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We study the halo mass function (HMF) in modified gravity (MG) models using a set of large N-body
simulations—the ELEPHANT suite. We consider two popular beyond-general-relativity scenarios: the
Hu-Sawicki chameleon fðRÞ model and the normal branch of the Dvali-Gabadadze-Porrati (nDGP)
braneworld. We show that in MG, analytic formulation based on the Press-Schechter framework offers a
grossly inaccurate description of the HMF. We find, however, that once the HMF is expressed in terms of
the dimensionless multiplicity function it approximately assumes a redshift-independent universal
character for all the models. Exploiting this property, we propose universal fits for the MG HMF in
terms of their fractional departures from the ΛCDM case. We find two enclosed formulas, one for fðRÞ and
another for nDGP, that provide a reliable description of the HMF over the mass range covered by the
simulations. These are accurate to a few percent with respect to the N-body data. We test the extrapolation
potential of our fits against separate simulations with a different cosmological background and mass
resolution and find very good accuracy, within ∼10%. A particularly interesting finding from our analysis
is a Gaussian-like shape of the HMF deviation that seems to appear universally across the whole fðRÞ
family, peaking at a mass variance scale characteristic for each fðRÞ variant. We attribute this behavior to
the specific physics of the environmentally dependent chameleon screening models.
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I. INTRODUCTION

Our current standard model of cosmology—Lambda
cold dark matter (ΛCDM)—is a very successful descrip-
tion of the evolution of the Universe from the hot
relativistic big bang until the present time, some 13.8 billion
years later. This simple six-parameter model can account
very well for the primordial nucleosynthesis light elements
abundance, the precisely observed properties of the cosmic
microwave background, the large-scale clustering of mat-
ter, and the late-time accelerated expansion history [1–4].
However, ΛCDM is of inherent phenomenological

nature, due to the necessity to include dark matter and
dark energy fluids in the cosmic matter-energy budget
[2,5], when general relativity (GR) is assumed as the
underlying theory of gravity. The phenomenological
character of ΛCDM, together with known theoretical
issues related to reconciling the absurdly small value of
the cosmological constant with quantum vacuum theory
predictions [6] and the observed anomalies associated
with ΛCDM [7–9], have motivated searches for alter-
native scenarios or extensions to the concordance
model. One particularly vibrant research theme in the
last decade focused on attributing the accelerated late-time
expansion to some beyond-GR extensions (usually scalar-
tensor theories), rather than to the vanishingly small

cosmological constant. Such models are commonly
dubbed as “modified gravity” and have been put forward
and studied in their many rich flavors in numerous works
(e.g., Refs. [10–19]).
It is important to note that these so-called modified

gravity (MG) theories cannot be so far considered as fully
flagged competitors of Einstein’s GR since they are not new
independent metric theories of gravity. These are rather a
collection of useful phenomenological models, exploring
the freedom of modifying the Einstein-Hilbert action to
produce a physical mechanism effectively mimicking the
action of the cosmological constant [10,18,20]. This is
usually achieved by introducing some extra degrees of
freedom in the spacetime Lagrangian. The MG models
provide a very useful framework that allows us to both test
GR on cosmological scales and explore the physics of
cosmic scalar fields. Most of the popular MG scenarios are
constructed in such a way that they have negligible
consequences at early times and share the same expansion
history as ΛCDM. Owing to this, the extra physics of MG
models does not spoil the great observational success of the
standard model. Most of the viable beyond-GR theories
assume the same cosmological background as ΛCDM,
which sets the stage for the formation and evolution of the
large-scale structure (LSS).
To satisfy the observational constraints on gravity e.g.,

[21–26], namely, to recover GR in high-density regimes
where it is well tested and to match the ΛCDM expansion*gupta@cft.edu.pl
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history, MG theories need to be supplemented with screen-
ing mechanisms. Among these, Chameleon [27] and
Vainshtein [28] effects are most frequently studied. The
physics of these screening mechanisms is the strongest
factor that differentiates various MG models, and their
interplay and backreaction with the LSS and cosmological
environment can have a pivotal role in administering the
MG-induced effects. Thus, a meaningful classification of
various MG theories can be made based on the virtues of
the screening mechanism they invoke [12,17,29–32].
Because of the shared cosmological background, it is in

the properties of LSS where we can expect the predictions
of MG models to differ from ΛCDM. The formation and
evolution of the LSS is governed by gravitational insta-
bility, responsible for the aggregation of dark matter (DM)
and gas from primordial fluctuations into bound clumps:
DM halos, which are sites of galaxy formation. This
mechanism applied on the initial Gaussian adiabatic fluc-
tuations, described by a collisionless cold dark matter
power spectrum, yields one of the most important pre-
dictions for the structure formation: a hierarchical buildup
of collapsed halos. The most fundamental characteristic of
this theory is the halo mass function (HMF), which
describes the comoving number density of halos of a given
mass over cosmic time. Within the ΛCDM paradigm, the
HMF assumes a universal power-law shape in the low halo
mass regime, dn=dM ∼M−α, with the slope approximating
α ∼ 1. This is supplemented by an exponential cutoff at the
cluster and higher mass scales, and the amplitude, shape,
and scale of HMF evolve with redshift [33]. However,
when the HMF is expressed in dimensionless units of the
cosmic density field variance, it assumes a universal, time-
independent character (e.g., Refs. [34–40], but see
Refs. [41–45] for differing results).
The HMF forms the backbone of many theoretical

predictions related to late-time LSS and galaxy formation
models and is widely invoked in numerous cosmological
studies (e.g., Refs. [46–50]). Given the central role of this
cosmological statistic in the study and analysis of the LSS,
it is of paramount importance to revisit its universal
properties and characterize its deviations from ΛCDM in
viable MG theories in both linear and nonlinear density
regimes. This is the main topic of our work here.
Given the rich phenomenology of potentially viable MG

theories, it would be unfeasible to explore deeply each
model’s allowed parameter space, whether analytically or
via computer simulations. Thus, we will limit our studies to
two popular cases of such MG theories. They can be both
regarded as good representatives of a wider class of models
exhibiting similar beyond-GR physics. The first one is the
fðRÞ gravity [15], which considers nonlinear functions of
the Ricci scalar, R, due to additional scalar fields and their
interaction with matter. The second one is the normal
branch of the Dvali-Gabadadze-Porrati (nDGP) model [51],
which considers the possibility that gravity propagates in

extra dimensions, unlike other standard forces. Both of
these nontrivial MG theories exhibit the universal feature of
a fifth force arising on cosmological scales, a consequence
of extra degrees of freedom. Their gradient, expressed
usually as fluctuations of a cosmological scalar field,
induces extra gravitational forces between matter particles.
Modifications to GR on large scales result in a different
evolution of perturbations than in ΛCDM in both linear and
nonlinear regime. The fifth force is expected to leave an
imprint on structure formation scenarios, which would
lead to testable differences in the properties of the LSS in
such beyond-GR theories as compared to ΛCDM (e.g.,
Refs. [52–66]).
We will be most interested in the nonlinear and mildly

