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To a good approximation, on large scales, the evolved two-point correlation function of biased tracers is
related to the initial one by a convolution with a smearing kernel. For Gaussian initial conditions, the
smearing kernel is Gaussian, so if the initial correlation function is parametrized using simple polynomials,
then the evolved correlation function is a sum of generalized Laguerre functions of half-integer order. This
motivates an analytic “Laguerre reconstruction” algorithm which previous work has shown is fast and
accurate. This reconstruction requires as input the width of the smearing kernel. We show that the method
can be extended to estimate the width of the smearing kernel from the same dataset. This estimate, and
associated uncertainties, can then be used to marginalize over the distribution of reconstructed shapes and
hence provide error estimates on the value of the distance scale. This procedure is not tied to a particular
cosmological model. We also show that if, instead, we parametrize the evolved correlation function using
simple polynomials, then the initial one is a sum of Hermite polynomials, again enabling fast and accurate
deconvolution. If one is willing to use constraints on the smearing scale from other datasets, then
marginalizing over its value is simpler for this latter, “Hermite” reconstruction, potentially providing

further speed-ups in cosmological analyses.
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I. INTRODUCTION

On large (~100 h™!'Mpc) cosmological scales, the
evolved two-point correlation function, even of unbiased
tracers of the density field, differs in shape from the unbiased
linear theory correlation function [1,2]. To leading order, this
change in shape is due to a (three-dimensional) convolution
[3]. For Gaussian initial conditions, the convolution kernel is
very well approximated by a Gaussian. Convolving a
polynomial of order n with a Gaussian yields a generalized
Laguerre function of order /2, and [4] used this to motivate
an algorithm for estimating the initial shape from measure-
ments of the evolved one. Essentially, fitting a series of half-
integer Laguerre functions to the two-point correlation
function of biased tracers of the cosmological density field
allows one to perform the deconvolution analytically,' even
in the presence of redshift space distortions [7].

This “Laguerre” reconstruction of the initial shape
requires as input a guess for the width of the Gaussian
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In this respect, the philosophy of the approach is similar to
that which motivates the use of Gaussian mixture models to
approximate distributions that have been broadened by Gaussian
measurement errors [5] and the sinc function representation for
evaluating the propagator in Feynman diagrams [6].
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smearing kernel Z. In cold dark matter (CDM) models, the
physics that gives rise to the convolution relates the
smearing scale to the background cosmological model,

1

¥ y/dkPL(k,z), (1)
where Py (k, z) is the linear theory power spectrum [1] at
redshift z. So, if the model parameters are sufficiently well
known, then they can be used to provide an estimate of the
smearing scale. However, it is interesting to ask if the data
constrain this scale independently, i.e., without having to
assume a fiducial cosmological model. This is particularly
interesting because the uncertainties on this estimate can be
propagated into uncertainties on the shape of the recon-
structed correlation function. In turn, this allows one to
marginalize over the value of the smearing scale when
estimating cosmological parameters, such as the cosmo-
logical distance scale at the redshift of the survey, that is not
tied to a fiducial model. This is in contrast to almost all
other reconstruction algorithms [8—10], for which a fiducial
model must be specified [11,12], although there has been
recent progress in accelerating the process of marginalizing

over this fiducial choice [13].
In Sec. II, we show that this is indeed possible, in
principle, but whether or not the constraint that results is
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sufficiently tight to be interesting (better than ~10%
precision) will depend on the dataset (volume and tracer
number density). We illustrate the method using the real-
space dark matter correlation function, before applying it to
the monopole of the redshift-space distorted correlation
function measured in mock galaxy catalogs.

Section III shows how this fiducial model-free determi-
nation of the smearing scale can be used to estimate the
cosmological distance scale and, in particular, to provide
realistic estimates of the precision of this determination.
If the smearing scale is not well constrained, then this
decreases the precision of the distance scale constraint.
Therefore, especially for small surveys, it may be that other
datasets provide more useful determinations of the smear-
ing. We argue that this motivates consideration of other
parametrizations of the reconstruction problem. For exam-
ple, even if useful constraints on the smearing scale must
come from independent datasets, some parametrizations of
the reconstruction problem may allow one to marginalize
over the value of the smearing scale more easily than
others. This is the subject of Sec. IV, where we develop
what we call “Hermite reconstruction”. A final section
summarizes our results.

We illustrate our arguments using the dark matter corre-
lation functions measured in the z = 1 outputs of the Quijote
simulations [14], as well as mock galaxy catalogs in the z =
0 outputs of these same simulations. Each of these 15000
simulations followed the evolution of 512° particles in
a periodic box of side L = 1h~! Gpc (comoving). The
fiducial cosmology of this set is flat ACDM with
(Q,,,Q,,h,n,,05) =(0.3175,0.049,0.6711,0.9624,0.834),
for which ¥ of Eq. (1) equals 5.1 h™! Mpc at z =1 and
8.5 h™! Mpc at z = 0.

To explore how our results scale with effective volume,
we average together the correlation functions measured
in 10, 50, and 100 boxes at a time to crudely mimic
effective volumes of 10, 50, and 100 (h~' Gpc)? each.
These correspond approximately to survey volumes that are
between that of BOSS and Euclid, DESI, and a larger
futuristic survey. By never reusing a box, this gives us
1500, 300, and 150 independent realizations with which to
study cosmic variance associated with our three effective
volume choices. In all cases, the correlation functions in
these boxes are measured in bins of width 1 h™! Mpc, and
all our analyses only make use of the scales between 70 and
110 h~! Mpc. On these scales, the covariance between the
different bins is well described by a simple “‘smeared linear
theory plus Poisson shot-noise model” [4,15,16].

