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Recently, a new choice of variables was identified to understand how the quantum group structure
appeared in three-dimensional gravity [M. Dupuis, L. Freidel, F. Girelli, A. Osumanu, and J. Rennert, On
the origin of the quantum group symmetry in 3d quantum gravity, arXiv:2006.10105]. These variables are
introduced via a canonical transformation generated by a boundary term. We show that this boundary term
can actually be taken to be the volume of the boundary and that the new variables can be defined in any
dimension greater than three. In addition, we study the associated metric and teleparallel formalisms. The
former is a variant of the Henneaux-Teitelboim model for unimodular gravity. The latter provides a non-
Abelian generalization of the usual Abelian teleparallel formulation.
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I. INTRODUCTION

Quantum states are built from the representations of the
symmetries, identified at the classical level. The structure of
the symmetries depends on the choice of variables used to
describe the phase space of the classical theory. In the gravity
case, moving from the metric to the frame field variables
(Palatini formalism) enlarges the set of gauge symmetries
since internal Lorentz rotations are absent in the usual metric
formalism. On the other hand, treating gravity as a con-
strained topological field theory [1,2] has the opposite effect:
the topological theory has a larger symmetry algebra.
Gravity is recovered by imposing constraints that break
the gauge symmetries down to those that appear in general
relativity. Using the teleparallel formulation of gravity leads
to yet another different type of symmetries, representing
different representations at the quantum level (possibly
related by dualities). Since both the metric and teleparallel
formulations can be seen as a second-order formulation of
gravity, it is interesting to study the relationship between the
respective symmetries depending on the choice of variables.
We refer to [3–11] for a recent discussion about these
different issues in gravity.

In field theory, canonical transformations are typically
generated by adding topological invariants or boundary
terms to the action. Let us list some important examples in
the context of gravity below (a more detailed discussion can
be found in e.g., [3–11] and references therein).

(i) In any dimension, the Gibbons-Hawking-York
(boundary) term generates the canonical transforma-
tion changing the polarization from the superspace
momentum representation, where the wave functio-
nals depend on the Arnowitt-Deser-Misner (ADM)
momentum π̃ab ¼ 1

16πG

ffiffiffiffiffiffiffiffiffiffi
det h

p ðKab − habKÞ, to the
position representation, where the wave-functional
Ψ½hab� depends only on the intrinsic metric of the
boundary, cf. [12–14].

(ii) For gravity in four spacetime dimensions, the Holst
term induces the Ashtekar-Barbero canonical trans-
formation from the ADM-type of variables to the
(complex) Ashtekar variables, which greatly sim-
plifies the structure of the constraints, enabling the
loop quantization of gravity [14–17].

(iii) In three dimensions, quantum groups play an im-
portant role in both the quantization of Chern-
Simons theory [18] and the discrete path integral
formulation [19] of gravity. Quantum groups appear
as deformed gauge symmetries, where the quantum
deformation is parametrized by the cosmological
constant. This is in striking contrast to the classical
formulation of three-dimensional gravity in the first-
order formalism, where the gauge symmetries do not
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depend on the cosmological constant. It was recently
found that a canonical transformation, induced by a
boundary term, could be used to have a (bulk) theory
defined in terms of new variables, such that the
gauge symmetries do depend now on the cosmo-
logical constant as well, see [20]. This provided a
direct manner to retrieve the quantum group sym-
metries upon quantization.

It has been conjectured that quantum groups could
also be relevant for quantum gravity in four dimensions
[21–23], so one might wonder whether the canonical
transformation or the boundary term that was identified
in [20] can also be introduced in four dimensions. We show
here that this is indeed the case and that there is a
straightforward generalization of the boundary term in
the first-order formalism. It is then natural to ask what
happens to the second-order formalism and how the metric
and teleparallel formulations of gravity could be expressed
in terms of the new variables. Here, we answer these
questions. In the metric formalism, we have a new notion of
the Christoffel symbol. The volume term that is added to
the action via the cosmological constant is replaced by the
divergence of a vector field, whose norm depends on
the cosmological constant. In fact, we recover a variant
of the Henneaux-Teitelboim model for unimodular gravity
[24]. On the other hand, in the teleparallel formalism [25],
the new variables suggest a deformed notion of torsion,
which defines a new and non-Abelian version of the
standard teleparallel formulation.
The boundary term that generates the canonical trans-

formation that was introduced in [20] depends on an internal
vector rI, whose norm sets the value of the cosmological
constant. In order to not increase the number of degrees of
freedom, it was assumed that the vector is an auxiliary
background structure, whose field variations vanish on the
covariant phase space, i.e., δ½rI� ¼ 0. However, the boun-
dary term [20] has a very strong resemblance with the
volume term of the boundary. It seems natural, therefore, to
relax the condition δ½rI� ¼ 0. In fact, wewill show that if we
actually interpret the vector rI as the internal normal nI to
the boundary, the generating functional [20] is exactly the
volume of the boundary. In here, we show that given this
interpretation, we can allow for δ½nI� ≠ 0 and still perform
the canonical transformation, without adding any new
degrees of freedom in the bulk.
The new formulation has some interesting relations with

already existing frameworks.
(i) The boundary term plays an important role in holo-

graphic renormalization [26,27] so that our new
variables will also be relevant to this framework.

(ii) With the change of variables, the volume term that
scales with the cosmological constant drops out of
the action and is replaced by the divergence of a
vector field and a constraint, which sets the cosmo-
logical constant as the norm of this vector field.

We will see below that the resulting action defines a
variation of the Henneaux-Teitelboim model for
unimodular gravity [24].

One can often see the first-order formalism for gravity
as a gauge theory, so that the canonical variables are Lie
algebra-valued differential forms. This is obviously reali-
zed in three dimension in the Chern-Simons formulation.
In four dimensions, the McDowell-Mansouri formulation
[28] provides a similar realization. Depending on
the value of the cosmological constant and the signature
of the metric, one usually deals with a (anti-)de Sitter or
Poincaré (or Euclidian) gauge group, where the frame
field has values in the boost or translation sector of
the group. Accordingly, the (anti-)de Sitter or Poincaré
curvature splits into the Lorentzian curvature sector,
which depends on the cosmological constant, and the
translational or boost sector, which represents torsion and
is independent of Λ. Since the (anti-)de Sitter or Poincaré
groups can be seen as the semicross product between
the Lorentz transformations and the boosts or translations,
there is a natural action of the Lorentz group on the frame
field. On the other hand, there is no action of translations
back onto rotations (the commutator of a translation and a
rotation has no translational part).
The canonical transformation that we will study in

here amounts to choosing a different decomposition of the
(anti-)de Sitter group (the Poincaré case can also be
treated in the same way). Indeed, if the standard formu-
lation amounts to use the Cartan decomposition, then the
canonical transformation instead picks the Iwasawa
decomposition. We have then a double cross product
relation and a more symmetric treatment between the
connection and the frame field: the connection acts on the
frame field, and the frame field acts back on the
connection. As a consequence the (anti-)de Sitter or
Poincaré curvature can be split differently than before.
We get a generalized notion of torsion, which can be
viewed as a (non-Abelian) curvature in the frame field
sector. This is especially relevant regarding the teleparallel
formulation.
We finally note that the boundary term could also be

added in the usual metric formulation of general relativity.
We expect that this new boundary term will induce a
canonical transformation from pure metric gravity
to a version of unimodular gravity, similar to the one
introduced in this paper. Since we are primarily interested
in approaches to quantum gravity based on the first-
order formalism, we do not explore that thread in this
paper.
Outline: The article is organized as follows. In Sec. II, we

review the gauge theory framework when dealing with a
matched pair (double cross product) of Lie algebras, which
will conveniently set up the conventions for the rest
of the paper. In Sec. III, we discuss how the canonical
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transformation can be implemented in any dimension by
the boundary term given in terms of the volume of the
boundary. In Sec. IVA, we determine the metric formu-
lation in the new variables, while in Sec. IV B, we
determine the dual teleparallel formulation.

