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We study a minimal extension of a recently proposed modification of general relativity that draws on
concepts from topological field theory to resolve aspects of the cosmological constant problem. In the
original model, the field content of general relativity was augmented to include a gauge field and an adjoint-
valued two-form without modifying the classical gravitational dynamics. Here we include a kinetic term for
the gauge field which sources fluctuations of the cosmological constant. We then study spherically
symmetric black holes and a simple homogeneous, isotropic cosmological model predicted by the extended
theory. For the black hole case, we observe deviations near the event horizon as well as a “charge”-like
behavior induced by the gauge field. In the cosmological case, _H is always positive and some solutions
asymptote to a constant H.
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I. INTRODUCTION

The discrepancy between the value of the cosmological
constant inferred from measurements of the acceleration of
the expansion rate of the Universe and the value predicted
for the zero-point energy by quantum field theory is
famously enormous, with some estimates ranging as high
as 120 orders of magnitude [1]. The chasm between these
two values, known as the cosmological constant problem
[2–5], has vexed theorists for decades.
Over the past few years, a new discrepancy has emerged

between measurements of the current expansion rate of the
Universe, with cosmic microwave background data from the
early Universe measured by the Planck satellite [6] sug-
gesting a significantly lower value for the Hubble parameter
than the one inferred frommeasurements of nearby stars and
galaxies made by the SH0ES Collaboration [7], among
others [8–20]. This “Hubble tension” could be the result
of some as-yet unidentified systematic error in the early or
late measurements of the Hubble parameter, but it is also
possible that bothmeasurements are accurate, and the source
of the discrepancy is due to unknown physics affecting the
dynamical evolution of the Universe.
Given these discrepancies, now is an auspicious time to

consider modifications of general relativity and the stan-
dard model that have the potential to resolve both issues. In
this paper, we focus on the first possibility by further
developing a recently proposed modification of general
relativity that draws on topological field theory to resolve
aspects of the cosmological constant problem [21,22].
Here, we explore a natural extension of this theory that
has dramatic implications for cosmological dynamics. We
review the relevant aspects of the original theory, define its
extension, and study spherically symmetric black hole

solutions and a simple homogeneous, isotropic cosmologi-
cal model.
The black hole solutions predicted by the model have

some interesting properties. The dominant behavior at large
r mimics the (anti–)de Sitter [(A)dS]-Schwarzschild black
hole; however subleading corrections of order r2=3 are also
present. Finally, the solution contains a term that is identical
to the term proportional to the electric charge in a Reissner-
Nordström black hole. However, since we do not include an
external current in our model, there is no notion of electric
charge available in the theory. Consequently, all black holes
in this theory have the same effective electric charge
determined completely by the gravitational and gauge
couplings (and possibly an additional integration constant
related to the asymptotic value of the effective cosmologi-
cal constant). In this sense, the black holes may be regarded
as having unit charge, giving them the character of
fundamental particles.
The homogeneous, isotropic cosmological model we

study cannot be solved exactly, so we rely on numerical
methods to analyze its behavior. We find that the model
admits solutions where the effective cosmological constant
tends to a true constant at late times, which is consistent
with our current dark-energy-dominated cosmological
epoch. While the early-time dynamics do not appear to
be supported by observation, it is possible that a realistic
picture of cosmological evolution could emerge after
incorporating matter and radiation into the model.

II. REVIEW OF BF-COUPLED GRAVITY

Here we review a model presented in Ref. [21] and
developed further in Ref. [22] that will provide the
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background for our analysis. This model couples Einstein
gravity to a topological field theory (BF theory) such that
the volume form determined by the spacetime metric is
constrained to be equal to a volume form constructed from
one of the fields of the BF theory.1 First, we introduce the
basic aspects of BF theory, and then review the BF-coupled
gravity model and briefly discuss its implications for the
cosmological constant problem.

A. BF theory

BF theory is a rich subject with interesting connections
to gravity [23–28] and string theory [29–31]. We will not
attempt to give a thorough introduction to the topic here,
but merely highlight the aspects of the theory that are most
relevant for our current considerations. For a detailed
review, see for example Refs. [26,27,31,32].
Given an n-dimensional manifold M and a semisimple

Lie group G, the action of BF theory is simply

SBF ¼
Z
M
trðB ∧ FÞ; ð1Þ

where B is an adjoint-valued (n − 2)-form, and

F ¼ dAþA ∧ A ð2Þ

is the curvature two-form of a connection A taking values
in the Lie algebra of G.
If M has dimension three or four, the action can be

supplemented with an additional term whose strength is
controlled by a coupling μ that is often called the
“cosmological constant.” Since we are interested in BF
theory defined over a physical spacetime, we restrict
attention to the four-dimensional case, where one can
include a term proportional to B ∧ B:

S4 ¼
Z
M
tr

�
B ∧ Fþ μ

2
B ∧ B

�
: ð3Þ

The equations of motion for A and B are then

dAB ¼ 0; Fþ μB ¼ 0; ð4Þ

where dAQ ¼ dQþ ½A;Q�.
The action is invariant under the usual gauge trans-

formation

A → g−1Agþ g−1dg; ð5Þ

provided that B transforms in the adjoint representation

B → g−1Bg: ð6Þ

In addition to the usual gauge transformations, the action S4
is also invariant under another set of transformations
parametrized by a Lie-algebra-valued one-form η:

A → Aþ μη; B → B − dAη: ð7Þ

This latter set of local invariances is so constraining that BF
theory has no local dynamics—the theory is purely
topological. Of course, gravity is not a topological theory,
and in the BF-coupled gravity model, this second set of
invariances will be explicitly broken.