II. SMEARING SCALE FROM DATA

Our starting point is that the evolved pair correlation
function &yp is related to that predicted by linear theory
(i.e., the initial one multiplied by a growth factor) &, by a
(three-dimensional) convolution,
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FIG. 1. Estimated £ when we use exactly the correct shape and
amplitude of & when fitting the right-hand side of Eq. (2) to the
measured &yp, but Z is determined from the fit, as well as a
measure of the goodness of fit, 2, /d.o.f. Main panel shows this
joint distribution from 1500 realizations, each of an effective
volume 10 h™3 Gpc?. Histograms in the bottom panel show the
distribution of X for three different effective volumes as indicated
(10, 50 and 100 h™=3 Gpc): as expected, larger volumes return a
narrower distribution, hence a tighter constraint on the smearing
scale. Histograms in the panel on the left show the associated
distributions of y2. /d.o.f.; as expected, the goodness of fit does
not depend on the effective volume.

Exi(s) = & ® G + Exc(s) ~ / dr& (NG(s —r[Z). (2)

e.g., [1], where G is a three-dimensional isotropic Gaussian
smoothing kernel of width X in each direction, and the final
expression assumes that the “mode-coupling term” &yc of
Ref. [1] can be ignored. We ignore &yc in all of the analysis
which follows, since none of the main points we make are
changed if we include it.

A. “Optimal” estimate

We begin with an exploration of the precision with which
the smearing scale can be estimated if the shape and
amplitude of the linear theory power spectrum are known.
This means that we simply fit the right-hand side of Eq. (2)
to the measured &y to determine the value of X. The fitting
uses measurements in bins of width 1 h™! Mpc over the
range 70-110 h™! Mpc and uses the covariance matrix
described in [4] to account for the fact that bins in &y
are correlated.

The two-dimensional histogram in Fig. 1 shows the joint
distribution of the best-fitting ¥ and the associated value of
x2:/degrees of freedom (d.o.f.) constructed from the 1500
realizations of an effective volume of 10 h= Gpc®. The red
curve in the left-hand panel shows the distribution of
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22 /d.o.f. values obtained by projecting out the T values.
It peaks close to unity, indicating that the fits are generally
acceptable. The red curve in the bottom panel shows the
distribution of best-fit X values, obtained by projecting out
the y2. values. It peaks at about 5.2 h™! Mpc, which is
slightly higher than the linear theory value of 5.1 h=! Mpc,
consistent with previous work [1]. The rms of this dis-
tribution is 0.33 h~! Mpc, which is about a 7% precision
estimate of the smearing scale.

The other curves show similar projections of the histo-
grams (not shown) made from 300 and 150 realizations of
effective volumes of size 50 and 100 h=> Gpc®. Clearly,
larger volumes are more constraining: the rms on X is 0.14
and 0.1 h~! Mpc, scaling approximately with the inverse of
the square root of the effective volume (Appendix A
discusses why). Thus, Fig. 1 suggests that if the shape
and amplitude of &; are known then the expected precision

on the estimated X is about 31/50 h=3 Gpc’ /V,; percent.
Allowing for the amplitude of the power spectrum to be a
free parameter when fitting only slightly degrades the
precision of the X estimate. (There is a slight degeneracy
between the amplitude and the smearing scale. A higher
initial peak must be smeared more to produce the same
observed amplitude, but because the smearing matters
little at scales ~60 h™' Mpc, the degeneracy is reduced
by including scales that are far from the peak when
fitting.)

That said, in practice, the biased tracers will be less
abundant than the dark matter, so although the shape of the
correlation function of biased tracers should not be too
different from that of the dark matter, the measurement
errors will be larger. This will degrade the precision of the
constraint on X, which will propagate to other analyses
which use its value. For example, in the context of
reconstructing the shape of &, the distribution shown in
Fig. 1 could be used as a prior on the value of the smearing
scale when averaging over distributions such as those
shown in Fig. 8 of Ref. [4]. Nevertheless, we think further
analysis of this estimator of X is potentially interesting.
In particular, the next subsection explores the accuracy and
precision of estimated X if neither the shape nor the
amplitude of &, is known a priori.

B. Laguerre-based estimate

If & is a function of |r| and the three-dimensional
Gaussian smearing kernel is isotropic with rms X in each
direction, then the angular integral can be done analytically,
making

: ()/00 drr2e=("+5)/(22) ginh(rs/x2)
NLAS >3 2r rs/x?

The terms other than & in the integral define a noncentral-
Chi distribution in r/X with 3 degrees of freedom and

éu(r). (3)

noncentrality parameter s/X. So, if & is written as a sum of
polynomials, then &y, is a sum over moments of the y;
distribution: generalized Laguerre functions. That is, if

80) =Y (/R @)
k=0

for some set of coefficients a; (R merely serves to make the
a, dimensionless, it plays no fundamental role), then

EnL(s) = Y ar(s/R)F(E/s) ui(s/2), ()
k=0
where
poy = 2n1ILYP (=x2/2)

T
s = Gr= 1y IR, (6)

and the Lgx) (x) are generalized Laguerre functions. This
shows that the shape of &y differs from & because
He(x) /x5 # 1.

Reference [4] made the point that if the a; are deter-
mined by fitting Eq. (5) to the observed &y (s) then the
“Laguerre reconstructed/deconvolved” shape &p,(r) is
given by inserting the fitted a; in Eq. (4). If X is known,
then the fitting reduces to a simple linear least squares
problem. In Eq. (5), the terms that involve X multiply the
ay. So if £ must also be determined from the fitting process,
then the problem to be solved is nonlinear, but there is no
other complication.

