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With the help of the tachyonic trapping mechanism one can potentially solve a number of problems
affecting quintessential inflation models. In this mechanism we introduce a trapping field with a
spontaneous symmetry breaking potential. When the quintessential inflaton passes the critical point, a
sudden burst of particle production is able to reheat the Universe and trap the inflaton away from the
minimum of its potential. However, self-interactions of the trapping field suppress particle production and
reduce the efficiency of this process. We develop a method to compute the magnitude of the suppression
and explore the parameter space in which the mechanism can be applied effectively.
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I. INTRODUCTION

The origin of the accelerated expansion of the Universe
remains one of the biggest puzzles in cosmology. The most
direct explanation of such an expansion is the cosmological
constant [1]. Such an explanation is also perfectly con-
sistent with current observations [2]. Unfortunately, the
cosmological constant explanation suffers from serious
theoretical issues. Specifically, it is difficult to find a
theoretical justification for its extremely small value.
It is thought that explaining the absence of the vacuum

energy by invoking some unknown symmetry should be
easier than explaining its tiny value required to fit the
observations. If that is true, then the current accelerated
expansion could be driven by the potential energy of some
slow rolling scalar field, called quintessence [3–8]. This
mechanism is inspired by cosmic inflation and shares some
of its features. Going one step further, it is argued that
unifying the inflaton and quintessence into one and the
same field has additional benefits. Such models are called
quintessential inflation [9–11] (see Refs. [12–15] for more
recent reviews and references). Apart from being economic
in its field content, another benefit of such models is that
inflation provides initial conditions for the quintessential
phase of the evolution. Otherwise, initial conditions are free
parameters.
Although, the quintessence and quintessential inflation

were introduced to explain the apparent fine tuning of the
cosmological constant, they bring another set of “tunings.”
Many of those stem from the fact that the scalar field has

to be slowly rolling down the potential to provide dark
energy. This can be achieved if the dynamics of quintes-
sence is determined by the Hubble friction, which requires
that the effective mass of the field is much smaller than the
Hubble parameter today, mφ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðφÞ=2p

< H0, where
H0 ≃ 10−33 eV. A scalar field with such a tiny mass is
problematic from the observational, as well as theoretical,
points of view. On the one hand, a generic scalar field with
such a small mass should have been detected, as it leads to
several observable phenomena related to the fifth force in
nature [16]. From the theoretical point of view, it is difficult
to explain such a tiny mass within the framework of
effective field theories [17].
An additional challenge for quintessential inflation

models are super-Planckian field values. In order to explain
inflation as well as the dark energy, which require hugely
different energy scales, the potential must have a very large
gradient. Due to such a gradient, the φ field picks up very
large kinetic energy after inflation. The latter is difficult to
dissipate before the field reaches super-Planckian values.
This can be problematic within the effective field theory
approach as one can find it complicated to justify the
absence of nonrenormalizable terms in the action [17]
(models based on α-attractors may avoid this problem, see
for example Refs. [18–20]).
In this work we investigate a model first proposed in

Ref. [21], which could address the above mentioned issues.
In that work it was suggested that the quintessence field φ
interacts with another field χ, which is initially heavy and
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lies at the origin. As φ rolls down its classical potential, it
passes through a symmetry breaking point (SBP). At that
point the effective mass squared χ switches from a large
positive to a negative value. This triggers an explosive
production of χ particles. Due to their interactions, these
particles create a very steep quantum potential for the
quintessence, which halts the run of φ almost instanta-
neously and traps it at a SBP. We, therefore, often refer to
the χ field as the “trapping field.” The trapping mechanism
is inspired by Ref. [22]. However, instead of χ becoming
massless, as suggested in that work, in our model we
consider the mass of χ to be tachyonic at a SBP.
An attractive feature of this scenario is that conclusions

are insensitive to the curvature of the potential. Barring
the arguments of naturalness, we do not need to impose
any constraints on the flatness of the potential at low
energies. Only the height of the potential at a SBP is
crucial. Therefore, quantum corrections do not have such a
strong negative impact on this scenario as compared to
the conventional quintessence models. Moreover, as the
quintessence field can be trapped before it reaches the
Planck scale, the effects of Planck-suppressed nonrenor-
malizable terms can also be neglected. Another benefit
of this scenario is that the particle production during
the trapping phase can be responsible for reheating the
Universe. As it is well known, reheating can be a chal-
lenging issue for generic quintessential inflation models
[11]. Finally, at the minimum of the potential both fields,
φ and χ, are heavy, avoiding the above mentioned fifth
force problems.1

The fact that the trapping field has a negative mass
squared at the SBP brings some technical difficulties. To
make the potential bounded from below, we must include a
self-interaction term λχ4. Such an interaction term makes
the mode functions of the χ fields evolve nonlinearly, which
in turn affects the particle production and therefore the
trapping (as well as reheating) efficiency. This is an
important difference between the tachyonic trapping
mechanism studied in this work and the one proposed in
Ref. [22].2 In Ref. [21] it was noted that such interactions

can be modeled as an additional contribution to the
effective mass of the trapping field. If that contribution
is too large, then the χ field becomes too heavy to be
excited, reducing the efficiency of the trapping and the total
energy density stored in χ particles.
In this work we study the effects of the nonlinear

evolution more carefully. We develop analytical methods
for computing them and compare with the numerical
simulations, showing a very good agreement. The former
method makes it possible to scan a large space of parameter
values and find regions where the trapping is efficient.
The paper is organized as follows: in Sec. II we introduce

and motivate our model and discuss its basic features. The
computation of nonlinear effects is done in several steps.
First, in Sec. III we discuss the particle production ignoring
the self-interaction term. The latter is accounted for by two
different methods. If the suppression of particle production
is small, then we can take them into account perturbatively,
as it is demonstrated in Sec. IV. In the opposite regime,
where nonlinear effects are very strong, the resonantly
produced particles cause “nonlinear blocking,” whereby
newly created particles terminate any further production.
This is discussed in Sec. V. In Sec. VI we utilize the
developed method to explore the space of parameter values
that lead to efficient trapping and conclude in Sec. VII.
Finally, in the Appendix we collect some mathematical
formulas and more technical derivation steps.
In this work we use natural units such that c ¼ ℏ ¼ 1,

and the reduced Planck mass is mpl ¼ ð8πGÞ−1=2 ≃
2.44 × 1018 GeV.

