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In this article we calculate the post-Newtonian limit of a general class of scalar-nonmetricity theories of
gravity. The action is assumed to be a free function of the nonmetricity scalar, the kinetic term of the scalar
field, two derivative couplings and the scalar field itself. We use the parametrized post-Newtonian
formalism to solve the arising field equations for the case of a massless scalar field in order to compare
several subclasses of this theory to solar system observations. In particular, we find several classes of
theories which are indistinguishable from general relativity on the post-Newtonian level and therefore,
should be studied further. Most remarkably, we find that this is the generic case, while a post-Newtonian
limit that deviates from general relativity occurs only for a particular coupling between the scalar field and
nonmetricity.
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I. INTRODUCTION

Being contested in numerous experiments during the
past century, general relativity is still the best gravitational
theory describing observations in our universe. However,
by fixing the mediator of gravity through the Ricci scalar as
curvature two equivalent possibilities are overlooked [1].
The first alternative ascribes gravity to the dynamics of the
tetrad via the torsion scalar. This equivalent formulation of
general relativity is called the teleparallel equivalent of
general relativity (TEGR) [2,3]. If we assume curvature and
torsion as being zero and simultaneously nonmetricity as
nonvanishing, we can construct the symmetric teleparallel
equivalent of general relativity (STEGR) [4–11]. Another
possibility invokes both torsion and nonmetricity [12,13].
However, even though all of these formulations are
equivalent, generalization thereof differs from each other.
A vast number of modifications of general relativity and

its alternative formulations in terms of torsion and non-
metricity mentioned above has been developed [14]. The
main motivation for studying such theories comes from
tensions between general relativity and current observa-
tions in cosmology, such as different measurements of
the Hubble expansion rate [15]. These observations hint
toward physics beyond the so-called ΛCDM model, which
aims to describe the universe using general relativity, a

cosmological constant (Λ) and cold dark matter (CDM).
Among the most common modifications studied to address
these tensions are generalizations of the action functional to
a free function of the aforementioned scalar invariants of
curvature, torsion or nonmetricity, giving rise to the
so-called fðRÞ, fðTÞ and fðQÞ classes of gravity theories
[16–20]. Another, related type of modifications is obtained
by including an additional scalar field in the theory, which
couples nonminimally to the geometric quantities which
mediate the gravitational interaction, and can thus itself be
regarded as a mediator of gravity. This type of modification
gives rise to scalar-curvature, scalar-torsion and scalar-
nonmetricity theories of gravity [21–28].
In order to be considered as a viable theory of gravity,

any of the aforementioned modifications must not only
address the observational tensions in cosmology, but also
be in agreement with numerous precision observations of
gravitational waves [29–31] and gravity on stellar or solar
system scales [32]. The latter can comprehensively be
studied using the parametrized post-Newtonian (PPN)
formalism [33,34], which characterizes any metric theory
of gravity by ten (usually constant) parameters. Their
values predicted by any given theory of gravity can then
be compared to their experimentallymeasured values, giving
constraints on the considered theory or its parameters.
In this article we make use of the PPN formalism in order

to derive the post-Newtonian limit of a general class of
scalar-nonmetricity theories of gravity, which generalizes
the originally proposed class [27], following a similar idea
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as applied in scalar-torsion gravity [25], and allowing for a
gravitational action defined by an arbitrary function of
the nonmetricity scalar, two nonminimal coupling terms,
the scalar field and its kinetic energy, and which we will
therefore denote LðQ;X; Y; Z;ϕÞ theories of gravity. For
this purpose, we make use of the previously developed
post-Newtonian expansion of symmetric teleparallel grav-
ity theories [35,36], which we enhance by including a post-
Newtonian expansion for the scalar field and a Taylor
expansion for the free function defining the action, in full
analogy to the case of scalar-torsion gravity [37]. Our
conventions and notation follow the textbook [33].
The outline of the article is as follows. In Sec. II, we

briefly review the field variables of scalar-nonmetricity
gravity and introduce the class of theories we study in the
remaining section. We briefly discuss the post-Newtonian
expansion of the field equations in Sec. III. In Sec. IV, we
solve these field equations up to the required perturbation
order. The resulting PPN parameters are shown and
interpreted in Sec. V. We end with a conclusion in Sec. VI.

