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In the context of tomographic cosmic shear surveys, there exists a nulling transformation of weak lensing
observations (also called BNT transform) that allows us to simplify the correlation structure of tomographic
cosmic shear observations, as well as to build observables that depend only on a localized range of redshifts
and thus independent from the low-redshift/small-scale modes. This procedure renders possible accurate,
and from-first-principles, predictions of the convergence and aperture mass one-point distributions (PDF).
We here explore other consequences of this transformation on the (reduced) numerical complexity of the
estimation of the joint PDF between nulled bins and demonstrate how to use these results to make
theoretical predictions.
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I. INTRODUCTION

The statistics of weak-lensing fields provide us with a
powerful tool for precision cosmology (see, e.g., a review
in [1]) and motivated the build up of new generation large
galaxy surveys such as the Legacy Survey of Space and
Time (LSST) [2] or Euclid [3] which will collect data of
unprecedented quality in the coming years.
Among all the studied statistics of those fields, and

especially among probes of their non-Gaussian features, the
probability distribution function (PDF) has received some
attention. Although some theoretical efforts were engaged
long before, some formal reasons can for example be found
in [4] who demonstrated that the weak-lensing convergence
PDF provides information complementary to the cosmic
shear two-point correlation. Note that this complementarity
between two-point and non-Gaussian statistics is even more
relevant in the presence of shot and shape noise. Still
making use of a Fisher analysis but this time using a “from-
first-principles” theoretical model of the convergence PDF,

[5] also found that it yields tighter constraints for the
equation of state of dark energy, the amplitude of fluctua-
tions, the total matter fraction and the sum of neutrino
masses, especially when performing a multiscale analysis
and in addition to the two-point correlation function.
As for the theoretical modeling, although there exists

numerous works based on numerical simulations or more
recently the halo model as in [6], we will focus here on the
works whose approach could be qualified as from-first-
principles.
Already in [7] and their following papers, some hierar-

chical models for the statistics of the matter field were used
to construct the PDF of the aperture mass, and these works
were later reinterpreted in terms of a large deviation
principle and opening the way to extensions to more
realistic observables in [8]. Note that the general formalism
involving large deviation theory was before [8] used in the
context of the clustering of the matter field itself by the
same team, see for example [9] or [10] for an introduction.
Roughly at the same time as [8], the works of [7] also
inspired [11] for their modeling of the PDF of tangential
shear profiles. The most recent works on the PDF of the*alexandre.barthelemy@iap.fr
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convergence and the aperture mass within this large
deviation framework are [12] and [13] which take into
account the full geometry of the light cone and probe the
validity regime of the formalism with the help of numerical
simulations. These papers also make use of a nulling
strategy initially developed in [14] and not at all specific
to the PDF since directly implemented at the level of the
lensing maps.
This nulling strategy, sometimes referred to as the BNT

transform, is built on the fact that the lensing window
function, that traces the matter density field along the line
of sight and gives rise to the observed lensing quantity such
as the convergence and the shear within the Born approxi-
mation, depends on the cosmological background evolution
and in particular, does not depend on the dynamical
properties of the density fluctuations. Given this fact and
in the context of a tomographic analysis where the lensing
fields are observed for sources over a wide range of
redshifts, [14] defines a linear transformation—which thus
only depends on the cosmological parameters through two
moments only of the lens distance distribution—that can be
applied to the observed maps. It then gives rise to a new set
of maps which are effectively the result of a new set of
lensing window functions. These nulled window functions
now vanish over all redshifts comprised between the closest
source and the observer, effectively nulling the effect of
nearby structures. This transformation has multiple conse-
quences: it allows us to separate linear or quasilinear scales
from very nonlinear scales thus making theoretical model-
ing easier to control; it also makes nulled lensing maps
partially uncorrelated, a property we will use to our
advantage here. These feature are illustrated in Fig. 1
and further discussed hereafter.
Until now, the nulling strategy has been advocated in the

context of multiple nulled maps for the 2-point correlators,

angular power spectra or correlation functions, in the
context of galaxy and CMB lensing but also line-intensity
mapping lensing [15–17], but not for more complex
observables and in particular not for the joint density
PDFs. The goal of this paper is thus now to explore some
consequences of the correlation structure of the nulled
convergence and aperture mass fields for different source
redshifts along the line of sight on the computation of their
joint PDF. Note that this makes the derivations we present
much more general than this cosmological context since it
presents consequences on the computation of the joint PDF
of any series of random variables with “blocks” of nonzero
intercorrelations, i.e., variables that are chain-correlated 2
by 2 or 3 by 3. Section II briefly recalls the definition of the
convergence and the aperture mass, Secs. III and IV derive
the main results of this paper on the numerical complexity
of the joint cumulant generating function (CGF) and PDF,
Sec. V illustrates how one could use these derivations to
compute the joint PDF of the nulled convergence field for
different sources treating the underlying matter field as in
[12] (large deviation theory), and finally Sec. VI concludes.

II. CONVERGENCE AND APERTURE MASS

The convergence κ is traditionally interpreted as a
line-of-sight projection of the matter density contrast
distribution between the observer and the source.
Neglecting lens-lens couplings and within the Born
approximation it is written as [18]

κðϑÞ ¼
Z

χs

0

dχ wðχ; χsÞ δðχ;DϑÞ; ð1Þ

where χ is the comoving radial distance—χs the radial
distance of the source—that depends on the cosmological
model, and D is the comoving angular distance. The
lensing kernel w is expressed as

wðχ; χsÞ ¼
3ΩmH2

0

2c2
DðχÞDðχs − χÞ

DðχsÞ
ð1þ zðχÞÞ: ð2Þ

The aperture mass Map is defined as a geometrical
average of the local convergence within a window of
vanishing average

MapðϑÞ ¼
Z

d2ϑ0 Uθðϑ0Þκðϑ0 − ϑÞ ð3Þ

with the compensated filter obeying

Z
d2 ϑ0 Uθðϑ0Þ ¼ 0: ð4Þ

The aperture mass can moreover be interestingly expressed
as a function of the tangential component γt of the
shear [19,20], thus rendering the aperture mass a direct
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FIG. 1. The radial selection functions, prior to nulling (dashed
lines) and after nulling (thick lines). The source redshifts are
taken as the mean redshift of the first 8 equally populated redshift
bins of the Euclid experiment. The three thicker nulled selection
function are the ones we use for the practical implementation
in Sec. V.
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observable up to a reduced shear correction that can also be
accounted for as discussed in [13].
Note that the calculation we present in this paper and

especially in Sec. IV, our main result, are very general and
in particular their application in the cosmological context
does not depend on the choice of a specific filtering scheme
for the convergence field. For practical implementation
purposes and graphical representation, we will however
adopt a simple prescription where the convergence κ<θ is
filtered within a top-hat window of angular radius θ and the
associated aperture mass is given by

MapðϑÞ ¼ κ<θ2ðϑÞ − κ<θ1ðϑÞ: ð5Þ

In the following we will drop both the mention of ϑ,
thanks to isotropy, and < θ to simplify the expressions.

