
Energy stored on a cosmological horizon and its thermodynamic
fluctuations in holographic equipartition law

Nobuyoshi Komatsu *

Department of Mechanical Systems Engineering, Kanazawa University,
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

(Received 13 December 2021; accepted 7 February 2022; published 23 February 2022)

Our Universe is expected to finally approach a de Sitter universe whose horizon is considered to be in
thermal equilibrium. In the present article, both the energy stored on the horizon and its thermodynamic
fluctuations are examined through the holographic equipartition law. First, it is confirmed that a flat
Friedmann-Robertson-Walker universe approaches a de Sitter universe, using a cosmological model close
to lambda cold dark matter models. Then, based on the holographic equipartition law, the energy density of
the Hubble volume is calculated from the energy on the Hubble horizon of a de Sitter universe. The energy
density for a de Sitter universe is constant and the order of the energy density is consistent with the order of
that for the observed cosmological constant. Second, thermodynamic fluctuations of energy on the horizon
are examined, assuming stable fluctuations around thermal equilibrium states. A standard formulation of
the fluctuations for a canonical ensemble is applied to the Hubble horizon of a de Sitter universe. The
thermodynamic fluctuations of the energy are found to be a universal constant corresponding to the Planck
energy, regardless of the Hubble parameter. In contrast, the relative fluctuations of the energy can be
characterized by the ratio of the one-degree-of-freedom energy to the Planck energy. At the present time,
the order of the relative fluctuations should be within the range of a discrepancy derived from a discussion
of the cosmological constant problem, namely, a range approximately from 10−60 to 10−123. The present
results may imply that the energy stored on the Hubble horizon is related to a kind of effective dark energy,
whereas the energy that can be “maximally” stored on the horizon may behave as if it were a kind of
effective vacuum-like energy in an extended holographic equipartition law.
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I. INTRODUCTION

To explain the accelerated expansion of the late Universe
[1–4] various cosmological models have been proposed [5],
such as lambda cold dark matter (ΛCDM) models, time-
varying ΛðtÞ cosmology, [6–13], bulk viscous cosmology
[14–20], and thermodynamic scenarios [21–32]. TheΛCDM
model assumes a cosmological constantΛ and an additional
energy component called “dark energy.” Alternatively,
thermodynamic scenarios usually assume the “holographic
principle,” that is, the information of the bulk is assumed to be
stored on the horizon [33]. In those scenarios, the concept of
black hole thermodynamics [34–36] is applied to the
cosmological horizon [37–53]. The holographic equiparti-
tion law [43] has also attracted attention and has been
examined by many researchers [44–53].
In addition, the thermodynamics of the Universe has

been studied from various viewpoints [37–65]. In particu-
lar, the maximization of entropy has been investigated
recently [51–53,59–65], and these studies suggest that our
Universe should approach aΛ-dominated universe, namely,

a de Sitter universe, at least in the last stage, as if our
Universe behaves as an ordinary macroscopic system [59].
A de Sitter universe is considered to be in thermal
equilibrium based on horizon thermodynamics. We can
expect that the energy stored on the cosmological horizon
and its thermodynamic fluctuations are related to dark
energy at late times, through the holographic equipartition
law. However, it is likely that the energy on the horizon and
the fluctuations were not examined from this viewpoint in
these works.
Thermodynamic fluctuations of the energy on the

horizon should include various kinds of information. For
example, thermodynamic fluctuations on the event hori-
zons of black holes [66–69] have been used in discussions
on corrections of entropies [70–73], thermodynamic sta-
bility [74], and non-Gaussian entropies [75]. However, only
a few works have studied thermodynamic fluctuations of
the energy on the cosmological horizon for discussing the
late Universe [76,77].
Of course, various fluctuations that do not occur on the

horizon have been examined, such as temperature fluctua-
tions and density fluctuations [78–81]. Also, (quantum)
vacuum fluctuations have been examined extensively*komatsu@se.kanazawa-u.ac.jp
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[82–86]. For example, Padmanabhan investigated vacuum
fluctuations of the energy density to explain the observed
cosmological constant [84]. Verlinde and Zurek recently
studied vacuum energy fluctuations on a spacetime geom-
etry, assuming a thermal density matrix [86]. Vacuum
energy fluctuations are characterized by an entanglement
entropy discussed in AdS=CFT theory [86], as if they are
thermodynamic energy fluctuations. These results may
imply that the thermodynamic fluctuations relate to the
cosmological constant problem, namely, the discrepancy
between the observed value of Λ and the theoretical
value of the vacuum energy estimated by quantum field
theory [87].
An understanding of both the energy stored on the

cosmological horizon and its thermodynamic fluctuations
should provide new insights into alternative dark energy.
In this context, we examine the energy on the cosmological
horizon and its thermodynamic fluctuations, focusing on a
de Sitter universe, which is considered to be in thermal
equilibrium. (The present study focuses on the late
Universe and the thermodynamic fluctuations of the energy
on the horizon. The early Universe and other fluctuations
are not discussed here.)
The remainder of the present article is organized as

follows. In Sec. II, using a cosmological model, we study
whether a flat Friedmann-Robertson-Walker (FRW) uni-
verse should approach a de Sitter universe. In Sec. III,
horizon thermodynamics and the holographic equiparti-
tion law of energy are reviewed. In addition, the energy
density is calculated from the energy stored on the Hubble
horizon of a de Sitter universe. In Sec. IV, thermodynamic
fluctuations of the energy on the horizon are examined,
assuming stable fluctuations around thermal equilibrium
states. In Sec. IVA, a standard formulation of the thermo-
dynamic fluctuations for a canonical ensemble is reviewed.
In Sec. IV B, the formulation is applied to the case of the
Hubble horizon of a de Sitter universe. The thermodynamic
fluctuations and the relative fluctuations are examined.
Finally, in Sec. V, the conclusions of the study are
presented.