To illustrate, we have fit Eq. (5), with n = 9, to the same
&n, measurements we show in Fig. 1 for a number if
choices of Z, i.e., for each X, we solve a linear least squares
problem. We then compare the ;(fnm values and choose that
¥ for which y2. is smallest. (We have checked that the
values of y2. /d.o.f. are consistent with unity, indicating
the fits are acceptable.) The histograms show the distribu-
tion of estimated X values for effective volumes of 10, 50,
and 100 (h~! Gpc)? (red, black, and blue, respectively). In
all three cases, the mean values are slightly larger than the
linear theory value of 5.1 h™!' Mpc, by about the same
amount as in the bottom panel of Fig. 1. The rms values of
the distributions are 0.46, 0.21 and 0.15 h~! Mpc; they are
about 50% larger than in the bottom panel of Fig. 1 when
the shape and amplitude were fixed to their correct values.
This is not surprising; the Laguerre-based approach must
determine the amplitude and shape of & as well as the
value X. Viewed from this perspective, the Laguerre-based
approach does rather well.

Since the Laguerre-based estimate of X could be artifi-
cially broadened if there are no parameter choices for which
Eq. (4) can provide a good description of the linear theory
shape, it is interesting to search for other parametrizations
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FIG. 2. Distribution of X (histograms) estimated from our
Laguerre-based analysis [fit Eq. (5) to the measured &y ] of
the 1500, 300, and 150 realizations of the three different effective
volumes indicated (10, 50 and 100 h™3 Gpc?); larger volumes
return a narrower distribution, hence a tighter constraint on the
smearing scale.

of & which may constrain X better. We study this in
Sec. IV.

C. Illustration using biased tracers

So far, we have focused on the dark matter correlation
function in configuration space. Real data of rare, biased
tracers will include redshift-space distortions and shot
noise. To study how our constraints degrade in a more
realistic setting, we have explored the following extreme
scenario. We work with &,, the monopole of the redshift-
space distorted correlation function of mock galaxies from
the same Quijote simulation set (the Molino suite of mock
galaxy catalogs [17]) but now at z = 0. These mock
catalogs use the standard [18] halo occupation distribution
model. The number density of the mock galaxies is
1.63 x 107* h= Mpc?, so the shot noise is significantly
larger than for the dark matter, and the bias factor is
b =2.4. In addition, the lower redshift means that the
smearing scale is larger: £ = 8.5 h~! Mpc. Moreover, the
fact that we are working in redshift space means that the
smearing scale and the bias factor are modified to

bl = b*[1+24/3 + /5] (7)
and

f+ 1) 1+68/5+3p%)7

2 =321 ,
eit R R By ST

(8)

where f=d InD/d Ina = 0.53 and = f/b = 0.22 (see
Ref. [7] for a derivation). In our mocks, b = 2.6
and T = 10.34 h~! Mpc.

In practice, the Laguerre method assumes that Eq. (3)
still applies with & — bgffch and X — X. So the question
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FIG. 3. Distribution of estimated Z.; from our Laguerre-based
analysis [fit Eq. (5) to the measured redshift-space correlation
function]. Three histograms show results from 1500, 300, and
150 realizations of the three different effective volumes as
indicated (10, 50, and 100 h~3 Gpc3). Vertical bars near the
bottom mark the mean values of the distributions; horizontal error
bars show the mean plus and minus the rms. Dashed curve shows
the constraint on Z.; from propagating the error on a single
realization of the &5, ensemble (the one shown in Fig. 4); it is
slightly narrower than the actual distribution of measurements in
the ensemble (black histogram).

is this: how well does the method recover X, while also
recovering the shape and amplitude of bgffiL?z

Figure 3 shows the result of estimating X by fitting
ninth-order Laguerres to the 1500, 300, and 150 realiza-
tions of &, (each realization has an effective volume of 10,
50, or 100 h~® Gpc?). The method returns distributions that
are centered at T = 10.50, 10.41, and 10.42 h~! Mpc for
the smallest to largest volumes. These are all close to the
theory value of T4 = 10.34 h™! Mpc. The rms scatter
around the mean is about 20%, 8.5%, and 6% of the mean
value; while this is significantly worse than for the dark
matter at z = 1, it is still a sub-10% determination for
DESI-like volumes (~50 h~3 Gpc?).

Perhaps more importantly, these values for the rms are
similar to (although slightly larger than) those returned by
the fitting procedure when fitting a single simulation. Since
the distribution of £ shown in Fig. 3 is approximately
Gaussian, one can approximate p(X) by assuming it is
Gaussian and treating the uncertainty on X determined from
a single realization as its rms. The dashed curve in Fig. 3
shows an example; it was obtained by propagating the
errors on the fit, shown as a black dashed curve, to the
symbols in Fig. 4 (which show one member of the &5,

*This “scale-independent bias” model is only an approxima-
tion. In Ref. [4], we noted that “higher-order” and/or “derivative”
bias schemes are easily incorporated into the Laguerre
reconstruction methodology, but we ignore these complications
here for the same reason we ignore the mode-coupling contri-
bution &yic to Eq. (2): none of our main points are changed by
including them.
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FIG. 4. Measured redshift-space monopole for a mock galaxy
catalog in an effective volume of 50 h~! Gpc (symbols with error
bars), the ninth-order Laguerre fit to it [black dashed curve, which
shows Eq. (5)], and associated reconstruction [red curve, which
shows Eq. (4) with the a; determined by the black dashed curve].
This particular realization happens to have X = 10.3 h™! Mpc.
Gray bands show the 68% and 95% ranges covered by 300 such
realizations of the observed redshift-space monopole, and the
pink band shows the 68% range covered by the 300 associated
reconstructed shapes ;... Solid black curve shows the linear

theory b2;&y.

ensemble). It is worth emphasizing that, because the
Laguerre methodology is agnostic about the shape or
amplitude of &, the p(X) that it returns—essentially the
shape shown in Fig. 3—is obtained without assuming
anything about the linear theory power spectrum.

III. APPLICATIONS

The previous section showed that the Laguerre method-
ology is able to provide useful estimates of the smearing
scale that are not tied to a fiducial cosmology. We now
discuss what additional science such estimates enable.