III. THE CUMULANT GENERATING
FUNCTIONS AND THE PDFS

In order to predict the joint statistics in multiple redshift
bins, the starting point is the expression of the cumulant
generating functions of projected densities which will, in
our case, correspond to the convergence or the aperture
mass. Following [12] this cumulant generating function can
be shown to take the form,

ϕðfλigÞ ¼
Z

drϕcyl=slope

�X
i

λi wiðrÞ; rθ0; zðrÞ
�

ð6Þ

where θ0 is the filtering angular size, wiðrÞ is the line-of-
sight profile which leads to the observable κi map,
ϕcylðλ;R; zÞ is the cumulant generating function of the
density in a cylinder of transverse size R, at redshift z,
written as a function of λ, and ϕslopeðλ;R; zÞ is the cumulant
generating function of the difference between the densities
in two concentric cylinders of transverse sizes R≡ R1 and
R2 > R1 at redshift z. The subscripts cyl and slope
respectively lead to the convergence and the aperture mass
and we write ϕcyl=slope when either or the other can be used.
For simplicity, we will present the formalism for the
convergence κ but the same equations hold for the aperture
mass field albeit replacing cyl by slope.
The joint probability density function (PDF) of the maps

κi corresponding to redshift bins indexed by i can then be
constructed through an inverse Laplace transformation of
the cumulant generating function,

PðfκigÞ ¼
Z Ynt

i¼1

dλi
2πi

exp
�
−
Xnt
i¼1

λiκi þ ϕðfλigÞ
�

ð7Þ

where nt is the total number of source planes and where the
integrals run along the imaginary axis. The properties of
such a transformation have been described in detail in many
papers (see for instance [21] and references therein).

We simply note here that marginalizing over one variable
κp is obtained by setting the corresponding variable λp to 0,

Z
dκpPðfκigÞ

¼
Z

dλ1
2πi

…
dλp−1
2π i

dλpþ1

2π i
…

dλnt
2πi

× exp
�
−
Xp−1
i¼1

λiκi −
Xnt
i¼pþ1

λiκi þ ϕðfλigjλp¼0Þ
�
: ð8Þ

This property will be very useful in the following.
For simplification we have assumed until now that all

sources are located on discrete source planes which makes
the selection functions wiðrÞ specific functions of the radial
distance, itself only dependent on the background geometry
when working within the Born approximation. As was
previously shown in [14], it is then possible to define a
lower triangular matrix pij [22] that depends solely on the
distance-redshift dependence that linearly transforms the
selection functions wiðrÞ into

ŵiðrÞ ¼
X
j

pijwjðrÞ ð9Þ

in such a way that the functions ŵiðrÞ vanish over all
redshifts comprised between the observer and the closest
sources. We illustrate this transformation in Fig. 1 where
for a set of fκig and in the case of discrete sources the
transformation is possible for all planes except the first two.
The nulled selection functions are displayed with solid lines
whereas the dashed lines of the same colors represent the
corresponding regular selection functions.
Let us now reconsider Eq. (6) for the variable κ̂iðrÞ,

κ̂iðrÞ ¼
X
j

pijκj; ð10Þ

which only changes wiðrÞ into ŵiðrÞ in expression (6). The
main integral that appears in this expression can now be
split in nt different parts—in between the locations of the
discrete source planes frig. This nulled generating function
then reads,

ϕ̂ðfλigÞ ¼
Xnt
n¼1

Z
rn

rn−1

drϕcyl=slope

�Xnþ1

i¼n

λiŵiðrÞ; rθ0
�

ð11Þ

where λntþ1 ¼ 0 and it is now clear that for each part, only
two distinct subsequent λ variables of each nulled bin
appear. In other words the cumulant generating function
takes the form

ϕ̂ðfλigÞ ¼
Xnt−1
i¼1

ϕ̃iðλi; λiþ1Þ þ ϕ̃ntðλntÞ: ð12Þ

NUMERICAL COMPLEXITY OF THE JOINT NULLED WEAK- … PHYS. REV. D 105, 043537 (2022)

043537-3



Note that the functions ϕ̃i are not cumulant genera-
ting functions on their own but are closely related to
them. By identification and using the fact that ϕ̂ðλiÞ ¼
ϕ̂ðfλj ¼ δijλigÞ, it can then be shown that we have the
following structure,

ϕ̂ðfλigÞ ¼ ϕ̂ðλ1; λ2Þ − ϕ̂ðλ2Þ þ ϕ̂ðλ2; λ3Þ
− � � � − ϕ̂ðλnt−1Þ þ ϕ̂ðλnt−1; λntÞ; ð13Þ

where ϕ̂ are now all genuine cumulant generating functions
of the corresponding variables.
It thus remains that, with this choice of nulled variables,

the joint cumulant generating function has a specific
functional form: it is composed of a sum of functions that
depend on two variables only, which implies that the full
joint PDF can be obtained from bivariate CGFs (and hence
PDFs) of neighboring bins. We will thus now explore the
consequences of such a feature on the computations and
properties of the joint PDF.
One can first infer a number of general properties: it

is clear that the two sets of variables fκ̂igi¼1;…;p−1 and
fκ̂igi¼pþ1;…;nt are correlated only through the variable κ̂p.
In other words, once one marginalises over κ̂p, the two sets
of variables are independent as there are no common
structures that would contribute to both sets.
At the level of the cumulant generating function, one can

notice that we have

ϕ̂ðfλigjλp¼0Þ¼ ϕ̂ðfλigi¼1;…;p−1Þþ ϕ̂ðfλigi¼pþ1;…;ntÞ ð14Þ

so that the cumulant generating function is split in two
separate functions.
The application of Eq. (8) then readily shows that we

have,

Z
dκ̂p P ðfκ̂igi¼1;…;ntÞ

¼ Pðfκ̂igi¼1;…;p−1ÞPðfκ̂igi¼pþ1;…;ntÞ: ð15Þ

This independence property for physically separated bins is
specific to the nulled variables.
Finally, realistic tomographic cases are not made of a

collection of discrete source planes but instead source
galaxies are split in redshift bins of finite width. The
resulting nulling selection functions are then slightly more
complex as illustrated in Fig. 2. One can indeed see here
that the nulled profiles overlap with the first and second
neighbors—and not only with the first. As a result, the
functional form of the cumulant generating function that we
obtain is

ϕ̂ðfλigÞ ¼ ϕ̃ðλ1; λ2; λ3Þ þ � � � þ ϕ̃ðλnt−2; λnt−1; λntÞ
þ ϕ̃ðλnt−1; λntÞ þ ϕ̃ðλntÞ: ð16Þ

In this case, a property similar to Eq. (15) holds except that
an integration over two consecutive variables is required.