B. BF-coupled gravity

As proposed in Refs. [21,22], we consider a theory of
gravity in four spacetime dimensions obtained by replacing
the “cosmological constant” μ in the BF action with the
usual Lagrangian of Einstein gravity written in terms of a
composite metric ĝμν, which we define below. The action of
the theory is2

S0¼
Z
M
trðB∧FÞþ

�
1

2κ
RðĝÞ− Λ̄

κ
þLM

�
trðB∧BÞ ð8Þ

where κ ¼ 8πG is Einstein’s constant, and we impose the
requirement that B is nondegenerate, i.e., trðB ∧ BÞ ≠ 0.
Now trðB ∧ BÞ is a volume form onM, which determines a
density ω, represented in a given coordinate system by

trðB ∧ BÞ ¼
ffiffiffiffi
ω

p
4!

ϵμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ: ð9Þ

The composite metric ĝμν is then defined as

ĝμν ¼
�
ω

g

�
1=4

gμν; ð10Þ

where gμν is an arbitrary metric, which we take to be one of
the fundamental fields upon which the action (8) depends.
Note that, by construction, ĝμν is invariant under Weyl
transformations of the bare metric

gμν → Ω2gμν; ð11Þ

and thus, so is the action S0, since it is a functional of ĝμν.
Varying Eq. (8) with respect to B, A and gμν yields

Fþ 1

2κ
½RðĝÞ − 4Λ̄þ κT�B ¼ 0; ð12Þ

1BF theory is not an acronym, but rather a reference to the field
content of the theory, which includes a gauge field with field
strength F and an adjoint-valued field denoted B.

2The sign for Λ̄ differs here from that used in Refs. [21,22] for
reasons that will become clear later, namely, Λðr → ∞Þ ¼ Λ̄,
rather than Λðr → ∞Þ ¼ −Λ̄.
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dAB ¼ 0; ð13Þ

RμνðĝÞ −
1

4
RðĝÞĝμν ¼ κ

�
Tμν −

1

4
Tĝμν

�
; ð14Þ

where

Tμν ¼ −
2ffiffiffiffiffiffijωjp δSMðĝ;ΦÞ

δĝμν
¼ −2

∂LM

∂ĝμν þ LMĝμν: ð15Þ

For details, see Ref. [21]. Equation (14) is the traceless
Einstein equation. The Ricci scalar is determined by the
remaining equations as follows. Taking the covariant
exterior derivative of Eq. (12), and using Eq. (13), one
obtains

dðRðĝÞ þ κTÞ ¼ 0; ð16Þ

which can be integrated to give

RðĝÞ þ κT ¼ 4Λ; ð17Þ

where Λ is an integration constant and the factor of 4 is
chosen so that when Eq. (17) is inserted into Eq. (14), one
obtains the full Einstein equation, with the trace part
restored, and with Λ appearing as the physical cosmologi-
cal constant. It is worth emphasizing that Λ̄, which appears
in the Lagrangian where the cosmological constant ordi-
narily would, and which is subject to loop corrections, does
not play the role of a cosmological constant at the level of
the equations of motion; it is simply a coupling constant
that appears only in the BF sector of the theory. As noted in
Refs. [21,22], this theory can provide an explanation for
why the cosmological constant is not renormalized to a
large value by quantum corrections to the vacuum energy
from quantum fields: the coupling constant Λ̄ that receives
quantum corrections from the vacuum energy of quantum
fields does not gravitate, and the constant Λ that gravitates
does not receive quantum corrections. This mechanism is
similar in certain respects to the “sequestering” approach
proposed by Kaloper and Padilla [33].

III. BF-COUPLED GRAVITY WITH A GAUGE
KINETIC TERM

We now consider a minimal extension of the BF-coupled
gravity model presented in the previous section by includ-
ing a kinetic term for the gauge field A

S ¼ S0 −
1

2g2

Z
M
trðF ∧ ⋆̂FÞ; ð18Þ

where g is the gauge coupling, and ⋆̂ is the Hodge star
operator associated with the composite metric ĝμν. Viewing
this model as a modification of BF theory, it seems natural

upon first consideration not to include a gauge kinetic term,
since no such term can be constructed without introducing a
metric and spoiling the topological nature of the theory.
However, once one couples BF theory to gravity, local
degrees of freedom are already present, a dynamical
spacetime metric is available, and one can naturally include
a gauge- and diffeomorphism-invariant kinetic term for the
gauge field. We will see that including this term naturally
sources fluctuations of the effective cosmological constant
Λ defined in Eq. (17).
Varying Eq. (18) with respect to B, A and gμν, one finds