A. Accuracy and precision of reconstructed
distance scale

Figure 3 shows the distribution of X4 values at which
Eq. (5) best fits the measured &,. However, the best fit also
determines a set of coefficients a; which, when inserted in
Eq. (4), determine the reconstructed shape &y ,,. To illus-
trate, the black symbols (with error bars) in Fig. 4 show a
single realization of &, in a 50 h™3 Gpc? volume, and the
dashed black curve shows the best fit of Eq. (5) to it. This fit
determines the coefficients a; as well as X.y. This
particular realization has X = 10.3 h™! Mpc. The gray
bands show the regions that enclose 68% and 95% of 300
realizations of &, in the same effective volume. Notice that
the measurement (symbols) shows almost no peak or dip
because, by z = 0, particles have moved far from their
initial positions, and their speeds (which give rise to
redshift-space distortions) are also large. This is also true
of the ensemble average bracketed by the gray regions;

1.04 — &w
— &
081 — £199
Z 06
:J_".‘
g
= 04
0.2
0.0 4 . | |
89 90 91 92 93 94 95
rLp [h~Mpc]
FIG. 5. Distribution of reconstructed rp from our Laguerre-

based analysis [fit Eq. (5) to &;, the monopole of the measured
redshift-space correlation function; then, insert the a;, coefficients
of the best fit in Eq. (4) to define & ,,. Finally, determine ry p from
the peak and dip scales of & ,.]. Three histograms show results
for three different effective volumes as indicated. Vertical bars
near the bottom mark the mean values of the distributions;
horizontal error bars show the mean £ the rms. Smooth black
dashed curve shows a Gaussian distribution with mean and rms
determined from the single &;,, shown in Fig. 4. Vertical solid
line shows the mean rip scale measured in &, prior to
reconstruction (it is similar for all three effective volumes),
and dotted-dashed line shows the scale in linear theory.

in fact, in about 8% of the simulations, there is no
discernable peak or dip.

Despite this extreme smearing, the Laguerre recon-
structed shape &4, [red curve shows Eq. (4) with the best
fit a,] is reasonably close to that of linear theory &; (black
solid).” The pink bands show the region that encompasses
68% of the 300 reconstructed SLag CUTVES, i.e., the recon-
structions of the curves which resulted in the gray bands.

To turn each of these reconstructed shapes into an estimate
of the cosmological distance scale (at the survey redshift), we
use the “linear point” ry p, which is defined as the midpoint
between the peak and dip scales in the correlation function,

r ak—l—rd-
rup =T (9)

For the background cosmology of our mock catalogs, rp =
92.7 h™! Mpc in linear theory. Reference [19] shows that this
scale is interesting because ryp in the evolved correlation
function is approximately the same as in & . Distance scale
estimates boil down to estimating 7 p in each z = 0 mock and
providing a realistic error bar for it.

Although rp evolves less than either the peak or dip
scales [4,19], it does shift to slightly smaller scales at later
times. In the z =0 mocks we are studying here, the

*Note that because we are ignoring both mode-coupling and
scale-dependent bias the reconstructed shape is not as good as it
could possibly be. However, because our main concern here is to
illustrate the qualitative effects of X, we continue to ignore them.
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smearing is so large that there is no discernable peak or dip
in about 8% of the simulations having effective volumes of
50 h=3 Gpc?. (For the 10 and 100 h=3 Gpc? volumes, this
fraction is 9% and 6%, and they are not used in the
reconstruction process.) But in the others, the values of rp
estimated from the Laguerre fit [i.e., by finding the
maximum and minimum of Eq. (5) using the best-fitting
values of a; and X] are centered on 90.7 h~! Mpc, with an
rms scatter of about +1.3 h™! Mpc. This is a significant
offset from its linear theory value, so the question is if the
rpp estimates from reconstructed &; ,, are closer to the linear

theory value of 92.7 h=! Mpc, and what is the associated
uncertainty on this “reconstructed” value.

The solid black curve in Fig. 5 shows the distribution of
reconstructed rp values determined from the & ,, that were
reconstructed from the same ~300 &5, measurements which
led to Fig. 3. The black vertical bar near the bottom marks
the mean value of the distribution. and the horizontal error
bar shows the mean =+ the rms. The smooth dashed curve
shows a Gaussian distribution with mean and variance
determined from propagating the errors on ryp for a single
member of this ensemble—the one shown by the symbols
in Fig. 4, that is best fit by the black dashed curve there, and
whose reconstructed &p,, is the dashed red curve there
(whereas the mean and variance come from standard error
analysis, using a Gaussian shape is an extra assumption;
this is reasonable as the distribution defined by the
ensemble is not too non-Gaussian.) The mean of this single
realization is consistent with the ensemble mean recon-
structed value which is centered on ~92.1 h~! with an rms
scatter of 40.85 h~! Mpc. Evidently, even though the
reconstructed &y, is not as close to & as in Refs. [4,7]—
presumably because the smearing scale at z =0 is so
large—Laguerre reconstruction improves the accuracy and
precision of the distance scale estimate.”

The other histograms in Fig. 5 show that, for the other
effective volumes as well, the reconstructed values are
centered on ~92.1 h~! with an rms scatter that is slightly
smaller for the larger volumes. In all cases, accuracy and
precision are both improved compared to 7y p in the original
&y (i.e., prior to Laguerre reconstruction).

It is interesting to contrast this with the accuracy and
precision that result from fixing X to a fiducial value (in this
case, 10.34 h™! Mpc) and only determining the a; from
the fits. Doing so does not change the mean rp, but the
error bar is about 30% smaller (£0.6 h~! Mpc rather than
+0.85 h™! Mpc). This is not surprising; as Ref. [4] dis-
cusses, fixing X to a fiducial value in this way is a little like
performing the reconstruction step with a prior on the
background cosmological model, and this artificially

4Figure 6 in [7] suggests that ignoring the mode-coupling term
as we have done here leads to a slight underestimate of ry p, so this
may be why our reconstructed value is still biased slightly low.

reduces the estimated error bar. In effect, determining X
(in addition to the a;) from the fit and using the best-fit X to
reconstruct frees one from this dependence on a fiducial
model. In this sense, the estimate of r p that results (the one
shown in Fig. 5) has been marginalized over the a priori
unknown value of .