II. GAUGE THEORY FOR A MATCHED
PAIR OF LIE GROUPS

In the following, we develop the notion of a gauge theory
for a matched pair of Lie algebras. This structure general-
izes the more common semidirect product that can be found
in the Poincaré case or in the decomposition of the Lorentz
group in terms of rotations and boosts (although they do not
form a Lie algebra). Matched pairs are the relevant structure
which gives rise to the quantum group structure at the
quantum level, for example, in the three-dimensional
gravity case. A reader who would be more geometry
inclined can skip this section, which nevertheless empha-
sizes that what is called torsion can also be viewed as a type
of curvature.
The algebraic background behind the matched pairs can

be found in [29]. We call a matched pair G ¼ g⋈ h of Lie
algebras the pair of Lie algebras g and h, with respective
Lie brackets ½·; ·�g and ½·; ·�h, equipped with two bilinear
maps ⊲ ∶ h × g → h; ðx; αÞ ↦ x⊲α and ⊳ ∶ h × g →
g; ðx; αÞ ↦ x⊳ α, such that h is a right g module, and g
is a left h module. More intuitively, g acts from the right on
h via ⊲, and there is a back action ⊳ of h on g. To
guarantee the Jacobian identity on G, the left and right
actions must satisfy the following compatibility conditions:
∀ α; β ∈ g; x; y ∈ h,

x ⊳ ½α; β�g ¼ ½x ⊳ α; β�g þ ½α; x ⊳ β�g
þðx⊲αÞ ⊳ β − ðx⊲βÞ ⊳ α; ð2:1aÞ

½x; y�h⊲α ¼ ½x⊲α; y�h þ ½x; y⊲α�h
þ x⊲ðy ⊳ αÞ − y⊲ ðx ⊳ αÞ: ð2:1bÞ

As a vector space, g⋈ h is isomorphic to g ⊕ h. If we
introduce a matched basis, such that ðα; xÞ ∈ g ⊕ h ∼
g⋈ h, we may express the Lie bracket of G in terms of
½·; ·�g, ½·; ·�h, ⊲ and ⊳ ,

½ðα;xÞ;ðβ;yÞ�≡ð½α;β�gþx⊳ β−y⊳α; ½x;y�h
þx⊲β−y⊲αÞ; ∀ α;β∈g; x;y∈h:

ð2:2Þ
In particular, there is the mixed bracket

½ð0; xÞ; ðβ; 0Þ�≡ ½x; β� ¼ x⊲β þ x⊳ β ∈ g ⊕ h: ð2:3Þ

Notice that the left and right modules can be written in
terms of the Lie bracket alone,

x⊲β ≔ ½x; β�jh; x⊳ β ≔ ½x; β�jg; ð2:4Þ

where ½x; β�jV is the projection of the Lie bracket ½·; ·� on the
vector space V. With this notation, the compatibility
relations (2.1) become

x⊳ ½α; β�g ¼ ½½x; α�jg; β�g þ ½α; ½x; β�jg�g
þ ½½x; α�jh; β�jg − ½½x; β�jh; α�jg; ð2:5aÞ

½x; y�h⊲α ¼ ½½x; α�jh; y�h þ ½x; ½y; α�jh�h
þ ½x; ½y; α�jg�jh − ½y; ½x; α�jg�jh: ð2:5bÞ

Consider then a gauge connection A for such a Lie
algebra, i.e., a G-valued one-form on a manifold M, and
consider its different components with respect to the
matched Lie algebra g⋈ h. This type of gauge theory
was studied by Majid [29] at the discrete level of parallel
propagators (holonomies). Below we will derive the infini-
tesimal picture.
Let us denote by γ and h the components1 of such a

gauge connection with respect to the Lie algebras g and h.
The g⋈ h Lie algebra-valued gauge connection takes the
form

A ¼ γ þ h ∈ ðg ⊕ hÞ ⊗ Λ1ðMÞ: ð2:6Þ

Due to the kick-back action between g and h, there is a
nontrivial mixing between the components of the g⋈ h
basis, see (2.4). Consider, for example, a G-valued p-form
B ¼ ðβ; bÞ. Its exterior covariant derivative is

dAB ¼ dβ þ dbþ ½γ þ h; β þ b�
¼ dβ þ dbþ ½γ; β�g þ ½γ; b� þ ½h; b�h þ ½h; β�
¼ ðdβ þ ½γ; β�g þ ½γ; b�jg þ ½h; β�jgÞ
þ ðdbþ ½h; b�h þ ½γ; b�jh þ ½h; β�jhÞ: ð2:7Þ

For the individual component fields ðβ; 0Þ and ð0; bÞ, we
have the covariant derivatives

Djgβ ¼ dβ þ ½γ; β�g þ ½h; β�jg; ð2:8Þ

Djhb ¼ dbþ ½γ; b�jh þ ½h; b�h: ð2:9Þ

Due to the kick-back actions between the two Lie algebras,
the covariant derivatives depend on both connection com-
ponents γ and h. Consider then the components of the field
strength F in the directions of g and h,

1We will relate ðγ; hÞ to the spin connection ω and the frame
field e.
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F½A� ¼ dAþ 1

2
½A ∧ A� ¼ dγ þ dhþ 1

2
½ðγ þ hÞ ∧ ðγ þ hÞ�

¼ dγ þ dhþ 1

2
½γ ∧ γ�g þ ½γ ∧ h�jg þ ½γ ∧ h�jh þ

1

2
½h ∧ h�h

¼
�
dγ þ 1

2
½γ ∧ γ�g þ ½γ ∧ h�jg

�
þ
�
dhþ ½γ ∧ h�jh þ

1

2
½h ∧ h�h

�
≡ F þ T : ð2:10Þ

The physical significance of splitting F into F ∈ g ⊗
Λ2ðMÞ and T ∈ h ⊗ Λ2ðMÞ will be clear below. We
will identify, in fact, F and T with a deformed version
of h-valued torsion and g-valued curvature,

F ¼ dγ þ 1

2
½γ ∧ γ�g þ ½γ ∧ h�jg ≡ F þ ½γ ∧ h�jg; ð2:11Þ

T ¼dhþ½γ∧h�jhþ
1

2
½h∧h�h≡Tþ1

2
½h∧h�h: ð2:12Þ

Again, the curvature components depend on both connec-
tion types. The Bianchi identity for each component is