nonlinear regimes of such theories, where new physics can
have a potentially significant impact on the formation and
evolution of DM halos. To take full advantage of the wealth
of data from current and upcoming surveys (DES [67],
DESI [68], EUCLID [69], and LSST [70], to name a few),
which aim to constrain the cosmological parameters, and
the underlying theory of gravity to percent precision,
significant efforts are required on the side of theoretical
and numerical modeling to reach similar level of precision
in constraining possible deviations from the ΛCDM
scenario.
As mentioned above, the HMF when expressed in scaled

units is expected to exhibit a nearly universal behavior as a
function of redshift. This property has been exploited
extensively to devise empirical fits for the HMF, which
can be then readily used for forecasting various LSS
properties [35–37,39,40]. The availability of such HMF
models or simulation based fits, precise to a few percent or
better, is essential to obtain the accuracy needed for the
ongoing and future LSS surveys. However, as we will
elaborate below, these kinds of HMF prescriptions
developed for ΛCDM capture neither the nonlinear and
scale-dependent dynamics nor the screening mechanisms
associated with the MG models (e.g., Refs. [62,63,71]).
The inadequacy of the standard approach to HMF in MG

scenarios has led to various other methodologies being
developed. Among them are those based on the spherical
collapse model and excursion set theory, studied in
Refs. [64,71–75] to formulate the HMF for fðRÞ gravity
models with chameleon screening. In Ref. [64], this was
further extended to formulate the conditional mass
function and linear halo bias, while Ref. [75] included also
massive neutrinos. In Ref. [76], the spherical collapse theory
was used to develop the HMF and halo model in braneworld
DGP scenarios. Other approaches, developedmore recently,
include machine learning based emulation techniques for
modeling the nonlinear regime in MG [77–81].
Here, we adopt a different approach to characterize the

MG HMF. Instead of fitting for the absolute HMF values
across redshifts and masses, we calibrate the deviation with
respect to the GR trend, obtained by comparing the MG

GUPTA, HELLWING, BILICKI, and GARCÍA-FARIETA PHYS. REV. D 105, 043538 (2022)

043538-2



HMF with the ΛCDM one. We have found this deviation to
be universal across redshifts when expressed as a function
of the cosmic density field variance lnðσ−1Þ. A related
approach was used in Refs. [54,60], where the fðRÞ HMF
was computed by taking a product of the ΛCDM HMF and
a prefactor given by the ratio of the HMF of fðRÞ to
ΛCDM. However, these works were confined to using
theoretical HMF predictions, whereas in our study, we rely
on the results from inherently nonlinear N-body simula-
tions. In this context, in Refs. [58,82], the authors also used
simulation results to devise an empirical fit for the fðRÞ and
nDGP deviation with respect to ΛCDM, but all these
above-mentioned works do not exploit the universality
trend in the deviation of MG, which we address here.
The paper is organized as follows. In Sec. II, we describe

the simulations and MG models under consideration. In
Sec. III, we elaborate on the HMF both from simulations
and analytical fitting functions. In Sec. IV, we explore the
mass function universality in both ΛCDM and MGmodels,
while Sec. V is devoted to the method we devised to find
MG HMF. In Sec. VI, we extend our work to other
simulation runs to check the reliability of our approach.
Finally, Sec. VII includes our conclusions, discussion, and
future work prospects. In the Appendix, we discuss the
additional re-scaling of the scales needed for the case of
nDGP gravity models in our analysis.

II. MODIFIED GRAVITY MODELS AND N-BODY
SIMULATIONS

Our analysis focuses on dark matter halo catalog data
generated using the ELEPHANT (Extended LEnsing PHysics
using ANalaytic ray Tracing [65,83]) cosmological simu-
lation suite. This N-body simulation series was designed to
provide a good test bed for models implementing two most
frequently studied screening mechanisms: Chameleon [27]
and Vainshtein [28] effects. These two ways of suppressing
the fifth force are both extremely nonlinear and have
fundamental physical differences. The Chameleon mecha-
nism makes a prospective cosmological scalar field sig-
nificantly massive in high-density regions by inducing an
effective Yukawa-like screening, and the effectiveness of
the Chameleon depends on the local density; thus, it
induces environmental effects in the enhanced dynamics.
The Vainshtein screening mechanism, on the other hand,
makes the scalar field kinetic terms very large in the
vicinity of massive bodies, and as a result, the scalar field
decouples from matter, and the fifth force is screened.
Vainshtein screening depends only on the mass and
distance from a body and shows no explicit dependence
on the cosmic environment. An elaborate and exhaustive
description of these screening mechanisms is discussed in,
e.g., Refs. [12,27–31,84–87].
In our work, we consider the following cosmological

branch models: ΛCDM, the Hu-Sawicki fðRÞ model with
Chameleon screening [84], and the normal branch of the

Dvali-Gabadadze-Porrati (nDGP) model [51] with
Vainshtein screening. The parameter space of these MG
models is sampled to vary from mild to strong linear-theory
level differences from the ΛCDM case. We consider three
fðRÞ variants with its free parameter jfR0j taken to be 10−6,
10−5, and 10−4 (increasing order of deviation from ΛCDM)
dubbed as f6, f5, and f4, respectively, and two variants
of the nDGP model, with the model parameter rcH0 ¼ 5

and 1 (again in increasing order of departure from
ΛCDM), marked consequently as nDGP(5) and nDGP(1),
respectively.
The simulations were run from zini ¼ 49 to zfin ¼ 0

employing the ECOSMOG code [88–91], each using
10243 N-body particles in a 1024 h−1 Mpc box. The mass
of a single particle and the comoving force resolution
were mp ¼ 7.798 × 1010 M⊙h−1 and ε ¼ 15 h−1 kpc,
respectively. Each set of simulations has five independent
realizations, except for f4.1 All these simulations were
evolved from the same set of initial conditions generated
using the Zel’dovich approximation [92]. A high value of
the initial redshift ensures long enough time for the
evolution of the system to wipe out any transients that
would affect the initial particle distribution, which is a
consequence of employing the first-order Lagrangian
perturbation theory [93]. The cosmological parameters of
the fiducial background model were consistent with the
WMAP9 cosmology [94], namely, Ωm ¼ 0.281 (fractional
matter density), Ωb ¼ 0.046 (fractional baryonic density),
ΩΛ ¼ 0.719 (fractional cosmological constant density),
Ων ¼ 0 (relativistic species density), h ¼ 0.697 (dimen-
sionless Hubble constant), ns ¼ 0.971 (primordial spectral
index), and σ8 ¼ 0.820 (power spectrum normalization).
These parameters apply to background cosmologies in both
MG and ΛCDM simulations.
For further processing, we take simulation snapshots

saved at z ¼ 0, 0.3, 0.5, and 1. For each epoch, we analyzed
the N-body particle distribution with the ROCKSTAR halo
finder [95] to construct dark matter halo catalogs. Halos are
truncated at the R200c boundary, which is a distance at
which the enclosed sphere contains an overdensity equal to
200 times the critical density, ρcrit ≡ 3H2