II. FIELD VARIABLES AND THEIR DYNAMICS

Before defining the action and the resulting field equations
of the class ofLðQ;X; Y; Z;ϕÞ scalar-nonmetricity theories,
we intend to review the underlying dynamical fields. As
usual in theories where nonmetricity is the mediator of
gravity, the dynamical fields are a Lorentzian metric gμν and
an affine connectionΓρ

μν. In additionwe couple a dynamical
scalar fieldϕ. We specify the properties of the connection by
demanding vanishing torsion

Tρ
μν ¼ −2Γρ½μν� ¼ 0 ð1Þ

and curvature

Rρ
σμν ¼ 2∂ ½μΓρjσjν� þ 2Γρ

λ½μΓλjσjν� ¼ 0; ð2Þ

whereas the covariant derivative of the metric with respect to
the dynamical connection (i.e., nonmetricity) is nonzero

Qρμν ¼ ∇ρgμν ≠ 0: ð3Þ

The combination of Eqs. (1) and (2) leads to the form of the
connection

Γρ
μν ¼ ðΛ−1Þρλ∂νΛλ

μ; ð4Þ

with ∂ ½μΛλ
ν� ¼ 0. We consider an action of the form

S½gμν;Γρ
μν;ϕ; χ� ¼ Sg½gμν;Γρ

μν;ϕ� þ Sm½gμν; χ�; ð5Þ

where χ is an arbitrary set of matter field fields. The
gravitational part of the action

Sg½gμν;Γρ
μν;ϕ� ¼

1

2κ2

Z
M
d4x

ffiffiffiffiffiffi
−g

p
LðQ;X; Y; Z;ϕÞ; ð6Þ

is a free function of the scalar fieldϕ, the nonmetricity scalar

Q¼−
1

4
QμνρQμνρþ1

2
QμνρQρνμþ1

4
QμQμ−

1

2
QμQ̃

μ; ð7Þ

the kinetic term of the scalar field

X ¼ −
1

2
gμν∂μϕ∂νϕ; ð8Þ

and the derivative couplings

Y ¼ Qμ∂μϕ ð9Þ

and

Z ¼ Q̃μ∂μϕ; ð10Þ

which couple the scalar field to the two independent
contractions of the nonmetricity tensor

Qμ ¼ Qμρ
ρ; Q̃μ ¼ Qρ

ρμ: ð11Þ

By varying the matter action Sm with respect to the metric

δSm ¼ −
1

2

Z
M
Θμνδgμν

ffiffiffiffiffiffi
−g

p
d4x ð12Þ

we obtain the energy momentum tensor Θμν. The full
variation of the action S with respect to the metric then
leads to the field equations

0 ¼ Eμν

¼ −Lgμν þ∇∘ ρðLQPρ
μνÞ þ

1

2
gμνgρσ∇

∘
ρðLY∂ρϕÞ þ

1

2
∇∘ ðμðLZ∂νÞϕÞ

−
1

2
LQð2Qρ

μσ½Qρν
σ −Qσ

ρν� −Qμ
ρσQνρσ þQρ½2QðμνÞρ −Qρ

μν�Þ
− LX∂μϕ∂νϕþ 2LYQðμ∂νÞϕ − LZðQρ

μν∂ρϕ − 2QðμνÞρ∂ρϕ −Qðμ∂νÞϕÞ − κ2Θμν ð13Þ
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and similarly a variation with respect to the scalar field
leads to the scalar field equation

0 ¼ Eϕ ¼ ∇∘ μðLYQμ þ LZQ̃μ − LY∂μϕÞ − Lϕ: ð14Þ

Note that LQ;X;Y;Z;ϕ is the derivative of the free function L
with respect to Q, X, Y, Z and ϕ, respectively. We finally
remark that another field equation can be obtained by
variation of the action with respect to the flat, symmetric
affine connection; however this field equation is fully
determined from the previously displayed equations
through the Bianchi identities, and thus redundant [38].
We therefore omit it here for brevity and show only the
independent equations, which we will solve in the follow-
ing sections.