Evidently, even in this extreme smearing scenario, the
Laguerre reconstruction methodology—which makes no
assumption about the expected shape of the baryon acoustic
oscillations (BAO) signal—returns a distance scale esti-
mate that is accurate to sub-percent precision for volumes
that are larger than ~10 h™3 Gpc?. Since future surveys
target similar comoving volumes but at higher redshifts
where the smearing is smaller, we expect our methodology
to return sub-percent precision on the estimated distance
scale. Of course, for smaller survey volumes, other datasets
may provide better constraints on X and hence on the prior
distribution one should use when marginalizing. We dis-
cuss how one might proceed in such cases in Sec. IV.

B. Other uses of the estimated smearing scale

Our Laguerre-based estimate of the smearing scale is
particularly interesting as X potentially provides an esti-
mate of the amplitude of Py (k,z), and hence the linear
theory growth factor, that is not degenerate with the bias of
the tracers (but see Ref. [20] for why this may not be
exactly true). Crudely speaking, this is because on the
scales which dominate the integrand in Eq. (1), the power
spectrum has approximately the same shape as P; ; only its
amplitude is different: P (k) ~ b>Py (k). Therefore, if one
defines X2, by inserting Py, in place of Py in Eq. (1), then
the ratio X /2 ~ b.

In practice, we must apply this methodology to the
monopole of the redshift space clustering signal, for which

F2+ ) L+68/5+3p2/7] 71/
L+2p/3+ /5

z“obs

~ beff 1 + 3 (10)
eff

depends on both f and f rather than b alone. If f is

determined from the angular dependence of the clustering

signal (e.g., the ratio of the monopole to the quadrupole),

then this can be combined with Eq. (10) to estimate f.

We intend to explore this estimate of f in future work.

IV. THE HERMITE LIMIT

The previous section noted that it may be interesting to
search for other parametrizations of & which return tighter
constraints on the smearing scale. However, if the tracers
are sufficiently sparse that the uncertainties on X become
large, then the constraint on £ may not be sharp enough to
be interesting (either for constraining b or for reconstruct-
ing the shape of & ). If one must use constraints on the
smearing scale from other datasets to perform a BAO
reconstruction, then it is interesting to ask if alternative
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parametrizations (to Laguerre) simplify the process of
marginalizing over the value of the smearing scale when
reconstructing &; . As the Introduction notes, this provides
additional motivation for exploring other parametrizations
of éL'

To address this, we begin with Eq. (3), and consider the
limit in which r > ¥ and s > X (Fig. | and 2 show that the
smearing scale is indeed much smaller than the BAO scales

of interest). Then, 2sinh(rs/X2) ~ /= making

drr e—(r—s)z/(zzz)

éNL(S)%A Fmﬁ(’), (11)
SO
o em(r2/C3)
o) x [Tart e, (2

Note that we can extend the lower limit of integration down
to —oo only if r —s < X. If we parametrize & using a
simple polynomial [i.e., Eq. (4)], then the integral above
can be done analytically. It is easy to check that each a;
multiplies (£/R)* times a polynomial in s/%. This poly-
nomial is the same as that which appears in the Laguerre
expansion p;(s/%X), when one takes the s>> 3% limit
(E; —» 1 and E, — 0 in Eq. (A3) of Ref. [4]).

There is no a priori reason for parametrizing & with a
simple polynomial. If we parametrize r&; (r) using the
probabilist’s Hermite polynomials instead,

réL(r Z aka< ’ﬁd> (13)

then Appendix B shows that the integral in Eq. (12) can still
be done analytically. For each , the result is (s — rgq)¢ /R
plus additional terms which are lower-order polynomials in
s multiplied by terms proportional to (R/X)?. By carefully
grouping these other terms, it is possible to find that r&; (r)
which, when inserted in Eq. (12), produces a simple
polynomial in s. Namely, if

ré(r Zaka< — T Z) (14)

where the H; are given in Appendix B, then

- zn:ak (s ‘Rrﬁdy. (15)

k=0

sénL(s)

Therefore, if we determine the a; by fitting the simple
polynomial of Eq. (15) to the observed séy (s), then the
reconstructed/deconvolved r&; (r) is given by Eq. (14),
provided we first assume a value for £/R (which we
discuss shortly). Note that whereas “Laguerre recon-
struction” has a simple polynomial as the reconstructed

shape of & (r), this “Hermite reconstruction” of r&; (r) has
a simple polynomial as the nonlinear shape of s&y; (s).

A. Dependence on smearing scale

In practice, we will not know the correct value of Z, so it
is interesting to study the sensitivity of Hermite
reconstruction to incorrect choices of X. In this regard,
the structure of this Hermite reconstruction problem has
two surprising consequences. First, because £ does not
appear in Eq. (15), fitting it to the measurements yields no
information about X. That is, if we fit s&y; (s) to a simple
polynomial, then we cannot make a plot like Fig. 2!
Second, for the same fitted a;, varying X only changes
the reconstructed shape [Eq. (14)]. In contrast, for Laguerre
reconstruction, each choice of X requires a new fit [X
appears in Eq. (5) for &y ] In this sense, Hermite
reconstruction is more efficient than Laguerre: one only
needs to determine the a; once.

Although séyp (s) does not depend on X, the Hermite
reconstruction of &, which we refer to as &y, does. So we
now turn to the value of Z. There are two natural choices.
One is to treat the Laguerre-based analysis (e.g., Fig. 2) as
providing a prior on the value of X. But if this is rather
broad (e.g., for sparse tracers), it may be that an alternative
approach is more constraining. Following [7], this second
approach exploits the fact that, for all biased tracers, the
smearing scale is expected to be well approximated by
Eq. (1). Suppose we use X2 to denote the result of
inserting the observed P (k) in Eq. (1). On the large
scales (small k) which dominate the integral (in ACDM
models), Py, (k) ~ b3, Py (k), making T ~ Zqps/byo. In this
approximation, the uncertainty in what to use for X boils
down to what to use for b.