0=8πG, and the
corresponding enclosed halo mass isM200c. We restrict our
analysis to halos with at least 100 particles to avoid any
shot noise or resolution effects, which sets the minimum
halo mass in our catalog to Mmin ¼ 8.20 × 1012 M⊙h−1.
Therefore, the halo mass range we study typically covers
galaxy groups and clusters.
For additional tests, we have worked with two

extra nDGP(1) runs based on Planck15 cosmology [96]:
one realization of nDGP-HR-1280 in a simulation box
of size 100 h−1 Mpc, with 12803 particles of mass

1For f4, we have two realizations at z ¼ 0, two at z ¼ 0.3, four
at z ¼ 0.5, and three at z ¼ 1.
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mp ¼ 4.177 × 107 M⊙h−1, and one realization of nDGP-
HR-1400 in a box of size 1000 h−1Mpc, with 14003

particles of mass 3.192 × 1010 M⊙h−1.

III. HALO MASS FUNCTION

The halo mass function (HMF), nðMÞ, quantifies the
comoving number density of dark matter halos: their
abundance is expressed as a function of halo (virial) mass
at a given epoch (redshift) normalized to a unit volume. We
can make a further distinction: the differential mass
function dnðMÞ=dM and its cumulative variant: nð< MÞ.
In this work, we have considered the former for our
analyses.
The amplitude of the HMF depends both on the matter

power spectrum at a given redshift, Pðk; zÞ and on the
background cosmology. The analytical modeling of this
statistical quantity has a long history, which dates back to
the seminal paper of Press and Schechter [33], in which
they formulated a simple theory of a fixed barrier in the
Gaussian density fluctuation field. The collapse of struc-
tures of different sizes is modeled by applying density
smoothing using a spherical function of a given comoving
scale R. The collapse of a peak of size R with mass M
occurs when the enclosed overdensity surpasses the critical
density threshold,2 δc ≃ 1.686. In essence, the Press-
Schechter (PS) theory is an application of the spherical
collapse [98] to the cosmological Gaussian random density
fluctuations.
In this approach, halos are considered as statistical

fluctuations in the Gaussian random field. For a spherical
halo (peak) of mass M and background matter density
ρmðzÞ, the linear variance in the density fluctuation field
smoothed using a top-hat filter is

σ2ðRL; zÞ ¼
1

2π2

Z
∞

0

k2W2ðkRLÞPðk; zÞdk: ð1Þ

Here, Pðk; zÞ is the linear theory matter power spectrum at a
given redshift, WðxÞ ¼ 3ðsin x − x cos xÞ=x3 is the Fourier
counterpart of the top-hat window function, and RL is the
halo Lagrangian radius, which is the smoothing radius of
the filter scale, given by

RL ¼
�

3M
4πρm

�
1=3

: ð2Þ

Now, the differential HMF can be expressed as
[33,35,99]

dn
dM

¼ ρm
M2

FðσÞ
���� d ln σd lnM

����: ð3Þ

From the above equations, we can see that the HMF can be
related to fluctuations in the matter density field by
employing the so-called halo multiplicity function, FðσÞ
[35], which describes the mass fraction in the collapsed
volume. The original PS model was amended later by the
excursion set approach (also termed as the extended Press-
Schechter formalism; see, e.g., Ref. [100]), and the follow-
ing functional form of FðσÞ was postulated:

FPSðσÞ ¼
ffiffiffi
2

π

r
δc
σ
exp

�
−

δ2c
2σ2

�
: ð4Þ

For such a simple model, the PS HMF showed remarkably
good consistency with the simulation results, especially in
the intermediate halo mass regime. The onset of precision
cosmology, accompanied by the rapid growth of both size
and resolution of N-body simulations allowed for a robust
numerical estimation of HMF across many orders of
magnitude [39,41–43,101–105]. These have indicated that
the original FPSðσÞ grossly overpredicts the abundance of
low-mass halos, simultaneously underestimating the num-
ber of the very massive ones, in the cluster mass regime.
A number of amended models have been put forward,
and the literature of this subject is very rich (see, e.g.,
Refs. [36,37,39–43,99,106]). All of these alternatives have
their pros and cons and usually vary with performance
across masses, redshifts, and fitted cosmologies [107].
We have tested many different HMF models and found

that the majority of them have very similar accuracy. For
brevity, we take one particular model as our main choice for
the analytical HMF predictions. We use the FðσÞ formula
proposed by Sheth et al. [36] (hereafter SMT-01), given as

FSMT−01ðσÞ¼A

ffiffiffiffiffiffi
2a
π

r �
1þ
�
σ2

δ2ca

�
p
�
δc
σ
exp

�
−
aδ2c
2σ2

�
: ð5Þ

Here, the constants A ¼ 0.3222, a ¼ 0.707, and p ¼ 0.3
were found by relaxing the PS assumptions and allowing
for an ellipsoidal peak shape along with the possibility of a
moving barrier.
An equally important ingredient, along with the form of

the halo multiplicity function, to obtain an analytical HMF
prediction is the linear theory matter density power
spectrum. To calculate this quantity, we use a modified
version of the CAMB cosmological code [108], including a
module implementing the fðRÞ and nDGP models [109].
We examined the modified δc values adjusted for a specific
MG model, as suggested by Ref. [76] for the nDGP model
and by Ref. [74] for the fðRÞ. This, however, yielded HMF
theoretical predictions that also significantly differ from our
simulations results and fail to the same extent as theΛCDM
based δc theoretical model we examine (see the text below
and Fig. 2). Thus, for the sake of simplicity and clarity, we
will use a standard ΛCDM spherical collapse based δc
values for obtaining all our analytical HMF predictions.