II. THE MODEL

Consider a simple toy model, which contains two scalar
fields: a real scalar field φ and a complex scalar field Ψ.
We write the Lagrangian of the model as

L ¼ −
1

2
∂μφ∂μφ −

1

2
∂μΨ∂μΨ� − Vðφ; jΨjÞ; ð1Þ

where the potential Vðφ; jΨjÞ is of the form

Vðφ; jΨjÞ ¼ VðφÞþ 1

4
λðΨΨ�−f2Þ2þ 1

2
g2ΨΨ�ðφ−φSBPÞ2:

ð2Þ

Generically, quintessential inflation models require the
potential VðφÞ of the scalar field to feature two very flat
plateaus at vastly different energy scales [11]. These
flatness conditions allow the potential energy of the field
to dominate over the kinetic one, which is needed to drive
the accelerated expansion of the Universe. The plateau at
high energies is supposed to provide a (quasi-)exponential
expansion during inflation, and the second plateau should
be responsible for the accelerated expansion of the late
Universe. To accommodate for such a huge difference in

1One could also consider adding a new challenge to quintes-
sence (and therefore to quintessential inflation) scenarios from
recent measurements of the Hubble constantH0. The value ofH0,
as determined from the cosmic microwave background (CMB)
measurements [2], is lower than the one resulting from local
determinations [23,24], leading to the so called “Hubble tension”
[25]. Simple quintessence scenarios seem to exacerbate this
tension according to Ref. [26]. Therefore, if the tension is
eventually confirmed, then this will make simple quintessence
scenarios with the equation of state w > −1 disfavored. The
scenario discussed in the current work does not suffer from such a
problem because both fields are eventually trapped, which
renders them nondynamical.

2A variation on the particle production mechanism studied in
Ref. [22] is also widely used to reheat the Universe in quintes-
sential inflation models [27–29]. It is called the “instant reheat-
ing” mechanism.
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energy scales at both epochs, the gradient of VðφÞ between
the plateaus must be very large. Therefore, typically, after
the end of inflation, the Universe enters into the period of
kination, where the energy budget is dominated by the
kinetic energy of the scalar field [30,31].
One concrete realization of such a potential in the

context of α attractors was suggested in Ref. [21], where
the mechanism of the tachyonic trap is also introduced.
In the current work we are not interested in the detailed
shape of VðφÞ. The only assumptions we make about this
part of the potential is that it contains a plateau at high
energy scales to provide inflation and a very large gradient
afterwards, in order to accommodate a very small dark
energy scale. In contrast to typical quintessential inflation
scenarios, the tachyonic trapping mechanism allows us to
dispense with the second low energy plateau. Indeed, the
only requirement for VðφÞ at low energies is the height
of the potential, VSBP ≡ VðφSBPÞ ≃ Vvac ≃ 10−12 eV−4, the
exact shape being immaterial. This is a very important
benefit of this scenario, as we do not need to worry about
radiative corrections, which could otherwise spoil attractive
quintessence models [27].
The second term in Eq. (2) is the spontaneous sym-

metry breaking potential of Ψ, where f is the symmetry
breaking scale. And the last term in the potential specifies
interactions between φ and Ψ. To see the effects of such an
interaction, let us decompose Ψ into its radial and angular
components as Ψ≡ χeiθ=mpl . We can thus clearly see that
the χ field is heavy for jφj ≫ jφSBPj and therefore anchored
at hχi ¼ 0. The angular component θ is mainly neglected in
this paper, apart from a few brief comments later.
As the φ field runs towards φSBP, its stabilizing effect

onto χ disappears, and theUð1Þ symmetry is spontaneously
broken. Hence the name “symmetry breaking point.” But
before this happens, the whole sequence of events take
place, some of which are the main subject of the cur-
rent work.
To simplify the discussion, we will rescale the φ field as

φ → φ − φSBP ð3Þ
without loosing generality. Therefore, neglecting the angu-
lar component θ, we can write our working potential as

Vðφ; χÞ ¼ VðφÞ þ 1

2
g2χ2φ2 þ 1

4
λðχ2 − f2Þ2; ð4Þ

which we use to model the processes close to φ≃φSBP ¼ 0.
As discussed above, due to the large gradient of VðφÞ,

the Universe is assumed to be dominated by the kinetic
energy of the φ field after inflation up until the first
passage of a SBP. We might consider this as an additional
motivation for unifying inflation with dark energy models,
as opposed to pure quintessence models, within the context
of the tachyonic trapping mechanism: inflation provides the
necessary conditions required for an effective trapping and
reheating of the Universe.

During kination, the field is oblivious of its potential
and the field’s homogeneous component is governed by a
simple equation of motion,

φ̈þ 3H _φ ¼ 0; ð5Þ

where H is the Hubble parameter. In this regime H is
given by

H ≃
j _φjffiffiffi
6

p
mpl

: ð6Þ

It is easy to integrate Eq. (5) and find

φ ¼
ffiffiffi
2

3

r
signðvÞ ln

�
1þ

ffiffiffi
3

2

r
jvjt
mpl

�
mpl; ð7Þ

_φ ¼ ve−
ffiffi
3
2

p φ=mpl
signðvÞ: ð8Þ

In these expressions time is defined such that tSBP ¼ 0, and

v≡ _φSBP ð9Þ

is the field velocity at the SBP, assuming no particle
production. To simplify the notation, we will take v > 0
in the rest of the paper.
Initially, for large jφj values, the trapping field is very

heavy and anchored at the origin. The mode functions of χ
satisfy the equation

χ̈k þ 3H _χk þ ω2
kχk ¼ 0; ð10Þ

where

ω2
k ¼ k2 þ g2φ2 − λf2: ð11Þ

The initial conditions are give by the Bunch-Davies
vacuum state, which is defined by the set of positive
frequency modes,

χk;vac ¼
a−1ffiffiffiffiffiffiffiffi
2ωk

p e−i
R

t
ωkdt0 : ð12Þ

Such an assumption is justified as for large g2φ2 values, χk
is heavy and cannot be excited. Interesting processes start
when φ approaches the SBP.
As the field φ runs close to φSBP ¼ 0, the effective mass

of the χ field vanishes, as can be seen from the definition of
the potential in Eq. (4). Moreover, inevitably for a range of
values Δφnad the rate at which that mass changes becomes
nonadiabatic. This leads to the so-called resonant produc-
tion of χ particles as described in Ref. [32]. Such particles
create an effective linear potential for the φ field, as we
demonstrate later. If the production is strong enough, then
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the linear potential is so steep that it halts the evolution of φ
and anchors it at φSBP. A very similar process is described
in detail in Ref. [22]. In our model, there is an additional,
and in some parameter space dominant, contribution to
the particle production. As the potential has a tachyonic
direction at the SBP [see Eq. (4)], one needs to account for
the additional contribution to the particle production via the
process called the tachyonic resonance [33].
To properly study the growth of such a linear potential,

we need to account for the effects of interaction terms
in Eq. (4). This is done by employing the Hartree approxi-
mation in our analytical computations, as well as numeri-
cal simulations. Effectively, this constitutes to replacing
χ3 → 3χhχ2i. In particular, once such interactions are
included, we need to update Eq. (5) as

φ̈þ 3H _φþ g2hχ2iφ ¼ 0; ð13Þ

where hχ2i is an expectation value computed as

hχ2iðtÞ ¼ 1

2π2

Z
∞

0

k2
�
jχkðtÞj2 −

1

2jωkðtÞj
�
dk; ð14Þ

where the second term is included to subtract one loop
contributions from χ particles [22].
As one can clearly see from Eq. (13), any χ particle

production generates an effective potential for the φ field.
If the production is very efficient, then the effective
potential becomes so steep that it halts the run of φ towards
the minimum of VðφÞ and brings it back towards the
SBP, where it oscillates with an exponentially decaying
amplitude.
The spontaneous symmetry breaking potential of Ψ

contain self-interaction terms. These terms make the
equation of motion of the χ mode functions nonlinear.
Such nonlinearities are the main subject of the study in
this work.
To account for self-interactions in the evolution of χk, we

use the Hartree approximation too. In this case it corre-
sponds to replacing the nonlinear term by an additional
(time dependent) contribution to the mass of the trapping
field. That is, the full equation of motion for χk must be
written as [cf. Eq. (10)]

χ̈k þ 3H _χk þ ½k2 þ g2φ2 − λf2 þ 3λhχ2i�χk ¼ 0: ð15Þ

The last two terms make our scenario very different from
the one discussed in Ref. [22], where such terms are absent.
We use Eqs. (13)–(15) together with the vacuum initial

conditions in Eq. (12) to study the full system numerically.
In these simulations we integrate the large system of
coupled differential equations (15) for a very broad range
of k values. But to make the analytical progress, we utilize a
number of approximations. Eventually, the results of
analytical computations are compared with the numerical
simulations to confirm their accuracy.