Fþ 1

2κ
½RðĝÞ − 4Λ̄þ κT�B ¼ 0; ð19Þ

dAB ¼ 1

g2
dA⋆̂F; ð20Þ

RμνðĝÞ −
1

4
RðĝÞĝμν ¼ κ

�
Tμν −

1

4
Tĝμν

�
; ð21Þ

where Tμν is the stress tensor associated with the physical
inverse metric ĝμν

Tμν ¼ −
2ffiffiffiffiffiffijωjp δSMðĝ;ΦÞ

δĝμν
¼ −2

∂LM

∂ĝμν þ LMĝμν; ð22Þ

andT ≔ ĝμνTμν is its trace. The presence of the gauge kinetic
term alters Eqs. (12) and (14) only in that the stress tensor
now includes contributions from the gauge field as well as
other matter fields, but their form is otherwise unchanged.
Meanwhile, Eq. (20) reproduces Eq. (13) of the original
model in the limit g → ∞. Defining Λ ¼ 1

4
ðRðĝÞ þ κTÞ,

combining Eqs. (19) and (20), andmaking use of the Bianchi
identity dAF ¼ 0, we obtain a simple equation for the field
strength two-form F:

dΛ ∧ F
ðΛ − Λ̄Þ2 ¼

2

g2κ
dA⋆̂F: ð23Þ

In the following sections, we will study the spherically
symmetric black hole solutions and homogeneous, isotropic
cosmological models predicted by this model. In these
simple examples, we will see that the “cosmological con-
stant”Λwill be promoted to a function of r in the black hole
case, and a function of t in the cosmological case.

A. Spherically symmetric solutions

Let us consider the model described by the action (18)
with an Abelian gauge group, sayUð1Þ. While we restrict to
the Abelian case for simplicity, it should be noted that the
solutions we find in this section can be trivially extended to
solutions of the theory with a non-Abelian gauge group,
simply by multiplying A, B and F by the same group
generator. For instance, if we wanted to embed the Abelian
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solution into the theory with gauge group SUð2Þ, we could
simply multiply each of these fields by a Pauli matrix, e.g.,
σ1. Later, we will consider a cosmological model which can
only be realized in a non-Abelian gauge group—in par-
ticular, we focus on the case G ¼ SUð2Þ—but it should be
stressed that the solutions in this section may be regarded as
solutions of the same theory after performing the trivial
embedding we have just described.
We would like to find stationary, spherically symmetric

solutions with a radially varying “cosmological constant”
Λ ¼ ΛðrÞ. As a first step, let us consider the Abelian
version of Eq. (23)

dΛ ∧ F
ðΛ − Λ̄Þ2 ¼

2

g2κ
d⋆̂F: ð24Þ

In order to evaluate the right-hand side of Eq. (24), we need
to specify the physical metric ĝμν. For this, we consider the
general stationary, spherically symmetric line element

ds2 ¼ −αðrÞ2dt2 þ βðrÞ2dr2 þ r2dΩ2; ð25Þ

where ds2 ¼ ĝμνdxμdxν, and dΩ2 ¼ dθ2 þ sin2 θdϕ2 is the
metric on the unit two-sphere. In order to reproduce the
volume form associated with Eq. (25), we can consider a B
field of the form

B ¼ 1ffiffiffi
2

p
�
αβr2ðΛ − Λ̄Þdt ∧ drþ sin θ

ðΛ − Λ̄Þ dθ ∧ dϕ

�
:

ð26Þ

Making use of Eq. (19), this gives

F ¼ −
2

κ
ðΛ − Λ̄ÞB

¼ −
ffiffiffi
2

p

κ
½αβr2ðΛ − Λ̄Þ2dt ∧ drþ sin θdθ ∧ dϕ�; ð27Þ

and it can be checked that dF ¼ 0, since Λ depends only on
r. Using Eq. (25), we can compute the Hodge star of
Eq. (27)

⋆̂F¼−
ffiffiffi
2

p

κ

�
αβ

r2
dt∧ dr− ðΛ− Λ̄Þ2r4 sinθdθ∧ dϕ

�
: ð28Þ

Now, from Eq. (23) we have

d
dr

�
1

Λ − Λ̄

�
¼ 2

g2κ
d
dr

½ðΛ − Λ̄Þ2r4�; ð29Þ

which can be integrated immediately to give

1

Λ − Λ̄
¼ 2

g2κ
ðΛ − Λ̄Þ2r4 þ 1

Λ0 − Λ̄
; ð30Þ

where Λ0 is an integration constant. This can be rearranged
to give a cubic equation for Λ − Λ̄

2

g2κ
ðΛ − Λ̄Þ3r4 þ Λ − Λ̄

Λ0 − Λ̄
− 1 ¼ 0; ð31Þ

which fixes Λ − Λ̄ as a function of r. Since Eq. (31) is
cubic, it has three solutions, but only one of them is real for
all r > 0. There is a fixed, positive value r ¼ rmax for which
the remaining two solutions degenerate to a real, double
root. For 0 < r < rmax, there are three distinct real roots,
and for r > rmax there is a single real root and a pair of
complex-conjugate roots. In what follows, we will focus
primarily on the solution that is defined for all r > 0, and
comment briefly on the other solutions in the discussion
section. The solution that is real for all r > 0 has the
explicit form