0 ¼ dAF ¼ dF þ dT þ ½ðγ þ hÞ ∧ ðF þ T Þ�
¼ ðdF þ ½γ ∧ F �g þ ½h ∧ F �jg þ ½γ ∧ T �jgÞ
þ ðdT þ ½γ ∧ T �h þ ½h ∧ F �jh þ ½γ ∧ T �jhÞ: ð2:13Þ

Let us consider then the gauge transformations of such a
G-valued connection. Let λ ¼ ðϕ; tÞ be a G-valued scalar,
which generates an infinitesimal transformation of the
connection A ¼ ðγ; hÞ,

δλ½A�¼dλþ½A;λ�¼ ðdϕþ½γ;ϕ�gþ½h;ϕ�jg
þ½γ;t�jgÞþðdtþ½h;t�hþ½γ;t�jhþ½h;ϕ�jhÞ: ð2:14Þ

For pure rotations (t ¼ 0) and pure translations (ϕ ¼ 0),
we find

δϕ½γ� ¼ dϕþ ½γ;ϕ�g þ ½h;ϕ�jg ¼ Djgϕ; δϕ½h� ¼ ½h;ϕ�jh;
δt½γ� ¼ ½γ; t�jg; δt½h� ¼ dtþ ½h; t�h þ ½γ; t�jh ¼ Djht:

)
ð2:15Þ

What is nice about these transformations is that the
variation of γ or h in each of the different components
is either a commutator or a derivative. In other words, the
two components of the curvature two-form behave com-
pletely analogous under gauge transformations. Since
δλ½F� ¼ ½F; λ�, we obtain

½F þ T ;ϕþ t� ¼ ½F ;ϕ�g þ ½F ; t�jg þ ½T ;ϕ�jg
þ ½T ; t�h þ ½F ; t�jh þ ½T ;ϕ�jh: ð2:16Þ

In other words,

δϕ½F � ¼ ½F ;ϕ�g þ ½T ;ϕ�jg; δϕ½T � ¼ ½T ;ϕ�jh
δt½F � ¼ ½F ; t�jg; δt½T � ¼ ½T ; t�h þ ½F ; t�jh:

�
ð2:17Þ

A simple, but nontrivial, example of such a matched pair
of Lie algebras is the Poincaré Lie algebra. It is a semicross
product G ¼ g⊳<h, where g is either of the Lie algebra
soðnÞ or soðn − 1; 1Þ, depending on the signature of
spacetime, and h ∼Rn is the Abelian Lie algebra of
translations on Rn. The respective generators are the

generators of (Lorentz) rotations JMN ¼ −JNM and trans-
lations PM, which are labelled by spacetime indices
M;N;… ¼ 1;…; n.
In the Poincaré context, there is no kick-back action of h

on g (recall ½J; P� ∝ P). Given (2.4), we thus have

ðϕ; tÞ∈ g⊳<h; t⊲ϕ≔ ½t;ϕ�jh; t⊳ ϕ≔ ½t;ϕ�jg ¼ 0:

ð2:18Þ

The translations commute, i.e., ½·; ·�h ¼ 0, and the covariant
derivative for the component fields ðϕ; 0Þ and ð0; tÞ with
values in g or h is given by

Djgϕ ¼ dϕþ ½γ;ϕ�g; Djht ¼ dtþ ½γ; t�jh: ð2:19Þ

Consider then the components of the curvature two-form F
in the rotational and translational directions g and h of the
Poincaré Lie algebra,

F½A� ¼
�
dγ þ 1

2
½γ ∧ γ�g

�
þ ðdhþ ½γ ∧ h�jhÞ ¼ F þ T:

ð2:20Þ

GIRELLI, OSUMANU, and WIELAND PHYS. REV. D 105, 044003 (2022)

044003-4



We recognize the usual notion of curvature F and torsion T,
provided we identify γ with the spin connection ω and h
with the frame field e.
The infinitesimal gauge transformations for pure rota-

tions (t ¼ 0) and pure translations (ϕ ¼ 0) are

δϕ½γ� ¼ dϕþ ½γ;ϕ�g ¼ Djgϕ; δϕ½h� ¼ ½h;ϕ�jh;
δt½γ� ¼ 0; δt½h� ¼ dtþ ½γ; t�jh ¼ Djht; ð2:21Þ

where δϕ½γ� is the so gauge transformation for the spin
connection ω ¼ γ, and δt½h� is an infinitesimal translation
of the frame field h ¼ e. Finally, there are the Poincaré
transformations of the curvature two-form

δϕ½F� ¼ ½F;ϕ�g; δϕ½T� ¼ ½T;ϕ�jh
δt½F� ¼ 0; δt½T� ¼ ½F; t�jh: ð2:22Þ

Although the translations t ∈ h are Abelian, a general such
translation will act nontrivially on the translational curva-
ture (torsion). If we would choose, however, a connection γ
such that F½γ� ¼ 0, both the torsion component T and the
rotational (Lorentz) component F of the Poincaré con-
nection would be translational invariant. This choice
underlies the teleparallel equivalent of general relativity.
In the following, we will consider the more complicated

case of G ¼ soðn − 1; 1Þ ∼ soðn − 1Þ⋈ ann−1, which is
an example of a matched Lie algebra induced by the
Iwasawa decomposition of the Lorentz Lie algebra
soðn; 1Þ.

III. CANONICAL TRANSFORMATION INDUCED
BY THE BOUNDARY VOLUME TERM

A. Warm up: three dimensions

Consider the three-dimensional Einstein-Cartan action in
first-order spin-connection variables with a cosmological
constant Λ, together with the following boundary terms,
whose significance will become clear below,

SEC½e; Ajn� ¼
1

16πG

�Z
M

εIJKeK ∧
�
RIJ½A� − Λ

3
eI ∧ eJ

�

− 2

Z
∂M

�
sεIJKeK ∧ nIdAnJ

þ
ffiffiffiffiffiffijΛjp
2

εIJKnKeI ∧ eJ
��

: ð3:1Þ

The action in the bulk is a functional of the Lorentz
curvature RI

J½A� ¼ dAI
J þ AI

K ∧ AK
J and the triad eI .

The boundary term consists of two parts. The first term is
the usual Gibbons-Hawking-York boundary term for first-
order spin connection variables, where dA½·� ¼ d½·� þ ½A; ·�
is the covariant exterior derivative. The internal vector
field nI is constrained to lie orthogonal to the boundary,

i.e., nIφ�∂MeI ¼ 0, where φ�∂M∶T�M→T�∂M is the pull-
back. In addition, nI is normalized such that s ¼ ηIJnInJ ¼
nInI ¼ f�1; 0g, depending on whether the boundary is
spacelike, timelike, or null.2 Its orientation is such that
na ≔ nIeIa is the outwardly oriented normal to the boun-
dary. If the torsionless equation is satisfied, then the first
term is the integral of the trace of the extrinsic curvature.
The second term is proportional to the induced volume of
the boundary. The boundary conditions are

hIJφ�∂Mδ½eJ� ¼ 0; φ�∂Mδ½nIeI� ¼ 0; ð3:2Þ

where δ½·� is a variation on the infinite-dimensional space of
kinematical histories, and hIJ ¼ −snInJ þ ηIJ is the inter-
nal projector onto the boundary.
It is also useful to evaluate the action (3.1) for a spin

connection AI
J, which is torsionless (by going half-shell).