A. Impact of shape noise and intrinsic alignment

The inclusion of a shape noise—which comes from the
variance of the intrinsic ellipticities of galaxies—to the
joint nulled CGF would lead to the addition of a term
φnoiseðfλigÞ (such that ϕ̂tot ¼ ϕ̂þ φ) that would follow the
same functional form (16) whether realistic source bins or
discrete source planes are considered, with

φnoiseðfλigÞ ¼
X
jii0

pijpi0j
σ2SðjÞ
2

λiλi0 ð17Þ

where σ2SðjÞ is the amplitude of the shape noise in the
original source bin j (and with respect to the shape noise,
bins are all independent) assuming it induces a Gaussian
noise. This amplitude for the Euclid experiment can for
example be found in [23]. The only nonvanishing terms in
(17) are those for which there is a j for which j − 2 ≤ i ≤ j
and j − 2 ≤ i0 ≤ j that implies that ji − i0j ≤ 2 thus repro-
ducing the form (16).
Intrinsic alignments (IA)—originating from the correlation

between the orientation of galaxies and their environment—
represent a contamination for cosmic shear measurements
[24]. When the observed shape of a galaxy is decomposed
into an intrinsic term and a contribution coming from
weak lensing along the line-of-sight, two sorts of correla-
tors arise, the autocorrelation spectra of intrinsic shapes
(II in the case of the two-point spectrum) and the cross-
correlation spectra between foreground intrinsic shapes and
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FIG. 2. The realistic radial selection functions of the first eight
equally populated redshift bins (shown in colored rectangles) of
the Euclid experiment, prior to nulling (dashed lines) and after
nulling (thick lines). The dot-dashed gray lines inside the colored
rectangles show the shape of the normalized distribution of
sources inside each bin.
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background shear (GI still in the case of the two-point
spectrum). There cannot be any contribution coming from
foreground shear and background intrinsic shapes, or more
generally, the shear-induced ellipticity of a galaxy can only
be correlated to objects located within its radial selection
function, as those correlations occur on smaller scales
(typically below a hundred megaparsecs, therefore not
between distant redshift bins). Thus in the case of nulling
and similarly to shape noise, intrinsic alignments would
also induce correlations that span over three nulled bins
only, although with a priori a more complex dependence
with λ since intrinsic alignments may not induce Gaussian
noise. Still for the Euclid experiment, a modeling of the
impact of intrinsic alignments on the lensing power
spectrum and bispectra can be found in [23], and used
to obtain the 2nd and 3rd cumulants in the equivalent of
Eq. (17) for the inclusion of galaxies alignments. However,
there is no guarantee that such linear or quasilinear models
are valid in the regime we are probing here and more works
is therefore necessary to model this effect properly,
including small-scale baryonic effects [25].
This thus implies that the correlation structure we

presented for nulled variables is still valid when such
effects are taken into account. Note however that corrective
terms coming from reduced shear, magnification bias or
postborn corrections formally break this structure, although
weakly, as they change the functional form of Eq. (1) and
introduce couplings between lenses which are not consi-
dered independent anymore.
Finally note that one obvious but strong limitation of this

procedure is the precision to which the redshift of sources
inside tomographic bins can be determined (photometric
redshift errors). Indeed, in the worst case where the
precision of, for example and in the context of a large
area survey, photometric redshifts is not very good with a
significant number of catastrophic events, the “true” red-
shift distribution of galaxies inside each redshift bin can
become strongly overlapping as is the case for example for
the KIDS survey [see Fig. 2 of [26]]. As a result, the nulling
procedure cannot be performed perfectly. We expect that
for future surveys like Euclid, photometric redshift errors
can be reduced as suggested by the treatment of those errors
in Euclid collaboration prelaunch papers [see for example
Eq. (46) of [23]]. In any case, the quantification of the
impact of photometric redshift errors on the nulling
procedure is something which can be done rather straight-
forwardly in the formalism that we present—computing
BNTweights with a given galaxy distribution while having
lensing kernel computed from a different one accounting
for uncertainties and checking the residual correlations and
their impact on say, cosmological parameters estimation.
Note also that, as a last-resort backup plan, we could also
divide-and-conquer the problem by modeling the photo-z
error on the univariate/bivariate/trivariate PDFs and captur-
ing the additional correlations caused by redshift errors in a

Gaussian-style copula in the same fashion as what we do in
Appendix B. Finally, another option could also come from
the reliance on some numerical lensing simulation as in
[27] to generate systematics-infused control samples and
use them to model the impact of photometric redshift and
shear calibration uncertainty. This is however an important
work on its own and is left for the future as beyond the
scope of the results we present here.
The quantification of all of these effects on the nulling

strategy will be performed in future works in preparation.

IV. NUMERICAL COMPLEXITY
FOR PDF COMPUTATIONS

Let us now explore the resulting numerical complexity of
the computation of the joint PDF of nulled maps, κ̂i. Note
that this is not just a numerical trick to reduce the
computing time, this is the simpler form the joint PDF
can take using the correlation structures that we have. In
particular, Eq. (7) for nulled bins can as a result be written
as some function of joint PDFs between two or three bins
but not in a simpler form than the one we present here, see
for example Appendix A.
Let us start our analysis in the case of discrete source

planes, that is taking advantage of the functional form (12)
for the cumulant generating function and thus assuming
that this generating function can be written as a sum of
functions of two consecutive variables.
If we assume that the number of operations for a given

integral over λi is N, then, and in the absence of factori-
zation properties, the a priori complexity for the compu-
tation of the joint κ-PDF, as given by Eq. (7), is Nnt . The
purpose of this section is to show how this complexity, and
hence the computational time, can be reduced when
changing variables from κ to κ̂. To reach this goal, let us
define the function ζ2ðntÞ, supposedly an integer, that gives
an estimate of the number of operations to be done as
Nζ2ðntÞ. Similarly, we also define a function ζ3ðntÞ for the
functional form (16) of the cumulant generating function
corresponding not to successive localized source planes but
wide redshift bins.
Let us start with a simple case. For a joint analysis of