Λ − Λ̄ ¼ QðXÞffiffiffi
23

p
32=3X4

−

ffiffi
2
3

3

q
B

QðXÞ ; ð32Þ

where

QðXÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9X8 þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27X16 þ 4B3X12

p
3

q
; ð33Þ

andwe have definedX4 ¼ 2ðg2κÞ−1r4, andB ¼ ðΛ0 − Λ̄Þ−1.
WhenΛ0 − Λ̄ > 0, we haveΛð0Þ ¼ Λ0. WhenΛ0 − Λ̄ < 0,
Λ diverges as r goes to zero. When Λ0 − Λ̄ ¼ 0, we have
Λ ¼ Λ0 ¼ Λ̄, which can be seen by taking the appropriate
limit of Eq. (31), and the solution reduces to the (A)dS-
Schwarzschild metric.
Next we turn to the trace-free Einstein equation (14). The

stress tensor associated with F is

Tμν ¼
1

g2

�
Fρ

μFρν −
1

4
FρσFρσ ĝμν

�
: ð34Þ

Inserting Eq. (27) into Eq. (34) gives

Tμνdxμdxν ¼
1

g2κ2r4
½1þ r8ðΛ − Λ̄Þ4�

× ðα2dt2 − β2dr2 þ r2dΩ2Þ; ð35Þ

from which it follows that T ¼ 0. Meanwhile, the left-hand
side of Eq. (14) becomes�

Rμν −
1

4
Rĝμν

�
dxμdxν

¼ 1

2r2αβ3
ðα00βr2 þ αβ3 − α0β0r2 − αβÞ

× ðα2dt2 − β2dr2 þ r2dΩ2Þ
þ α

rαβ3
ðαβÞ0ðα2dt2 þ β2dr2Þ: ð36Þ
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Both the θθ and ϕϕ components of Eq. (14) lead to

1

2r2αβ3
ðα00βr2þαβ3−α0β0r2−αβÞ¼ 1

g2κr4
½1þr8ðΛ− Λ̄Þ4�:

ð37Þ

Inserting Eq. (37) into either the tt or rr equation then
leads to

ðαβÞ0 ¼ 0; ð38Þ

which can be immediately integrated to give

αβ ¼ C; ð39Þ

and by rescaling the time coordinate, we can always set
C ¼ 1, so that

β ¼ 1

α
: ð40Þ

Putting Eq. (40) back into Eq. (37) we obtain the following
equation for α:

ðαα0Þ0 þ 1 − α2

r2
¼ 2

g2κr4
½1þ r8ðΛ − Λ̄Þ4�: ð41Þ

The above equation is a linear, inhomogeneous equation
for α2 whose homogeneous solution reproduces the
(A)dS-Schwarzschild metric. Let us define

fðrÞ ≔ 2

g2κr4
½1þ r8ðΛ − Λ̄Þ4�; ð42Þ

so that the equation for A ≔ α2 now reads

1

2
A00 þ 1 − A

r2
¼ fðrÞ: ð43Þ

This last equation has a compact general solution for any
function fðrÞ, given by

A ¼ 1 −
Λ�
3
r2 −

2M
r

þ 2r2

3

Z
r

r0

fðsÞ
s

ds −
2

3r

Z
r

r0

fðsÞs2ds;

ð44Þ

where r0 is an arbitrary valid position where we define Λ�
andM, the integration constants. Note that r0 does not need
to be the same for both integrals.
Since the metric function A is the solution of a second-

order linear equation, the lower end point of the integrals is
not independent of the integration constants Λ� and M. It
would therefore be advantageous to fix the lower end point
of integration to a convenient value.

First, it will be convenient to perform the integrals over
the term in fðrÞ that is proportional to r−4. This leads to

A ¼ 1 −
2M
r

−
Λ�
3
r2 þ

�
1

g2κ

�
1

r2
þ I1ðrÞ þ I2ðrÞ; ð45Þ

where

I1 ¼
4r2

3g2κ

Z
r

r0

s3ðΛðsÞ − Λ̄Þ4ds; ð46Þ

I2 ¼ −
4

3g2κr

Z
r

r0

s6ðΛðsÞ − Λ̄Þ4ds; ð47Þ

and we have absorbed r0-dependent terms coming from the
integration into a redefinition of the integration constants
Λ� and M.3 Furthermore, the integrals in I1 and I2 can be
expressed as

Z
r

r0

s3ðΛ − Λ̄Þ4ds ¼ −
g2κ
4

ðΛ − Λ̄Þ − s4

4
ðΛ − Λ̄Þ4jrs¼r0

ð48Þ
Z

r

r0

s6ðΛ − Λ̄Þ4ds

¼ 1

5
s7ðΛ − Λ̄Þ4

×

�
3 − 16

Λ − Λ̄
Λ0 − Λ̄ 2F1

�
1;
3

2
;
3

4
;
Λ − Λ̄
Λ0 − Λ̄

������r
s¼r0

ð49Þ

where 2F1ða; b; c; zÞ is the hypergeometric function (see
the Appendix).4

Now we proceed to fix Λ� in a manner that is consistent
with the r → ∞ limit. For this, we compute the Ricci scalar
associated with the metric

ds2 ¼ −AðrÞdt2 þ 1

AðrÞ dr
2 þ r2dΩ2: ð50Þ

For any metric of the form (50), one has

−4Λ ¼ −R ¼ A00 þ 4

r
A0 þ 2

r2
ðA − 1Þ; ð51Þ

and with AðrÞ given by Eq. (45), this becomes

3Actually, one may choose the lower end point of each integral
independently, in which case choosing the lower end point at
infinity produces no shift in Λ� and M.