We obtain

SEC½A; ejn�jdAe¼0 ¼ SEH½gjn�

¼ 1

16πG

�Z
M

d3vðR½g� − 2ΛÞ

þ 2

Z
∂M

d2vðsK −
ffiffiffiffiffiffi
jΛj

p
Þ
�
; ð3:3Þ

where R½g� is the Ricci scalar for the metric gab ¼ eIaeIb,
and K ¼ ∇ana is the trace of the extrinsic curvature. In
addition, d3v and d2v are the canonical volume elements on
M and ∂M.3 The volume term appears in the definition of
the bulk plus boundary action (3.3) to cancel infrared
divergencies that would otherwise appear when the boun-
dary ∂M is sent to infinity [26].
Consider then a region Σ ⊂ ∂M within the boundary.

The first variation of the action for given boundary
conditions (3.2) determines the presymplectic potential
ΘEC

Σ on the space of physical histories, i.e., the space of
solutions to the field equations. A straightforward calcu-
lation gives

ΘEC
Σ ðδÞ ¼ 1

8πG

Z
Σ
ðsεIJδ½eI� ∧ KJ −

ffiffiffiffiffiffi
jΛj

p
εIJeI ∧ δ½eJ�Þ

−
1

8πG

I
∂Σ

sεIJeIδ½nJ�; ð3:4Þ

where KI ¼ φ�∂MdAnI is the extrinsic curvature (a one-form
along the boundary), and εIJ ¼ nKεKIJ is the internal area

2In the Lorentzian case, our metric signature is ð−þþ…Þ.
Internal spacetime indices I; J; K;… are raised and lowered
with the internal metric tensors ηIJ and ηIJ . Total anti-
symmetrization of indices I1; I2;… is obtained via ω½I1…In � ¼
1
n!

P
σ∈Snð−1ÞσωIσð1Þ…IσðnÞ .

3The volume elements are p-forms d3v ¼ 1
6
εIJKeI ∧ eJ ∧ eK

and d2v ¼ 1
2
nIεIJKeJ ∧ eK .
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element at the boundary. Notice that the variation δ½nI� of
the internal normal only affects a corner term to the
presymplectic potential (3.4). This is a consequence of
the torsionless condition dAeI ¼ 0 and the boundary con-
straints nInI ¼ s and φ�∂MðnIeIÞ ¼ 0, hence nIδ½nI� ¼ 0

and φ�∂M½ϵIJKδ½nI�eJ ∧ KK� ¼ 0.
Equation (3.4) is a manifestation of the well-known

fact that the pullback of the triad and the extrinsic curva-
ture are conjugate variables. From the perspective of the
Chern-Simons, and Ponzano-Regge quantization of three-
dimensional gravity, a connection representation is more
appropriate. Following [14], we consider the canonical
transformation, which is generated by the Gibbons-
Hawking-York boundary term

ΘΣðδÞ ≔ ΘEC
Σ ðδÞ − 1

8πG
δ

�Z
Σ
sεIJeI ∧ KJ

�
: ð3:5Þ

Going back to (3.1), we now immediately have

ΘΣðδÞ ¼ −
1

16πG

Z
Σ
εIJKeI ∧ δ½AJK − 2

ffiffiffiffiffiffi
jΛj

p
n½JeK��

≡ −
1

16πG

Z
Σ
εIJKeI ∧ δ½ΩJK�; ð3:6Þ

where we introduced a new connection ΩIJ. Notice that the
variation δ½ΩIJ� contains a variation δ½nI� ≠ 0. Since,
however, the boundary conditions (3.2) must be satisfied,
we obtain δ½nI�⊥ nI. In addition, the vector na ¼ nIeIa lies
orthogonal to the boundary, hence δ½nI�eIa lies tangential to
the boundary. Therefore, 1

2
φ�∂MðϵIJKδ½nI�eJ ∧ eKÞ ¼ 0,

such that

1

8πG

Z
Σ
εIJKeI ∧ δ½nJeK� ¼ 1

8πG

Z
Σ
εIJKeI ∧ nJδ½eK�

¼ 1

16πG
δ

�Z
Σ
εIJKeI ∧ nJeK

�
:

ð3:7Þ

To solve the equations of motion in terms of the new
variables ðeIa;ΩIJ

aÞ, it is then necessary to smoothly
extend the internal vector nI into the bulk. We thus write

ΩIJ ¼ AIJ þ e½IpJ� ≡ AIJ − I IJ; ð3:8Þ

I IJ≡p½IeJ� ¼1

2
CIJ

KeK; CIJ
K¼ðpIδJK−pJδIKÞ; ð3:9Þ

where pI is an internal Lorentz vector that satisfies the
constraints

pIpI ¼ −4Λ; pIj∂M ¼ 2
ffiffiffiffiffiffi
jΛj

p
nI: ð3:10Þ

The next step ahead is to write the action in terms of the
new connection ΩIJ. Consider first the curvature,

RIJ½A� ¼ RIJ½Ω� þ dΩI IJ þ I IK ∧ IK
J

¼ RIJ½Ω� þ dΩI IJ þ
1

4
ðp ∧ ðpIeJ − pJeIÞ

− pKpKeI ∧ eJÞ; ð3:11Þ

where p ¼ pIeI and dΩI I
J ¼ dI I

J þΩI
K ∧ IK

J þ
I I

K ∧ ΩK
J ¼ dI I

J þ ½Ω ∧ I �IJ, and we used the fact that
eI ∧ eI ¼ 0. With the above expression, the first term of
the action (3.1) is

εJKIeI ∧ RJK½A� ¼ εJKIeI ∧
�
RJK½Ω� þ dΩIJK

þ 1

2
p½Jp ∧ eK� −

pMpM

4
eJ ∧ eK

�

¼ εJKIeI ∧
�
R½Ω�JK þ dΩIJK

−
pMpM

12
eJ ∧ eK

�
: ð3:12Þ

Going from the first line to the second line, we used the
following identity

nMnM

6
εIJKeI ∧ eJ ∧ eK ¼ 1

2
nIεIJKn ∧ eJ ∧ eK; ð3:13Þ

for all nI∶nInI ¼ ∈ f0;�1g. Returning to the definition
of the action (3.1), we obtain

SEC½e; Ajn� −
1

8πG

Z
∂M

sεJKeJ ∧ KK ¼ 1

16πG

�Z
M

εIJKeI ∧ ðRJK½Ω� þ dΩIJKÞ − 1

2

Z
∂M

εIJKeI ∧ eJpK

�

¼ 1

16πG

Z
M

εIJKeI ∧
�
R½Ω�JK þ dΩIJK þ ðdΩe½JÞpK� −

1

2
e½J ∧ dΩpK�

�

¼ 1

16πG

Z
M

εIJKeI ∧
�
RJK½Ω� þ 1

2
e½J ∧ dΩpK�

�
: ð3:14Þ
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Equation (3.14) suggests to introduce a new action,

S½e;Ω;p�¼ 1

16πG

Z
M
εIJKeI ∧

�
R½Ω�JKþ1

2
e½J∧dΩpK�

�
;

