þ

where τμν ¼ Fμ
αFνα ¼ ψ lμlν.

Corollary 2: If the Lagrange function contains F’s and
first derivatives of F’s, then the reduced field equations are

Eμν ¼ egμν þ
XN
n¼0

an□nSμν þ b1τμν þ b2□τμν

þ b3∇γFμα∇γFν
α þ b4∇μFβα∇νFβ α

þ b5∇αFβμ∇βFα
ν ¼ 0 ð61Þ

and

Eμ ¼ c1∇αFαμ þ c2∇α□Fαμ ¼ 0: ð62Þ

Remark 2: In Corollary 2, there are five different
symmetric tensors obtained by the first derivatives of F’s:

1Þ ð□FμαÞFν
α þ Fμα□Fν

α; ð63Þ

2Þ □ðFμαFν
αÞ; ð64Þ

3Þ ∇γFμα∇γFν
α; ð65Þ

4Þ ∇μFβα∇νFβ α; ð66Þ

5Þ ∇αFβμ∇βFα
ν: ð67Þ

But the first and second terms are not independent; they can
be expressed in terms of the others:

□ðFμαFν
αÞ ¼ 2∇γFμα∇γFν

α þ ð□FμαÞFν
α þ Fμα□Fν

α:

Using the Bianchi identity for F’s, we get

∇μFβα∇νFβ α ¼ 2∇γFμα∇γFν
α − 2∇αFβμ∇βFα

ν:

On the other hand, for the KSK metric and M ¼ 2,
we find

∇γFμα∇γFν
α ¼ ρ1lμlν; ð68Þ

∇μFβα∇νFβ α ¼ ρ2lμlν; ð69Þ

∇αFβμ∇βFα
ν ¼ ρ3lμlν; ð70Þ

where

ρ1 ¼ −
1

2
ðpαξ

αÞ2 þ
�
∇αpβ þ

1

2
pαξβ

��
∇αpβ þ 1

2
pαξβ

�
;

ð71Þ

ρ2 ¼ −ðpαξ
αÞ2 þ 1

2
ðpαpαÞðξβξβÞ; ð72Þ

ρ3 ¼ ∇αpβ∇αpβ þ pαξβ∇αpβ; ð73Þ

so that ρ2 ¼ 2ðρ1 − ρ3Þ, and hence we can set b5 ¼ 0. Here
we have defined pμ ≡ ∂μϕ.

IV. HORNDESKI’S VECTOR-TENSOR THEORY:
AN EXPLICIT EXAMPLE

As an explicit example, we shall consider Horndeski’s
vector-tensor theory, which is a generalization of Einstein-
Maxwell theory that leads to second-order equations of
motion and satisfying charge conservation. This theory is
described, in D dimensions, by the action [15]

I¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R−2Λ
2κ2

−
1

4
FμνFμνþσRμν

αβFμνFαβ

�
; ð74Þ

where the parameters κ2, Λ, and σ are the gravitational
constant, the cosmological constant, and the Horndeski
coupling constant, respectively, and

Fμν ≡∇μAν −∇νAμ; ð75Þ

Rμν
αβ ≡ −

1

4
δμνλσαβρτR

ρτ
λσ: ð76Þ
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Making explicit use of the generalized Kronecker delta
defined by

δα1…αk
β1…βk

¼ k!δ½α1β1
…δαk�βk

¼ k!δα1½β1…δαkβk�; ð77Þ

one can show that the Horndeski interaction term in
Eq. (74) can also be written as

Rμν
αβFμνFαβ¼−RF2þ4Rμ

νFναFμα−Rμν
αβFμνFαβ; ð78Þ

where F2 ≡ FμνFμν, and Rμ
ν is the Ricci tensor. The field

equations derived from the action (74) are

Gμ
ν þ Λδνμ ¼ κ2ðTμ

ν þ στμ
νÞ; ð79Þ

∇νF μν ¼ 0; ð80Þ

where

Tμ
ν ≡ FμαFνα −

1

4
δνμF2; ð81Þ

τμ
ν ≡ δναβγμρστ∇αFστ∇ρFβγ − 4Rνρ

μαFρκFακ; ð82Þ

F μν ≡ Fμν − 4σRμν
αβFαβ: ð83Þ

Now, using the KSK ansatz [Eq. (1)] having the proper-
ties in Eqs. (2)–(6) together with the electromagnetic vector
potential of the form