II. HOLOGRAPHIC COSMOLOGICAL MODELS
WITH A POWER-LAW TERM

We consider a flat FRW universe and study the scale
factor aðtÞ at time t. An expanding universe is assumed. In
this section, a general formulation of the cosmological
equations is reviewed, based on previous works [32,51,53].
Using the formulation, a holographic model that includes a
power-law term is introduced as a favored model close to
ΛCDM models. In addition, background evolutions of the
universe in the present model are examined, to observe
whether the flat FRW universe should approach a de Sitter
universe.
To discuss a general formulation of the cosmological

equations, we consider the formulation of a ΛðtÞ model,

similar to a time-varying ΛðtÞ cosmology, because the ΛðtÞ
model is likely favored [53]. The general Friedmann
equation for the ΛðtÞ model is given as

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð1Þ

and the general acceleration equation is

äðtÞ
aðtÞ ¼ −

4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ; ð2Þ

where the Hubble parameter HðtÞ is defined as

HðtÞ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð3Þ

and w represents the equation-of-state parameter for a

generic component of matter, w ¼ pðtÞ
ρðtÞc2. Here, G, c,

ρðtÞ, and pðtÞ are the gravitational constant, the speed of
light, the mass density of cosmological fluids, and the
pressure of cosmological fluids, respectively [32,51,53].
For a matter-dominated universe, a radiation-dominated
universe, and a Λ-dominated universe, w is 0, 1=3, and −1,
respectively. In this section, we consider a matter-domi-
nated universe, that is, w ¼ 0, although w is retained for
generality. An extra driving term fΛðtÞ is phenomenologi-
cally assumed. Combining Eq. (1) with Eq. (2) yields [51]

_H ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞfΛðtÞ: ð4Þ

Using the above equation, we phenomenologically for-
mulate a holographic model that includes a power-law term
based on Padmanabhan’s holographic equipartition law
[49,51–53]. In this section, the holographic model is used
as a favored model close to ΛCDM models, in order to
observe typical background evolutions of a flat FRW
universe. For other models, see, e.g., Refs. [5–31] and
the references therein.
Based on the holographic equipartition law, cosmologi-

cal equations can be derived from the expansion of cosmic
space due to the difference between the degrees of freedom
on the surface and in the bulk [43]. An acceleration
equation that includes a power-law term has been derived
in Ref. [49], by combining a power-law corrected entropy
[88] with the holographic equipartition law. The power-law
term has been investigated in previous works [51–53]. We
use the following power-law term:

fΛðtÞ ¼ ΨαH2
0

�
H
H0

�
α

; ð5Þ

where α and Ψα are dimensionless constants whose values
are real numbers [49]. H0 represents the Hubble parameter
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at the present time. Also, α and Ψα are independent free
parameters, and α < 2 and 0 ≤ Ψα ≤ 1 are considered.
That is, Ψα is a kind of density parameter for the effective
dark energy. (We discuss the condition α < 2 later.)
Accordingly, the formulation of the present model is
equivalent to that of a time-varying ΛðtÞ cosmology,
although the theoretical backgrounds are different. A
similar power series of H for ΛðtÞ models was examined
in Refs. [11,12]. Substituting Eq. (5) into Eq. (4) yields

_H ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞΨαH2

0

�
H
H0

�
α

¼ −
3ð1þ wÞ

2
H2

�
1 −Ψα

�
H
H0

�
α−2

�
; ð6Þ

the solution for which can be written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞ
�
a
a0

�
−3ð1þwÞð2−αÞ

2 þ Ψα; ð7Þ

where a0 represents the scale factor at the present time. The
solution method is summarized in Ref. [51]. When
fΛðtÞ ¼ Λ=3, ΛCDM models are obtained from Eq. (7).
Substituting α ¼ 0 and w ¼ 0 into Eq. (7) and replacingΨα

by ΩΛ yields [51]�
H
H0

�
2

¼ ð1 −ΩΛÞ
�
a
a0

�
−3

þΩΛ; ð8Þ

where ΩΛ is the density parameter for Λ, which is given by
Λ=ð3H2

0Þ. In a flat FRWuniverse, the density parameter for
matter is given by 1 − ΩΛ, neglecting the influence of
radiation [51,52].
A de Sitter universe corresponding to _H ¼ 0 (namely,

constant H) can be obtained from the present model.
Equation (7) indicates that ð1þ wÞð2 − αÞ ≥ 0 satisfies
_H ¼ 0 when a=a0 → ∞. We have already considered a
matter-dominated universe (w ¼ 0) and, therefore, the
model for α < 2 should approach a de Sitter universe in
the last stage. (Note that α ¼ 2 is excluded because α < 2
has been considered. Also, of course, w ¼ −1 satisfies
_H ¼ 0, although w ¼ −1 is not considered here.)
We now examine typical background evolutions of the

universe for the present model. The background evolution
of the universe has been examined in previous works, using
a model equivalent to the present one [51–53]. Based on
these studies, α < 2 was found to correspond to an initially
decelerating and then accelerating universe. In particular, a
model close to the ΛCDMmodel, namely, α close to 0, was
favored [53]. In addition, when α < 2, the maximization of
entropy was satisfied [53]. Accordingly, α is set to 0 and 1,
to observe typical background evolutions, as shown in
Fig. 1. Also, we set Ψα ¼ 0.685, which is equivalent to ΩΛ
for the ΛCDM model from the Planck 2018 results [3].

Therefore, the plot for α ¼ 0 is equivalent to that for the
ΛCDM model. In this figure, the horizontal dashed lines
represent de Sitter universes, in which H=H0 is a constant
value given by

H
H0

¼ Ψ
1

2−α
α ; ð9Þ

where we set α ¼ 0 and 1. This equation is obtained by
applying a=a0 → ∞ to Eq. (7) with α < 2 and w ¼ 0.
As shown in Fig. 1, H=H0 for the present model for

α ¼ 0 and 1 decreases with a=a0 and gradually approaches
a positive value, corresponding to each de Sitter universe
given by Eq. (9). That is, the plot for α ¼ 0 and 1 should
approach a de Sitter universe at least in the last stage.
Accordingly, we can expect that a flat FRWuniverse should
approach a de Sitter universe in the last stage, using a
favored model close to the ΛCDM model.
In this section, a holographic model was used as one

such model, in order to observe typical background
evolutions. Hereafter, we focus on a de Sitter universe.
The evolution of the normalized scale factor in a de Sitter
universe is given by

a
a0

¼ exp½Hðt − t0Þ�; ð10Þ

where t0 represents the present time. The normalized scale
factor increases exponentially with time. Also, H is not
varied during the evolution of the universe. (The properties
of the de Sitter universe are characterized byH.) In fact, the
temperature on the cosmological horizon of a de Sitter
universe is constant because the temperature depends only
on H. We discuss this in the next section.