III. POST-NEWTONIAN APPROXIMATION

In order to compare this family of theories with obser-
vations, we employ the parametrized post-Newtonian
(PPN) formalism in its form detailed in the textbook
[33].1 First, we give some general remarks on the PPN
formalism and then, we review how to perform the post-
Newtonian expansion of the dynamical connection. We
start with the description of the matter part of the field
equation. As usual we assume a perfect fluid of the form

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð15Þ

with ρ, Π, p and uμ being the rest energy density, specific
internal energy, pressure and four velocity, respectively. We
further assume a normalization of uμuνgμν ¼ −1 for the
four velocity and compared to the speed of light c ¼ 1 the
velocity of the matter vi ¼ ui=u0 in a given reference frame
is assumed to be small. Next, we perform a perturbative
expansion in orders of the velocityOðnÞ ∝ jv⃗jn. This has to
be done for the metric gμν, the matter fields Θμν, the
dynamical connection Γρ

μν, the scalar field ϕ and the free
function L. The metric gμν will be expanded around the flat
Minkowski metric ημν ¼ diagð−1; 1; 1; 1Þ

gμν ¼ ημν þ hμν ¼ ημν þ h
2

μν þ h
3

μν þ h
4

μν þOð5Þ: ð16Þ

As a consequence, the energy-momentum tensor reads as

Θ00 ¼ ρð1þ Πþ v2 − h
2

00Þ þOð6Þ; ð17aÞ

Θ0j ¼ −ρvj þOð5Þ; ð17bÞ

Θij ¼ ρvivj þ pδij þOð6Þ: ð17cÞ

Here, we used the standard assumptions for the orders of
the matter fields. Next, we make use of the form of the
connection in Eq. (4). As developed in [35], we expand the
coordinates around the coordinates of the coincident gauge
up to quadratic orders of the generators of a “knight
diffeomorphism”

x0μ ¼ xμ þ ξμ þ 1

2
ξν∂νξ

μ; ð18Þ

with which the connection can be written as

Γρ
μν ¼ ∂μ∂νξ

ρ

þ 1

2
ðξσ∂μ∂ν∂σξ

ρ þ 2∂ðμξσ∂νÞ∂σξ
ρ − ∂μ∂νξ

σ∂σξ
ρÞ:
ð19Þ

Now, we expand ξμ similar to the metric in post-Newtonian
orders

ξα ¼ ξ
2α

þ ξ
3α

þ ξ
4α

þOð5Þ: ð20Þ

Furthermore, we expand the scalar field ϕ around its
cosmological background value Φ, which we assume to
be constant

ϕ ¼ Φþ ψ ¼ Φþ ψ
1 þ ψ

2 þ ψ
3 þ ψ

4
: ð21Þ

The components of the dynamical fields, we have to
calculate are

h
2

00; h
2

ij; h
3

i0; h
4

00; ξ
2i
; ξ

30

; ξ
4i
; ψ

2
: ð22Þ

Lastly, we have to deal with the free function L in
the action. For this we perform a Taylor expansion, where
we assume the Taylor coefficients to be of velocity
order Oð0Þ:

L¼ l0þ lϕψþ1

2
lϕϕψ2þ lQQþ lXXþ lYYþ lZZ;

LQ¼ lQþ lTϕψþ1

2
lQϕϕψ

2þ lQXXþ lQYYþ lQZZþ lQQQ;