2This is the standard spherical collapse threshold value
obtained in GR [97].
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We begin by taking a look at the differences between
linear theory matter density variance of our models.
In Fig. 1, we show the ratio of σðMÞ of a given MG
model with respect to the fiducial ΛCDM case. The results
are expressed as a function of the halo mass scale and are
shown for a range of redshifts 0 ≤ z ≤ 10. The differences
in the density variance are driven by the differences in the
shape and amplitude of the linear-theory power spectra of
the corresponding models. We show the fðRÞ and nDGP
families in separate panels to emphasize a clearly scale-

dependent nature of fðRÞ linear matter variance deviation
from ΛCDM.
In Fig. 2, we compare the analytical SMT-01 prediction

for the HMF with the results obtained from N-body
simulations. To reduce the potential impact of model
inaccuracies and cosmological dependencies, we focus
on the ratio of the MG to ΛCDM differential HMFs:
nMG=nΛCDM. Departures of this ratio from unity mark the
deviations from the GR based structure formation scenario
induced by the action of the fifth force. We consider two

FIG. 1. Ratio of the MG to ΛCDM linear theory density variance σðMÞ, defined in Eq. (1), for three variants of fðRÞ (left-hand plot),
and two variants of the nDGP gravity model (right-hand plot). The color gradient ranges from the darkest at z ¼ 0 to the lightest
at z ¼ 10.

FIG. 2. Ratio of the differential HMF between MG models and ΛCDM, nMG=nΛCDM, as a function of halo mass, M200, at two
redshifts: z ¼ 0 (top panels) and 0.5 (bottom panels). The MG models considered here are three variants of fðRÞ [f6; f5 and f4 (left-
side plots)] and two variants of nDGP [nDGP(5) and nDGP(1) (right-side plots)]. The dashed lines mark the ratio of SMT-01 predictions
[36], and the solid lines of the same color are the corresponding simulation results. The shaded regions illustrate the propagated Poisson
errors from simulations.
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epochs as an example: z ¼ 0 (plots in the top row) and
z ¼ 0.5 (plots in the bottom row). For clarity, we compare
the fðRÞ model family (left-hand plots) and the nDGP
branch (right-hand plots) separately. In each case, the
dashed lines mark the ratio of the SMT-01 model pre-
dictions obtained using the linear theory power spectra of
the relevant models. The solid lines in corresponding colors
highlight the results obtained from simulations, and the
shaded regions illustrate propagated Poisson errors
obtained from the halo number count. We see that the
theoretical HMF model provides a rather poor match to the
MG simulation results. The trend is that the empirical
predictions for MG models fostering weaker deviations
from GR, i.e., nDGP(5) and f6, are closer to the N-body
results. For all our stronger models, the SMT-01 predictions
catastrophically fail to capture the real nonlinear HMF.
However, there are trends present in these mismatches,
depending on both the redshift and the model. For the
nDGP gravity, the theoretical HMF model overpredicts
deviations from ΛCDM for both epochs, while in the case
of the fðRÞ family, the SMT-01 model generally under-
predicts the real MG effect. We note that for the mass scales
considered the mismatch is larger for z ¼ 0.5 than for z ¼ 0
for all the gravity variants, except for f6.
Figure 2 illustrates a clear failure of the HMF modeling

to capture the real MG physical effect seen in the
abundance of halos. For this exercise, we have found that
all of the popular HMF models that we tested (e.g.,
Refs. [35,37,39–41,106]) fail here in a similar fashion as
the SMT-01 model. This is a clear signal that the HMF
models, which are based on the extended Press-Schechter
theory, are missing some important parts of the physics of
the MG models. One, and probably the most significant,
missing piece is the screening mechanism (as was pre-
viously discussed in Refs. [62,63]). Both the Vainshtein
and Chameleon introduce additional complexities to the
structure formation, such as the departure from self-
similarity in the halo collapse. In addition, the screening
in fðRÞ gravity is environmentally dependent, which
further alters the nMG=nΛCDM ratio. This can be very well
appreciated by observing the peaklike feature for the f5
model, in which the mass scale of the peak changes with
redshift. The combined effects that we have just listed make
the construction of accurate analytical HMF models for
MG very challenging [64,71–74,91,110,111].

IV. TESTING THE UNIVERSALITY OF THE
MULTIPLICITY FUNCTION IN MODIFIED

GRAVITY MODELS

The halo mass and the corresponding scale rms density
fluctuations are connected via a redshift-dependent rela-
tion, σðM; zÞ, obtained by plugging Eq. (2) into Eq. (1).
When the multiplicity function, FðσÞ, is expressed as a
function of lnðσ−1Þ, rather than of the halo mass, the
resulting FðσÞ − lnðσ−1Þ relation becomes independent of

redshift in ΛCDM [35]. This universality of the halo
multiplicity function was shown to hold for various red-
shifts and a range of σ−1 [34–40]. For the times and scales
where this universality holds, one can describe the abun-
dance of structures using only one uniform functional
shape of the halo multiplicity function. This approximately
universal behavior is a result of the scaling term betweenM
and σ, d ln σ=d lnM, in Eq. (3), which encapsulates the
dependencies on the linear background density field
evolution, cosmology, and redshift. The universality of
the HMF can also be understood as a result of the interplay
of two effects in hierarchical cosmologies: first, at a fixed
mass, enhancement of fluctuations is greater at smaller
redshifts, and second, a fixed mass would correspond to a
larger amplitude of fluctuation at larger z compared to that
at a smaller z.
Some of the MG-induced effects will be already encap-

sulated in the changes of the σðMÞ relation (illustrated in
Fig. 1), as shown from both the linear theory and simulation
based power spectrum studies [62,83,91,112–116]. Thus,
one can hope that when we express HMF using the natural
units of the density field fluctuation variance, rather than a
specific physical mass, the MG features from Fig. 2, which
display strong time- and scale-dependent variations, will
become more regular. This in turn would admit more
accurate and straightforward HMF modeling in MG.
We are now interested in studying the halo multiplicity

function, FðσÞ, in our MG models. We want to check its
behavior and relation with respect to the standard ΛCDM
case across fluctuation scales, lnðσ−1Þ, and for different
epochs. The combined results for all our models are
collected in the six plots of Fig. 3. First, let us take a look
at the ΛCDM results, which is shown in the upper-left plot.
The colors mark the FðσÞ computed from snapshots at
different redshifts, and the shaded regions illustrate the
scatter around the mean for different realizations, estimated
as Poisson errors from halo number counts (using the
definition given in Ref. [38]). With the dotted line, we show
the SMT-01 model prediction to verify the predicted
universal shape of the halo multiplicity function. It is clear
that the simulation results already for the vanilla ΛCDM
case are admitting the universality only approximately.
Remembering that here M ∝ σ−1, we can say that in
the intermediate-mass regime the agreement between the
simulation and the SMT-01 formula is the best. For the
negative lnðσ−1Þ regime, the simulations contain a bit fewer
halos with respect to the theoretical prediction, and such
deficiency is also visible in the high mass (i.e., small σ)
regime, although there the discrepancy appears somewhat
more significant. The z ¼ 0 case merits a separate com-
ment. Here, the disagreement with the SMT-01 formula,
and simultaneously also with all the higher redshift
simulation data, is very noticeable. The small- and high-
mass deficiency of the simulated FðσÞ is a well-known
effect due to the impact of both the discreteness (small
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masses) and the finite volume (large masses) on the
resulting simulated DM density field [37,117–120].
These effects are combined and especially pronounced
for the z ¼ 0 case, where the density field is most evolved,
and thus the most nonlinear. However, given the vast
dynamical scale both in FðσÞ and σ−1, the regular and
approximately universal results for the ΛCDM run are
very encouraging.