III. EVOLUTION NEGLECTING
SELF-INTERACTIONS

The first approximation that we can make is to neglect
the expansion of the Universe. Indeed, the particle pro-
duction is effective over a very small time interval Δt,

vΔt
mpl

≪ 1: ð16Þ

Expanding Eqs. (7) and (8), in terms of this small quantity
and keeping only the highest order terms, we find

φ ≃ vt ≪ mpl; ð17Þ

_φ ≃ v ¼ const; ð18Þ

which are valid during the first passage of a SBP.
On the other hand, applying the condition in Eq. (16) to

Eq. (6), we find

HSBPΔt ≪ 1; ð19Þ

where

HSBP ≃
vffiffiffi
6

p
mpl

: ð20Þ

Therefore, it is safe to neglect the Hubble expansion, i.e.,
the scale factor can be set to a ¼ 1, when analytically
computing particle production during “the first passage” of
a SBP.3

If the particle production is sufficiently effective, then
each subsequent passage of a SBP results in more χ
particles being produced. Due to interactions, these par-
ticles backreact onto the motion of φ and result in
an exponential decrease of its oscillation amplitude.
Therefore, the understanding of the first burst of particle
production is important to be able to determine the
efficiency of the trapping mechanism as a whole.
Self-interactions of the χ field can affect such an

efficiency substantially in some of the parameter space.
This can be seen from Eq. (15), where the hχ2i term can be
interpreted as an additional time dependent contribution to
the effective mass of the χ field. As new particles are
produced, hχ2i grows rapidly. But the growth of hχ2i also
suppresses further particle production. In some cases, the
growth of hχ2i can be so fast that it blocks any further
particle production once it even barely started. We call this
effect a nonlinear blocking.
However, to properly account for the nonlinear effects

onto the efficiency of particle production, and therefore the
trapping, we first consider the case without self-interactions

3When solving the equations numerically, we do not make this
approximation.
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in this section. In the next section, we include nonlinearities
“perturbatively,” if they are small, or compute the effects of
nonlinear blocking in Sec. V, if nonlinearities are strong.
In the narrow window of particle production we apply

the condition in Eq. (16), which also leads to the conditions
in Eqs. (17) and (20). Therefore, without the nonlinear
term, one can write Eq. (10) during the first passage of a
SBP as

χ̈ð0Þk þ ω2
kχ

ð0Þ
k ≃ 0; ð21Þ

where ω2
k is given by

ω2
k ≃ k2 − λf2 þ g2v2t2: ð22Þ

Equation (21) can be solved exactly in terms of parabolic
cylinder functions (PCF).4 But to make generalizations
and the connection to the existing literature easier, we use
the WKB approximate expressions sufficiently far from
the particle production region.5 However, to compute the
solutions in the neighborhood of a SBP, i.e., at t ≃ 0, the use
of PCF is essential.
A similar computation is provided in Ref. [32], where

only the parametric particle production is considered, while
the work in Ref. [33] provides a similar computation but
with parameters that make the tachyonic particle produc-
tion dominant. In our case, both regimes are relevant.
Therefore, we develop a computation which allows to
account for both possibilities simultaneously.
Let us first denote the time t� such that

t� ¼
�
0 for modes with k2 ≤ λf2

ω2
kðt�Þ ¼ 0 for modes with k2 > λf2

; ð23Þ

and singðt�Þ ¼ �1. Then, in the region t ≪ tk− ω2
k changes

adiabatically, i.e., j _ωkj ≪ jωkj2 and jω̈kj ≪ jωkj3, we can
write the WKB solution of Eq. (21) as

χk−ðtÞ ¼
αk−ffiffiffiffiffiffiffiffi
2ωk

p e
−i
R

t

t0
ωkdt0 þ βk−ffiffiffiffiffiffiffiffi

2ωk
p e

i
R

t

t0
ωkdt0 ; ð24Þ

where χk−ðtÞ≡ χkðjtj ≫ tk−Þ.
Long after the first burst of particle production at

t ≫ tkþ, the rate of change of ωk is again adiabatic, and
we can write

χkþðtÞ ¼
αkþffiffiffiffiffiffiffiffi
2ωk

p e
−i
R

t

tþ
ωkdt0 þ βkþffiffiffiffiffiffiffiffi

2ωk
p e

i
R

t

tþ
ωkdt0 ; ð25Þ

where χkþðtÞ≡ χkðt ≫ tkþÞ. In both cases, Bogoliubov
coefficients are normalized as jαk�j2 − jβk�j2 ¼ 1.
As was mentioned above, initially the trapping field is

heavy and remains in its vacuum state. This corresponds
to choosing the positive frequency mode of Eq. (24), i.e.,
αk− ¼ 1 and βk− ¼ 0.
To find the connection formulas between coefficients

αk−, βk− and αkþ, βkþ one can use standard methods
employed in quantum mechanics (this is discussed in many
textbooks on quantum mechanics, for example, [34]).
For modes with the wave number k2 > 2gv

33=2
þ λf2, note

that ω2
k is always positive and remains adiabatic. Therefore,

such modes do not undergo any amplification and WKB
solutions in Eqs. (24) and (25) can be “connected directly,”
i.e., αk− ¼ αkþ and βk− ¼ βkþ. For modes with a smaller k
value, the two adiabatic regimes are interrupted by a non-
adiabatic regime, in the case of λf2 < k2 < 2gv

33=2
þ λf2, or

also by a regime with a negative ω2
k < 0, in the case of

k2 < λf2. In those cases the connection between αk� and
βk� coefficients is more complicated, which is the mani-
festation of the particle production.
When nonadiabaticity is broken, the two adiabatic

regions can be connected using the solutions in terms
of PCF,

χk ¼ akWðκ; τÞ þ bkWðκ;−τÞ; ð26Þ

where we defined

κ ≡ λf2 − k2

2gv
; ð27Þ

τ≡ ffiffiffiffiffiffiffiffi
2gv

p
t: ð28Þ

Generically, such solutions, in terms of PCF, constitute a
very good approximation. But in our case, they are exact
due to the form of ωk in Eq. (22). This being the case, we
use the solution in Eq. (26) in the whole region where ω2

k is
negative to simplify the derivation. Although, we could also
make use of the WKB approximation in the regime where
ω2
k ≪ 0, similarly to what we do in Sec. V.
To derive the connection formulas, one can extend

Eq. (26) to regions jtj≳ jt�j, where the WKB expressions,
as well as the expression in Eq. (26), are both sufficiently
good approximations.6 We first match the WKB expression
in Eq. (24) with the one in Eq. (26). This procedure gives
[see Eqs. (A16) and (A17)]

ak ¼ i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
− eπκ

2
ffiffiffiffiffiffiffiffi
2gv

p
�1=2

e−iðθkþφkÞ; ð29Þ4We summarize a few relevant properties of PCF and derive
other useful relations in the Appendix, Sec. A.