ð3:15Þ

where pI satisfies the mass shell condition pIpI ¼ −4Λ. To
obtain the equations of motion, we vary the action for fixed
boundary conditions. Given the action (3.15), the appro-
priate boundary conditions are

pIj∂M ¼ 2
ffiffiffiffiffiffi
jΛj

p
nI; h½IKhJ�Lφ�∂Mδ½ΩKL� ¼ 0; ð3:16Þ

where hIJ is the projector hIJ ¼ −snInJ þ δIJ, and
φ�∂M∶T�M → T�ð∂MÞ is the pullback. The resulting
equations of motion are

F IJ ¼ RIJ½Ω� þ e½I ∧ dΩpJ� ¼ 0; ð3:17Þ

T I ¼ dΩeI þ
1

4
CJK

IeJ ∧ eK ¼ 0: ð3:18Þ

The variation with respect to pI is redundant. Taking into
account that δ½pIpI� ¼ 2pIδ½pI� ¼ 0, i.e., pI ⊥ δ½pI�, we
obtain that the variation of the action with respect to pI

vanishes provided

1

2
εIJKdΩðeJ ∧ eKÞ ∝ pId3v: ð3:19Þ

Given (3.18), this condition is always satisfied since
1
2
εIJKdΩðeJ ∧ eKÞ ¼ − 1

2
εIJKp ∧ eJ ∧ eK ¼ −pId3v.

The field equations (3.17) and (3.18) have a simple
geometric meaning. They can be rearranged into a single
flatness constraint for a soð1; 2Þ⋈ an3 matched connec-
tion. Consider the soð1; 2Þ⋈ an2 Lie algebra-valued one-
form

Aa ¼
1

2
ΩIJ

a ⊗ JIJ þ eIa ⊗ PI; ð3:20Þ

where JIJ are the (Lorentz) generators of soð1; 2Þ and PI
are the generators of an2. The commutation relations are

½JIJ; JI0J0 � ¼ 4δ½RI δ
S�
J ηSS0δ

½S0
I0 δ

R0�
J0 JRR0 ; ð3:21aÞ

½PK; JIJ� ¼ 2δK½IPJ� þ JK ½IpJ�; ð3:21bÞ

½PI; PJ� ¼ p½IPJ�: ð3:21cÞ

Going back to (2.3), we identify the action of the right
(left) module,

PK⊲JIJ¼2δK½IPJ�∈an3; PK ⊳ JIJ¼JK ½IpJ�∈soð1;2Þ:
ð3:22Þ

To introduce the curvature of this connection, consider first
the following covariant derivative, defined by its action on
the basis elements of the soð1; 2Þ⋈ an2 algebra,

dJIJ ≔ 0; dPI ≔
1

2
dpK ⊗ JKI: ð3:23Þ

The definition (3.23) extends naturally to all soð1; 2Þ⋈
an2 Lie algebra-valued p-forms ω ∈ ΩpðM∶soð1; 2Þ⋈
an2Þ via dðω1 þ fω2Þ ¼ dω1 þ fdω2 þ df ∧ ω2 for all
f∶M → R and ω1;ω2 ∈ ΩpðM∶soð1; 2Þ⋈ an2Þ. Notice
also that the derivative is flat, i.e., d2 ¼ 0. Consider then a
second such covariant derivative D, which is defined by the
deformation D ¼ dþ ½A; ·�. Its curvature D2 ¼ ½F; ·� is
given by

F½A� ¼ dAþ 1

2
½A ∧ A� ¼ 1

2
F IJ ⊗ JIJ þ T I ⊗ PI ¼ 0;

ð3:24Þ

where the deformed soð1; 2Þ-valued curvature F and an2-
valued torsion T are defined as (3.17) and (3.18). Let us
also stress that there always exists a gauge such that
dp ¼ 0, such that the notion of curvature and torsion F ,
T would also coincide with (2.11) and (2.12). If the field
equations (3.17) and (3.18) are satisfied, this derivative is
flat, i.e., F½A� ¼ 0.
The torsion two-form TI ¼ dΩeI is now sourced by the

cosmological constant, see (3.18). On the other hand, the
field equations for the soð1; 2Þ Lorentz part of the curvature
two-form admit solutions where the spin connection ΩI

J is
flat and pI is constant, i.e., dΩpI ¼ 0. Hence, there is
some Lorentz gauge element ΛI

J∶M → SOð1; 2Þ such
that ΩI

J ¼ ΛK
IdΛK

J.
Given some internal vector pI on M, such a gauge

element ΛI
J can always be found (unless there are

topological obstructions). In other words, the homogenous
curvature of the underlying spacetime metric gab ¼
ηIJeIaeJb has been encoded into a flat soð1; 2Þ connection
with nonvanishing an2-valued torsion TI ¼ dΩeI . This was
a key feature that simplified the theory at the discrete level
[20], and this simplification will also be relevant for us to
introduce a teleparallel equivalent of gravity in the case of
homogeneously curved geometries that we will dis-
cuss below.
Before going to the general case, let us compare what we

have just done with respect to [20]. There, the starting
action is
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S½e; A�≡ 1

16πG

�Z
M

εIJKeK ∧
�
RIJ½A� − Λ

3
eI ∧ eJ

�
−
1

2

Z
∂M

ðεIJKrKeI ∧ eJÞ
�

¼ 1

16πG

Z
M

εIJKeI ∧
�
RJK½Ω� þ 1

2
e½J ∧ dΩrK�

�
; ð3:25Þ

but the internal Lorentz vector rI is not interpreted as the
normal of the boundary. In order to not increase the number
of degrees of freedom, it is assumed that δ½rI� ¼ 0.
This ensures that the soð1; 3Þ connection AI

J is shifted
to Ω̃IJ ¼ AIJ − r½IeJ� just as in (3.6). The vector rI is also
normalized as in (3.10) in order to cancel the volume term,

rIrI ¼ −4Λ: ð3:26Þ

Without loss of generality, the vector r is assumed to have
only one nonzero component, which is proportional to the
square root of the (absolute value of) the cosmological
constant. As a consequence, drI ¼ 0 and the equations of
motion then coincide with the generalized curvature and
torsion being zero. We note that there is always a choice of
gauge such that the normal pI can be the constant vector rI,
so that the two approaches are the same.