Moving to the MG HMF, we present each variant of the
models separately. In the top subpanel of each MG plot, we
observe that the FðσÞ trend is very similar to the one
observed in ΛCDM, as discussed above. What seems more
interesting, though, are the lower subpanels of these plots,
where we show the relative difference taken with respect
to the ΛCDM case at each redshift consequently. Each
model exhibits a unique and specific combination of both

FIG. 3. Top subpanels: Halo multiplicity function, FðσÞ, for the six gravity models (solid lines with shaded uncertainty regions) as a
function of lnðσ−1Þ. Each color corresponds to a different redshift as indicated in the legend in the top-left panel. Dotted grey lines are the
analytical SMT-01 predictions [36]. Bottom subpanels: Ratio of the MG FðσÞ to that of ΛCDM for each redshift.
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amplitude and scale of departure from the fiducial GR case.
For both f4 and nDGP(1), the excess of FðσÞ can reach up
to ∼60% or greater in the rare density fluctuation regime,
lnðσ−1Þ ≥ 0.7. At the same time, both mild variants, f6,
and nDGP(5) do not depart from GR by more than
∼15% − 20%. The departure of f5 from ΛCDM, which
is ∼20% − 25% maximum, lies between the results of f4
and f6, as expected.
The most striking and important observation is the much

more enhanced regularity of FðσÞ departures from the
ΛCDM case when compared with the previous plot of the
HMF itself (Fig. 2), where the abundance of objects was
shown as a function of their mass. Now, when we express
FðσÞ in its natural dimensionless units of the density field
variance, ln(σ−1), the MG effects are much more regular
across the redshifts.
However, we see an exception for the f4 gravity case in

which there are clear signs of deviation from universality,
especially at z ¼ 0. We attribute this to the enhanced fifth
force in this fðRÞ variant, which accumulates as time
elapses and has a maximum effect at later redshifts. We
note, however, that this rather extreme MG model is
unlikely to be valid taking into account the current
observational constraints [54,84]. Nevertheless, we have
considered f4 in our analysis for completeness.
In general, the FðσÞ modification for the fðRÞ variants

follows a very similar pattern as a function of lnðσ−1Þ, and
the universality of FðσÞ over the redshifts is largely
established. In addition, the shape of the FðσÞ modification
displays a peak for f5, monotonically increases for f4, and
monotonically decreases for f6. This is a clear manifes-
tation of a complicated and nonlinear interplay between the
local density and the Chameleon screening efficiency. The
interpretation could be that the Chameleon mechanism is
self-tuned by the environment-dependent nonlinear density
evolution. As a result, as clearly shown for the fðRÞ plots of
Fig. 3, the self-similarity of the HMF and density field
evolution is restored.
The nDGP case is less clear to interpret. The σðMÞ

rescaling brings the FðσÞ at all the different redshifts much
closer together when we compare with nDGP plots for the
HMF in Fig. 2. Some resonant time-dependent evolution
can be, however, still noticed; this can be appreciated
especially in the case of nDGP(1). This residual redshift
dependence reflects the fact that the screening mechanism
in this model family is the Vainshtein, which does not
depend on the local density field (i.e., the environment).
Thus, the general force enhancement factor and the result-
ing growth rate of structures is only time dependent but
scale independent (as also seen in the right plot of Fig. 1),
which forbids the self-tuning mechanism in nDGP, unlike
the case of fðRÞ. However, the nDGP force enhancement
factor, ΞðzÞ, can be easily calculated for any given redshift
[85]. We exploit this to introduce time-dependent physical
rescaling for nDGP, σ̃ ≡ σ=ΞðzÞ, which has been defined

and discussed in the Appendix. This physically tuned
rescaled factor removes nearly all the redshift dependence
in the nDGP FðσÞ modification (see also Fig. 8). Thus, this
one additional step can restore the expected self-similar and
universal behavior of the HMF in the normal branch of the
Dvali-Gabadadze-Porrati model.

V. RESCALING THE MULTIPLICITY FUNCTION
IN MODIFIED GRAVITY

We will now exploit the universality of the MG halo
multiplicity function, which was established in the previous
section, to characterize the essential effects induced by
beyond-GR dynamics on the abundance of halos. We do
this by first finding an enclosed formula that describes well
the shape of the MG HMF departure from the fiducial
ΛCDM case. Then, we obtain the best fit for a given MG
variant for all redshifts. Finally, we test our newly found
MG HMF model against datasets that were not used for the
fitting. In this section, we will cover the first two steps,
leaving the testing for Sec. VI.
As we have already highlighted, FðσÞ displays some

degree of universality for each of the gravity models in a
sense that it takes approximately the same form for all
the considered redshifts (as shown in Fig. 3). This has
already been studied extensively for ΛCDM, and many
authors have taken advantage of this property of univer-
sality in HMF to propose fitting functions for the ΛCDM
HMF (e.g., Refs. [35–37,39,40]). However, some other
authors have, in contrast, reported a departure from
universality in ΛCDM. This has been identified as the
dependence of HMF on several factors: redshift and
cosmology [41–43,45,106], nonlinear dynamics associ-
ated with structure formation [40,43], some artificially
induced factors like the type of mass definition employed
to define a halo [34,39–41,121,122], the value of the
linking length [43,123], or numerical artifacts in the
simulations and computations of the HMF [38,106]. For
the case of MG models like fðRÞ and nDGP, the
universal trend in the HMF is even less certain, given
the explicit dependence of the fifth force and of the
associated screening mechanisms on the scale and envi-
ronment [32,62,64,71,73,110].
Considering the failure of the empirical relations

devised for the ΛCDM HMF to capture MG effects (as
discussed in Sec. III), rather than searching for a universal
MG FðσÞ fit, we adopt a different approach. We instead
characterize the beyond-GR HMF as a functional
deviation from the ΛCDM case. Thus, we express the
targeted MG HMF as a function of the ΛCDM case at a
fixed σ, i.e., FMG½FðσÞΛCDM�, and the general form of the
relation between ΛCDM and MG multiplicity functions is
given by

FðσÞMG ¼ ΔMG × FðσÞΛCDM: ð6Þ

GUPTA, HELLWING, BILICKI, and GARCÍA-FARIETA PHYS. REV. D 105, 043538 (2022)

043538-8



Here, FðσÞΛCDM is obtained from ΛCDM simulations. As
we are using N-body derivations to characterize FðσÞ, the
resulting MG HMF model will automatically incorporate
nonlinear effects to the limit of our simulations.
The general conclusion from Sec. IV is that the ratio

FðσÞMG=FðσÞΛCDM has an approximately universal, red-
shift-independent shape after rescaling the fluctuation
scales in terms of lnðσ−1Þ. We calibrate the relation (6)
based on the ELEPHANT data and find enclosed formulas to
capture ΔMG as probed by the simulations for each of the
MG variants we have considered.