three source planes, the cumulant generating function takes
the form,

ϕ̂ðλ1; λ2; λ3Þ ¼ ϕ̂ðλ1; λ2Þ − ϕ̂ðλ2Þ þ ϕ̂ðλ2; λ3Þ ð18Þ

so that we can write,

Pðκ̂1; κ̂2; κ̂3Þ ¼
Z

dλ2
2π i

e−λ2κ̂2þϕ̂κ̂1
ðλ2Þ−ϕ̂ðλ2Þþϕ̂κ̂3

ðλ2Þ ð19Þ

where

eϕ̂κi
ðλjÞ ¼

Z
dλi
2π i

expð−λiκ̂i þ ϕ̂ðλi; λjÞÞ: ð20Þ
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The computation of each function eϕ̂κi
ðλjÞ simply scales

like N1. This thus implies that the estimated number of
operations for the computation of expression (19) is
N × ðN þ NÞ which scales like N2 so that ζ2ð3Þ ¼ 2.
Let us now explore the general case and define the

quantity

eϕ̂κp ðλp−1;λpþ1Þ

¼
Z

dλp
2π i

exp ½−λpκ̂pþ ϕ̂ðλp−1;λpÞ− ϕ̂ðλpÞþ ϕ̂ðλp;λpþ1Þ�:

ð21Þ

The number of operations for the computation of this
function is N. The idea is now, as exemplified in the
simple 3-bin case, to decimate the variables, 1 out of 2, as
illustrated on Fig. 3.
Let us first assume that the number of planes, nt, is an

odd number, nt ¼ 2mþ 1. From the structure of the
cumulant generating function, and the previous definition,
follows one of the main results of this paper

Pðfκ̂igÞ ¼
Z Ym

i¼1

dλ2i
2π i

e−
P

m
i¼1

λ2iκ̂2i

× exp

�Xm
i¼0

ϕ̂κ2iþ1
ðλ2i; λ2ðiþ1ÞÞ − ϕ̂ðλ2iÞ

�
ð22Þ

with λ0 ¼ λntþ1 ¼ 0. The number of operations required to
integrate the odd variables is of the order of ðmþ 1ÞN. What
is then remarkable is that the structure of the resulting
m-inverse Laplace transform is the same as before: the
effective cumulant generating function is a sum of function
of two adjacent variables only. As a result the expected
number of operations to be performed is ðmþ 1ÞN × Nζ2ðmÞ.
To a logarithmic correction we will ignore in the following
we thus have ζ2ð2mþ 1Þ ¼ 1þ ζ2ðmÞ. Let us finish this
evaluation by noting that there is no gain in reduced
numerical complexity going from 2mþ 1 to 2m source
planes. We thus have ζ2ð2mÞ ¼ ζ2ð2mþ 1Þ ¼ 1þ ζ2ðmÞ.
Applying this simple rule to the first few integers, we

find,

ζ2ð1Þ ¼ 1

ζ2ð2Þ ¼ ζ2ð3Þ ¼ 2

ζ2ð4Þ ¼ … ¼ ζ2ð7Þ ¼ 3

ζ2ð8Þ ¼ … ¼ ζ2ð15Þ ¼ 4: ð23Þ

Finally note again that the reason we need to go through
this somewhat complicated numerical integration scheme
comes from the fact that there is no simpler form for the
joint κ̂-PDF in terms of bivariate PDFs of neighboring bins
as is the case for the CGFs. To explicit this, we show in
Appendix A how the PDF of 3 neighboring bins is
expressed explicitly as a function of bivariate PDFs.
We now move to the case of Eq. (16). We can use the

same trick and decimate the variables. We however
identified here two possible strategies which are depicted
in Fig. 4.
The first one is to decimate the variables as before: 1

variable out of 2. The difference here is that this first set of
variables are not uncorrelated, they are actually correlated 2
by 2. To be more precise let us again assume that nt ¼
2mþ 1 and the complexity of this operation is thus
Nζ2ðmþ1Þ defined in the previous section. We are then left
with m variables that are open again correlated 2 by 2 and
therefore have

ζ3ð2mþ 1Þ ¼ ζ2ðmþ 1Þ þ ζ2ðmÞ ð24Þ

and similarly

1 2 3 4 5 6 2 4 6

FIG. 3. Schematic representation of the decimation procedure
for the case of discrete source planes. The generating function is a
sum of functions of adjacent variables. Each of these terms is
depicted with a dark circle. The integrations over 1 variable out
of 2, (grey areas) can then be made independently. The resulting
structure is again a sum of functions of adjacent variables and one
can thus apply this decimation strategy recursively.

1 3 5 7

2 4 6

2 4 6

1 3 5 7

2 4 6
2 6

3 5

8

9

FIG. 4. Schematic representation of the decimation procedures
for the case of extended source distributions. The generating
function is a sum of functions of three adjacent variables. Each of
these terms is depicted with a dark circle. In the top panel the
proposed scheme is to first consider the integration of 1 variable
out of 2 (shaded odd variables). These are correlated 2 by 2 and
we thus apply the first step depicted in Fig. 3. We then consider
the even variables which are also correlated 2 by 2. This allows to
once again perform the first step of Fig. 3 and we then go back to
the odd variables and apply this scheme recursively. In the bottom
panel the procedure is to integrate 1 variable out of 3 where each
of those integrations can be performed independently. This leads
to an effective cumulant generating function for which variables
are correlated via adjacent pairs which we again know how
to treat.
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ζ3ð2mÞ ¼ 2ζ2ðmÞ: ð25Þ

The second strategy (the resulting complexity being
denoted with a new function ζ03) is to decimate 1 variable
out of 3, so that the first set of variables are uncorrelated.
For this operation, the number of operation scales like N.
To be more precise let us assume nt ¼ 3mþ 1. After
decimation we are left with 2m variables. These variables
then follow a specific structure. They form pairs that are
correlated to their nearest neighbors, which is a situation we
know how to handle. Each pair introduces a N2 factor so
that we eventually have,

ζ03ð3mþ 1Þ ¼ 1þ 2ζ2ðmÞ: ð26Þ

With such a strategy we have ζ03ð3m − 1Þ ¼ ζ03ð3mÞ ¼
ζ3ð3mþ 1Þ (except for ζ03ð1Þ and ζ03ð2Þ).
It turns out that these two strategies have competing

performances, as illustrated in Table I.