Aμ ¼ ϕðxÞlμ; ð84Þ

where lμ and pμ ≡ ∂μϕ satisfy lμpμ ¼ 0, one can show that

Fμν ¼ pμlν − pνlμ; Tμ
ν ¼ ψlμlν; ð85Þ

τμ
ν ¼ −4

�
∇̄αpβ∇̄αpβ þ 1

2
ξα∂αψ − ðξαpαÞ2

þ 1

2
½ξ2 þ ðD − 2ÞðD − 3ÞK�ψ

�
lμlν; ð86Þ

F μν ≡ ½1þ 4σðD − 2ÞðD − 3ÞK�Fμν; ð87Þ

where ψ ≡ pμpμ. Then, Eqs. (79) and (80) become

�
Λ −

ðD − 1ÞðD − 2Þ
2

K

�
δνμ − ρlμlν

¼ κ2
�
ψ − 4σ

�
∇̄αpβ∇̄αpβ þ 1

2
ξα∂αψ − ðξαpαÞ2

þ 1

2
½ξ2 þ ðD − 2ÞðD − 3ÞK�ψ

��
lμlν; ð88Þ

−½1þ 4σðD − 2ÞðD − 3ÞK�½□̄ϕþ ξνpν�lμ ¼ 0: ð89Þ

From these, we find that

Λ ¼ ðD − 1ÞðD − 2Þ
2

K; ð90Þ

□̄V þ 2ξα∂αV þ
�
1

2
ξαξ

α þ 2ðD − 2ÞK
�
V

¼ −κ2
�
ψ − 4σ

�
∇̄αpβ∇̄αpβ þ 1

2
ξα∂αψ − ðξαpαÞ2

þ 1

2
½ξ2 þ ðD − 2ÞðD − 3ÞK�ψ

��
; ð91Þ

□̄ϕþ ξνpν ¼ 0: ð92Þ

Observe that, in writing the last equation, we assume the
coefficient in Eq. (89) is nonzero—i.e.,

1þ 4σðD − 2ÞðD − 3ÞK ≠ 0: ð93Þ

Using the relation

∇̄apβ∇̄αpβ ¼ 1

2
□̄ψ þ 1

2
ξα∂αψ − ðD − 1ÞKψ þ pαpβ∇̄αξβ

− pβ∇̄βð□̄ϕþ ξν∂νϕÞ; ð94Þ

together with Eqs. (58) and (92), we can equivalently write
Eq. (91) as

□̄V þ 2ξα∂αV þ
�
1

2
ξαξ

α þ 2ðD − 2ÞK
�
V

¼ −κ2
�
ψ − 4σ

�
1

2
□̄ψ þ ξα∂αψ −

1

2
ðξαpαÞ2

þ 1

2
½ξ2 þ ðD − 3ÞðD − 4ÞK�ψ

��
: ð95Þ

Note that when ξμ ¼ 0 and K ¼ 0, all these expressions
recover the flat background (pp wave) case in Horndeski
theory [16]. In a recent paper [17], we studied a modified
version of this theory by adding extra couplings to Eq. (74)
of the form Rμν

αβFμνFαβ and obtained exact plane wave
solutions to its field equations.
Remark 3: Equations (91) and (92) are special cases

of the general field equations (49) and (51) for n ¼ 0.
Furthermore, the Horndeski theory is a special case of
Corollary 2 with no derivatives of Fμν.

V. CONCLUSION

In this work, we considered the most general Einstein-
Maxwell theory in which the pure gravity and Maxwell
parts and their couplings are thought to be arbitrary. The
Lagrange function associated with such a theory is any
function of the curvature tensor, the electromagnetic field,
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and their covariant derivatives of any order. When the
metric of the spacetime is assumed to be the Kerr-Schild-
Kundt type of metrics, we proved a theorem stating that the
most general Einstein-Maxwell field equations reduce to
two coupled simple equations for the functions V and ϕ
representing the gravitational and electromagnetic poten-
tials, respectively. As an explicit application of the theorem,

we presented the field equations of the Horndeski vector-
tensor theory in the KSK spacetimes.
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