We use by;4 to denote our best guess for this value, and so
we define gy = X/ brig- This suggests that if we fit the
observed correlation function to Eq. (15), with R = X,
then the effect of varying b from its fiducial value yields
reconstructed

I fHer

— Ifia b
Zaka( Zig b10> 1e)

Note that when by = by, then H, — Hy; the recon-
structed shape is a simple sum of Hermite polynomials
(of course, this is only true if £ ~ X,/b,q). This allows a
straightforward estimate of the uncertainty on the recon-
structed &y,: fitting to &yp, yields the covariance matrix of
the fitted a,. For a given choice of bgq/ b, this can be used
to produce uncertainty bands around the shape given by
Eq. (16), and further marginalizing over the value of
bgaq/b1o gives the full uncertainty on the reconstructed
shape (see [4] for a detailed discussion).

We must also decide what to use for rgg. We are
particularly interested in the BAO scale, around which
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x10~2

—— Linear Theory
| Simple Polynomial Best Fit

—— Hermite Reconstruction

5 80 85 90 95 100 105
r [hMpc]

FIG. 6. Comparison of Hermite reconstruction [Eq. (14)] of the
shape of the z = 1 dark matter correlation function (solid red
curve; pink bands show 1- and 2-standard deviation uncertainties)
with the linear theory shape (solid black) when £ = 5.1 h~! Mpc,
the linear theory value, is used. Dashed gray curves show
reconstructions when X is assumed to be larger or smaller by
10%. Symbols with error bars show the measured (i.e., evolved)
dark matter correlation function. Dashed black curve shows the
best fit of Eq. (15) to these measurements, which was used to
determine the a; coefficients used in the reconstruction; gray
bands show the 1- and 2-standard deviation uncertainties.

the correlation function exhibits a peak and a dip.
Therefore, a reasonable way to determine rgq is as follows.
Initially choose 7y arbitrarily—a reasonable choice would
use the expected value of r;p of Eq. (9) in the current best-
fitting cosmological model. Then, fit Eq. (15), with
R = Zgq, to the observed séyi(s). Find those scales
Tpeak and rg, where déy;/ds =0. In practice, since
d[sé]/dIns = s& + sd&/dIn s, the peak and dip scales in
the evolved correlation function are at those s where

- s = reg | *! {ks — (s — rﬁd)]
a =0. 17
z k< Zfa > g (17)

k=0

Now, set rgq equal to (Spea + Sqip)/2 and refit. Doing this
ensures that the higher-order polynomials contribute less
and less in the vicinity of rip (see Fig. 10 in [4] for an
explicit demonstration). The a; which result can then be
inserted in Eq. (16). The peak and dip scales in the
reconstruction are where d[réye|/dInr = réy,,

. kr ' —Tfiq bﬁd> (”—Vﬁd bﬁd)]
a; | —H;— — | -H ,— ]| =0,
; k[zﬁd ¢ 1( S bi) T\ Zag hio

(18)

where we have used the fact that dH;(x)/dx = jH,;_(x).
This can be used to determine how the value of r;p in the
reconstruction depends on b. One can, of course, weight
each of these values by a prior on the value of b.

B. The Hermite-reconstructed shape

Figure 6 illustrates the various steps associated with
Hermite reconstruction. The symbols with error bars show
the measured dark matter correlation function at z = 1 in an
effective volume of 50 h™ Gpc?. The dashed black curve
shows the best fit of Eq. (15) with n = 9 (i.e., a ninth-order
simple polynomial) to these measurements; associated gray
bands are the 1- and 2-standard deviation uncertainties.
This best fit determines the coefficients a;. The solid red
curve with pink error bands shows the associated Hermite
reconstruction [Eq. (14) with the a; determined from the
fit to the symbols, and £ = 5.1 h™! Mpc or, equivalently,
Eq. (16) with by = b1y = 1] and corresponding uncer-
tainties. This red curve should be compared with the
solid black one, which shows linear theory. Evidently,
when the correct smearing scale is assumed, then Hermite
reconstruction works quite well. (It appears to work much
better than the Laguerre reconstructions shown in Fig. 4
only because here we are working with the dark matter at
z = 1 rather than redshift-space distorted mock galaxies at
z = 0. In fact, for the z = 1 dark matter, the reconstructed
shapes, &1,, and &y, are very similar.)

Dashed gray curves show the Hermite reconstructions
when the smearing scale is assumed to be larger or smaller
by 10% (the a; are the same, of course). Comparison with
Fig. 4 in Ref. [4] shows that, in all cases, the linear theory
shape is recovered at least as well as it is for Laguerre
reconstruction. We have also checked that r;p of Eq. (9)
in the Hermite reconstructions depends on a smearing
scale similarly to the Laguerre reconstructions: weakly
(see, e.g., Fig. 6 of Ref. [4]). Therefore, reconstructed
distance scale estimates and their uncertainties from the
Hermite reconstructions are comparable to those from
Laguerre reconstruction. This is reassuring because
Laguerre reconstruction of the distance scale is accurate,
precise, and fast [4,7]. Moreover, as we noted above,
Hermite reconstruction is even more efficient, requiring
only a single determination of the coefficients a;.