A. f ðRÞ gravity
We have found that the following analytical expression

can be used to fit ΔMG in fðRÞ simulations,

ΔMG ≡ ΔfðRÞ ¼ 1þ a exp

�
−
ðX − bÞ2

c2

�
; ð7Þ

where X ≡ lnðσ−1Þ. Here, the parameter a sets the maxi-
mum value of FðσÞfðRÞ=FðσÞΛCDM, b corresponds to the
value of lnðσ−1Þ at the maximum enhancement, and c
determines the range of lnðσ−1Þ across which FðσÞfðRÞ is
enhanced with respect to FðσÞΛCDM. These best-fit param-
eters were obtained by solving for the minimum reduced
χ2, which were procured by comparing the ratio
FðσÞfðRÞ=FðσÞΛCDM from simulations with our analytical
expression (7) across all redshifts and for each lnðσ−1Þ bin.
For fðRÞ, the best-fit values of the parameters are given in
Table I.
In Fig. 4, we illustrate the performance of our analytical

formula with the best-fit parameters from Table I by
comparing it with the simulation data for each redshift.
As we can observe, generally the accuracy of our formula is
good at high-σ (or low-mass) regime, where also the lines
indicating different redshifts are close to each other, which
is not surprising given the good statistics of our simulation
in this regime. At the low-σ (high-mass and rare-object)
regime, the data are characterized by a much bigger scatter.
This drives our best fit sometimes in between the different
redshift lines, an effect most visible for the f5 case. As the
fit was obtained together for all the redshifts, and the
assumed universality holds only approximately, we expect
that the deviation at some redshifts might be larger
compared to others. Nonetheless, given the scatter of both

the mean trends and their corresponding errors, our fitting
formula does a remarkably good job.
The general Gaussian form of Eq. (7) fosters a “peak-

like” feature with some specific lnðσ−1Þ ¼ b value for the
peak location. This suggests that the HMF of fðRÞ-gravity

TABLE I. Parameters for the fðRÞ gravity model fit, ΔfðRÞ
[Eq. (7)].

Model a b c

f4 0.630 1.062 0.762
f5 0.230 0.100 0.360
f6 0.152 −0.583 0.375

FIG. 4. Ratio of the halo multiplicity functions ΔfðRÞ ¼
FðσÞfðRÞ=FðσÞΛCDM for f4, f5, and f6. Colored lines indicate
the four different redshifts. The black line in each panel is our
universal fit [Eq. (7)] with the best-fit parameters provided for
each model in Table I. Poisson errors in both FðσÞfðRÞ and
FðσÞΛCDM are propagated to plot the error ranges of the ratio.
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models can be characterized by a new universal scale: a
scale at which the combined effect of the enhanced
structure formation and ineffective screening mechanism
maximizes the halo abundance for the case of fðRÞ gravity.
Given the limitations of the ELEPHANT simulations, we

can expect that our best-fit parameters could be probably
still tuned even more, if bigger and higher-resolution
simulations became available. Nonetheless, considering
these limits, we appreciate that the resulting reduced χ2

values of the best fits, both for individual redshifts as well
as for the concatenated redshift data, are very reasonable.
These reduced χ2 values were obtained by comparing the
MG HMF obtained using simulations and our Eq. (6), with
parameters taken from Table I. We give them in Table III.

B. nDGP gravity

For this class of models, we found a different shape of
ΔMG, as the formula that works for fðRÞ failed to provide
a good fit to the data. Instead, we use an arctan para-
metrization that much better captures the nDGP shape of
ΔMG, given by

ΔMG ≡ ΔnDGP ¼ pþ q arctan ðsX þ rÞ: ð8Þ

Here, X is the rescaledmass density variance, X ≡ lnðσ̃−1Þ,
and we recall that σ̃ ¼ σ=ΞðzÞ. The parameter p shifts the
lower asymptote of the curve, q sets the amplitude of
FðσÞnDGP=FðσÞΛCDM, r dictates the range of lnðσ̃−1Þ, and s
determines the slope of the deviation curve. These best-fit
parameters were obtained using the method analogous to
the one discussed for fðRÞ and are given in Table II. Also,
we plot in Fig. 5 the resulting best-fit arctan curves
alongside the simulation data at various redshifts. A quick
look at the reduced-χ2 values in Table III indicates that our
nDGP fits on average characterize the data even better than
for the case of fðRÞ fits.

VI. TESTING THE FITS

We want to test our best fits obtained for various MG
models with simulation data that were not used for the
original fitting. This test will inform us of the degree of
both applicability and accuracy of our HMF modeling.
However, as we did not have access to fðRÞ simulations

other than ELEPHANT, we limit this cross-check to two
nDGP(1) runs. These will be our test beds that have better
resolution than the data that we used to derive the scaling

relations from the previous section. The description of these
two independent runs is given in Sec. II.
We note that the differences between ELEPHANT and the

independent simulations that we use here may lead to some
complications in the comparisons. We expect that the
effects from the different cosmologies will be secondary,
as long as we compare the ratios, ΔMG, rather than the
absolute HMF values. This is because the expansion history

FIG. 5. Ratio of the halo multiplicity functions ΔnDGP ¼
FðσÞnDGP=FðσÞΛCDM for nDGP(1) and nDGP(5). Colored lines
indicate the four different redshifts. The black line in each panel is
our universal fit [Eq. (8)] with the best-fit parameters provided for
each model in Table II. Poisson errors in both FðσÞnDGP and
FðσÞΛCDM are propagated to plot the error ranges of the ratio.

TABLE II. Parameters for the nDGP gravity model fit, ΔnDGP
[Eq. (8)].

Model p q r s

nDGP(1) 1.35 0.258 5.12 4.05
nDGP(5) 1.06 0.0470 11.8 4.19

TABLE III. Reduced χ2 values obtained by comparing our fit
equations [Eqs. (7) and (8)] with the respective simulation results.
We show values for individual redshift and for the joint all-z data.