LX ¼ lXþ lXϕψþ1

2
lXϕϕψ2þ lQXQþ lXYYþ lXZZþ lXXX;

LY ¼ lY þ lYϕψþ1

2
lYϕϕψ2þ lQYQþ lXYXþ lYZZþ lYYY;

LZ ¼ lY þ lZϕψþ1

2
lZϕϕψ2þ lQZQþ lXZXþ lYZZþ lZZZ;

Lϕ¼ lϕþ lϕϕψþ lQϕTþ lXϕXþ lYϕYþ lZϕZþ1

2
lϕϕϕψ2:

ð23Þ
1A slightly different formulation, with different conventions

regarding the definition of the potentials, is used in the new
edition [34].
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By combining all perturbative expansions of this section,
we can now calculate and solve the field equations in the
next section.

IV. SOLVING THE FIELD EQUATIONS

We now apply the post-Newtonian expansion displayed
in the previous section to the class of symmetric teleparallel
gravity theories outlined in Sec. II, in order to derive and
solve the post-Newtonian field equations. We proceed in
ascending velocity orders; the zeroth, second, third and
fourth velocity order is discussed in Secs. IVA, IV B, IV C
and IV D, respectively. Calculations have been performed
using xPPN [39]. Alternatively, one could make use of the
gauge-invariant approach to the PPN formalism [36,40];
the resulting equations for the constant coefficients we
obtain are identical.

A. Zeroth order and assumption

First of all for simplicity we assume a massless scalar
field in order to avoid solutions in terms of Yukawa type
potentials. This can be achieved by assuming both lϕϕ and
lϕϕϕ ¼ 0. The zeroth order equations (calculated by
inserting gμν ¼ ημν and ϕ ¼ Φ) read

0 ¼ l0ημν; 0 ¼ lϕ: ð24Þ

Therefore, the perturbed metric is given in the standard
PPN form if and only if l0 ¼ lϕ ¼ 0. For the remainder of
this article, we will use these assumptions.

B. Second order

With the assumptions and the solutions of the zeroth
order field equations, we can now calculate the second
order field and scalar field equations. The only nonvanish-
ing components read

E
2

00 ¼ κ2ρ−
1

2
lQð∂j∂ih

2 ij
−△h

2 i

iÞ þ lY△ϕ
2

¼ 0;

E
2

ij ¼
1

2
lQð−∂j∂ih

2

00 þ ∂j∂ih
2k

k þ 2∂k∂ðih
2k

jÞ þ△h
2

ij

þ δij½△h
2

00 þ ∂k∂lh
2kl

−△h
2k

k�Þ− δijlY△ϕ
2

− lZ∂j∂iϕ
2

¼ 0;

E
2

ϕ ¼ lX△ϕ
2

þ lY△ðh
2

00 − h
2k

k þ 2∂kξ
2k
Þ

þ lZð−∂k∂ih
2 ij

þ 2△∂kξ
2k
Þ

¼ 0: ð25Þ

These three equations can be solved with the ansatz

h
2

00¼a1U; h
2

ij¼a2δijU; ξ
2i
¼a3∂iχ; ϕ

2

¼a4U: ð26Þ

Here, U and χ are the usual PPN potentials, which are
defined by the relations △χ ¼ −2U and △U ¼ −4πρ.
Inserting this ansatz into the field equations leads to a
system of algebraic equations for the coefficients ai. In
order to determine the most general solution to this system,
one must distinguish different cases. The solution for the
generic case is given by

a1 ¼
κ2

4πlQ
; a2 ¼

κ2

4πlQ
;

a3 ¼ −
κ2ðlZ þ 2lYÞ

16πðlZ þ lYÞlQ
; a4 ¼ 0; ð27Þ

and is valid if and only if the denominator ðlY þ lZÞlQ is
nonvanishing. Otherwise, the system is degenerate and one
must further distinguish between two cases. For lQ ¼ 0,
one cannot solve for a1. Since this component is required
for the Newtonian limit of the theory, as it governs the
contribution of the Newtonian potential, we conclude that
this case is not physically viable, and henceforth assume
lQ ≠ 0. Further assuming lY þ lZ ¼ 0, one cannot solve for
a3, as it cancels from the algebraic equations. For the
remaining coefficients one obtains the solution