H
/H

0

a/a0

0 1 2 3
0

1

2

3

4

4 5

(ΛCDM)

Observed data points

Present model
Present model
de Sitter universe
de Sitter universe

0=
1=

0=
1=

FIG. 1. Evolution of the normalized Hubble parameter H=H0

for the present model for α ¼ 0 and 1. The horizontal dashed
lines represent de Sitter universes, in which a constant H=H0 is
calculated from Eq. (9) (see the text). The open circles with error
bars are observed data points taken from Ref. [4]. The data points
are normalized as H=H0, where H0 is set to 67.4 km=s=Mpc
from Ref. [3], as studied in Refs. [51–53].

ENERGY STORED ON A COSMOLOGICAL HORIZON AND ITS … PHYS. REV. D 105, 043534 (2022)

043534-3



III. HORIZON THERMODYNAMICS AND
HOLOGRAPHIC EQUIPARTITION LAW

Based on the holographic principle [33], the horizon of
the universe is assumed to have an associated entropy and
an approximate temperature [21]. In Sec. III A, the entropy
and the temperature on the Hubble horizon are introduced.
In Sec. III B, the energy on the horizon is discussed,
assuming the holographic equipartition law of energy. In
addition, the energy density of the Hubble volume is
calculated from the energy stored on the Hubble horizon.
We focus on the thermodynamics on the horizon of a de

Sitter universe. The Hubble horizon of a de Sitter universe
is equivalent to an apparent horizon because the universe is
spatially flat. For the thermodynamics of de Sitter uni-
verses, see previous works [59–64].

A. Entropy and temperature on the horizon

Various black hole entropies have been proposed, such
as power-law corrected entropy [88], logarithmic correc-
tions from loop quantum gravity [68,89], Tsallis-Cirto
entropy [90], Tsallis-Rényi entropy [91,92], and Barrow
entropy [93]. These entropies are considered to be extended
versions of the Bekenstein-Hawking entropy [34–36].
Recently, Nojiri et al. examined the thermodynamic con-
sistency of non-Gaussian black-hole entropies [94].
In this study, we select the Bekenstein-Hawking entropy

as an associated entropy, because it is the most standard. In
general, the cosmological horizon is examined by replacing
the event horizon of a black hole by the cosmological
horizon. The replacement has been widely accepted in
previous works [37–47] and we use this replacement here.
Based on a form of the Bekenstein-Hawking entropy, the

entropy SH on the Hubble horizon is written as

SH ¼ kBc3

ℏG
AH

4
; ð11Þ

where kB and ℏ are the Boltzmann constant and the reduced
Planck constant, respectively. The reduced Planck constant
is defined as ℏ≡ h=ð2πÞ, where h is the Planck constant
[48–50]. AH is the surface area of a sphere with the Hubble
horizon (radius) rH given by

rH ¼ c
H
: ð12Þ

Substituting AH ¼ 4πr2H into Eq. (11) and applying
Eq. (12) gives

SH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð13Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
¼ πkBc2

L2
P

¼ πkB
t2P

; ð14Þ

and LP is the Planck length and tP given by LP=c is the
Planck time, written as

LP ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
and tP ¼

ffiffiffiffiffiffiffi
ℏG
c5

r
: ð15Þ

In addition, the Planck mass MP, the Planck energy
EP ¼ MPc2, and the Planck temperature TP ¼ EP=kB
are given as

MP ¼
ffiffiffiffiffiffi
ℏc
G

r
; EP ¼

ffiffiffiffiffiffiffiffi
ℏc5

G

s
; TP ¼ 1

kB

ffiffiffiffiffiffiffiffi
ℏc5

G

s
: ð16Þ

Next, we introduce the temperature TH on the Hubble
horizon. The temperature can be given by [95]

TH ¼ ℏH
2πkB

: ð17Þ

From Eqs. (13) and (17), SH and TH are proportional to
H−2 andH, respectively, and depend only onH. Therefore,
SH and TH are constant during the evolution of the universe
because a de Sitter universe is considered.
It should be noted that the second law of thermody-

namics and the maximization of entropy are not discussed
in the present paper, but have been examined in previous
works, see, e.g., Ref. [51].

B. Holographic equipartition law of energy

We have assumed that the information of the bulk is
stored on the horizon based on the holographic principle
[33]. In addition, we have considered a de Sitter universe, in
which TH given by Eq. (17) is constant. Accordingly, the
concept of a canonical ensemble can be applied to the de
Sitter universe. We now assume the equipartition law of
energy on the horizon, according to Refs. [38,42].
Consequently, an average energy on the Hubble horizon,
EH ¼ hEHi, can be written as

EH ¼ hEHi ¼ NH ×
1

2
kBTH; ð18Þ

where EH represents the energy on the horizon and hEHi
represents the (ensemble) average energy. In the present
study, the symbol hi is used for average values, and
fluctuations will be discussed later. Note that EH is used
as well and we call EH the Hubble energy for simplicity.
Also, NH is the number of degrees of freedom (d.o.f.) on a
spherical surface of the Hubble radius rH, which is written
as [51]
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NH ¼ 4SH
kB