V. PRACTICAL IMPLEMENTATION

We now move to the actual implementation of the
decimation strategy presented in the last section. We will
thus start with the computation of ϕcyl and ϕslope and their
analytical continuation in the complex plane. The compu-
tation of ϕ̂ðfλigÞ is then performed on a fixed grid of
imaginary values fλig and we will finally illustrate the
procedure described in the previous section with several
plots.

A. Computation of ϕ̂ðfλigÞ
The computation of this quantity have already been

described in several papers, most recently in [12] for the
convergence and [13] for the aperture mass using a from-
first-principles formalism inspired by Large deviation
theory, though some equations were already known but
not interpreted in this framework as in [7].
In this context, the joint cumulant generating function of

the density filtered in concentric long cylinders of trans-
verse sizes fRig at redshift z is given by

ϕfδigðfλigÞ ¼
X
i

λiδi −ΨfδigðfδigÞ; ð27Þ

where fδig are functions of fλig through the stationary
conditions

λk ¼
∂ΨfδigðfδigÞ

∂δk ; ∀ k: ð28Þ

The rate function ΨfδigðfδigÞ is given by

ΨfδigðfδigÞ ¼
1

2

X
k;j

ΞkjC−1ðδkÞC−1ðδjÞ; ð29Þ

where Ξkj is the inverse of the nonlinear covariance matrix
between cylinders of transverse radii fRið1þ δiÞ1=2g, and
the inverse of the cylindrical collapse dynamics C can be
approximately written as

C−1ðδkÞ ¼ ν − νð1þ δkÞ−1=ν; ν ¼ 1.4: ð30Þ

Then, from Eq. (27) and the generic properties of
cumulant generating functions, one can finally define

ϕcylðλÞ ¼ ϕδðλÞ and ð31Þ

ϕslopeðλÞ ¼ ϕδ1;δ2ð−λ; λÞ: ð32Þ

The previous set of equations thus allows one to numeri-
cally compute ϕcylðλÞ and ϕslopeðλÞ for any real value of λ.
Unfortunately, since the computation of the PDF of
projected densities requires an integration in the complex
plane, we need a prescription for the analytic continuation
of ϕcyl=slope. As previously explained in [7] and [13], a good
strategy to keep the analytical properties of the construction
(27) consists in fitting an effective C function rewriting
Eq. (27) for ϕcyl=slope as

ϕcyl=slopeðλÞ ¼ λCðτeffÞ −
1

2
τ2eff ; ð33Þ

with the effective stationary condition then written as

TABLE I. Numerical complexity NζðntÞ for the calculation of
the joint κ-PDF in case of discrete source planes, ζ2ðntÞ, and
extended source planes, ζ3ðntÞ and ζ03ðntÞ, as a function of the
number of source planes. The latter two results correspond to two
different strategies as described in the main text.

nt ζ2ðntÞ ζ3ðntÞ ζ03ðntÞ
1 1 1 1
2 2 2 2
3 2 3 3
4 3 4 3
5 3 4 5
6 3 4 5
7 3 5 5
8 4 6 5
9 4 6 5
10 4 6 5
11 4 6 7
12 4 6 7
13 4 6 7
14 4 6 7
15 4 7 7
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λ ¼ d
dC

τ2eff
2

¼ τeff

�
dCðτeffÞ
dτeff

�
−1
: ð34Þ

Note then that since

dϕcyl=slopeðλÞ
dλ

¼ CðτeffÞ; ð35Þ

and hence

1

2
τ2eff ¼ λ

dϕcyl=slopeðλÞ
dλ

− ϕcyl=slopeðλÞ; ð36Þ

one can thus fit both the values of τeff and CðτeffÞ from
the generating function computed for real values of λ. An
expansion in series of C,
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FIG. 5. (joint)-PDFs between the three nulled bins filtered by a top-hat window function of radius 15 arcmin. Top-left-hand panel:
One-point κ̂-PDF within the three nulled bins. Top-right-hand panel: Isoprobability density contours of the joint κ̂-PDF between the two
first nulled bins. The nulled fields are filtered by a top-hat window function of radius 15 arcmin. The dashed thin lines correspond to a
2-dimensional normal distribution with the same covariance. Bottom-left-hand-panel: Density plot of Pðκ̂5; κ̂6Þ=Pðκ̂5Þ=Pðκ̂6Þ to explicit
the shape of the correlation between κ̂5 and κ̂6. The black lines correspond to isocontours of values the ticks of the color bar and the white
line is for the tick equal to 1. They serve as guide for the eye. Bottom-right-hand panel: Joint κ̂-PDF between the three nulled bins.
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CðτeffÞ ¼
Xn
k¼0

μk
k!

τkeff ; ð37Þ

typically stopping at n ¼ 5, allows to fit the μk coefficients
which are closely related to the cumulants of ϕcyl=slope as
noted in Appendix D of [13].
This construction finally enables one to successfully

compute ϕcyl=slope and thus the joint cumulant generating
function of projected densities ϕ̂ðfλigÞ in Eq. (11) for any
tuples of complex fλig.

B. Results

For the final part of this paper, we implement the
decimation strategy presented in Sec. IV coupled with
the computation of ϕ̂ðfλigÞ of the last subsection. For
simplicity and visualization purposes we restrict ourselves
to the computation of the joint convergence between three
successive nulled bins taken from Fig. 1, the 5th, 6th, and
7th, and which are respectively the linear combination
of source redshifts located at zs ¼ 0.62–0.73 − 0.85,
0.73 − 0.85 − 0.96, and 0.85 − 0.96 − 1.1. In practice,
the joint PDF is computed from the CGF in a few seconds.
Thus denoting by respectively κ̂5, κ̂6, and κ̂7 the nulled
convergence in each of those bins and noticing that their
joint PDF is given by Eq. (19) we obtain the results given in
Fig. 5 for 1 and 2D marginals and for the full 3D PDF. As
expected from the formalism, the exponential decay of the

high-κ̂ tails are visible on all these plots and the highly
skewed (asymmetric) PDFs hints toward the fact that the
information content of the projected densities fields is not
entirely probed by its 2-point correlation function which is
sufficient for Gaussian random fields only.
Figure 5 also displays the shape of the correlation

between κ̂5 and κ̂6 seen as the residual between the 2D
PDF and the product of the two 1D PDFs. This residual
would be exactly equal to 1 if the two nulled variables were
independent. Note that this modulation of the independent-
variables case is quite important and understandable as
follows: κ̂5 and κ̂6 result from the overlapping contributions
of lenses along the line of sight. As a consequence, if κ̂5
were to take an improbable very high (resp. low) value, then
the modulation would have to take that into account by
raising the probability of finding a very high (resp. low)
value for κ̂6 compared to the independent-variables case.
We also show on Fig. 6 the correlation induced between