a1 ¼
κ2

4πlQ

4l2Y þ lXlQ
3l2Y þ lXlQ

; a2 ¼
κ2

4πlQ

2l2Y þ lXlQ
3l2Y þ lXlQ

;

a4 ¼
κ2

4π

lY
3l2Y þ lXlQ

; ð28Þ

provided that 3l2Y þ lXlQ ≠ 0. Otherwise, if 3l2Y þ lXlQ ¼ 0

with lY ≠ 0, one finds that the system does not possess any
solution with nonvanishing matter content. Finally, if
lX ¼ lY ¼ 0, one obtains the solution

a1 ¼ a2 ¼
κ2

4πlQ
: ð29Þ

This contains general relativity as a special case.

C. Third order

At the third velocity order, the only nontrivial field
equation is given by

E
3

0i ¼ −κ2ρvi − lZ∂0∂iϕ
2

þ lQð∂0∂ ½ih
2

j�
j
þ ∂j∂ ½jh

2

i�0Þ: ð30Þ

Note in particular that the third order connection compo-

nent ξ
30

does not enter these equations and thus remains
undetermined, so that we can solve for the metric pertur-

bation h
3

0i. This can be done by using the ansatz
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h
3

0i ¼ a5Vi þ a6Wi; ð31Þ

where Vi and Wi denote the standard PPN potentials
defined in [33]. Further, we need to substitute the second
order perturbations found in the previous section for the
different nondegenerate and degenerate cases. It is remark-
able that in all cases this procedure leads to the same
coefficient equation

κ2 þ 2πlQða5 þ a6Þ ¼ 0; ð32Þ

and hence we have the solution

a5 þ a6 ¼ −
κ2

2πlQ
; ð33Þ

while their difference is not determined by the third order
field equations. The latter is an expected result, as it reflects
the invariance of the theory and its post-Newtonian limit
under (infinitesimal) diffeomorphisms.

D. Fourth order

We finally come to the fourth velocity order. We will not
display the full perturbative expansion of the field equa-
tions here, as it turns out to be lengthy, and we restrict
ourselves to presenting the steps which are necessary to
obtain the solution, starting with the nondegenerate case
lQðlY þ lZÞ ≠ 0. In this case we find that the fourth order

field equations contain besides the component h
4

00, which
we need to solve for in order to determine the PPN

parameters, also the fourth order components h
4

ij, ξ
4i

and

ϕ
4

. It turns out that these can be eliminated from the fourth
order equations by considering the linear combination

ð2lY þ lZÞ∂i∂jE
4 ij

− ðlY þ lZÞ△ðE4 00 þ E
4

i

i
Þ ¼ 0: ð34Þ

To solve this equation, we make an ansatz of the form

h
4

00 ¼ a7U2 þ a8Φ1 þ a9Φ2 þ a10Φ3 þ a11Φ4

þ a12ΦW þ a13A; ð35Þ

once again referring to [33] for the definition of the
appearing PPN potentials. In addition to the coefficients
a7;…; a13 in this ansatz, we also need to determine the
linear combination a5–a6 from the third order ansatz,
which is left undetermined in the third order equations.
By extracting the coefficients of the independent matter
terms in the fourth order equations, we find that they indeed
possess a unique solution for these coefficients, which
reads

a5 − a6 ¼ −
3κ2

8πlQ
; a7 ¼ −

κ4

32π2l2Q
;

a8 ¼
κ2

2πlQ
; a9 ¼

κ4

16π2l2Q
;