Model z ¼ 0 z ¼ 0.3 z ¼ 0.5 z ¼ 1 All z

f4 18.9 6.55 1.46 4.45 7.60
f5 4.95 6.96 6.11 4.30 5.58
f6 0.300 0.236 1.04 0.290 0.470
nDGP(1) 3.66 0.834 1.23 0.860 1.64
nDGP(5) 0.364 0.203 0.332 0.428 0.385
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and power-spectrum normalization will be the same for
ΛCDM-Planck15 and nDGP(1)-Planck15, so to the first
order, the value of ΔMG will be driven mostly by the fifth-
force induced effects. Nonetheless, the rescaling from σ to
σ̃ in nDGP is cosmology dependent and could contribute to
possible discrepancies (see Appendix).
The most valuable aspect of this exercise is that we shall

test our best-fit ΔMG models on simulation data that cover a
different σðMÞ range than the original ELEPHANT suite. The
halo masses at various redshifts in the nDGP-HR-1280 run
are contained within 0.50≲ σðMÞ≲ 4.1, while for nDGP-
HR-1400, this range is roughly 0.27≲ σðMÞ≲ 1.9, whereas
for ELEPHANT, the values lie between 0.32≲ σðMÞ≲ 1.5.
Thus, the mass variance of the smaller box reaches to nearly
three times higher σðMÞ, while the mass variance of larger
box is ∼40% greater than ELEPHANT suite.
We start with nDGP-HR-1280, which goes much deeper

into the small-scale nonlinear regime than our original runs.
In Fig. 6, we illustrate how our best fit of Eq. (8) performs
in capturing the HMF deviations of nDGP(1) in this run.
The bottom panel of this figure shows the percentage
deviation in ΔMG between the nDGP-HR-1280 simulations
and our best fit for this model, treated as a reference. The
increased scatter in the nDGP-HR-1280 simulations at the
low-σðMÞ regime is expected, given nearly a 1000 times
smaller volume of this run compared to ELEPHANT. What is,
however, outstanding is a remarkable agreement of our
best-fit in the high-σ range. Here, the differences are kept
well below a few percent, even deep in the regime outside
the original ELEPHANT. The overall performance of our fit is
very good.

An analogous test for nDGP-HR-1400 is shown in Fig. 7.
Here, we observe that the agreement between our best-fit
model prediction and the independent simulation data is
worse than in the previous case. While the mismatch that
we can see in the high-σ range is still relatively small,
usually staying within 5%, the disagreement in the low-
variance regime is noticeably bigger. We note, however,
that for this run also the overall degree of ΔMG universality
is substantially reduced. Still, the overall performance of
our model is satisfactory as it stays within �10% con-
sistency with the data for the trusted lnðσ−1Þ range, given
the variance of nDGP-HR-1400 simulation runs.
The results of the above tests reassure us that the

universal nature of the ΔMGðσÞ we have found seems to
be a real feature of the nDGPMG-class model. Moreover, it
seems that the fitting formula we put forward for this
gravity variant in Eq. (8) offers a very good and fully
nonlinear model of the MG HMF. However, the accuracy
for the fðRÞ family case [see Eq. (7)] would have to be
further ascertained with high-resolution fðRÞ runs. We
leave this exercise for future work.

VII. CONCLUSIONS

In this work, we have studied the dark matter halo mass
function in modified gravity scenarios where structure
formation differs from that in ΛCDM. For that purpose,
we employed the ELEPHANT suite—a set of N-body
simulations, which cover GR and selected MG models,
namely, Hu-Sawicki fðRÞ and nDGP. We focused on the
intermediate to high-mass end of the halo distribution in the
redshift range 0 ≤ z ≤ 1. In this regime, all the considered
MG models display a redshift-dependent deviation in the
HMF with respect to the ΛCDM case, when analyzed as a
function of halo mass.
We first verified that the MG HMFs as measured from

simulations are not well matched by analytical models
originating from the Press-Schechter framework [33], such

FIG. 6. Top panel: the ratio, FðσÞnDGPð1Þ=FðσÞΛCDM, obtained
using nDGP-HR-1280 simulations for z ¼ 0, 0.3, 0.5, and 1. The
black curve represents the nDGP ELEPHANT fit [Eq. (8)] with the
best-fit parameters for nDGP(1) given in Table II. Bottom panel:
percentage difference between the FðσÞ values from the simu-
lation and the corresponding values from the proposed fit. The
gray vertical dashed lines in both panels illustrate the minimum
lnðσ−1Þ accessible with the ELEPHANT simulations.

FIG. 7. Analogously to Fig. 6, but for nDGP-HR-1400.
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as the Sheth et al. formula [36], which describe the halo
multiplicity function, FðσÞ. We attribute this failure of the
analytical models to their ignorance of the complicated and
inherently nonlinear screening mechanism, which is a
necessary ingredient in the cosmological MG scenarios,
needed to satisfy observational constraints on gravity on
both local scales and in high-energy conditions.
We note that the theoretical HMF models already show

noticeable inaccuracies when contrasted with ΛCDM
N-body results. These inaccuracies are expected to be
propagated, and most likely increased, when applied to MG
models. To eliminate such leading-order discrepancies,
instead of comparing the predictions of the absolute
HMF amplitudes, we have focused on the relative ratios
to the ΛCDM case, i.e., nMG=nΛCDM. The predictions for
this ratio based on the Sheth et al. formula [36] fails to
capture the halo-mass-dependent shape of the MG devia-
tions as obtained from simulation results.
For the fðRÞ case, the SMT model underpredicts the

HMF amplitude, while in contrast, for the nDGP family, we
observe an overprediction. This is again a clear manifes-
tation of the shortcomings of these analytical models in
capturing the extra MG physics, which is essentially related
to the presence of intrinsically nonlinear screening mech-
anisms operating at small scales in both models.
In hierarchical structure formation scenarios, the abun-

dance of collapsed objects is better characterized as a
function of the rarity of the density peaks they originated
from, rather than of a certain virial halo mass. The former
is quantified by the density field variance σðMÞ at a given
halo mass scale and redshift. Following this, we observed
that FðσÞ shows a much more universal character
across redshifts for a given gravity model when expressed
as a function of lnðσ−1Þ. Furthermore, we have found
that when we characterized the MG-induced effects
as relative ratios of MG FðσÞ to the ΛCDM case a
new shape emerges, which is universal across redshift.
While the deviations from ΛCDM FðσÞ for fðRÞ models
show a universal character already at their face values, the
nDGP case required an additional σðMÞ rescaling. This
extra step was needed to include the additional redshift-
dependent magnitude of the fifth force in this class of
models.
We have demonstrated that, once the MG HMF is

expressed conveniently as a deviation from ΛCDM case
at a given σðMÞ scale, it exhibits a shape that is universal
across redshifts. This is an important result, indicating that
for models that employ such specific nonlinear screening
mechanisms their effectiveness at the statistical level is well
captured by the filtering and expressing the density field in
the natural units of its variance.
To better quantify and test this newly found universality,

we invoked redshift-independent analytical fitting func-
tions to describe the ΔMG ≡ FðσÞMG=FðσÞΛCDM ratio.
These fits were calibrated on the ELEPHANT N-body