κ̂5 and κ̂7 if a constraint on κ̂6, here κ̂6 > 0, is imposed. In
the absence of constraint, these two variables are indepen-
dent (since their nulled lensing kernels do not overlap) but
the constraint breaks this property. In this case, one needs to
compute the full 3-variable PDF before integrating over the
constraint. The residual between the 2D constrained PDF
and the product of the two 1D constrained PDFs is
relatively small compared to the previous case (typically
between 50% and 150%) and points out an overprobability,
compared to the independent assumption, for κ̂5 and κ̂7 to

0.002 0.000 0.002 0.004 0.006

10 4

0.01

1

100

FIG. 6. Left-hand panel: Contour plot of Pðκ̂5; κ̂7jκ̂6 > 0Þ=Pðκ̂5jκ̂6 > 0Þ=Pðκ̂7jκ̂6 > 0Þ to explicit the shape of the correlation between
κ̂5 and κ̂7 if a constraint on κ̂6 is imposed. The white line is for the tick equal to 1. The nulled fields are filtered by a top-hat window
function of radius 15 arcmin. Right-hand panel: The solid lines represent Pðκ̂5jκ̂6 > 0Þ and Pðκ̂7jκ̂6 > 0Þ while the dashed lines show
the same PDFs as the top-left panel of Fig. 5, that is without any constraint. Together the two panels give Pðκ̂5; κ̂7jκ̂6 > 0Þ.
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have opposite rare values while same sign rare events are
less likely. Note that since κ̂6 has its own distribution the
constraint κ̂6 > 0 is more likely to give values of κ̂6 close to
zero and thus the constraint imposes, e.g., that for a large
positive value of κ̂5, κ̂7 should compensate in the opposite
direction to realise it. Hence the κ̂7 distribution would be
shifted toward more negative values compared to its
marginal distribution. For κ̂6 ¼ 0, κ̂5 and κ̂7 would be
exactly anticorrelated but this is not exactly the case here as
seen from the fact that Fig. 6 is not exactly symmetric with
respect to the κ̂5 ¼ κ̂7 axis.

VI. CONCLUSION

This paper explores some properties of the computa-
tional complexity of the joint probability distribution
function of a set of random variables only correlated by
blocks. Building on this specific property we presented
different strategies to effectively reduce by several orders of
magnitude the number of operations needed to compute
this joint probability distribution function.
In the field of cosmology and in the context of tomo-

graphic cosmic shear surveys, such a setup appears when
one linearly transforms the set of observed projected
densities (convergence, aperture mass) for different source
redshifts into their nulled counterparts—which boils down
to rearranging the information present in the survey. As
such, the nulled projected densities can be seen as a new
basis of pseudo-eigenvectors that render the covariance
matrix block-diagonal—even in the presence of shape noise
and intrinsic alignments—but which also holds the advan-
tage of localising along the line of sight the contribution of
structures that make the total signal. To these two main
desirable aspects, we now finally add the reduced numeri-
cal complexity of the computation of theoretical predictions
for the joint PDF of nulled variables.
Even further reduced numerical complexity could also

be achieved using appropriate approximation schemes such
as the one we present in Appendix B and that relies on
mathematical copulas. This comes at the price of losing the
exact result coming from the theory but drastically reduces
the computation cost since this scheme only relies in our
case on the knowledge of the univariate PDFs and the
correlation coefficients, that are strongly linked to the
overlap between the lensing kernels.
Regardless of the model—(semi)analytical or derived

from numerical simulations—used to infer the statistical
properties of the underlying matter field, the nulling
formalism ought to be implemented in the context of
cosmological analysis of weak lensing surveys. Indeed,
while it preserves the information content of the observ-
ables, it allows us to better identify the origin of this
information whether it is in terms of physical scales,
redshift, and combinations of those. In this context, our
results show that the actual numerical derivation of joint

PDFs is tractable even if one wants to exploit a large
number of bins in order to be as precise as possible while
preserving the amount of information available. Also note
that the method presented in this paper can also be used to
obtain the joint PDF of the regular fields via a simple
change of variables once the joint PDF of nulled bins has
been computed.
For the specific case of non-Gaussian observables such

as the (joint) PDF of projected densities, it was shown in
previous works (see [12] and [13]) that, for the desired
filtering angular scales, shape noise in individual nulled
bins makes the detection of non-Gaussian features virtually
impossible in a single nulled map. One of the reasons of
this failure is that each nulled map collects noise from three
of the original maps it is built from, see [13] for details.
However, the exploitation of joint PDFs now offers a
potential solution to this issue as more useful signal can
then be combined together while the shape noise does not
increase in the same proportion since it is shared between
nulled bins. This thus makes the detection of sought-after
non-Gaussian features more likely.
At this stage we can sketch a possible strategy: the key to

a successful exploitation of the data is our ability to select
the physical scales that are contributing the most to the
signal and reject the smallest scales, in practice the nearby
lenses, for which we miss reliable modeling and which
incidentally are likely to be strongly affected by large
supersample covariance effects. The idea would then be to
exploit joined nulled bins, built out of a large set of nt bins,
but a priori ignoring the two closest for which the physical
scales are still strongly mingled. Hopefully the nt − 2
farthest bins would be able to provide us with significant
detection of the nonlinear couplings in a regime where they
are well understood. And if not, it would point to the fact
that the non-Gaussian information that we observe in
regular bins is coming from not very well understood
nor modelled nonlinear scales, which would hence call to
extreme caution when using them to extract information. In
any case, the nulling formalism and the joint PDF we
presented would play a key role in answering these
questions. Those studies are however beyond the scope
of this paper and will be performed elsewhere.
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APPENDIX A: REWRITING THE TRIVARIATE
PDF AS FUNCTIONAL OF BIVARIATE PDFS

We aim here at expressing Pðκ̂1; κ̂2; κ̂3Þ purely as a
function of Pðκ̂1; κ̂2Þ and Pðκ̂2; κ̂3Þ. We know this is
technically possible given Eq. (18).
We start by writing the CGFs used as building blocks for

the joint multivariate PDF in terms of univariate and
bivariate PDFs using Laplace transformations as

eϕ̂ðλ2Þ ¼
Z

dκ̂02 expðκ̂02λ2ÞPðκ̂02Þ; ðA1Þ

eϕ̂κ1
ðλ2Þ ¼

Z
dκ̂02 expðκ̂02λ2ÞPðκ̂1; κ̂02Þ; ðA2Þ

and similarly for expðϕ̂κ3ðλ2ÞÞ. We insert these into the
expression for the trivariate PDF built from pairwise CGFs
from Eq. (19) and thus finally obtain