a10 ¼
κ2

4πlQ
; a11 ¼

3κ2

4πlQ
; a12 ¼ a13 ¼ 0: ð36Þ

In the degenerate case lY þ lZ ¼ 0 and 3l2Y þ lXlQ ≠ 0, the

fourth order connection component ξ
4i

does not enter the

field equations. One can isolate the component h
4

00 from the
remaining fourth order components by taking the linear
combination

ð4l2Y þ lXlQÞE
4

00 þ ð2l2Y þ lXlQÞE
4

i

i
þ lYlQE

4

ϕ ¼ 0: ð37Þ

Using again the ansatz (35), we now find the solution

a5 − a6 ¼ −
κ2

8πlQ

8l2Y þ 3lXlQ
3l2Y þ lXlQ

; a10 ¼
κ2

4πlQ

4l2Y þ lXlQ
3l2Y þ lXlQ

; a11 ¼
3κ2

4πlQ

2l2Y þ lXlQ
3l2Y þ lXlQ

; a8 ¼
κ2

2πlQ
;

a12 ¼ a13 ¼ 0; a9 − 2a7 ¼
κ4

16π2l2Q

20l4Y þ 13lXl2YlQ þ 2l2Xl
2
Q

ð3l2Y þ lXlQÞ2
; a9 þ 2a7 ¼ −

κ4lY
16π2l2Q

×
24l5Y þ 2l3YlQ½7lX − 2ðlYϕ þ lZϕÞ� þ lYl2Q½2lXðlX − 2lYϕ − lZϕÞ þ lYlXϕ� þ ð2l2Y þ lXlQÞð6l2Y þ lXlQÞlQϕ

ð3l2Y þ lXlQÞ3
: ð38Þ

Finally, for lX ¼ lY ¼ lZ ¼ 0 we find again the same
solution (36) as for the nondegenerate case. Hence, we
have determined all possible solutions for the fourth order,
without introducing any further distinction between differ-
ent cases beyond the one introduced at the second order.

V. PPN PARAMETERS

By comparing the solution for the metric perturbation
components we have derived in the preceding section to
their standard PPN form [32,33], we are now able to obtain
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the values of the PPN parameters for the different sub-
classes of scalar-nonmetricity theories we considered. We
start by recalling that the theories we study here are
restricted by the conditions l0 ¼ lϕ ¼ 0 in order to possess
a Minkowski background solution, lϕϕ ¼ lϕϕϕ ¼ 0 for a
massless scalar field and lQ ≠ 0 to obtain a well-defined
Newtonian limit. We find that after imposing these con-
ditions, the most generic class of theories satisfying lY þ
lZ ≠ 0 exhibits the PPN parameters

β ¼ γ ¼ 1;

α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ ξ ¼ 0; ð39Þ

and thus fully agrees with the PPN parameters of general
relativity. Potential deviations from these values are
encountered only in the subclass lY þ lZ ¼ 0. Within this
subclass, we found that theories which in addition satisfy
lX ¼ lY ¼ 0, so that the scalar field is minimally coupled to
nonmetricity at the linear order, again yield the same PPN
parameters (39). For theories with 3l2Y þ lXlQ ≠ 0 we
obtain the PPN parameters

γ ¼ 1 −
2l2Y

4l2Y þ lXlQ
; ð40aÞ

FIG. 1. Full classification of LðQ;X; Y; Z;ϕÞ theories. The path highlighted by thick arrows corresponds to STEGR. Theories with
β ¼ γ ¼ 1 are in full agreement with observations. Theories with deviating, but constant PPN parameters receive bounds on their
parameters, and are still in agreement if these bounds are met. Theories with massive scalar fields possess distance-dependent PPN
parameters and need a more thorough treatment. Other classes of theories are either pathological or need an extension to the standard
PPN formalism.
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β¼ 1−
lYf12l5Y þ l3YlQ½7lXþ4ðlYϕþ lZϕÞ�þ lYl2Q½lXðlXþ4lYϕþ2lZϕÞ− lYlXϕ�− ð2l2Y þ lXlQÞð6l2Y þ lXlQÞlQϕg