5This region has to be close enough for the condition in
Eq. (16) to be satisfied. However, as we will see later, this
requirement is not restrictive at all.

6Note that such a region does not exist, in general. But it
certainly does in our case.
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bk ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2πκ
p

þ eπκ

2
ffiffiffiffiffiffiffiffi
2gv

p
�1=2

e−iðθkþφkÞ; ð30Þ

where we used vacuum initial conditions at t0. Note that θk
in the above expressions is the phase accumulated from the
initial moment t0 to t−,

θk ≡
Z

t−

t0

ωkdt; ð31Þ

and φk is defined in Eq. (A20) as

2φk ≡ 1

2
π þ arg

�
Γ
�
1

2
þ iκ

��
þ κð1 − ln jκjÞ: ð32Þ

To find the final value of χk, after the resonance is over, we
do the second matching of Eq. (26) to the WKB solution in
the t > tþ region in Eq. (25). This gives

αkþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
e−iφk ; ð33Þ

βkþ ¼ eπκe−2iðθkþπ
4
Þ: ð34Þ

In summary, after the particle production is over, the
mode functions of the trapping field evolve according to
Eq. (25) with the constants given in Eqs. (33) and (34).
We can use this result to compute the occupation number

nk defined as [32]

nk ¼
jωkj
2

� j_χkj2
jωkj2

þ jχkj2
�
−
1

2
; ð35Þ

which is approximately constant in the WKB region with
ω2
k > 0. Plugging in Eq. (25) into Eq. (35) with αkþ and βkþ

provided in Eqs. (33) and (34), we find

nð0Þk ¼ jβkþj2 ¼ eπ
λf2−k2

gv ; ð36Þ

where the superscript “(0)” indicates that this quantity is
computed neglecting nonlinearities.
Integrating this expression, according to

nχ ¼
1

2π2

Z
∞

0

k2nkdk; ð37Þ

gives the particle number density. At the “zeroth order” in
nonlinearities, this expression leads to

nð0Þχ ¼
� ffiffiffiffiffi

gv
p
2π

�
3

eπ
λf2

gv : ð38Þ

IV. THE EFFECT OF SELF-INTERACTIONS

In the previous section we computed the particle
number density after the first passage of a SBP neglecting

self-interactions of the trapping field χ. Such interactions
introduce nonlinear terms in the equation of motion
of χk, which makes it impossible to find exact analytical
solutions. Unfortunately, in a large parameter space self-
interactions affect the final particle number density con-
siderably and cannot be neglected. In this and the next
sections we develop methods to compute the effects of such
nonlinearities.
First, we are going to employ the Hartree approximation

as was already mentioned in the discussion leading to
Eq. (15). Such an approximation should be sufficient
when the nonlinear term is small. In the opposite regime,
when it becomes large, the Hartree approximation breaks.
However, it is reasonable to think that this does not
affect the final results much. The reason being that the
large nonlinear term blocks any further particle production.
Therefore, we only need to find the evolution of the hχ2i
term until just before the nonlinear blocking, where we can
use the results of Sec. III.
In the current section we are going to study the parameter

region where the effects of nonlinear evolution can be
accounted for perturbatively. The case of strong nonlinear-
ities will be considered in the next section separately.
Our method consists in solving for χk iteratively. At the

zeroth order we take the solution derived in the pre-
vious section, which provides us with the method to
compute hχ2ið0ÞðtÞ. At the next order we solve the equation
[cf. Eqs. (21) and (22)],

χ̈ð1Þk þ ðω2
k þ δm2Þχð1Þk ¼ 0: ð39Þ

Notice, that at this order we included an additional
contribution to the effective mass squared,

δm2 ≡ 3λhχ2ið0Þ0 ¼ constant; ð40Þ

where hχ2ið0Þ0 ≡ hχ2ið0Þðt ¼ 0Þ is the expectation value of
χ2 computed at zeroth order and evaluated at the time t ¼ 0,
i.e., at the SBP.
For modes that satisfy λf2 < k2 < 2gv

33=2
þ λf2, we cannot

use the WKB solutions in the neighborhood of t ¼ 0 as ω2
k

does not evolve adiabatically in that region. Thus, we will
use the exact solutions in terms of PCF in Eq. (26). For
modes with k2 ≪ λf2, WKB approximation does give a
good solution at t ≃ 0. However, to simplify the argument
and provide a unified framework, we will also use the
solution in Eq. (26).
Plugging Eqs. (29) and (30) into Eqs. (26) and (14), we

find

hχ2ið0Þ0 ¼ 1

2π2
ffiffiffiffiffiffiffiffi
2gv

p
Z

∞

0

k2
�
W2ðκ; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
−

1

2
ffiffiffi
κ

p
�
dk:

ð41Þ
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The above integrand peaks at some k� value. For most of
the parameter space, this value is such that jκ�j > 1=2,
where κðkÞ is defined in Eq. (27). This fact justifies the
usage of an approximate value of Wðκ; 0Þ in Eq. (A6),

W2ðκ; 0Þ ≃ 1

2
ffiffiffiffiffijκjp : ð42Þ

Plugging it into Eq. (41), we obtain

hχ2ið0Þðt ¼ 0Þ ≃ 1

4π2

Z
∞

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jk2 − λf2j
p dk: ð43Þ

The integral can be computed using the Laplace’s approxi-
mation. As the computation involves a few steps, we
summarize them in Appendix B. The final result depends
on the ratio

Q≡ π
λf2

gv
: ð44Þ

For the Q values in the range 0 < Q < a few, the largest
contribution to the integral comes from the mode [see
Eq. (B5)]

k2�p ≃
gv
π
: ð45Þ

In this case the approximate value of Eq. (43) can be
computed to be

hχ2ið0Þ0p ≃
gv

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=2

j1 −Qj

s
eQ−1: ð46Þ

In the opposite regime, with very large Q, the biggest
contribution to the integral comes from the modes [see
Eq. (B7)]

k2�t ≃
2gv
π

: ð47Þ

Thus, this is the regime were particle production is
overwhelmingly dominated by the tachyonic particle pro-
duction (λf2 ¼ Qk2�t=2 ≫ k2�t). The expectation value of χ2
at t ¼ 0 in this case is

hχ2ið0Þ0t ≃
gv
2π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=2

j1 − 1
2
Qj

s
e
1
2
Q−1; ð48Þ

where we used Eq. (B8).