Pðκ̂1; κ̂2; κ̂3Þ

¼
Z

dλ2
2πi

e−κ̂2λ2
R
dκ̂02e

κ̂0
2
λ2 ½Pðκ̂1; ·Þ �Pð·; κ̂3Þ�ðκ̂02ÞR
dκ̂002e

κ̂00
2
λ2Pðκ̂002Þ

ðA3Þ

where Pðκ̂1; ·Þ � Pð·; κ̂3Þ denotes the convolution of
Pðκ̂1; κ̂2Þ and Pðκ̂2; κ̂3Þ with respect to κ̂2. This is a result
of the convolution theorem stating that the product of the
Laplace transforms of two functions can be written as the
Laplace transform of their convolution. As expected from
the somewhat complicated relationship between PDFs and
CGFs, Eq. (A3) is unfortunately not nearly as simple as
Eq. (18) though they both depict the exact same result
without any loss of information.

APPENDIX B: JOINT PDFS IN TERMS
OF COPULAS

1. Dissecting joint PDFs into marginals and copulas

According to Sklar’s theorem [28], any multivariate joint
PDF Pðfκ̂igÞ can be written in terms of univariate marginal
PDFs Pðκ̂iÞ and a copula which describes the dependence
structure between the variables. Copulas are well suited for
high-dimensional statistical applications because they
allow one to model and estimate joint probability distri-
butions by estimating marginals and copulas separately.
Copulas can be obtained from a range of parametric models
that encode the dependence structure using just a few
parameters and then compress the information of a high-
dimensional multivariate PDF down to a a set of uni- or
bivariate marginal PDFs and a set of correlation parameters.
To fully disentangle the marginals from the correlation

structure, one uses the values of the marginal cumulative
distribution function (CDF) ui ¼ Cðκ̂iÞ ∈ ½0; 1� as varia-
bles. Those so-called filling factors ui are simply obtained
from

uiðκ̂iÞ ¼ Cðκ̂iÞ ¼
Z

κ̂i
dκ̂i0Pðκ̂i0Þ: ðB1Þ

The marginal CDFs provide a ranking of variables in terms
of cumulative probability and the filling factors ui allow to
identify quantiles easily. The multivariate copula C is now
defined as the joint CDF C expressed in the new ranked
variables ui

CðfuigÞ ¼ Cðfκ̂i ¼ C−1ðuiÞgÞ; ðB2Þ

Similarly as the PDF is obtained as derivative of the CDF,
the copula density c is obtained from a derivative of the
copula

cðu1;…; unÞ ¼
∂Cðu1;…; unÞ
∂u1 � � � ∂un ðB3Þ

¼ Pðκ̂1;…; κ̂nÞ
Pðκ̂1Þ � � �Pðκ̂nÞ

����
κ̂i¼C−1ðuiÞ

; ðB4Þ

which by the chain rule corresponds to the ratio of the joint
PDF and the would-be joint PDF if the variables κ̂i were
independent. The joint PDF can be reconstructed from the
set of univariate marginals fPðκ̂iÞg and the multivariate
copula.
For a bivariate joint PDF, one can write

Pðκ̂i; κ̂jÞ ¼ Pðκ̂iÞPðκ̂jÞcijðCðκ̂iÞ; Cðκ̂jÞÞ; ðB5Þ

where cij is the copula density and if κ̂i and κ̂j are
independent, then cij ¼ 1. There are many parametric
copula families available to encode the dependence
between Cðκ̂iÞ and Cðκ̂jÞ using a correlation parameter
controlling the strength of dependence. A particularly
simple case is the Gaussian bivariate copula, which is
controlled by the pairwise correlation coefficient rij

Pðκ̂i; κ̂jÞ ¼ Pðκ̂iÞPðκ̂jÞcGaussij ðrijÞðCðκ̂iÞ; Cðκ̂jÞÞ: ðB6Þ

We demonstrate a reconstruction of the joint PDF
Pðκ̂5; κ̂6Þ using the marginals Pðκ̂5=6Þ and a Gaussian
copula density in Fig. 7. It can be seen overall that the
Gaussian copula approximation agrees very well with the
exact LDT calculation in the bulk of the PDF and a bit less
in the high and low convergence tails but with still a much
better agreement than if we were to consider that the two κ̂
bins were independent. A more rigorous assessment of the
validity of the approximation would first require to assess
the validity of the LDT/copula approaches with real or
simulated data and then quantify the cosmological infor-
mation content present in the bulk and tails of the PDFs, for
example pursing a fisher analysis as in [5].
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2. Measures of correlation

The linear correlation coefficient is defined as usual as

rij ¼ Corrðκ̂i; κ̂jÞ ¼ hκ̂iκ̂ji=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hκ̂2i ihκ̂2ji

q
: ðB7Þ

In our particular case, we note that the value of the
correlation coefficients rij will be closely related to the
overlap between the nulled lensing kernels. For the case of
discrete source planes, we found that the linear correlation
coefficients measured from the joint bivariate PDFs are
r56 ≃ r67 ≃ 0.25, which reflects the overlap between the
neighboring lensing kernels that are of the order of 25% in
physical space quantified by the comoving distance rather
than redshift as shown in Fig. 1.
For the modeling of copulas, one typically uses ranked

correlation coefficients such as Spearman’s-ρ. Spearman’s-ρ
measures the correlation between the filling factors (obtained
from the marginal CDFs),

ρS;ij ≔ CorrðCðκ̂iÞ; Cðκ̂jÞÞ

¼ 12

Z
1

0

dui

Z
1

0

duj Cðui; ujÞ − 3: ðB8Þ

It can be thought of as the linear correlation coefficient of
abundance-matched κ̂-values. For a Gaussian bivariate
copula, Spearman-ρ is obtained as ρS ¼ 6

π arcsinðr=2Þ

which is close to the linear correlation r. We invert
this relation to obtain the Gaussian pairwise correlation
coefficients rGaussij ¼ 2 sinðπρS;ij=6Þ given the rank corre-
lations ρS;ij.
If one is more interested in the tails of the distribution,

one would like to know whether with large/small values of
κ̂i also large/small values of κ̂j are expected. This can be
quantified using the tail concentration function defined for
every value of cumulative probability u as