: ð19Þ

Substituting Eq. (19) into Eq. (18) yields

hEHi ¼
�
4SH
kB

�
1

2
kBTH ¼ 2SHTH: ð20Þ

This thermodynamic relation, namely, hEHi ¼ 2SHTH, was
proposed by Padmanabhan [38,41]. In fact, the factor 1=2
in Eq. (18) should depend on the Hamiltonian of the
system. In Ref. [38], the factor was assumed to be 1=2 and
we have similarly assumed a factor 1=2, which satisfies a
thermodynamic relation discussed later.
We reformulate the average energy given by Eq. (20),

using the Hubble parameter, as examined in Ref. [51].
Substituting Eqs. (13) and (17) into Eq. (20) yields

hEHi ¼ 2

�
πkBc5

ℏG

�
1

H2
×

�
ℏH
2πkB

�
¼ c5

G

�
1

H

�
: ð21Þ

The average energy hEHi depends on H, which is constant
in a de Sitter universe.
From the above equation, we can confirm the thermo-

dynamic relation dhEHi
TH

¼ dSH. Using dhEHi ¼ c5
G ð− dH

H2Þ
obtained from Eq. (21) and dividing dhEHi by Eq. (17)
yields

dhEHi
TH

¼
c5
G ð− dH

H2Þ
ℏH
2πkB

¼
�
πkBc5

ℏG

��
−
2dH
H3

�
¼ dSH: ð22Þ

Here dSH ¼ ðπkBc5ℏG Þð− 2dH
H3 Þ is obtained from Eq. (13). This

thermodynamic relation has been discussed by
Padmanabhan [41] and Shu and Gong [42].
We now calculate the energy density of the Hubble

volume VH from the average energy hEHi on the Hubble
horizon by applying the holographic principle. The
Hubble volume considered here is constant because the
Hubble radius rH is constant in a de Sitter universe.
Dividing Eq. (21) by VH and applying rH ¼ c=H given
by Eq. (12) gives the energy density ρHc2, written as

ρHc2 ¼
hEHi
VH

¼
c5
G ð 1HÞ
4
3
πr3H

¼
c5
G ð 1HÞ

4
3
πðc=HÞ3 ¼

3c2

4πG
H2; ð23Þ

or, equivalently, the mass density ρH of the Hubble volume
is given by

ρH ¼ 3

4πG
H2: ð24Þ

The obtained ρH is constant during the evolution of a de
Sitter universe. Also, the formulation of Eq. (24) is similar
to the standard Friedmann equation, H2 ¼ 8πG

3
ρ. Using the

Friedmann equation, the critical mass density ρc is given by
ρc ¼ 3H2

8πG. At the present time, ρc is expected to be slightly
larger than the observed mass density ρΛ;obs for Λ, because
ΩΛ ¼ ρΛ;obs=ρc ¼ 0.685 from the Planck 2018 results [3].
Therefore, the order of ρH is consistent with the order of
ρΛ;obs. The relation can be written as

ρH ¼ 2ρc ≈ ρΛ;obs: ð25Þ

These results may imply that the energy stored on the
horizon can be considered to be the energy in the volume
and can be interpreted as a kind of effective dark energy.
Again, ρH given by Eq. (24) is constant for a de Sitter

universe and, therefore, we cannot apply ρH ¼ 3H2

4πG directly
to the extra driving term fΛðtÞ included in Eq. (4). In fact,
for fΛðtÞ ∝ H2, cosmological models cannot describe a
decelerating and accelerating universe [23,30]. For details
on the various driving terms, see, e.g., the works of Solà
et al. [10], Valent et al. [11], and Rezaei et al. [12].

IV. THERMODYNAMIC FLUCTUATIONS

We consider a canonical ensemble in statistical physics,
assuming stable fluctuations around thermal equilibrium
states [70–73]. In Sec. IVA, a standard formulation of
the thermodynamic fluctuations of energy is reviewed. In
Sec. IV B, the formulation is applied to the case of the
Hubble horizon of a de Sitter universe to examine the
thermodynamic fluctuations and the relative fluctuations.
Thermodynamic stability and negative specific heat are

not discussed in this paper. Also, fluctuation theorems [96]
are not discussed here because they assume nonequilibrium
steady states.

A. Formulations of thermodynamic fluctuations

In this subsection, thermodynamic fluctuations of energy
for general systems are introduced. To this end, we review a
standard formulation of the fluctuations, according to the
work of Das et al. [70].
We consider a canonical ensemble with a partition

function given by

ZðβÞ ¼
Z

∞

0

ϱðEÞ expð−βEÞdE; ð26Þ

where ϱ is the density of states, E is the energy of the
system, and β is the inverse temperature, written as

β ¼ 1

kBT
; ð27Þ

where T represents the temperature of the system. Based on
statistical physics, the entropy S is written as [70]

SðβÞ ¼ kB lnZðβÞ þ kBβE; ð28Þ
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and S00ðβÞ≡ ∂2S
∂β2 can be written as

S00ðβÞ≡ ∂2S
∂β2 ¼ kB

�
1

Z
∂2Z
∂β2 −

�
−1
Z

∂Z
∂β

�
2
�
; ð29Þ

where 0 represents ∂=∂β. For details, see Ref. [70].
In addition, using statistical physics relations, the

(ensemble) average of E in an equilibrium state at β ¼
β0 can be given by [70]

hEi ¼ −
� ∂
∂β lnZ

�
β¼β0

¼ −
�
1

Z
∂Z
∂β

�
β¼β0

; ð30Þ

and the average of E2 is written as

hE2i ¼
�
1

Z
∂2Z
∂β2

�
β¼β0

; ð31Þ

where β0 ¼ 1=ðkBT0Þ represents the inverse temperature in
the equilibrium state and T0 is an equilibrium temperature.
Hereafter, the subscript β ¼ β0 is omitted.
Substituting Eqs. (30) and (31) into Eq. (29) gives S00ðβÞ

at the equilibrium state [70]:

S00ðβÞ ¼ kB

�
1

Z
∂2Z
∂β2 −

�
−1
Z

∂Z
∂β

�
2
�

¼ kBðhE2i − hEi2Þ ¼ kBhðδEÞ2i; ð32Þ

where a fluctuation δE is defined by

δE ≡ E − hEi; ð33Þ

and the average of δE is 0, namely, hδEi ¼ 0. From
Eq. (32), the variance σ2E of the energy is given by

σ2E ≡ hðδEÞ2i ¼ S00ðβÞ
kB

: ð34Þ

Using this equation, the variance σ2E is calculated from the
entropy in the equilibrium state at β ¼ β0.
In this subsection, we have introduced thermodynamic

fluctuations of energy for general systems. In the next
subsection, we apply Eq. (34) to the case of the fluctuations
on a cosmological horizon. [In Refs. [70–73], Eq. (34) was
used for corrections of black hole entropies.]