B. Beyond three dimensions

In the previous section, we considered gravity in three
dimensions. Our next step is to generalize the construction
to arbitrary spacetime dimensions d ≥ 3. Given the
soð1; d − 1Þ spin connection AI

J, its conjugate momentum
is the gravitational B field, which is a bivector-valued
(d − 2)-form,

BIJ½e� ¼
1

ðd − 2Þ! εIJK1���Kd−2
eK1 ∧ � � � ∧ eKd−2 ; ð3:27Þ

where eI is the coframe that defines the metric
gab ¼ ηIJeIaeJb. Consider then the usual Einstein-Cartan
action with a boundary term proportional to the volume of
the boundary

SEC½e;A;p�¼
1

16πG

�Z
M

�
BIJ½e�∧RIJ½A�−2Λ

d!
εI1…Ide

I1 ∧…∧eId
�

−
1

ðd−1Þ!
Z
∂M

pJεJI1…Id−1e
I1 ∧…∧eId−1

�
; ð3:28Þ

where RIJ½A� is the soð1; d − 1Þ-valued curvature two-
form RI

J½A� ¼ dAI
J þ AI

K ∧ AK
J, and pI is an internal

vector (a vector-valued 0-form). The critical points of the
action are found by imposing the following boundary
conditions,

hIKhJLφ�∂Mδ½AKL�¼0; δ½pIpI�¼0; pIφ
�∂MeI ¼0;

ð3:29Þ
where φ�∂M∶T�M → T�ð∂MÞ is the pullback, and hIJ ¼
snInJ þ hIJ is the projector onto the boundary such that
nInI ¼ s ∈ f�1g, and hIJφ�∂MeJ ¼ φ�∂MeI . The resulting
field equations are the d-dimensional Einstein equations for
the metric gab ¼ eIaeIb with a cosmological constant Λ.
Consider then a region Σ within the boundary, i.e.,

Σ ⊂ ∂M. The presymplectic potential is obtained from the
first variation of the action (3.28). Taking into account the
boundary conditions (3.29), we obtain

ΘΣðδÞ ¼
ð−1Þðd−2Þ
16πG

Z
Σ
BIJ ∧ δ½AIJ − p½IeJ��

≡ ð−1Þðd−2Þ
16πG

Z
Σ
BIJ ∧ δ½ΩIJ�: ð3:30Þ

Next, we need to express the field equations in terms of the
new and shifted connection Ω. This requires smoothly
extending the internal boundary vector pI into the bulk
such that pIφ

�∂MeI ¼ 0 is still satisfied. Given such an
extension of pI from the boundary into the bulk, we
introduce the shifted connection

ΩIJ ¼ AIJ þ e½IpJ� ≡ AIJ − I IJ; ð3:31Þ

I IJ≡p½IeJ� ¼1

2
CIJ

KeK; CIJ
K ¼ðpIδJK−pJδIKÞ: ð3:32Þ

Just as in three dimensions, we reformulate the action in
terms of the new connection. Consider first the curvature
scalar,

BIJ½e� ∧ RIJ½A� ¼ BIJ½e� ∧ ðRIJ½Ω� þ dΩI IJ þ I I
K ∧ IKJÞ

¼ BIJ½e� ∧
�
RIJ½Ω� þ dΩI IJ þ 1

2
p½Ip ∧ eJ�

−
pKpK

4
eI ∧ eJ

�
; ð3:33Þ
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where p denotes the one-form p ¼ pIeI . We then also have
the identity

pMpM 1

d!
εI1…Ide

I1 ∧ … ∧ eId

¼ 1

ðd − 1Þ!p
JεJI1…Id−1p ∧ eI1…eId−1 : ð3:34Þ

We thus have

1

2
BIJ∧

�
pIp∧eJ−

pKpK

2
eI ∧eJ

�

¼−
pMpM

4

ðd−1Þðd−2Þ
d!

εI1…Ide
I1 ∧…∧eId : ð3:35Þ

If we impose the mass shell condition

pIpI ¼ −
8Λ

ðd − 1Þðd − 2Þ ; ð3:36Þ

then the action (3.28) simplifies

SEC½e;Ω; p� ¼
1

16πG

�Z
M

BIJ ∧ ðRIJ½Ω� þ dΩI IJÞ − ð−1Þðd−2Þ
d − 1

Z
∂M

BIJ ∧ pIeJ�

¼ 1

16πG

Z
M

½BIJ ∧ RIJ½Ω� þ BIJ ∧
�
dΩI IJ − p½IdΩeJ� −

1

d − 1
ðdΩp½IÞ ∧ eJ�

��
: ð3:37Þ

Taking into account that I IJ ¼ p½IeJ�, one finally arrives at
the expression

SEC½e;Ω; p� ¼
1

16πG

Z
M
ðBIJ ∧ RIJ½Ω�

− ðd − 2Þð−1Þd−2BI ∧ dΩpIÞ; ð3:38Þ
where we introduced the vector-valued (d − 1)-form,

BI ¼
1

ðd − 1Þ! εIK1…Kd−1
eK1 ∧ … ∧ eKd−1 : ð3:39Þ

The Einstein equations are the saddle points of the action
(3.38) in the space of all fields that satisfy the mass shell
constraint (3.36) and boundary conditions

hIKhJLφ�∂Mδ½ΩKL� ¼ 0; φ�∂MðpIeIÞ ¼ 0: ð3:40Þ

The variation of the frame field for boundary conditions
(3.40) yields the curvature constraint

1

ðd − 3Þ! εIJKL1…Ld−3
eL1 ∧ …

∧ eLd−3 ∧ ðRJK½Ω� þ e½J ∧ dΩpK�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F JK

Þ ¼ 0: ð3:41Þ

By varying the action (3.38) with respect to Ω and taking
into account the boundary conditions (3.40), we find that
the deformed torsion vanishes4

T I ¼ dΩeI þ
1

4
CIJ

KeI ∧ eJ ¼ 0; ð3:42Þ

where the structure constants CIJ
K are given in (3.32).

Finally, we should also consider the variations of pI . Taking
into account the mass shell condition (3.36), we obtain

dΩBI ∝ pI: ð3:43Þ

This condition is satisfied once we solve for (3.42). Indeed,
(3.42) implies

dΩBI ¼
1

2

1

ðd − 2Þ! εIK1…Kd−1
p ∧ eK1 ∧ …eKd−1

¼ d − 1

2
pIddv: ð3:44Þ

As in three dimensions, the new variables deform the
torsion two-form TI ¼ dΩeI , which is now sourced by the
cosmological constant. In addition, we also see that a flat
soð1; dÞ connectionΩI

J solves the curvature equation (3.41)
provided dΩpI ¼ 0. This observation will be relevant once
we consider a lattice approach, where the field equations are
solved by imposing that the connection is piecewise flat.
The nature of the boundary (spacelike, timelike, or null)

depends via the mass shell condition (3.36) on the sign
of Λ. The following table summarizes the situation for
both Euclidean and Lorentzian signature in arbitrary
dimensions.

Euclidian Lorentzian

Flat: Λ ¼ 0 pI ¼ 0 or pI is
Grassmannian

pI ¼ 0 or pI is lightlike

AdS: Λ < 0 pI is real pI is spacelike or imaginary
timelike

dS: Λ > 0 pI is imaginary pI is timelike or imaginary
spacelike

4Provided eI1 ∧ … ∧ eId ≠ 0.
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IV. METRIC AND DEFORMED TELEPARALLEL
FORMULATION IN THE NEW VARIABLES

A. Recovering unimodular gravity

1. Generalized covariant derivative

The Levi-Civita connection defines the unique torsion-
less covariant derivative that is metric compatible. In the
last section, we deformed the notion of torsion. Let us now
introduce the corresponding covariant derivative on the
tangent bundle, i.e., the corresponding metric formulation.
For any given and invertible d-bein eIa and given

Lorentz vector pI, the field equation

dΩeI þ
1

4
CJK

IeJ ∧ eK ¼ TI þ 1

4
CJK

IeJ ∧ eK ¼ 0 ð4:1Þ

has a unique solution Ω
∘ I

Ja½e; p� for the connection ΩI
Ja in

terms of eIa and pI . If, in fact, ∇a denotes the usual Levi-
Civita metric compatible and torsionless covariant deriva-
tive on the tensor bundle, then we find