4As with the r−4 term in Eq. (45), we can always shift r0 and
adjust Λ� andM to compensate. For Eq. (48), r0 → ∞ once again
leads to no adjustments in the parameters. For Eq. (48), this point
corresponds to the position where 16x2F1ð1; 3=2; 3=4; xÞ ¼ 3 is
satisfied, and x ¼ ðΛ − Λ̄Þ=ðΛ0 − Λ̄Þ.
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Λ ¼ Λ� −
4

g2κ

Z
r

r0

s3ðΛ − Λ̄Þ4ds − r4

g2κ
ðΛ − Λ̄Þ4: ð52Þ

If we set r → r0 and then take the limit as r0 → ∞, we find
that Λ� ¼ Λ̄, since Λ − Λ̄, r4ðΛ − Λ̄Þ4, and the integrals all
go to zero in these limits. We thus have

4

g2κ

Z
∞

r
s3ðΛ − Λ̄Þ4ds ¼ ðΛ − Λ̄Þ þ r4

g2κ
ðΛ − Λ̄Þ4 ð53Þ

in complete agreement with Eq. (48) with r0 → ∞. For
Λ0 − Λ̄ > 0, the integral also has the property

4

g2κ

Z
∞

0

s3ðΛ − Λ̄Þ4ds ¼ Λ0 − Λ̄: ð54Þ

It is instructive to examine the integrals in Eqs. (48) and
(49). Up to leading order, and ignoring any terms that can
be shifted into Λ� or M, the integral contributions are as
follows:

for r ≪ rc and Λ0 − Λ̄ > 0

I1 þ I2 ≈
ðΛ0 − Λ̄Þ2

7g2κ
r6; ð55Þ

for r ≪ rc and Λ0 − Λ̄ < 0

I1 þ I2 ≈
g2κ

4ðΛ0 − Λ̄Þ2 r
−2; ð56Þ

for r ≫ rc

I1 þ I2 ≈ −
9

10

�
g2κ
2

�
1=3

r2=3; ð57Þ

where rc ¼ jg2κ=2ðΛ0 − Λ̄Þ3j1=4, which corresponds to the
location where the two limiting solutions of Λ − Λ̄ inter-
sect. For r ≪ rc and Λ0 − Λ̄ > 0, the integrals are sub-
dominant to the Λ�,M, and r−2 terms and mainly constitute
a rapid transition between the near and far behaviors. For
r ≫ rc, the integrals are once again subdominant to the Λ̄r2
term, and thus only dominate if Λ̄ ¼ 0. However, if Λ̄ ¼ 0,
this r2=3 dependence is a novel property of this theory, and
the asymptotic structure of these solutions warrants further
investigation.
Finally, for the r ≪ rc and Λ0 − Λ̄ < 0 case, the integral

behavior dominates, producing an r−2 term which com-
bines with the one already present. Interestingly, this term is
exactly the term proportional to the total electric charge of a
Reissner-Nordström black hole. However, in this model the
divergence of the field strength is sourced by dΛ rather than
an external current, so there is no notion of total charge, and
the strength of the r−2 term is controlled purely by the
combination Λ0 − Λ̄ and the couplings g and κ. This is
an interesting feature: for the case Λ0 − Λ̄ > 0, this model

predicts black holes that display a certain universal behav-
ior, as though each had an equal charge of unit magnitude,
much like a fundamental particle. For the case Λ0 − Λ̄ < 0
the situation is a bit subtler, and the effective charge
depends on the couplings as well as the particular value
of Λ0 − Λ̄, which can be seen from Eq. (56). The analogy
between black holes and fundamental particles has been
remarked upon since the discovery of the no-hair theorems
[34,35] and was recently explored in a somewhat different
context [36], but to our knowledge, the effective “charge
quantization” we present here is a novel feature. Of course,
it should be acknowledged that we assumed stationarity
and spherical symmetry in obtaining this solution, so it is
not clear whether this universal behavior is a robust
prediction for black holes in this model, or merely an
artifact of enhanced symmetry. It would be interesting to
see whether this feature persists in black hole mergers, or
whether there is an additive property to the coefficient of
the r−2 term in such cases, as one would expect from charge
conservation.
In Fig. 1, we show an example of the spherically

symmetric BF theory metric function, AðrÞ. For compari-
son, we also plot the corresponding (A)dS Reissner-
Nordström black hole counterpart

AðrÞ ¼ 1 −
2M
r

−
Λ̄
3
r2 þQ2

r2
ð58Þ

where Q is the charge of the black hole. The main
qualitative differences are a change to the metric function
near the event horizon as well as a change in the location of
the horizon. As noted previously, the large-r behavior in the
two cases will differ dramatically for Λ̄ ¼ 0 as Eq. (58) will
be asymptotically flat while Eq. (45) is not. However, the
deviation from asymptotic flatness at a fixed distance can

FIG. 1. The BF spherically symmetric metric function com-
pared with its corresponding (A)dS Reissner-Nordström counter-
part. The charge is set to match the small-r asymptotic behavior
[Q2 ¼ 1=g2κ and 1=g2κ þ g2κ=4ðΛ0 − Λ̄Þ2 for positive and
negative Λ0 − Λ̄ respectively].
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be made arbitrarily small by choosing the coupling to be
sufficiently small. This suggests that bounds could be
placed on the coupling, e.g., using Solar System tests.
Calculating the Kretschmann invariant for a metric of the

form (50) leads to a simple expression

RμνρσRμνρσ ¼ ðA00Þ2 þ 4

r2
ðA0Þ2 þ 4

r4
ðA − 1Þ2: ð59Þ

Using the metric described here, the Kretschmann invariant
detects no physical singularities except at r ¼ 0, as
expected. The r → 0 behavior goes as r−8 coming from
the r−2 portions of the metric as in the Reissner-Nordström
solution. The r → ∞ behavior goes as 8Λ̄2=3þOðr−4=3Þ,
exhibiting (A)dS like behaviors with a higher-order
correction.