B. Thermodynamic fluctuations of the energy on the
Hubble horizon of a de Sitter universe

We consider a de Sitter universe in which the temper-
ature TH on the Hubble horizon is constant. Accordingly,
the Hubble horizon should be in an equilibrium state,
namely, TH ¼ T0. In this case, thermodynamic fluctuations
of energy on the horizon can be calculated from Eq. (34),

assuming stable fluctuations around thermal equilibrium
states.
To apply Eq. (34), the entropy SH on the Hubble horizon

is formulated as a function of β. From Eq. (27), β is
given by

β ¼ 1

kBT
¼ 1

kBTH
; ð35Þ

where T ¼ T0 ¼ TH is assumed. Using Eq. (13), the
entropy on the Hubble horizon is written as

SH ¼
�
πkBc5

ℏG

�
1

H2
: ð36Þ

Also,H can be calculated from TH ¼ ℏH=ð2πkBÞ given by
Eq. (17). Solving TH ¼ ℏH=ð2πkBÞ with respect to 1=H
and substituting 1=H ¼ ℏ=ð2πkBTHÞ into Eq. (36) yields

SH ¼
�
πkBc5

ℏG

��
ℏ

2πkBTH

�
2

¼ ℏkBc5

4πG

�
1

kBTH

�
2

¼
�
ℏkBc5

4πG

�
β2: ð37Þ

We now examine the variance σ2EH of the energy on the
Hubble horizon. Substituting Eq. (37) into Eq. (34) yields

σ2EH ¼ S00HðβÞ
kB

¼
∂2
∂β2 ½ðℏkBc

5

4πG Þβ2�
kB

¼ ℏc5

2πG
; ð38Þ

where E and S in Eq. (34) have been replaced by EH and
SH, respectively. The replacement is assumed to be valid.
Substituting the Planck energy EP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
given by

Eq. (16) into Eq. (38) yields

σ2EH ¼ ℏc5

2πG
¼ 1

2π
E2
P: ð39Þ

This equation indicates that the thermodynamic energy
fluctuations are a universal constant corresponding to the
Planck energy. That is, the thermodynamic fluctuations do
not depend on the Hubble parameter H, although de Sitter
universes depend on H. The universality implies that the
thermodynamic fluctuations of the energy on the horizon
are characterized by the Planck energy. (Quantum fluctua-
tions characterized by the Planck length were studied
in Ref. [83].)
We examine the case of the event horizon of a

Schwarzschild black hole in the Appendix, to compare
with the Hubble horizon. As shown in Eq. (A15), thermo-
dynamic fluctuations of the energy on the event horizon are
also a universal constant corresponding to the Planck
energy. Accordingly, the thermodynamic fluctuations on
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the two horizons are equivalent to each other, excepting the
numerical coefficients.
Next, we examine relative fluctuations of the energy on

the Hubble horizon. For this, we use the average energy
hEHi given by Eq. (21), based on the holographic equi-
partition law. From Eqs. (21) and (38), the square of the
relative fluctuations is written as

σ2EH
hEHi2

¼
ℏc5
2πG

ðc5G ð 1HÞÞ2
¼ kB

2ðπkBc5ℏG Þ 1
H2

¼ kB
2

1

SH
¼ 2

NH
; ð40Þ

where SH ¼ ðπkBc5ℏG Þ 1
H2 given by Eq. (36) andNH ¼ 4SH=kB

given by Eq. (19) have been used. From the above equation,
we can confirm that the square of the relative fluctuations
corresponds to the inverse of NH. An equivalent result has
been discussed in previous works; see, e.g., Ref. [77].
[Equation (40) is consistent with Eq. (A16) for the event
horizon of a Schwarzschild black hole.] In addition, using
Eq. (39), σ2EH=hEHi2 can be written as

σ2EH
hEHi2

¼
1
2πE

2
P

hEHi2
¼

1
2π ðEP=c2Þ2
ðhEHi=c2Þ2

¼ 1

2π

M2
P

M2
H
; ð41Þ

or, equivalently, from Eq. (40), we obtain

σ2EH
hEHi2

¼
ℏc5
2πG

ðc5G ð 1HÞÞ2
¼ 1

2π

�
ℏG
c5

�
H2 ¼ 1

2π

t2P
t2H

¼ 1

2π

�
ℏG
c3

��
H
c

�
2

¼ 1

2π

L2
P

r2H
: ð42Þ

Here LP, tP, andMP represent the Planck length, time, and
mass, respectively, which are summarized in Eqs. (15) and
(16). Also, rH is the Hubble radius given by c=H from
Eq. (12), tH is the Hubble time defined by 1=H, and MH is
the Hubble mass defined by hEHi=c2. From Eqs. (41) and
(42), the relative fluctuations of the energy on the Hubble
horizon are summarized as

σEH
hEHi

≈
EP

EH
¼ MP

MH
¼ tP

tH
¼ LP

rH
; ð43Þ

where hEHi ¼ EH has been used for the Hubble energy. In
this way, the relative fluctuations of energy can be
characterized by the ratio of the Planck energy (mass,
time, and length) to the Hubble energy (mass, time, and
radius). Temperature is not included here, but is discussed
in the next paragraph.
Applying H ¼ 2πkBTH=ℏ given by Eq. (17) to Eq. (42)

yields

σ2EH
hEHi2

¼ 1

2π

�
ℏG
c5

�
H2 ¼ 1

2π

�
ℏG
c5

��
2πkBTH

ℏ

�
2

¼ 8π

�
G
ℏc5

��
1

2
kBTH

�
2

¼ 8π

�1
2
kBTH

EP

�
2

; ð44Þ

where Eq. (16) has been used for the Planck energy
EP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
. Therefore, the relative fluctuations of

energy are written as

σEH
hEHi

¼ 2
ffiffiffiffiffiffi
2π

p �1
2
kBTH

EP

�
≈

1
2
kBTH

EP
: ð45Þ

Here 1
2
kBTH corresponds to the energy for one d.o.f.,

assuming the holographic equipartition law of energy. The
relative fluctuations are characterized by the ratio of the
one-d.o.f. energy to the Planck energy. Using the Planck
temperature TP ¼ EP=kB, Eq. (45) is given as