λCðuÞ ¼
� Cðu;uÞ

u u ∈ ½0; 0.5½
2þ Cðu;uÞ−1

1−u u ∈ ½0.5; 1�:
ðB9Þ

The tail concentration measures the slope of the copula and
upper or lower tail dependence is signaled if λCðu→0Þ>0
or λCðu → 1Þ > 0, respectively. We show the tail correla-
tion for the joint PDF of neighboring κ̂ bins in Fig. 8. While
they are positively correlated due to the overlap of their
nulled lensing kernels, they do not exhibit upper or lower
tail dependence, as λC → 0 as one approaches the rare event
tails Cðκ̂Þ → 0 and Cðκ̂Þ → 1, respectively. The correlation
between regions of similar rarity is well described by a
Gaussian copula (dashed lines), which does not exhibit any
tail dependence. Since the κ̂i have similar CDFs, the tail
concentration is related to a diagonal slice of the joint PDF
Pðκi; κ̂jÞ such as the one shown in Fig. 7.
Note that while a Gaussian bivariate copula does not

exhibit any tail dependence, conditionals obtained from a
Gaussian multivariate copula or a Gaussian conditional
copula can exhibit some tail dependence. We illustrate this

FIG. 7. Contour plot of the joint PDF Pðκ̂5; κ̂6Þ between two
neighboring nulled convergence bins as determined by the LDT
prediction for Pðκ̂5; κ̂6Þ (solid lines), the reconstructed PDF using
the LDT prediction for the marginals Pðκ̂5Þ and Pðκ̂6Þ along with
a Gaussian copula with correlation coefficient rGauss obtained
from the LDT prediction (dashed lines) and the result one would
obtain if the neighboring κ̂ bins were independent (dotted lines).

FIG. 8. Tail correlation between nulled κ̂ bins as predicted from
LDT (solid lines) and reconstructed from Gaussian copulas with
measured correlation (dashed lines) in comparison to the inde-
pendent result (black dotted line). We show the almost identical
results for two neighboring bin pairs κ̂5=6 (blue) and κ̂6=7 (red)
with virtually identical positive correlation and separated bins
κ̂5=7 that are coupled through a constraint on the intermediate bin
κ̂6 ≷ 0 leading to a slight negative correlation (green).

BARTHELEMY, BERNARDEAU, CODIS, and UHLEMANN PHYS. REV. D 105, 043537 (2022)

043537-12



point with the tail correlation between physically separated
nulled bins κ̂5 and κ̂7 that is caused by a positivity
constraint on the intermediate “coupling” bin κ̂6 > 0 as
the green line in Fig. 8.

3. Modeling the trivariate PDF with a copula

a. Gaussian multivariate copula

A Gaussian multivariate copula is controlled by a corre-
lation matrix containing the pairwise correlations rij. For the
case of discrete source planes, only neighboring nulled
κ̂-bins are correlated. The simplest starting point to extract
information from an n-dimensional multivariate PDF would
then be to rely on the set of n univariate marginals fPðκ̂iÞg
along with n − 1 correlation coefficients.
When comparing the full joint PDF to the “reconstruction”

based on marginals and a multivariate Gaussian copula with
the correlation coefficients as input, one can get an idea of
how much information is lost. For example, the trivariate
PDF Pðκ̂5; κ̂6; κ̂7Þ considered in the main text would be
reconstructed using three univariate marginals and a trivari-
ateGaussian copulawith correlation coefficients r56, r67, and
r57 ¼ 0

Pðκ̂5; κ̂6; κ̂7Þ ¼ Pðκ̂5ÞPðκ̂6ÞPðκ̂7Þ
× cGauss567 ðr56; r67ÞðCðκ̂5Þ; Cðκ̂6Þ; Cðκ̂7ÞÞ;

ðB10Þ
where the correlation coefficients r56 and r67 are determined
from the joint bivariate PDFs as discussed in the context
of Eq. (B6).

b. Conditional Gaussian bivariate copula

The trivariate PDF Pðκ̂5; κ̂6; κ̂7Þ is constructed from the
bivariate CGFs ϕ̂ðλ5; λ6Þ and ϕ̂ðλ6; λ7Þ and the univariate
CGF ϕ̂ðλ6Þ. Since those CGFs can be constructed from the
bivariate PDFs Pðκ̂5; κ̂6Þ and Pðκ̂6; κ̂7Þ along with the
univariate PDF Pðκ̂6Þ, it is natural to look for a
reconstruction of the trivariate PDF in terms of bivariate
PDFs and a conditional bivariate copula.

Pðκ̂5; κ̂6; κ̂7Þ ¼
Pðκ̂5; κ̂6ÞPðκ̂6; κ̂7Þ

Pðκ̂6Þ
× c57j6ðκ̂6ÞðCðκ̂5jκ̂6Þ; Cðκ̂7jκ̂6ÞÞ: ðB11Þ

For an illustration of this reconstruction, we will assume the
conditional bivariate copula c57j6ðκ̂6Þ ¼ cGauss

57j6 ðr57j6ðκ̂6ÞÞ to

be Gaussian and hence given by a correlation coefficient
function r57j6ðκ̂6Þ encoding the correlation coefficient
between κ̂5 and κ̂7 given a value (or range) for κ̂6. While
multivariate parametric copula models are only available
for a few special classes such as Gaussian copulas, there is a
plethora of bivariate parametric copula models that allows
for more flexibility and could be used to refine the present
model. We use the conditional Gaussian copula to recon-
struct the bivariate conditional PDF Pðκ̂5; κ̂7jκ̂6 ≷ 0Þwhere
a coupling between κ̂5 and κ̂7 is induced by a constraint on
κ̂6 ≷ 0, see Fig. 9. The good qualitative match of the
Gaussian bivariate copula along a diagonal slice where
Cðκ̂5Þ ¼ Cðκ̂7Þ can also be observed in the tail correlation
shown in Fig. 8. Interestingly, we see that putting a
positivity constraint on κ̂6 induces some positive tail
dependence in the LDT prediction that is not captured
by a simple Gaussian bivariate copula.

FIG. 9. Contour plot of the joint conditional PDFPðκ̂5; κ̂7jκ̂6≷0Þ
between two nulled convergence bins coupled by a constraint on
the intermediate bin κ̂6 ≷ 0 for the LDT prediction (solid/dashed
lines) and the reconstructed PDF using the LDT prediction for
the bivariate marginals Pðκ̂5; κ̂6Þ and Pðκ̂6; κ̂7Þ along with a
Gaussian conditional copula with correlation coefficients
r57ðκ̂6 ≷ 0Þ from LDT (dot-dashed/dotted lines). We also show
the means of κ̂5=7 induced by κ̂ > 0 (solid grey lines) and κ̂ < 0

(dashed grey lines).
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