B. A homogenous, isotropic cosmological model

We now turn to a homogeneous, isotropic cosmological
model, where we assume for simplicity that the stress
tensor is sourced purely by the gauge field. We leave a
detailed analysis including contributions to the stress tensor
from other sources for future work.
One might hope to find a simple, homogeneous, iso-

tropic cosmological model including the gauge kinetic term
for an Abelian Uð1Þ or Rþ gauge group. However, because
of the restriction that trðB ∧ BÞ ≠ 0, and hence
trðF ∧ FÞ ≠ 0, it is not possible to preserve isotropy in
the Abelian case. On the other hand, homogeneity and
isotropy can be preserved by a simple ansatz for a gauge
field A taking values in the Lie algebra of SUð2Þ:

A ¼ αðtÞðτ1dxþ τ2dyþ τ3dzÞ ð60Þ

where τi are the group generators, given by τi ¼ − i
2
σi, and

σi are Pauli matrices. This ansatz was previously employed
in the context of chromonatural inflation [37,38] and in a
toy model of dark energy where the energy density of the
Universe today is dominated by a pseudoscalar axion
which couples to the Pontryagin density of a gauge field
[39]. The corresponding field strength two-form is

F ≔ dAþA ∧ A ¼ ð _αdt ∧ dxþ α2dy ∧ dzÞτ1
þ ð _αdt ∧ dyþ α2dz ∧ dxÞτ2
þ ð _αdt ∧ dzþ α2dx ∧ dyÞτ3: ð61Þ

For later use, we note that

trðF ∧ FÞ ¼ −3_αα2d4x: ð62Þ

If we assume the usual spatially flat Friedmann-Robertson-
Walker (FRW) form for the spacetime metric

ds2 ¼ ĝμνdxμdxν ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð63Þ

we can also compute the Hodge star of the field strength

⋆̂F ¼
�
α2

a
dt ∧ dx − a _αdy ∧ dz

�
τ1

þ
�
α2

a
dt ∧ dy − a _αdz ∧ dx

�
τ2

þ
�
α2

a
dt ∧ dz − a _αdx ∧ dy

�
τ3: ð64Þ

We now turn to Eq. (23), which we rewrite in the form

du ∧ F ¼ dA⋆̂F; ð65Þ

where we have defined

u ¼ −
g2κ

2ðΛ − Λ̄Þ : ð66Þ

Recall that for any adjoint-valued two-form Ω, of which
⋆̂F is an example, we have

dAΩ ¼ dΩþA ∧ Ω −Ω ∧ A; ð67Þ

from which we can compute the right-hand side of Eq. (65):

dA⋆̂F¼−
�
2
α3

a
þ d
dt
ða _αÞ

�
ðdt∧ dy∧ dzτ1þdt∧ dz∧dxτ2þdt∧ dx∧ dyτ3Þ: ð68Þ

Meanwhile,

du ∧ F ¼ ½ _αðuydt ∧ dx ∧ dy − uzdt ∧ dz ∧ dxÞ þ α2ð _udt ∧ dy ∧ dzþ uxdx ∧ dy ∧ dzÞ�τ1
þ ½ _αðuzdt ∧ dy ∧ dz − uxdt ∧ dx ∧ dyÞ þ α2ð _udt ∧ dz ∧ dxþ uydx ∧ dy ∧ dzÞ�τ2
þ ½ _αðuxdt ∧ dz ∧ dx − uydt ∧ dy ∧ dzÞ þ α2ð _udt ∧ dx ∧ dyþ uzdx ∧ dy ∧ dzÞ�τ3: ð69Þ

Putting Eqs. (68) and (69) into Eq. (65), we find that
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_u ¼ −2
α

a
−

1

α2
d
dt

ða _αÞ; ux ¼ uy ¼ uz ¼ 0; ð70Þ

which implies that Λ depends only on time, which confirms
that our ansatz is compatible with homogeneity.
Furthermore, we require that

trðB ∧ BÞ ¼
ffiffiffiffiffiffi
−ĝ

p
d4x ¼ a3d4x; ð71Þ

while Eq. (12) implies that

trðB ∧ BÞ ¼ κ2

4ðΛ − Λ̄Þ2 trðF ∧ FÞ ¼ −3κ2 _αα2

4ðΛ − Λ̄Þ2 d
4x: ð72Þ

Combining Eqs. (71) and (72) then leads to

−3κ2 _αα2

4ðΛ − Λ̄Þ2 ¼ a3: ð73Þ

Rewriting the left-hand side in terms of u and solving for
u2, we have

u2 ¼ −a3g4

3_αα2
: ð74Þ

Now we compute the stress tensor and investigate the
model numerically.
The stress tensor for the gauge field is