σEH

hEHi
¼ 2

ffiffiffiffiffiffi
2π

p �1
2
kBTH

EP

�
¼

ffiffiffiffiffiffi
2π

p �
TH

TP

�
≈
TH

TP
: ð46Þ

The relative fluctuations correspond to TH=TP.
We note that the relative fluctuations for the Hubble

horizon examined here are consistent with those for the
event horizon of a Schwarzschild black hole. For example,
Eqs. (43), (45), and (46) are consistent with Eqs. (A17),
(A19), and (A20), respectively.
Finally, we discuss current values of the relative fluctua-

tions on the Hubble horizon. At the present time, the value of
σ2EH=hEHi2 is approximately 10−123, which is calculated from

substituting SH=kB ¼ 2.6 × 10122 [58] into Eq. (40). (NH at
the present time is approximately10123. Thenumber of bits of
the Universe has been discussed in Refs. [97,98].)
Consequently, we obtain σEH=hEHi ≈ 10−62 within the range
ρΛ;obs=ρvac;th, which is approximately from 10−60 to 10−123

[87]. Here, ρΛ;obs and ρvac;th represent themass density for the
observed value of Λ and the mass density for the theoretical
value of the vacuum energy, respectively. The relation should
be approximately written as

σEH
hEHi

≈ 10−62 ∼
ρΛ;obs
ρvac;th

; ð47Þ

where the symbol ∼ represents an approximation based on a
rough estimation that includes a larger uncertainty than≈. As
discussed in Sec. III B, the order of ρH calculated from hEHi
is consistent with the order of ρΛ;obs. From Eq. (25), the
relation is written as

ρH ≈ ρΛ;obs: ð48Þ

Therefore, the relative fluctuations examined here may lead
to a discussion on the discrepancy between ρΛ;obs and ρvac;th.
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(Note that σEH itself should be much smaller than the
observed energy for Λ.) For example, the relative energy
fluctuations given by Eq. (46) can be written as

σEH
hEHi

≈
TH

TP
¼ NH × 1

2
kBTH

NH × 1
2
kBTP

¼ EH

EHP
; ð49Þ

where Eq. (18) has been used for EH. Also, EHP represents
the energy that can be “maximally” stored on the Hubble
horizon, which is assumed to be given by

EHP ¼ NH ×
1

2
kBTP; ð50Þ

where TP is the Planck temperature. In Eq. (50), 1
2
kBTP is

assumed to be the one-d.o.f. energy that can be maximally
stored on a Planckian area, in order to apply the holographic
equipartition law. That is, an extended holographic equi-
partition law is assumed, where the maximum one-d.o.f.
energy corresponds to EP=2. These assumptions have not
been established and should be beyond the limits of validity.
However, as a viable scenario, we accept the assumptions
here. Using Eqs. (47) and (49), the order of the relative
fluctuations should be approximately written as

σEH
hEHi

≈
EH

EHP
¼ ρH

ρHP
∼
ρΛ;obs
ρvac;th

; ð51Þ

whereρH and ρHP represent themass density calculated from
EH=ðc2VHÞ and EHP=ðc2VHÞ, respectively. Substituting
Eq. (48) into Eq. (51) and arranging the resultant equation
yields

ρHP ∼ ρvac;th: ð52Þ

The above calculation is based on the rough estimation and
the unestablished assumptions. However, the maximum
energy that can be stored on the Hubble horizon may behave
as if it were a kind of effective vacuum-like energy in the
extended holographic equipartition law.
In fact, it has been reported that the vacuum fluctuations

of energy density are consistent with the observed Λ [84],
as described in Sec. I. Also, assuming a thermal density
matrix, vacuum energy fluctuations on a spacetime geom-
etry are characterized by an entanglement entropy [86],
as if they are thermodynamic fluctuations. Accordingly,
the energy stored on the Hubble horizon, its thermody-
namic fluctuations, and the maximum energy examined in
the present paper may be related to the vacuum energy
fluctuations reported in the previous works. We may be
able to study this relation by extending the idea of
entanglement entropy discussed in AdS=CFT [86,99,100].
This task is left for future research.

V. CONCLUSIONS

We examined the energy stored on a horizon and its
thermodynamic fluctuations through the holographic equi-
partition law. Stable fluctuations around thermal equilib-
rium states were assumed to study the thermodynamic
energy fluctuations.
First, we confirmed that a flat FRW universe should

approach a de Sitter universe at least in the last stage, using
a cosmological model close to ΛCDMmodels. Then, based
on the holographic equipartition law, we calculated the
energy density of the Hubble volume from the energy
stored on the Hubble horizon of a de Sitter universe. The
energy density is constant and the order of the energy
density is consistent with the order of that for Λ by
observations, namely, ρH ≈ ρΛ;obs. As a viable scenario,
the energy stored on the horizon may be related to a kind of
effective dark energy through the holographic equiparti-
tion law.
Second, we examined thermodynamic fluctuations of

the energy on the horizon, assuming stable fluctuations
around thermal equilibrium states. A standard formulation
of the fluctuations for a canonical ensemble was applied
to the Hubble horizon of a de Sitter universe. The
thermodynamic fluctuations of the energy on the
Hubble horizon are found to be a universal constant
corresponding to the Planck energy. That is, the thermo-
dynamic fluctuations depend only on the Planck energy,
regardless of the Hubble parameter. By applying the
holographic equipartition law, the relative energy fluctu-
ations can be characterized by the ratio of the Planck
energy (mass, time, and length) to the Hubble energy
(mass, time, and radius). Also, the relative fluctuations
correspond to the ratio of the one-d.o.f. energy to the
Planck energy. The thermodynamic fluctuations and
relative fluctuations are consistent with those for the
event horizon of a Schwarzschild black hole.
Finally, we discussed current values of the relative