The δm2 ≡ 3λhχ2ið0Þ0 term only adds a positive constant
contribution to ω2

k. Therefore, it is easy to deduce that at the
first order in this approximation the particle number density
can be written as

nð1Þχ ¼ nð0Þχ e−π
3λhχ2ið0Þ

0i
gv ; ð49Þ

where hχ2ið0Þ0i is either hχ2ið0Þ0p (for Q < a few) or hχ2ið0Þ0t

(for Q ≫ 1).
We compare this result with the numerical simulations

in Fig. 1. The result in Eq. (49) is shown as the black curves
in the first column of plots. The blue dot-dashed line in
that figure corresponds to Q ¼ 1. To the left of that line,
parametric particle production dominates. While on the
right-hand side, the tachyonic particle production dominates.
On the left-hand side of the dot-dashed red line in Fig. 1,

the self-interaction induced suppression factor is small, and
we can apply the perturbative result in Eq. (49). However,

as hχ2ið0Þ0 becomes very large, this result is rendered
inadequate. We draw the boundary between the two regions

(which is shown by the red line) at nð1Þχ =nð0Þχ ¼ 1=2. This is
equivalent to saying that the perturbative computation is
used in the region that satisfies the condition

ffiffiffiffiffiffiffiffiffiffiffiffi
Q − 1

p
e1−Q <

3λ

ln 16ð2πÞ3=2 : ð50Þ

In the opposite regime, the nonlinear blocking terminates
particle production. We discuss this case in the next section.

V. THE STRONGLY NONLINEAR REGIME

The tachyonic mass of the χ field at the SBP makes the
particle production much more effective. A priori one
would expect that this makes the trapping more efficient.
However, to make the potential bounded from below,
we need to introduce a self-coupling term. As we saw in
the previous paragraph, this term suppresses the particle
production. If the latter is very efficient, then the nonlinear
blocking shuts it down completely.
The nonlinear blocking happens due to the rapidly increa-

sing 3λhχ2i term. Once this term reaches 3λhχ2i≃ω2
k, the

trapping field becomes too heavy for further excitations. We
determine the exact proportionality constant from our
numerical simulations. Indeed, we find that particle produc-
tion is shut off at the moment tnl, when the condition

ω2
k�tðtnlÞ ¼ −c · 3λhχ2ið0ÞðtnlÞ ð51Þ

is satisfied, where c ≃ 2.15.
In principle, we can use Eqs. (26), (29), and (30) to

find the time evolution of hχ2ið0ÞðtÞ, but this is not very
illuminating. Instead, we are going to use the WKB
approximate relations. This is made possible by the fact
that nonlinear blocking happens only in the regime of
strong tachyonic instability. This regime corresponds to
very large κ [defined in Eq. (27)], where PCF Wðκ; τÞ can
be approximated by their WKB expressions as in Eq. (A26).
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Let us write the latter as

χk ≃
αkffiffiffiffiffiffiffiffiffiffiffi
2jωkj

p e−
R

t

0
jωkjdt þ βkffiffiffiffiffiffiffiffiffiffiffi

2jωkj
p e

R
t

0
jωajdt; ð52Þ

where the constants αk, βk are normalized as αkβ
�
k −

α�kβk ¼ i. They can be related to ak, bk in Eq. (A27) as

αk ¼ ð8gvκÞ1=4Wðκ; 0Þak; ð53Þ

βk ¼ ð8gvκÞ1=4Wðκ; 0Þbk: ð54Þ

Plugging this expression into Eq. (14), we find

hχ2ið0ÞðtÞ ¼ 1

4π2

Z
∞

0

k2

jωkj

×

�
jαkj2e−2

R
t

0
jωkjdt þ jβkj2e2

R
t

0
jωkjdt − 1

�
dk;

ð55Þ

where we used the large κ approximation of Wðκ; 0Þ
[Eq. (A6)]. Evaluating this integral at t ¼ 0, Eq. (48) is
recovered. As the nonlinear blocking only happens in the
regime where tachyonic particle production is dominant,
we concentrate on the k�t ≪

ffiffiffi
λ

p
f mode, which is defined

in Eq. (47).
For sufficiently large jtj, the exponentially increasing

term dominates Eq. (55). Moreover, due to the smallness of

FIG. 1. The comparison of the analytic computations (solid black curves) with the numerical simulations (white curves and color
bands). The upper row corresponds to λ ¼ 0.01 and the lower one to λ ¼ 1. We took f ¼ 5 × 10−7 in both of these models. On the left
column, we display the particle number density nχ as the function of the interaction strength g and Ω ∝ v−2 [see Eq. (71)]. On the right
column, we show the amplitude of the first oscillation Φ1 in units of mpl. The blue dot-dashed line corresponds to Q ¼ 1 [see Eq. (44)]
and separates the region where the parametric particle production dominates (left) from the one where particles are primarily produced
by the tachyonic amplification (right). In the neighborhood of the blue line the approximation used in Eq. (42) is inadequate. This leads
to some artifacts in the plots with large λ values. On the right of the red dot-dashed line, the condition in Eq. (50) is violated, that is, the
particle production is terminated by the nonlinear blocking. As one can see from these plots, the agreement between numerical and
analytic computation is very good. At Φ1 ¼ mpl, the expansion of the Universe starts to be important, as can be evidenced from the
mismatch between black and white curves on the right column. The grey triangle in the bottom-right corner masks the region where our
numerical simulations can no longer solve the equations reliably.
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k�t, we can approximate ωk� ≃ ωk¼0 and write the expres-
sion in Eq. (55) as

hχ2ið0ÞðtÞ ≃ hχ2ið0Þ0t e
2XðtÞ: ð56Þ

Note that XðtÞ in the above is the integral given by

XðtÞ≡
Z

t

0

jωk¼0jdt ¼
φ

2v
jωk¼0ðφÞj þ

λf2

2gv
arcsin

gφffiffiffiffiffiffiffi
λf2

p :

ð57Þ
Finally, to find the value of tnl when the nonlinear

blocking happens, we can plug Eq. (56) into (51).
Unfortunately, this leads to the transcendental expression

λf2 − g2φ2ðtnlÞ ¼ 3cλhχ2ið0Þ0t e
2XðtnlÞ; ð58Þ

which cannot be solved analytically. It is valid in the
regime λf2 > g2φ2, so one would be tempted to expand it
in terms of gφ=

ffiffiffi
λ

p
f and keep only a few lower order

terms. We found, however, that this procedure gives a poor
agreement with the numerical simulations. Therefore, in
what follows, we use the full expression and solve Eq. (58)
numerically.
The final particle number density, at large φ values, can

be computed using the equation [32]

hχ2iðtÞ ≃ 1

2π2

Z
∞

0

k2
nkðtÞ
jωkðtÞj

dk: ð59Þ

Substituting again ω2
k� ðtÞ ≃ ω2

k¼0ðtÞ, in the above expres-
sion, we can factor out ωk, and write

nχ ¼ nχðtnlÞ ≃ jωk¼0ðtnlÞjhχ2iðtnlÞ: ð60Þ

This analytic estimate gives a surprisingly good fit to
numerical simulations as can be seen in Fig. 1. The method
developed in this section is applied to compute the right-
hand side from the red dot-dashed line in that figure, which
corresponds to the regime where the condition in Eq. (50)
is broken.