Ω
∘ I

Ja½e;p�¼eIb∇aeJbþCI
JKeKa¼eIb∇aeJbþCI

Ja: ð4:2Þ

Equation (4.2) suggests to introduce the difference tensor

Cabc ¼ CI
JKeIaeJbeKc: ð4:3Þ

The corresponding metric compatible covariant derivative
is defined for any smooth vector field Va ∈ TM via

∇∘ aVb ¼ ∇aVb þ Cb
acVc: ð4:4Þ

This definition generalizes naturally to arbitrary tensor
fields. For any two such vector fields, we may then define
curvature and torsion of this new connection,

R
∘ c

dabVd ¼ ∇∘ a∇
∘
bVc −∇∘ b∇

∘
aVc − T

∘ d
ab∇

∘
dVc; ð4:5Þ

T
∘ a

bcUbVc ¼ Ub∇∘ bVa − Vb∇∘ bUa − ½U;V�a: ð4:6Þ

Inserting (4.4) back into (4.6), we obtain the components of
the torsion two-form,

T
∘ a

bc ¼ −
1

2
Ca½bc�; with Cabc ¼ 2p½agb�c; ð4:7Þ

which is, of course, the same as (4.1), but now written in the
standard tensor language. Note that we can either interpret

the Christoffel symbol Γ
∘ a

bc ¼ Γa
bc þ Ca

bc as having
torsion in the usual sense, or it has vanishing generalized
torsion T I

ab ¼ 0.

2. Recovering unimodular gravity

Asemphasized, for example, in [30], thegravitational force
can be encoded into various geometric entities, namely an
affine connection Γ̃a

bc, nonmetricity Q̃abc, or torsion T̃a
bc.

Our choice of variables provides a connection Γ
∘ a

bc where

Ω
∘ a

bc ¼ 0 but T
∘ a

bc ≠ 0. The corresponding second-order
action is obtained by going “half-shell,” i.e., by reinserting the

solution for the connection Ω
∘ I

Ja in terms of pI and eIa back
into the first-order action (3.37). A short calculation gives

SEH½g;p�≔SEC½e;Ω
∘ ½e;p�;p�

¼ 1

16πG

Z
M
ddvgðgcbR

∘ a
cab½g;p�þðd−2Þ∇∘ apaÞ;

ð4:8Þ

whereddvg is the usualmetrical volume element.5 This action
resembles the Henneaux-Teitelboim model for unimodular
gravity [24]. In fact, to obtain the Einstein equations, this
action is to be extremized in the space of all fields ðgab; pcÞ
that satisfy the mass shell condition (3.36) that now simply
reads

gabpapb ¼ −
8Λ

ðd − 1Þðd − 2Þ : ð4:9Þ

It seems now natural to relax this condition, namely by adding
a Lagrange multiplier that will impose the mass-shell con-
straint at the dynamical level.At the same time, this also allows
us to unfreeze Λ, obtaining a version of unimodular gravity.
Consider, in fact, a (d − 1)-form τ. Its exterior derivative
defines a volume density Ñ ¼ dτ. Varying the action

Sunimod½g;p;τ�¼
1

16πG

Z
M

�
ddvgðgcbR

∘ a
cab½g;p�

þðd−2Þ∇∘ apaÞ−1

2
gabpapbdτ

�
; ð4:10Þ

with respect to τ, will tell us then that gabpapb is constant for
some Λ, while all other variations return the usual Einstein

equations with respect to the deformed connection∇∘ a. In this
way, τ provides a notion of time, pa plays the role of a
spacetime momentum, and

ffiffiffiffiffiffijΛjp
represent the rest mass

of pa.

B. Deformed teleparallel gravity

The new variables deform curvature and torsion, see
(3.17) and (3.18). The gravity action can be encoded in the

5The volume element ddvg is the d form, whose components
are the Levi-Civita tensor, i.e., ðddvgÞabc… ¼ εabc….
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curvature when there is no torsion or vice versa in the
torsion if there is no curvature. The latter viewpoint
underlies the teleparallel framework. We want to see
now how the new variables provide a non-Abelian version
of teleparallelism, where the translational connection takes
values in and−1, whereas the Lorentzian part of the
soð1; d − 1Þ⋈ and−1 connection is flat.
Consider a generic soð1; d − 1Þ⋈ and−1 connection A.

The space of such soð1; dÞ⋈ and−1 connections is an
affine space. Since it is an affine space, any such connection
can be written as a sum of some arbitrary reference

connection A
•
and a difference tensor Δ,

A ¼ A
•
− Δ: ð4:11Þ

With this decomposition, we have

F½A� ¼ F
•
− D

•
Δþ 1

2
½Δ ∧ Δ�; ð4:12Þ

where F
•
is the curvature of A

•
, and D

• ð·Þ ¼ dð·Þ þ ½A
•
; ·� is

the covariant derivative as in (3.23) and (3.20) above.
The deformed and−1 Lie-algebra valued equivalent of

teleparallel gravity corresponds to the following choice of
reference connection,

A
•
¼ 1

2
Ω
• IJ ⊗ JIJ þ eI ⊗ PI; ð4:13Þ

where JIJ and PI are the generators of soð1; d −
1Þ⋈ and−1 with commutation relations (3.21a), (3.21b),

and (3.21c). Notice that A and A
•
have the same projection

onto and. Therefore, Δ is a pure rotation,

Δ ¼ 1

2
ΔIJ ⊗ JIJ: ð4:14Þ

We are now left to specify the reference connection Ω
• I

J,
and we choose it to satisfy the following two conditions:

RI
J½Ω

• � ¼ dΩ
• I

J þ Ω
• I

K ∧ Ω
• K

J ¼ 0; ð4:15Þ

dΩpI ¼ dpI −Ω
• J

IpJ ¼ 0: ð4:16Þ

Notice that there always exists a Lorentz transformation
ΛI

J such that pI ¼ ΛJ
IrJ, where rJ is a constant vector,

i.e., drJ ¼ 0. We can then choose

Ω
• I

J ¼ ðΛ−1dΛÞIJ; ð4:17Þ

which will then solve both (4.15) and (4.16). Therefore, the
curvature of the soð1; d − 1Þ⋈ and−1 connection has only
a and−1 part,

F
•
¼ 1

2
F
• IJ ⊗ JIJ þ T

• I ⊗ PI ¼ T
• I ⊗ PI; ð4:18Þ

where we defined the and Lie algebra-valued torsion two-
form

T
• I ¼d

Ω
• eIþ1

4
CJK

IeJ∧eK≡∇• eIþ1

4
CJK

IeJ∧eK: ð4:19Þ

If the field equation (3.42) is satisfied, i.e., by going “half-
shell,” we can express the components of the difference
tensor ΔIJ ¼ ΔIJKeK in terms of the components of the
deformed and Lie algebra-valued torsion,