fluctuations of the energy on the Hubble horizon. At the
present time, the relative fluctuations are approximately
10−62. The order of the fluctuations can be approximately
written as σEH=hEHi ≈ ρH=ρHP ∼ ρΛ;obs=ρvac;th by assum-
ing an (unestablished) extended holographic equipartition
law. In addition, ρHP ∼ ρvac;th should be expected. The
relative fluctuations and the energy that can be “max-
imally” stored on the Hubble horizon may be related to a
kind of effective vacuum-like energy in the extended
holographic equipartition law.
This study has revealed fundamental properties of

thermodynamic fluctuations of the energy on the horizon,
assuming thermal equilibrium. The present results should
provide new insights into alternative dark energy and may
lead to a discussion on the cosmological constant problem.
Of course, we cannot exclude other contributions such as
quantum field theory. Detailed studies are needed and these
are left for future research.

NOBUYOSHI KOMATSU PHYS. REV. D 105, 043534 (2022)

043534-8



APPENDIX: CASE OF AN EVENT HORIZON OF
A SCHWARZSCHILD BLACK HOLE

Thermodynamic fluctuations of the energy on an event
horizon of a Schwarzschild black hole have been studied
from various viewpoints [66–75]. In this Appendix, we
examine the thermodynamic fluctuations on an event
horizon, to compare with the case of the Hubble horizon.
We assume stable fluctuations around thermal equilibrium
states, as examined in Sec. IV B and previous works
[70–73].
In Appendix A 1, we review the thermodynamics on the

event horizon of a black hole and discuss several thermo-
dynamic relations. In Appendix A 2, we examine thermo-
dynamic fluctuations of the energy on an event horizon.

1. Thermodynamics on an event horizon of a
Schwarzschild black hole

We briefly review the thermodynamics on the event
horizon of a Schwarzschild black hole [36]. Using the
Bekenstein-Hawking entropy, the black hole entropy is
written as

Sbh ¼
kBc3

ℏG
Abh

4
; ðA1Þ

where Abh is the surface area of the sphere with the event
horizon rbh and the subscript “bh” represents the black
hole. The black hole radius rbh is given by

rbh ¼
2GMbh

c2
; ðA2Þ

whereMbh is the mass of the black hole. Substituting Abh ¼
4πr2bh into Eq. (A1) and applying Eq. (A2) yields

Sbh ¼
kBc3

ℏG
Abh

4
¼ kBc3

ℏG
4πr2bh
4

¼ πkBc3

ℏG

�
2GMbh

c2

�
2

¼
�
4πkBG
ℏc

�
M2

bh: ðA3Þ

The temperature Tbh on the event horizon of the black hole
is given by [36]

Tbh ¼
ℏc3

8πkBGMbh
: ðA4Þ

This equation indicates that Tbh depends on Mbh. When
Mbh is constant, Tbh is constant. Consequently, the event
horizon is considered to be in thermal equilibrium, namely,
Tbh ¼ T0. In this case, thermodynamic fluctuations of the
energy on the horizon can be calculated from Eq. (34),
assuming stable fluctuations around thermal equilibrium
states.

Before discussing fluctuations, we examine several
thermodynamic relations using the average energy, to
compare with the case of the Hubble horizon.
Multiplying Eq. (A3) by Eq. (A4) yields

SbhTbh ¼
�
4πkBG
ℏc

�
M2

bh ×
ℏc3

8πkBGMbh

¼ 1

2
Mbhc2 ¼

1

2
hEbhi; ðA5Þ

where the average energy hEbhi of the black hole is
assumed to be given by

hEbhi ¼ Mbhc2: ðA6Þ

Therefore, Eq. (A5) is written as

hEbhi ¼ 2SbhTbh: ðA7Þ

This relation is consistent with hEHi ¼ 2SHTH given by
Eq. (20) for the Hubble horizon. Next, let us examine
whether or not a formulation of the holographic equiparti-
tion law hEbhi ¼ Nbh ×

1
2
kBTbh is satisfied. To this end, we

assume that the numberNbh of d.o.f. on the event horizon is
given by Eq. (19). Using Eq. (19) and replacing NH and SH
by Nbh and Sbh, respectively, we obtain

Nbh ¼
4Sbh
kB

; or; equivalently Sbh ¼
kBNbh

4
: ðA8Þ

Substituting Eq. (A8) into Eq. (A7) yields

hEbhi ¼ Nbh ×
1

2
kBTbh: ðA9Þ

This confirms the formulation of the holographic equipar-
tition law, as expected. The holographic equipartition law
has been discussed in the works of Padmanabhan [38] and
Verlinde [39]. In addition, let us confirm the thermody-

namic relation dhEbhi
Tbh

¼ dSbh. Taking dhEbhi ¼ dMbhc2

obtained from Eq. (A6) and dividing dhEbhi by Eq. (A4)
yields

dhEbhi
Tbh

¼
�
8πkBG
ℏc

�
MbhdMbh ¼ dSbh: ðA10Þ

Here dSbh ¼ ð8πkBGℏc ÞMbhdMbh is obtained from Eq. (A3). In
this way, we can confirm the two thermodynamic relations
and the formulation of the holographic equipartition law, as
for the case of the Hubble horizon.
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2. Thermodynamic fluctuations of the energy on the
event horizon of a Schwarzschild black hole

We now study thermodynamic fluctuations of the energy
on the event horizon of a Schwarzschild black hole. From
Eq. (34), the variance σ2Ebh of the energy on an event horizon
is written as