VI. THE EFFICIENCY OF TRAPPING

As discussed in Sec. II, the interaction between φ and χ
fields do not only affect the evolution of the χ field, but it
works the other way around too. The newly created χ
particles backreact onto the motion of the φ field, as is
demonstrated in Eq. (13). It is clear from that expression
that one can consider such a backreaction as a quantum
mechanically generated effective potential.
Sufficiently late after the first burst of particle produc-

tion, one can write ω2
k� ≃ g2φ2. Plugging this approxima-

tion into Eq. (59) and neglecting the rapidly oscillating
terms (see Ref. [32] for details), we obtain

g2hχ2iðtÞ ≃ gnχ
jφj ; ð61Þ

where nχ is given either in Eq. (49), for weak nonlinearities,
or in Eq. (60), if particle production is terminated by the
nonlinear blocking.
If the particle production is efficient enough, and the

backreaction is strong, then we can make sure that the φ
field never reaches super-Planckian values. The need for
super-Planckian φ values in quintessential inflation models
is often recognized as being problematic, as it makes it
difficult to justify the absence of nonrenormalizable terms
in the original action of the field [17]. One can avoid this
problem if the trapping is very strong.
Let us denote the oscillation amplitude of the φ field

as Φ and the amplitude after the first burst of particle
production as Φ1. After every other passage of a SBP, the
amplitude decreases. Therefore, it is enough to impose the
condition on the oscillation amplitude after the first passage
of a SBP,

Φ1 < mpl: ð62Þ

As the Universe expands, newly produced particles
are diluted, therefore reducing the efficiency of the
trapping [35]. To prevent this, we require that the time
between each burst of particle production is less than
the Hubble time. This condition is much stronger than
the one in Eq. (19). The latter only applies to the interval
of the particle production. Now, we impose a similar
condition to the duration of one oscillation. It is possible
to show that such a condition is equivalent to the
one Eq. (62).
If the expansion of the Universe is neglected, then we can

write the equation of motion (13) as

φ̈þ gnχ
φ

jφj ≃ 0; ð63Þ

where we also used Eq. (61). It is easy to solve this equation
(see Ref. [22]). After passing the SBP, φ continues to
increase until its initial kinetic energy density is transferred
to the χ particles. This happens at a time

t1 ¼
v

gnχ1
: ð64Þ

At that moment, the φ field amplitude is

Φ1 ¼
1

2

v2

gnχ1
: ð65Þ

Instead of rolling to the minimum of VðφÞ, as the classical
dynamics would dictate, the φ field turns around and runs
back towards the SBP. At the SBP, the χ field is approx-
imately massless again, and _φ ≃ v.
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Plugging Eq. (64) into (65), we find

Φ1 ¼
1

2
vt1: ð66Þ

At the first passage of a SBP, the Universe is dominated by
the kinetic energy of the φ field,

ρkin ≡ 1

2
v2; ð67Þ

and the Hubble parameter is given in Eq. (19). Plugging
this result into Eq. (66), and using the bound in Eq. (62),
we find

HSBPt1 <

ffiffiffi
2

3

r
: ð68Þ

As one can see, the requirement for sub-Planckian field
values also guarantees that the expansion of the Universe
can be neglected when computing the particle production
during the trapping phase. We confirmed this using our
numerical simulations too, which do include the Hubble
expansion consistently.

One of the goals of this work is to find the parameter
range where the trapping mechanism is efficient, that is,
where the condition in Eq. (62), or equivalently in Eq. (68),
is satisfied. To do that, we use Eq. (65) to scan over the
large space of parameter values, with nχ1 given either by the
expression in Eqs. (49) or (60), depending on the value
of Q.
The scanning is performed over the space of four

independent parameters: g, λ, f, and v. However, the final
constraints should not be too sensitive to the specifics of
the model. The range of the φ field values is quite narrow
in the window where χ particles are produced, and the
expression in Eq. (17) should be a good approximation for
a large range of models. For this reason, we express the
parameter ranges in Fig. 2 in terms of a physically more
relevant quantity: the ratio of the potential to the kinetic
energy at the SBP,

Ω≡ ρpot
ρkin

����
SBP

: ð69Þ

The kinetic energy density is defined in Eq. (67). In our
particular model, the potential energy at the SBP can be
deduced from Eq. (4),

FIG. 2. The four-dimensional parameter space λ, f, g, and v, for which the trapping mechanism is effective. Each curve corresponds to
a given value of f (shown in the labels) that results in Φ1 ¼ mpl (neglecting the expansion of the Universe). Above and to the right of a
that curve, Φ1 < mpl, for the fixed values of λ and f. That is, increasing g and/or decreasing v, enhances the efficiency of the trap. The
definition of the horizontal axis is shown in Eq. (69).
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ρpotjSBP ¼ Vvac þ
1

4
λf4; ð70Þ

where Vvac ≃ 10−120m4
pl ≪ λf4 is the vacuum energy den-

sity. Plugging in Eq. (67), we can therefore write

Ω ≃
λf4

2v2
: ð71Þ

Let us now consider the possible range of parameter
values that we should scan over. The lowest possible bound
onΩ can be found by noting that ρkin < V� < m4

pl. To avoid
the second period of inflation at the SBP, we also impose
the upper bound Ω < 1. Putting these two bounds together,
one can write

λf4

4m4
pl

< Ω < 1: ð72Þ

The maximum value of f is constrained from observa-
tions. As the symmetry at the SBP is broken, one forms a
network of cosmic strings. The tension of such strings is
proportional to the symmetry breaking scale Gμ ¼ f2=m2

pl,
where G is Newton’s constant. The tightest constraints on
Gμ come from CMB measurements, which give Gμ <
10−7 [36–38] (see however Ref. [39]). In principle, f is also
bounded from below by the requirement that the symmetry
breaking scale is larger than the scale of the big bang
nucleosynthesis. However, such a bound is much weaker
than the requirement for effective trapping.
The lowest value of g is dictated by the gravitationally

induced interactions, while the upper bounds on g and λ are
dictated by the requirement of perturbativity. We will take
that value to be 1.
Finally, we must consider that before the SBP the χ field

must evolve adiabatically. That is���� _ωk¼0

ω2
k¼0

����
φini

≪ 1; ð73Þ

where φini is the field value at the end of inflation, and7

ω2
k¼0 ≃ g2φ2 − λf2: ð74Þ

Between φini and the SBP, the Universe is dominated by the
kinetic energy of the φ field. Therefore, plugging in Eq. (8)
into (74), we find���� _ωk¼0