2ð3l2Y þ lXlQÞð4l2Y þ lXlQÞ2
; ð40bÞ

while the remaining parameters vanish again, indicating
that the theory is fully conservative, i.e., there are no
preferred-frame or preferred-location effects or violation of
total energy-momentum conservation. Taking a closer look
at this result, one finds that even in this class there is
another subclass given by lY ¼ 0 corresponding to a
minimally coupled scalar field at the linear perturbation
order which leads to the general relativity values (39).
Further, we find that for 4l2Y þ lXlQ ¼ 0 the PPN param-
eters β and γ diverge. This is due to the fact that in this case
the contribution of the Newtonian potential U to the

perturbation h
2

00 vanishes. Hence, also in these theories
no physically meaningful Newtonian limit is obtained. We
summarize our findings by listing all cases we studied and
their corresponding results in Fig. 1.
We conclude from our findings that the generic class of

scalar-nonmetricity theories of gravity with a massless
scalar field possesses the same PPN parameters as general
relativity, and is therefore indistinguishable from the latter,
and passes all solar system tests. Deviations for the
parameters β and γ are found only for a particular subclass,
which contains the scalar-nonmetricity equivalent of scalar-
curvature gravity as a special case [27]. In this case, solar
system observations give bounds on the Taylor coefficients
of the Lagrangian function, and so also this subclass
contains theories passing the solar system tests. Another
possibility, which remains to be studied, is theories in
which the scalar field is massive, and in which its con-
tribution to the post-Newtonian limit depends on the
distance to the gravitating body. However, this study
exceeds the scope of this article.

VI. CONCLUSION

We have studied the post-Newtonian limit of a general
class of scalar-nonmetricity theories of gravity and calcu-
lated their PPN parameters for the case of a massless scalar
field. Our results show that generically a scalar field which
is nonminimally coupled to nonmetricity is suppressed in
the post-Newtonian limit and does not contribute to the
post-Newtonian dynamics, so that the PPN parameters
agree with those of general relativity. Deviations for the
PPN parameters β and γ are found only for a specific
subclass of theories which are distinguished by their
coupling between the scalar field and nonmetricity.
Further, we find that also in this case all other PPN

parameters agree with those of general relativity. Hence,
we find that the theories are fully conservative and
do not possess any violation of local position invariance,
local Lorentz invariance or total energy-momentum
conservation.
The most remarkable result of our work is the suppres-

sion of the scalar field in the post-Newtonian limit if it is
nonminimally coupled to the nonmetricity via any other
linear combination than the mixed trace Qν

νμ −Qμν
ν at the

linear order. This particular coupling term also appears in
other results. Coupling to this term restores the conformal
invariance of scalar-nonmetricity theories when this is
broken through a nonminimal coupling to the nonmetricity
scalar Q [27]. Also in cosmology the behavior of theories
coupled to this term only differs qualitatively from the
generic coupling [41]. The fact that their PPN parameters
are exactly identical to those of general relativity, while
allowing for a richer cosmological dynamics, motivates
further studies of this class of theories and their implica-
tions for observations in cosmology and gravitational
waves, where higher order effects beyond the PPN param-
eters become relevant due to the strong gravity present at
the gravitational wave source.
Another possible line of future investigation is to allow for

a massive scalar field and study the resulting PPN param-
eters, in analogy to previous works on scalar-curvature
[42–44] and scalar-torsion theories of gravity [45]. A natural
question is whether the aforementioned suppression of the
scalar field is present also in this case, which would
significantly simplify the post-Newtonian limit compared
to the case of a nonvanishing scalar field contribution. In the
latter case, the PPN parameters are no longer constant, but
attain a dependence on the distance to the gravitating source,
which is in general highly nontrivial.
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[19] J. B. Jiménez, L. Heisenberg, and T. Koivisto, Coincident
general relativity, Phys. Rev. D 98, 044048 (2018).
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