Tμν ¼
1

g2
tr

�
Fρ

μFρν −
1

4
gμνFρσFρσ

�
: ð75Þ

Now plugging Eq. (61) into Eq. (75) we have,

Tμνdxμdxν ¼ −
1

4g2

�
_α2

a2
þ α4

a4

�
× ½3dt2 þ a2dx2 þ a2dy2 þ a2dz2�; ð76Þ

from which it follows that T ¼ 0. One can then compute
the Friedmann equation after plugging Eqs. (76) and (63)
into Eq. (14),

aä − _a2 ¼ κ

2g2

�
_α2 þ α4

a2

�
: ð77Þ

Clearly, ä > 0. Thus the model permits a single bounce
consistent with a Λ-dominated universe. Note that the
trace-free property of the Einstein equation reduces the
number of Friedmann equations from two to one.
Combining Eqs. (70) and (74) yields

�
g4a3

3_α2
þ 2ua

�
α̈ ¼ 2u2α _αþ g4a2 _a

_α
−
4uα3

a
− 2u _a _α; ð78Þ

and together with Eq. (77), we get two coupled differential
equations that fully describe the dynamics of the system up
to the sign of u.
Furthermore, using the definition of Λ, the trace-free

property of the Yang-Mills stress tensor, and the FRW form
of the metric, we obtain

Λ ¼ R=4 ¼ 3

2a2
ð _a2 þ aäÞ ð79Þ

which, using Eqs. (73) and (77), leads to

Λ ¼ 3

2a2

�
2_a2 þ κ

2g2

�
_α2 þ α4

a2

��
ð80Þ

and

Λ̄ ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3κ2 _αα2

4a3

s
þ 3

2a2

�
2_a2 þ κ

2g2

�
_α2 þ α4

a2

��
ð81Þ

where the ∓ symbol is understood to indicate the negative
sign when u > 0 and the positive sign when u < 0. Thus,
allowing the calculation of the sign of u at all times using
Eqs. (66), (80), and (81). We see that, in contrast to the
spherically symmetric case, here we have Λ ≥ 0. Also, note
that if the Hubble parameter, H ¼ _a=a, is asymptotically
constant, then Λ̄ > 0, and α=a and _α=a go to zero as well
as Λ − Λ̄ → 0.
The solution for a given set of initial conditions is shown

in Fig. 2, which exhibits many of the properties already
discussed. During the period where ψ ¼ α=a is dynamical,
H undergoes an increase and eventually it levels off as ψ

FIG. 2. The evolution of scaled quantities H, _H, ψ ¼ α=a, and
_ψ þHψ ¼ _α=a in the SUð2Þ cosmology model. All quantities
are written in terms of T, the age of the Universe where the initial
values are defined. With these initial conditions, Λ̄ ≈ 0.346 T−2.
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goes to 0. This behavior may have interesting connections
to late-time dynamical dark energy models.
Note that due to the terms in parentheses in Eq. (78), α̈ is

guaranteed to have a pole for some combination of
parameters as long as u is negative, which leads to singular
behavior in the solutions. These poles lead to interesting
behavior which cannot be solved by the numerical tech-
niques used here.
We also show the evolution of Λ − Λ̄ in Fig. 3 using the

same cosmology as Fig. 2. As expected from Fig. 2, the late-
time behavior is Λ − Λ̄ → 0. While H and Λ have different
behaviors when Λ is varying rapidly, it is noteworthy that at
late times, when Λ approaches Λ̄ and varies slowly, H
approaches the limiting value ðΛ̄=3Þ1=2, as expected. An
interesting behavior is that the early value ofΛ is greater than
its late-time value, even though H increases with time. Note
that the zeros of Λ − Λ̄ and ψ coincide. In this particular
example, Λ varies by about a factor of 2 when comparing its
minimum and maximum values.
Solutions also exist where H is initially negative and

changes sign; however we have been unable to find a
solution that does not produce the difficulties associated
with Eq. (78) mentioned earlier prebounce, and because we
have relied on numerical methods, it is not clear whether
these pathologies represent physical singularities or
numerical artifacts. We hope to develop analytic methods
for studying these cosmologies that can give us further
insight into the early-time behavior of these bouncing
cosmologies in future work.

IV. DISCUSSION

The theory we have presented in this article has some
promising features: it is a minimal extension of Einstein
gravity coupled to a topological field theory (BF theory), a
system which has already been shown to resolve aspects

of the cosmological constant problem; it predicts the
existence of black holes that generalize the standard
(A)dS-Schwarzschild solutions and approach their behavior
asymptotically up to subleading corrections, and that (at least
in the case when Λ0 − Λ̄ > 0) each possess an equal unit
“charge,” like fundamental particles; and it admits a simple
homogeneous, isotropic cosmological model, which our
numerical investigations have shown leads naturally to an
effective cosmological constant that approaches a true
constant at late times.
While these preliminary investigations have uncovered