ω2
k¼0

���� ¼ v
g

jφj
ðφ2 − λf2

g2 Þ
3=2 e

−
ffiffi
3
2

p
φ

mpl ; ð75Þ

where g2φ2 ≫ λf2. This function has a minimum

j _ωk¼0=ω2
k¼0j ≃ v

g
3
8
e2=m2

pl at φ ≃ −2
ffiffi
2
3

q
m2

pl. Imposing the

bound in Eq. (73), we find

Ω ≫
λf4

g2m4
pl

: ð76Þ

The above bound is somewhat stronger than the one in
Eq. (72), however, we find that it is still much weaker than
the bound in Eq. (62).
The results of the parameter space scanning are provided

in Fig. 2. In each plot of that figure we draw a curve for a
given value of λ and f that corresponds to Φ1 ¼ mpl as
computed using Eq. (65). In the space above, a given curve,
which corresponds to a fixed λ and f but larger values of g
and/or smaller values of v, the trapping is more efficient
and results in a smaller oscillation amplitude Φ1 < mpl.
The main goal of the paper is to investigate how

nonlinearities affect the oscillation amplitude in the trap.
A more detailed study of subsequent processes falls outside
the scope of this work. For completeness, we only
summarize the main points discussed in Ref. [21].
At φ ¼ Φ1, the energy density of χ particles equals the

initial kinetic energy of the φ field. At that point, φ stops
and starts rolling back to the SBP. It crosses this point
practically with the same kinetic energy _φ ≃ vt [22] and
triggers the second burst of particle production. The newly
created particles are added to the total bath, which interact
with φ creating an even steeper potential for the latter. This
way the oscillation amplitude rapidly decreases with each
subsequent passage of a SBP. The process continues until
one of the two things happens. If the oscillation amplitude
Φ decays below the nonadiabaticity region, then the para-
metric resonance is no longer effective and particle pro-
duction stops. Due to the tachyonic direction in our model,
the particle production can be terminated by a different
mechanism. As we saw in Sec. V, self-interactions can
render the χ field too heavy for any further excitations. We
called this process the nonlinear blocking. In some param-
eter space, it halts any further particle production once it
barely started, which of the two mechanisms determines the
end of the resonance and depends on model parameters.
If the end of particle production is dictated by the first

process, then the trapping mechanism can also be respon-
sible for an efficient reheating of the Universe. This is an
important advantage of the mechanism, as reheating in
quintessential inflation scenarios is complicated, due to
nonoscillatory potential (see Refs. [27–29,40–45] for
other possible alternatives). If, on the other hand, particle
production is terminated by the nonlinear blocking, then
most likely reheating is much less efficient. However, this
issue requires more detailed investigation.
Finally, we should mention that in this work we

neglected the Goldstone boson θ of the Uð1Þ symmetry

7This expression neglects the expansion of the Universe.
However, we checked that the results do not change substantially
if we include it.
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breaking. There are two possibilities, depending on a
specific implementation. In Ref. [21] it was suggested that
Uð1Þ might be a global symmetry. In which case, θ could
constitute the QCD axionic dark matter in the Universe
(once the potential of θ is lifted) [46–49]. In that case, f is
limited to the “classical axion window,” which is the
range 109−12 GeV (assuming no fine-tuning of the mis-
alignment angle). This is a particularly attractive possibility
as it conforms to the main motivation of the quintessential
inflation scenario by being minimal in its field content. If,
on the other hand, we do not want to impose such a
requirement, andUð1Þ is taken to be a local symmetry, then
the θ field could be eaten by gauge bosons to make them
heavy. In both cases, it is possible to avoid the fifth force
problems associated with light scalar fields.

VII. CONCLUSIONS AND DISCUSSION

The paradigm of quintessential inflation can be very
attractive to model the evolution of our Universe. The
primary appeal of such models is that they do not introduce
additional scalar fields beyond the inflaton. However, this
minimalist approach also introduces certain difficulties.
The main one being a mechanism of reheating the Universe
after inflation. In addition, with the usual quintessence
models, it shares the problem of the fifth force constraints,
the need for the suppression of radiative corrections and
explaining the absence of nonrenormalizable terms. To
solve those problems, one might need to invoke other fields
after all. However, this does not have to violate the principle
of economy of quintessential inflation models. The addi-
tional field(s) can be the same that are already used in
cosmology for different purposes.
This principle was applied in the model proposed in

Ref. [21], where the additional field is the same as used in
QCD axion scenarios. The latter could explain the whole of
dark matter in the Universe [48]. If the interaction between
the inflaton and the additional field is of the form in Eq. (2),
then the problems mentioned above can be overcome. On
the one hand, the interaction of this form induces a very
rapid and efficient particle production, as the kinetic energy
dominated inflaton zips through the SBP. Such particles can
stop the inflaton at sub-Planckian values and reheat the
Universe. On the other hand, the coupling makes the
inflaton heavy in the vacuum, therefore preventing prob-
lems associated with the constraints from the fifth force
experiments. Moreover, this scenario is not sensitive to the
precise form of the potential in the quintessential tail. Only
the height of the potential is important.
The process of particle production is somewhat similar to

the mechanism proposed in Ref. [22]. The crucial differ-
ence, however, is that the trapping field is self-interacting.
These interactions lead to the nonlinear evolution and
change the efficiency of particle production and, conse-
quently, the efficiency of the trapping mechanism and
reheating.

In this work we study in detail how self-interactions
affect the trapping. Within the Hartree approximation, we
develop the analytic formalism to account for the suppres-
sion of particle production. We also compute the particle
number density in the region of nonlinear blocking. In this
region the self-interaction of the trapping field is so strong
that it terminates particle production, while the effective
mass of the χ field is still tachyonic. The analytic results
agree very well with numerical simulations, as can be seen
in Fig. 1.
Using these analytic methods, we can very efficiently

explore the parameter space to compute the constraints. In
Ref. [21] the symmetry breaking scale f was fixed. In this
work we do not impose any bounds of f (apart from
observational constraints on cosmic string tension) and
explore the full range of possibilities. Our results are
provided in Fig. 2, where we show the parameter space
for efficient trapping. One can see that this mechanism is
effective for a very wide range of parameter values.
If the tachyonic trapping mechanism is indeed realized

in nature, then dark energy would be indistinguishable
from the cosmological constant. However, this mechanism
suggests other potentially observable phenomena, such as
the production of primordial gravitational waves, as well as
the formation of cosmic strings [50]. We leave the study of
such possibilities for future publications.
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APPENDIX A: THE PARABOLIC CYLINDER
FUNCTIONS

1. The properties of parabolic cylinder functions

In our analytic computations we make an extensive use
of PCF. This is due to the fact that these functions form a
complete set of solutions of Eq. (21). However, even if
the equation of motion of χ would be more complicated,
PCF give a good approximation in the regions where the
evolution of ωk is nonadiabatic. Indeed, PCF are widely
used in quantummechanics precisely in this context: to find
formulas connecting regimes with WKB approximate
solutions. In this section we summarize the main properties
of PCF that we use in the main text.
Consider the equation [51]

y00 þ ω2
κy ¼ 0; ðA1Þ
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where

ω2
κ ≡ 1

4
τ2 − κ; ðA2Þ

and primes denote derivatives with respect to the indepen-
dent variable τ. A generic solution of this equation can be
written in terms of PCF as

y ¼ D1Wðκ; τÞ þD2Wðκ; τÞ; ðA3Þ

where D1;2 are integration constants. Equation (A1)
has a few equivalent forms related by redefinitions
of κ and τ, but the above one is the easiest to apply to
our setup.
At τ ¼ 0, PCF reduce to

Wðκ; 0Þ ¼ 2−
3
4

����Γð14 þ 1
2
iκÞ

Γð3
4
þ 1

2
iκÞ

����
1
2

; ðA4Þ

and

dWðκ; 0Þ
dτ

¼ −
1

2Wðκ; 0Þ ; ðA5Þ

where Γ is the gamma function. In the limit of large κ this
equation approaches

Wðκ; 0Þ⟶κ→�∞ 1ffiffiffi
2

p jκj1=4 : ðA6Þ

To make the connection between PCF and the
WKB approximate solutions, we made use of several
asymptotic forms of Wðκ; τÞ. For τ2 ≫ 4jκj, the W
function can be approximated at the lowest order in
τ−2 by