simulations covering the redshift range from z ¼ 0 to
z ¼ 1. For the fðRÞ case, we used a Gaussian-like form
of the fitting function which captures a peaklike feature in
ΔfðRÞ, the amplitude and position of which depends on the
given fðRÞ model’s specifications. In the nDGP case, an
arctan form proved to be a reasonably good fit forΔnDGP, as
it captures a monotonic increase at high-σ (low-mass) end
and suggests a limit of constant positive deviation at the
high-mass range. Our best fits turned out to provide quite
good descriptions of the FðσÞ for all tested MG variants,
except for the f4 model data at z ¼ 0, which was a clear
outlier. The fact that a single enclosed formula can provide
a good fit for a given MGmodel at all redshifts reflects well
that our N-body data supports the hypothesis of the redshift
universality of ΔMG.
Using independent simulation runs with better resolution

than the ELEPHANT and a slightly different background
cosmology, we were able to subsequently test our analytic
approximations in the nDGP case. The level of agreement
between our fits and these external data varied depending
on the redshift and mass range, but overall, it was
satisfactory, with the departure of the fit well within
10% of data points in the trusted regime. This is a strong
test indicating that the uncovered universal deviation of the
HMF is a result of real physical phenomenology of the MG
models in question, rather than a random chance effect
unique to the particular ELEPHANT suite. One could worry
that a 10% accuracy here is not an impressive precision,
given that 1% statistical precision will be demanded by the
forthcoming Big-Data cosmological surveys. However, on
the simulation side, it has been shown that the agreement
between present-day different halo finders is at most 10%
in ΛCDM [124,125]. Thus, our accuracy reported here is
already approaching the current numerical limit. On the
other hand, the magnitude of deviations from GR as
fostered by our MG models typically reaches a factor a
few × 10% at lnðσ−1Þ values where our accuracy limit
is set.
The resolution of the ELEPHANT simulations allowed us

to robustly probe only intermediate and large mass halos. In
this limited mass σ regime, the abundance of structures in
MG increases with respect to ΛCDM, as small mass halos
accrete and merge faster to form larger structures. However,
owing to the conservation of mass in the Universe, we can
expect that there should be a simultaneous decrease in the
number of small-mass halos in the MG models when
compared to ΛCDM. This was found to be indeed the case
for some of MG variants (e.g., Refs. [58,111,126]). A
similar effect is also hinted at in our results of the high-
resolution nDGP-HR-1280 runs at small lnðσ−1Þ < −2.75.
Thus, a natural extension of our study and an important
further test of the ΔMG universality will be to probe a
smaller mass (and larger σ) regime. Such a study will
require a completely new set of high-resolution N-body
simulations, and we plan it as a future project.
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The HMF and its time evolution is one of the most
important and prominent predictions of the theory of
gravitational instability and formation of the large-scale
structures [97]. In the ΛCDM framework and within its GR
paradigm, there is strong evidence for the universality of
the HMF with redshift, when the HMF is expressed in the
units of the dimensionless cosmic density field variance.
Once we admit a model with an extra fifth force acting at
intergalactic scales, such as the MG models studied here,
the universality of the HMF could no longer be taken for
granted. We have shown that once the density field is
rescaled both of our MG models exhibit an approximately
universal FðσÞ, similar to the trend seen in the case of
ΛCDM. Moreover, its ratio with respect to the ΛCDM case
can now be modeled by a single enclosed formula, with a
good fit for each of the specific fðRÞ and nDGP model
variants. This opens an avenue for building accurate, yet
relatively simple, effective models of the HMF in MG
scenarios. Such models can then be implemented in studies
on galaxy-halo connection, galaxy bias, and nonlinear
clustering (e.g., Refs. [63,64,71,76,127–130]). This will
be of paramount importance for robust predictions on
cosmological observables and their covariance. Such cal-
culations for many observables of interest have been so far
severely limited, mainly because N-body simulations, with
a full nonlinear implementation of screening mechanisms,
are prohibitively expensive for the case of most nontrivial
MG scenarios.
From this standpoint, the results of our analysis are the

first step toward building a versatile, accurate, and numeri-
cally cheap model of nonlinear matter and galaxy clustering
for MG cosmologies.
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APPENDIX: RESCALING THE MATTER
VARIANCE IN nDGP GRAVITY

Force enhancement due to the scalar field gradient in the
case of nDGP gravity is given by

ΞðzÞ≡ F5th

FN
¼
�
dϕ
dr

���
dΨN

dr

�
; ðA1Þ

where ϕ is the scalar degree of freedom associated with the
fifth force and ΨN is the standard (i.e., Newtonian)
gravitational potential. Considering the Vainshtein screen-
ing for a spherically symmetric body with a Lagrangian
radius, RL, ΞðzÞ is given by [32,76,85]

ΞðzÞ ¼ 2

3β

�
RL

rvðzÞ
�

3
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

RL

rvðzÞ
�

−3
s

− 1

!
; ðA2Þ

where the Vainshtein radius rvðzÞ is

FIG. 8. Left: the ratio
FðσÞnDGPð1Þ
FðσÞΛCDM as a function of lnðσ−1Þ. The trend becomes less universal as the scales increase and clearly depends on

redshift at larger values of lnðσ−1Þ. Right: the same ratio as to the left, but after rescaling the matter variance, by including the force
enhancement term, ΞðzÞ, in lnðσ̃−1Þ, where σ̃ðzÞ≡ σ=ΞðzÞ. The resultant plot shows a comparatively more universal trend across epochs.
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rvðzÞ ¼
�
16r2cGmðrÞ
9βðzÞ2

�
1=3

ðA3Þ

and

βðzÞ ¼ 1þ 2HðzÞrc
�
1þ

_H
3HðzÞ2

�
: ðA4Þ

As the crossover scale rc increases, rvðzÞ becomes larger,
and ΞðzÞ in Eq. (A2) goes to zero, thereby screening the
fifth force and recovering GR. Since the Vainshtein radius
depends on redshift, this makes the force enhancement
factor in nDGP an intrinsically time-dependent function.

We used the formula for ΞðzÞ to remove this first-order
intrinsic time-dependent enhancement in nDGP with
respect to the GR case, by considering rescaled matter
variance σ̃ðzÞ≡ σðzÞ=ΞðzÞ.
In the left-hand plot of Fig. 8, we have plotted the

quantity
FðσÞnDGPð1Þ
FðσÞΛCDM without rescaling, and we see explicit

dependence of this ratio on redshift. After rescaling of
matter variance in the right plot, we can acknowledge the
resultant universal ratio of the nDGP(1) HMF with respect
to ΛCDM across redshifts. A similar trend is seen in the
case of nDGP(5), and we show the resultant rescaled plots
in the main text.
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