ΔIJK ¼ −
1

2
ðT
•

IJK þ T
•

JKI − T
•

KIJÞ: ð4:20Þ

Inserting this solution back into the first-order action
(3.38), we obtain

SEC½e;Ω
• þ Δ; p� ¼ 1

16πG

Z
M
½BIJ ∧ RIJ½Ω• � − ð−1Þd−3BIJK ∧ ðd

Ω
• eKÞ ∧ ΔIJ − BIJ ∧ ΔI

L ∧ ΔLJ

− ðd − 2Þð−1Þd−2BI ∧ d
Ω
• pI þ ðd − 2Þð−1Þd−2BIpJ ∧ ΔIJ� − 1

16πG

Z
∂M

ð−1Þd−2BIJ ∧ ΔIJ

¼ 1

16πG

Z
M

�
BIJ ∧ F IJ½Ω

•
� − ð−1Þd−3BIJK ∧ T

• K ∧ ΔIJ − BIJ ∧ ΔI
L ∧ ΔLJ

− BIJ ∧ eI ∧ d
Ω
• pJ þ 1

2
ð−1Þd−3BIJK ∧ p ∧ eK ∧ ΔIJ ð4:21Þ

− ðd − 2Þð−1Þd−2BI ∧ d
Ω
• pI þ ðd − 2Þð−1Þd−2BIpJ ∧ ΔIJ� − 1

16πG

Z
∂M

ð−1Þd−2BIJ ∧ ΔIJ; ð4:22Þ

where we performed a partial integration and used the definition of F
• ¼ 1

2
F
• IJ ⊗ JIJ þ T

• I ⊗ PI for a generic soð1; d −

1Þ⋈ and−1 connection A
•
, see also (3.17) and (3.18). In addition,
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BI1…In ≔
1

ðd − nÞ! εI1…InK1…Kd−n
eK1 ∧ … ∧ eKd−n : ð4:23Þ

If we then also use the algebraic identity

1

n!
BI1…In ∧eJ1 ∧…eJn ¼ð−1Þnðd−nÞddvδ½J1I1

…δJn�In
; ð4:24Þ

then we can write the action (4.22) in terms of contractions

of T
• I

KJ alone. A straight-forward calculation gives

SEC½e;Ω
• þ Δ; p� ¼ 1

16πG

Z
M

ddv
�
F
• IJ

IJ − eIa∇
•

apI

þ 1

2
T
• K

IJT
• IJ

K −
1

4
T
• K

IJT
•

K
IJ

þ T
• J

IJT
•

K
IK
�

ð4:25Þ

−
1

16πG

Z
∂M

ð−1Þd−2BIJ ∧ ΔIJ; ð4:26Þ

whereF
• IJ

KL are the components of the curvature two-form

F
• IJ ¼ 1

2
F
• IJ

KLeK ∧ eL.
Since we can always find a reference connection Ω

• IJ

such that ∇• apI ¼ 0 and RIJ½Ω
•
� ¼ 0, we can now

introduce the following teleparallel action, which is quad-

ratic in the and−1 Lie algebra-valued field strength T
• I
,

Stele½e;Ω
•
; p� ¼ 1

16πG

Z
M

ddv

�
1

2
T
• K

IJT
• IJ

K −
1

4
T
• K

IJT
•

K
IJ

þ T
• J

IJT
•

K
IK
�
: ð4:27Þ

V. OUTLOOK

We have shown in this paper how the canonical trans-
formation induced by the boundary volume term was
similar to the canonical transformation considered in
[20] to recover the notion of quantum group for gravity
in three dimensions. The canonical transformation results
essentially in a shift of the connection by the frame field,

AIJ → ΩIJ ¼ AIJ þ e½IpJ�; ð5:1Þ

where p is either interpreted as the normal to the boundary
or as a constant vector. In both cases, the norm of p is
constrained to be proportional to the cosmological constant.
This is true in any dimension higher or equal than three. In
two dimensions, the frame field does not appear in the B
field, so the shift cannot be done by such boundary terms.
This can also be seen from the normalization condi-
tion p2 ¼ − 8Λ

ðd−1Þðd−2Þ.
We would like to emphasize that the change of variables

can also be performed when Λ ¼ 0. In this case, p will be a
null vector in the Lorentzian case. In the Euclidean case, we
can use a Grassmannian number θ to parametrize p such
that θ2 ¼ 0.
We identified the two associated second-order theories,

namely the metric and the teleparallel formulations, see the

FIG. 1. Brief summary of the paper: First of all, we performed a change of variables going from the spin connection to a shifted
connectionΩ. The new connectionΩ depends on a boundary field p, whose norm determines the cosmological constant. Integrating out
the internal Lorentz transformations, we obtain a new second-order metric formulation, which resembles unimodular gravity (the norm
of pa is determined by the cosmological constant). A non-Abelian version of teleparallel gravity is found by introducing a specific flat

reference connection Ω
•
with d

Ω
• pI ¼ 0.
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figure above. The metric formalism associated to the new
variables can be seen as a new version of the Henneaux-
Teitelboim model for unimodular gravity. We note that the

first-order action (3.38) can also be interpreted as a first-order
formulation for unimodular gravity since it can be supple-
mented with the normalizing constraint of the vector p,

SEC½e;Ω; p� ¼
1

16πG

Z
M

��
1

ðd − 2Þ! εIJK1���Kd−2
eK1 ∧ � � � ∧ eKd−2

�
∧ RIJ½Ω�

−
ðd − 2Þð−1Þd−2

ðd − 1Þ! ðεIK1…Kd−1
eK1 ∧ …eKd−1Þ ∧ dΩpI −

1

2
gabpapbdτ

�
: ð5:2Þ

As in the metric formulation, variation with respect to τ
leads to the norm of p being constant, hence recovering
the cosmological constant as a constant of integration.
The teleparallel formulation, on the other hand, is now
expressed in terms of a non-Abelian field strength (4.19)
that enters the action quadratically (4.27). With respect to
the usual Abelian teleparallel formulation, the Abelian Lie
algebra Rd is deformed into the non-Abelian Lie algebra
and−1.
The result of this paper summarized in Fig. 1 opens a

number of interesting new directions to explore. The
boundary volume term plays an important role in the
holographic renormalization context [26]. It would be
interesting to see whether the formulation using the new
variables can also be useful, in particular, its connection
with unimodular gravity.
The boundary term is the key to understand why

quantum groups appear in three dimensions [20]. In the
four-dimensional context it has been conjectured that they
should also be relevant [21–23]. It would then be important
to study how the charge algebra is affected by adding this
term to the theory. In particular, in the list of works [3–5], it
was always assumed that Λ ¼ 0. It would be worthwhile to
study how these results are affected if Λ ≠ 0, and the
boundary volume term is also considered.

The non-Abelian formulation of teleparallel gravity is
likely to be the classical continuum counterpart of the
(deformed) dual BF vacuum [31]. It would be interesting to
construct the discrete picture, which leads upon quantiza-
tion to such a deformed dual BF vacuum, generalizing
[32,33]. This is work in progress.
The origin of this work came from studying three-

dimensional gravity. Recently, a most general bulk action
for three-dimensional gravity was introduced [34]. It would
be interesting to see how the change of variables could be
of use there, either for discretizing or in recovering the
different second-order formalisms.
Finally, the canonical transformation is implemented for

a constant homogenous curvature, parametrized by the
cosmological constant. One might wonder whether we
could generalize the construction in the case of a varying
curvature. We leave this intriguing question for later
investigations.
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