some interesting features, more remains to be done in order
to test the viability of the model. First, while the exact black
hole solutions we have presented here are mathematically
interesting in their own right, it remains to be seen what
physically observable signatures might distinguish these
black holes from those predicted by Einstein gravity, and
whether those distinctions are supported or ruled out by
astrophysical measurements. A potential direction would
be to consider constraints on the charge of our black hole
solution similar to those constructed for Reissner-
Nordström black holes (see for example Ref. [40]). It
would also be interesting to subject this model to rotating
black holes and see whether superradiance occurs and if it
does, how it differs from general relativity or other
modifications of gravity, such as dynamical Chern-
Simons gravity [41,42] Finally, as we mentioned briefly
in the text, the black hole solution we have focused on in
this work is associated with a particular choice of a root of
the cubic equation (31). Using numerical methods, it can be
seen that this solution is the only one that is well defined for
all positive values of the radial coordinate r. However, other
solutions exist that are real for finite ranges r ∈ ð0; rmax�.
While it seems unlikely that such a solution could describe
an astrophysical black hole, it would nevertheless be nice to
know more about these solutions and understand their
implications for a Birkhoff theorem of this model, or lack
thereof, and to understand their behavior in the general-
relativistic limit.
At this point it is incumbent upon us to face the fact that

while Λ̄ does not gravitate in the version of the theory with
no gauge kinetic term, when the gauge coupling is turned
on, the gravitational field does indeed depend on Λ̄, which
sets the asymptotic value of the Ricci scalar (at long
distances in the black hole case and at late times in the
cosmological case). Since one would expect that this gauge
kinetic term will be generated by renormalization group
flow, this suggests that quantum corrections to the vacuum
energy will indeed leak into the gravitational field at long
distance scales for black holes and late times in our
cosmological model. For the latter case, this could have
interesting effects when viewed from the perspective of an
accelerating expansion at late times. Another possibility is

FIG. 3. The evolution of Λ − Λ̄ in the SUð2Þ cosmology model
for the same initial conditions used in Fig. 2.
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that one of the symmetries of the original model, e.g., chiral
symmetry, could prevent this term entering into the theory,
in which case the vacuum energy will be sequestered by the
original model.
For simplicity, we have not included any standard model

matter in our homogeneous, isotropic model. It would be
interesting to see which of the qualitative features we have
observed in our numerical calculations persist in a more
sophisticated analysis including matter and radiation, and
in particular, whether the effective cosmological constant
still asymptotes to a true constant at late times in that case.
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APPENDIX: SPATIAL INTEGRAL SOLUTIONS

In this appendix, we provide a short derivation of the
integrals shown in Eqs. (46) and (47), and provide some
basic properties of Eq. (32). First, we begin by noting that
Eq. (31) can be simplified dramatically by rewriting it in
terms of dimensionless quantities

4

27
qx3 þ x − 1 ¼ 0 ðA1Þ

where

x ¼ Λ − Λ̄
Λ0 − Λ̄

and q ¼ 27

2

ðΛ0 − Λ̄Þ3
g2κ

r4: ðA2Þ

In these variables, Eq. (32) takes on the simple form

xðqÞ ¼ 3

2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ q4

p
þ q2Þ2=3 − q

qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 þ q4

p
þ q2Þ1=3

: ðA3Þ

Expansions of Eq. (A3) at extreme r produce

for r ≪ rc and Λ0 − Λ̄ > 0

Λ − Λ̄ ≈ ðΛ0 − Λ̄Þ þOðr4Þ; ðA4Þ

for r ≪ rc and Λ0 − Λ̄ < 0

Λ − Λ̄ ≈
���� g2κ2 1

Λ0 − Λ̄

����1=2r−2 þOðr0Þ; ðA5Þ

for r ≫ rc

Λ − Λ̄ ≈
�
g2κ
2

�
1=3

r−4=3 þOðr−8=3Þ; ðA6Þ

where rc ¼ jg2κ=2ðΛ0 − Λ̄Þ3j1=4, which corresponds to the
location where the two extreme solutions intersect. Λ − Λ̄
is finite for all values except r ¼ 0 for Λ0 − Λ̄ < 0 where it
diverges as r−2.
While Eq. (A1) produces a simple form for xðqÞ, it will

be more convenient for the following derivation to redefine
it as

pr4x3 þ x − 1 ¼ 0 ðA7Þ

with p ¼ 2ðΛ0 − Λ̄Þ3=g2κ. This change is to explicitly
observe the r dependencies of x as well as limiting numerical
constants during intermediate steps. Differentiating Eq. (A7)
implicitly with respect to r and solving for dx

dr gives

dx
dr

¼ −
4pr3x3

1þ 3pr4x2
: ðA8Þ

Next, we rearrange Eq. (A7) to get

r ¼
�
1 − x
px3

�
1=4

¼ p−1=4
�
1 − x
x3

�
1=4

: ðA9Þ

Note that the separation of the fractions into two powers in
Eq. (A9) is possible because x ≤ 1, and if x < 0, then
p < 0. Now, consider the integral and its alteration using
Eqs. (A8), (A9), and the first equation of Eq. (A2):

Z
rmðΛ − Λ̄Þndr

¼ p−mþ1
4
ðΛ0 − Λ̄Þn

4

Z �
1 − x
x3

�m−3
4

xn
�
2

x3
−

3

x4

�
dx

ðA10Þ

where m and n are positive integers. Integrals of this form
produce the hypergeometric functions, 2F1ða; b; c; zÞ
which reduce to the solutions shown in Eqs. (48) and (49).
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