σ2Ebh ≡ hðδEbhÞ2i ¼
S00bhðβÞ
kB

; ðA11Þ

where E and S in Eq. (34) have been replaced by Ebh and
Sbh, respectively. To apply this equation, Sbh given by
Eq. (A3) is formulated as a function of β. Using Eq. (A4),
the inverse temperature β can be written as

β ¼ 1

kBT
¼ 1

kBTbh
¼

�
8πG
ℏc3

�
Mbh; ðA12Þ

where T ¼ T0 ¼ Tbh is assumed. From Eq. (A12), Mbh is
given by

Mbh ¼
�
ℏc3

8πG

�
β: ðA13Þ

Substituting Eq. (A13) into Eq. (A3) yields

Sbh ¼
�
4πkBG
ℏc

��
ℏc3

8πG

�
2

β2 ¼ kB

�
ℏc5

16πG

�
β2: ðA14Þ

In addition, substituting Eq. (A14) into Eq. (A11) yields

σ2Ebh ¼
∂2
∂β2 ½kBð ℏc5

16πGÞβ2�
kB

¼ ℏc5

8πG
¼ E2

P

8π
; ðA15Þ

where we have used the Planck energy, EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
,

given by Eq. (16). The thermodynamic fluctuations of the
energy on the event horizon are a universal constant
corresponding to the Planck energy, as for the case of
the Hubble horizon. That is, the thermodynamic fluctua-
tions do not depend on the Mbh that characterizes the
Schwarzschild black hole. From Eqs. (39) and (A15), the
energy fluctuations are given by σEH ¼ EP=

ffiffiffiffiffiffi
2π

p
and

σEbh ¼ EP=ð2
ffiffiffiffiffiffi
2π

p Þ, respectively. Accordingly, the thermo-
dynamic fluctuations of the energy on the two horizons are
equivalent to each other, excepting the numerical coeffi-
cients. This universality may prompt a discussion on dark
energy and the microscopic structures of spacetime,
through an entanglement entropy related to black hole
thermodynamics [86,99,100].
Finally, we examine the relative fluctuations of the

energy on an event horizon. To this end, hEbhi given by
Eq. (A6) is considered to be the energy on the event
horizon. From Eqs. (A6) and (A15), the square of the
relative fluctuations is written as

σ2Ebh
hEbhi2

¼
ℏc5
8πG

ðMbhc2Þ2
¼ kB

2

1

ð4πkBGℏc ÞM2
bh

¼ kB
2

1

Sbh
¼ 2

Nbh
; ðA16Þ

where we have used Sbh ¼ ð4πkBGℏc ÞM2
bh given by Eq. (A3)

and Nbh ¼ 4Sbh=kB given by Eq. (A8). The square of the
relative fluctuations corresponds to the inverse of the
number of d.o.f. This result agrees with Eq. (40) for the
Hubble horizon. In addition, using Eqs. (A6) and (A15) and
performing several operations, the relative fluctuations can
be summarized as

σEbh
hEbhi

¼ 1ffiffiffiffiffiffi
8π

p EP

Ebh
¼ 1ffiffiffiffiffiffi

8π
p MP

Mbh
¼ 1ffiffiffiffiffiffi

2π
p tP

tbh
¼ 1ffiffiffiffiffiffi

2π
p LP

rbh
;

ðA17Þ

where Ebh represents hEbhi and tbh is a crossing time
defined by rbh=c. Also,MP, tP, and LP represent the Planck
mass, time, and length, respectively. Equation (A17) indi-
cates that the relative fluctuations of energy can be
characterized by the ratio of the Planck energy (mass,
time, and length) to the black-hole energy (mass, time, and
radius). Accordingly, Eq. (A17) is consistent with Eq. (43)
for the Hubble horizon when the numerical coefficients
included in Eq. (A17) are neglected. To discuss the
temperature, substituting Eq. (A13) into hEbhi ¼ Mbhc2

and applying EP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
yields

hEbhi ¼ Mbhc2 ¼
�
ℏc3

8πG

�
βc2 ¼

�
ℏc5

8πG

�
β ¼

�
E2
P

8π

�
β:

ðA18Þ

Dividing the square root of Eq. (A15) by Eq. (A18) and
applying β ¼ 1=ðkBTbhÞ yields

σEbh
hEbhi

¼
ffiffiffiffiffi
E2
P

8π

q
ðE2

P
8πÞβ

¼ 4
ffiffiffiffiffiffi
2π

p �1
2
kBTbh

EP

�
≈

1
2
kBTbh

EP
; ðA19Þ

where 1
2
kBTbh corresponds to the one-d.o.f. energy. The

relative energy fluctuations are characterized by the ratio of
the one-d.o.f. energy to the Planck energy. Applying the
Planck temperature TP ¼ EP=kB to Eq. (A19) yields

σEbh
hEbhi

¼ 4
ffiffiffiffiffiffi
2π

p �1
2
kBTbh

EP

�
¼ 2

ffiffiffiffiffiffi
2π

p �
Tbh

TP

�
≈
Tbh

TP
: ðA20Þ

Equations (A19) and (A20) are consistent with Eqs. (45)
and (46), respectively. (Note that the numerical coefficients
for the former two equations are slightly different from
those for the latter two.) Using Eq. (A20), the relative
fluctuations are written as
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σEbh

hEbhi
≈
Tbh

TP
¼ Nbh ×

1
2
kBTbh

Nbh ×
1
2
kBTP

¼ Ebh

EbhP
; ðA21Þ

where Ebh represents Nbh ×
1
2
kBTbh given by Eq. (A9).

Also, EbhP represents the energy that can be “maximally”
stored on the event horizon, which is assumed to be
given by EbhP ¼ Nbh × 1

2
kBTP. Based on this assumption,

Eq. (A21) is consistent with Eq. (49) for the Hubble

horizon. We note that the assumption has not been
established, as mentioned in Sec. IV B.
The thermodynamic relations, thermodynamic fluctua-

tions, and relative fluctuations for the Hubble horizon of a
de Sitter universe are confirmed to be consistent with
those for the event horizon of a Schwarzschild black hole,
using the framework considered in the present study.
This consistency should provide a deeper understanding
of horizon thermodynamics.
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