C. Discussion

One might have thought that how one chooses to
parametrize the nonlinear correlation function is of little
consequence—provided the goodness of fit is acceptable.
Our analysis has shown that some parametrizations are
more useful than others. The Laguerre parametrization of
&ne [Eq. (5)] has smearing scale X dependence in &yp, but
none in &, whereas our modified Hermites [Eq. (13)] have
no X dependence in s&y; (s) but some in r&; (r). As a result,
the Laguerre-based parametrization of £y constrains X
(Fig. 2), whereas the simple polynomial parametrization of
sénw () associated with Eq. (13) does not. (Some of this is a
consequence of ignoring the mode-coupling term. Had we
included it, then the Laguerre approach would have no
additional ¥ dependence in &y, whereas the modified
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Hermites approach would. However, in practice, the mode-
coupling contribution is too small to matter.)

This raises the question of whether or not there is a
parametrization of &y that yields tighter constraints on Z.
While one is allowed to fit data with a model whether or not
the model makes good physical sense, our results suggest
that a parametrization that is closer to the physics will fare
better: the modified Hermites have the shape of the linear
theory correlation function depending on time (because X
depends on time), which is unphysical. In contrast, the
Laguerre parametrization is consistent with the physics.

While a detailed investigation of physically reasonable
parametrizations is beyond the scope of this work, we have
performed the following test. We parametrize & using
Eq. (13), for which the associated &y is analytic and
depends on R/Z. This is similar to the Laguerre case, for
which & is a simple polynomial that depends on R but
not X—so it is as physically reasonable. Because of this
similarity, we can study how this parametrization constrains
2. We have found that the analogue of Fig. 2 is almost
identical; there is no significant difference between param-
eterizing &; (r) using simple polynomials or r&; () using
Hermites. Of course, this does not exclude the possibility
that there are other parametrizations which will better
constrain 2.

Finally, in the context of parametrizations, it is worth
noting that BAO analyses that assume a fiducial (typically
ACDM-motivated) model when estimating the distance
scale attempt to account for the fact that the fiducial model
—either for the background cosmology or for the bias
between observed tracer and the underlying dark matter
field—may not be correct by adding A;r~! + A,r~? and
then marginalizing over the values of A; and A, [21]. Since
such terms are not present in our approach, one might
wonder if their inclusion would bias our results. We
checked this by explicitly adding A,/s+A,/s*> to
Eq. (5) or A; + A, /s to Eq. (15) prior to fitting. We found
that these extra terms have almost no impact on our
analysis.

V. CONCLUSIONS

To a good approximation on BAO scales, the evolved
correlation function &y is related to the initial one, &; , by a
convolution [Eq. (3)]. Fitting a series of half-integer
Laguerre polynomials [Eq. (5)] to the evolved two-point
correlation function allows one to constrain the smearing
scale Z of the convolution kernel (Fig. 2) even when neither
the amplitude nor shape of & are known. In addition, when
applied to &y at different redshifts, the method correctly
returns the fact that the smearing scale is larger at later
times (compare Figs. 2 and 3). Our Laguerre approach
shows that to constrain the value of X it is enough to endow
the parametrization of the &y, — &, relation with the correct
structure (i.e., one that reflects the fact that the two are
related by a convolution).

In configuration space, the smearing is expected to be
approximately independent of the nature of the observed
tracers—i.e., of halo or galaxy bias. However, in redshift
space, the effective smearing is expected to depend weakly
on bias [Eq. (8)]; our Laguerre-based estimates of Z. in
redshift-space distorted mock galaxy catalogs are consis-
tent with this expectation (Fig. 3).

In the Laguerre framework, knowledge of the smearing
scale allows one to deconvolve and hence reconstruct the
shape of & from measurements of &y, without any prior
assumptions about the shape or amplitude of & . As the
shape and amplitude of the reconstructed correlation
function can be used to constrain cosmological parameters,
the Laguerre methodology can be used to provide more
realistic estimates of the precision of the constraints. In
particular, the estimated accuracy and precision of the
Laguerre-reconstructed constraints do not depend on
choosing a fiducial cosmological model (also see discus-
sion at the end of Sec. IV C). We demonstrated this for the
linear point feature [Eq. (9)] in the reconstructed &; (Figs. 4
and 5).

In practice, such constraints will depend on the nature
of the biased tracers and the volume of the survey. For
small survey volumes (e.g., BOSS), the constraint on the
smearing scale is not tight, so marginalizing over its value
can significantly weaken constraints on cosmological
parameters. When this occurs, it may be preferable to
use tighter constraints on X which come from other
datasets, and then, we argued that the full Laguerre-based
analysis (which may be justified in a DESI-like survey)
may not be necessary. Provided that X is a small fraction of
the scales of interest, the simple polynomial-modified
Hermites [Eq. (16) with Appendix B) combination for
séni(s) and r& (r) provides a more efficient way of
marginalizing over the value of ¥ when quantifying the
accuracy and precision on the distance scale estimate
(Fig. 6 and associated discussion).

We illustrated many of our points using mock galaxy
catalogs at z = 0, where the smearing is so large that the
BAO feature in &y is nearly completely smeared out.
As our Laguerre-based results were promising, never-
theless, we are in the process of implementing the ideas
presented here in realistic mock galaxy catalogs which are
more relevant to the next generation of cosmological
surveys.

Finally, although we have focussed on the BAO smear-
ing scale, recent work has highlighted the benefits of
combining full-shape analyses of galaxy power spectra
with BAO distance scale estimates to constrain cosmologi-
cal parameters [22]. Since both Hermite and Laguerre
reconstructions reproduce the full shape of &, over a rather
broad range of scales, their speed and simplicity enable the
development of a similar program in configuration rather
than Fourier space. We hope this feature of our recon-
structions is exploited in future work.
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APPENDIX A: DEPENDENCE OF y? ON
EFFECTIVE VOLUME

Sufficiently close to the best fit (the minimum of the y?),
we expect the y? curve to be approximated by a quadratic
function. We can expand it around the best-fit coefficients
a as

= /8) 4D (a=8) +5(a-4) M- (a4,

(A1)