Wðκ; τÞ ≈
ffiffiffiffiffiffiffiffi
k
2jτj

s
ðe−iω þ eiωÞ; ðA7Þ

Wðκ;−τÞ ≈ iffiffiffiffiffiffiffiffiffiffi
2kjτjp ðe−iω − eiωÞ; ðA8Þ

where

k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
− eπκ; ðA9Þ

ω≡ 1

4
τ2 −

1

2
κ ln τ2 þ 1

4
π þ 1

2
ϕ2; ðA10Þ

and

ϕ2 ≡ arg

�
Γ
�
1

2
þ iκ

��
: ðA11Þ

Notice that both functions, Wðκ; τÞ and Wðκ;−τÞ, are real.
In the opposite regime, where 4jκj ≫ τ2, the Wðκ; τÞ

function can be approximated by

Wðκ; τÞ ¼ Wðκ; 0Þe− ffiffi
κ

p
τþv1 ; ðA12Þ

Wðκ;−τÞ ¼ Wðκ; 0Þe ffiffi
κ

p
τþv2 ; ðA13Þ

and

v1;2 ≃�
2
3
ð1
2
τÞ3

2
ffiffiffi
κ

p þ ð1
2
τÞ2

ð2 ffiffiffi
κ

p Þ2 �
1
2
τ þ 2

5
ð1
2
τÞ5

ð2 ffiffiffi
κ

p Þ3 þ…: ðA14Þ

2. Relation to WKB approximation

For τ2 ≫ jκj and τ < 0, the ωκ in Eq. (A2) changes
adiabatically. Therefore, we can also find the solution of
Eq. (A1) using WKB approximation. Let us write this
solution as

y1 ≃
A1ffiffiffiffiffiffiffiffi
2ωκ

p e
−i
R

τ

τ0
ωκdτ þ A2ffiffiffiffiffiffiffiffi

2ωκ

p e
i
R

τ

τ0
ωκdτ: ðA15Þ

Note that y1 is nothing else but the approximate expression
of the exact solution in Eq. (A3). Indeed, using Eqs. (A7)
and (A8), we can find the connection formulas for the
integration constants as

D1 ¼ i

ffiffiffi
k
2

r
½A1e−iðθκþφκÞ − A2eiðθκþφκÞ�; ðA16Þ

D2 ¼
1ffiffiffiffiffi
2k

p ½A1e−iðθκþφκÞ þ A2eiðθκþφκÞ�; ðA17Þ

where k is defined in Eq. (A9), θκ is the phase accumulated
from τ0 to τ−,

θκ ≡
Z

τ−

τ0

ωκdx; ðA18Þ

and τ− is such that ω2
κðτ < τ−Þ > 0, that is

τ− ¼
�
0 if κ ≤ 0

−
ffiffiffi
2

p
κ if κ > 0:

ðA19Þ

The phase φκ is defined as

φκ ≡ 1

4
π þ 1

2
ϕ2 þ

1

2
κð1 − ln jκjÞ; ðA20Þ

where ϕ2 is given in Eq. (A11).
In the opposite regime, where τ2 ≫ jκj and τ > 0, we can

derive similar connection formulas. Let us write the
approximate WKB solution of Eq. (A1) as
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y3 ≃
C1ffiffiffiffiffiffiffiffi
2ωκ

p e
−i
R

τ

τþ
ωκdτ þ C2ffiffiffiffiffiffiffiffi

2ωκ

p e
i
R

τ

τþ
ωκdτ; ðA21Þ

where τþ is given by

τþ ¼
�
0 if κ ≤ 0ffiffiffi
2

p
κ if κ > 0.

ðA22Þ

Matching the approximate expression of Eq. (A3), one
finds

C1 ¼
kD1 þ iD2ffiffiffiffiffi

2k
p e−iφκ ; ðA23Þ

C2 ¼
kD1 − iD2ffiffiffiffiffi

2k
p eiφκ : ðA24Þ

Notice that using Eqs. (A16)–(A17) and (A23)–(A24),
we can derive connection formulas,

�
C1

C2

�
¼ i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
e−iðθκþ2φκÞ eπκeiθκ

−eπκe−iθκ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2πκ

p
eiðθκþ2φκÞ

�

×

�
A2

A2

�
: ðA25Þ

We can also find a WKB approximation of the solution
in Eq. (A3) in the limit where κ ≫ τ2. Let write the
approximate solution of Eq. (A1) in this region as

y2 ≃
B1ffiffiffiffiffiffiffiffiffiffiffi
2jωκj

p e−
R

τ

0
jωκ jdτ þ B2ffiffiffiffiffiffiffiffiffiffiffi

2jωκj
p e

R
τ

0
jωκ jdτ: ðA26Þ

We can expand
R
τ
0 jωκjdτ and jωκj−1=2, in terms of τ2=4κ,

and match to the Eq. (A3) using the series expansion of
PCF in Eqs. (A12) and (A13). Note, that the series in
Eq. (A14) contain terms that would correspond to higher
order WKB approximation than provided in Eq. (A26).
After the matching, we find

B1;2 ¼
ffiffiffi
2

p
κ1=4Wðκ; 0ÞD1;2: ðA27Þ

APPENDIX B: LAPLACE’S APPROXIMATION

To compute the integral in Eq. (43), we used the Laplace’s
approximation [52]. As the derivation of this particular
integral involves a few steps, we recall them in this section.

The approximation can be summarized as

I ¼
Z

∞

0

eCgðxÞ

fðxÞ dx ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

Cjg00ðx�Þj

s
eCgðx�Þ

fðx�Þ
; ðB1Þ

where x� is the value of x such that gðx�Þ ¼ maxðgÞ, and
primes denote derivatives with respect to x. The equality
becomes exact in the limit C → ∞.
In our case, we need to compute the integral of the form

I ¼
Z

∞

0

x2

fðxÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eQ−x2

p
− 1Þdx: ðB2Þ

To do that, let us first denote

gðxÞ≡ ln ½x2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eQ−x2

p
− 1Þ�; ðB3Þ

which has a maximum at

Q ¼ ln

�
x2� − 1

ð1
2
x2� − 1Þ2

�
þ x2�: ðB4Þ

Unfortunately, we cannot solve this transcendental equation
using elementary functions. But it suffices to notice that
x2� ∈ ð1; 2Þ. In the main text we use an approximation such
that for Q≲ few. This corresponds to x� value

x2� ≃ 1: ðB5Þ

In this limit the approximate value of the integral is
given by

I ≃ 2−3=2
ffiffiffi
π

p eQ−1

fðx�Þ
: ðB6Þ

In the opposite regime, for Q ≫ 1, the largest contribution
to the integral comes from x values close to

x2� ≃ 2; ðB7Þ

and the approximate value of the integral is given by

I ≃ 2
ffiffiffi
π

p e
1
2
Q−1

fðx�Þ
: ðB8Þ
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