7 (a)

where D; = 9y?/0a; is the first derivative vector, and
M,;; = 8*x*/0a;0a; is the Hessian matrix. The best-fit
coefficients a will be determined from the fact that the
first-order derivatives dy?/da; are zero for all a; at the
minimum y2. = y*(4), so we can write the above
equation as
Ay =r*(a) =i = (a—2)" - (M/2) - (a—4). (A2)
The »* function can be expressed as the following
weighted inner product:
=E-9r-c (-2 (A3)
where C~! is the inverse of the covariance matrix, & the
measurement, and c:“ our best fit. As we discussed in the
text, if the value of the smearing scale X is known, then our
fitting model is linear in coefficients. For a linear model, the
best fit can be written in matrix form as F:’ = A- a, where A
is the design matrix. In our case, the elements of the design
matrix are A;; = H;([r; = ra]/Zsa. bra/bro)- Inserting
this linear model in Eq. (A3) and calculating the associated
Hessian matrix yields
Ay =(a-a)

J(ATCTTA) - (a—3a).  (Ad)

The covariance matrix C scales as the inverse of the effective
survey volume, so C~!, and consequently, y*(a) —x2.
scale as the effective volume.

Let 5a = a — a be a change in the fitting coefficients
whose first element is arbitrary da;, but the rest of whose
elements are selected to minimize the Ay? = y(a) — y2. .
Then, da,, the uncertainty on the value of a, is

Say = + (A5)

'

which scales as the inverse of the square root of the
effective volume.

For the nonlinear case (when X is not known), Eq. (A3)
is still valid. By calculating the second derivatives in the
general form, Ay? of the nonlinear model can be written as

54
aak

OE, 0¢;
i Oa,

. 92E.
(-, 2

Y darday]

(A6)

A}(z = 5ak [C_l] 531,

where all the derivatives are evaluated at the best fit values
of the fitting parameters.

In the linear model, the second derivatives are all zero,
and this expression reduces to Eq. (A4). In a nonlinear
model, finding the best fit & must proceed iteratively, and
then, we only need to insert the solution into Eq. (A6).
Since the inverse of the covariance matrix appears in both
the first and second terms in the square brackets above, the
scaling with the effective volume for the nonlinear case is
the same as for the linear one.

As noted in the main text, to estimate the best-fitting
%, we solve a linear least square problem for a number of
choices of . We then compute the y> values and choose
the T that minimizes the y2. For this step and measuring
the uncertainty on the best-fitting X for each realization,
we fit a quadratic function Ay(X —A;)? to the y* values
as a function of X. The A; parameter gives us the best-
fitting X, and then, by setting the confidence level of
Ay*> =1, the uncertainty on X can be determined by
1//A.

For the error bar on rp, we need to propagate the
uncertainty from the fitted parameters of the correlation
function to the positions of the peak and the dip and
finally to the linear point. In this nonlinear case that X is
unknown, we should write the linear point position as a
function of the polynomial coefficients {a;} and X and
then expand the result around the best-fit parameters. The
error bar on r p can be written as

9 Orip 12
{Z S covp), aﬂ} NS
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where ﬂ:{ao,al,...,ak,Z}, and ﬁ denotes the best

fitting values.

APPENDIX B: MODIFIED
HERMITE POLYNOMIALS

We are interested in integrals of the form

e_(y_x)2/2
Ii(y.p) = dxﬁHk(ﬂx) (B1)
_ (1 _ p2\k/2 N4

where the H,(x) are the probabilist’s Hermite polynomials,
and f > 0. We could use this to write the s&y; (s) that is
associated with Eq. (13) of the main text. This expression
would depend on f, making it the Hermite analog of the
Laguerre reconstruction we discussed in the main text.
However, one of our goals in the main text was to show
that, with the right combination of Hermite polynomials,
it is possible to write &y as a simple polynomial in
s/R = yp.

To achieve this, start with the fact that when = 1, then

1 d e—(y—x)z/Z k B3
I,(y,1) = x———H;(x) = y*“.
We then note that
H (/}x) — zn/z:ﬁn Zl(ﬂ - )i Hn—2i(x) <B4)
" pary 2i i'(n—2i)!"

This with the definition of I;(y, 1) show that when j # 1,
then I;(y,f) is a sum of polynomials that are each
multiplied by different powers of . For example, the term
of highest order in y is (y)*. We can remove all the other
terms by subtracting appropriate combinations of f and

H (px). Doing so defines the functions called H(x, /) in
the main text. Explicitly, they are

Ho(fx) = Ho(px).

M, (fx) = Hy(Px).

Ha(px) = Hy(px) — AHo(px).

H3(fx) = Hy(px) — 3AH, (px),

Ha(fx) = Hy(px) — 6AH,(Px) + 3A%Ho(fx).
Hs(Bx) = Hs(px) — 10AH;(fx) + 15AH, (Bx),
He(px) = He(Bx) — 15AH,(Bx) + 45AH; (Bx)

— 15A3H,(px).

Hy(px) = Hy(px) — 21AH;5(px) + 105A%H;(fx)
— 105A3H, (px).

Hg(px) = Hy(Bx) — 28AH(fx) + 210A2H,(x)
— 420A3H, (fix) + 105A*H,(fx),

Ho(fix) = Ho(px) — 36AH(fx) + 378A%Hs(f3x)

— 1260A3H;(Bx) + 945A%H, (fx), (BS)

where A = 2 — 1. This shows that H; — H; as  — 1.
Moreover, note the similarity of the structure to that for the
H, themselves: the numerical coefficients are the same as

for Hy, with x/ — H; and with each extra term receiving an
additional power of A. That is,

[n/2]

ﬂx _n,zm'n 2m ﬂX) ( )

(n—2m)! 2m

(B6)

This, with Eq. (B2) for I;(y, ), makes it easy to check
that Eq. (14) leads to Eq. (15). This also makes it easy to
see that dH;(y)/dy = jH,;_;(y), which mirrors the fact
that dHJ(x)/dx = jHj—] (x)
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