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Axion inflation coupled to the Standard Model (SM) hypercharge gauge sector represents an attractive
scenario for the generation of primordial hypermagnetic fields. The description of this scenario is, however,
complicated by the Schwinger effect, which gives rise to highly nonlinear dynamics. Hypermagnetogenesis
during axion inflation in the absence of nonlinear effects is well studied and known to result in a
hypermagnetic energy density that scales like H4e2πξ=ξ5, where ξ is proportional to the time derivative of
the axion-vector coupling in units of the Hubble rate H. In this paper, we generalize this result to the full
SM case by consistently taking into account the Schwinger pair production of all SM fermions. To this end,
we employ the novel gradient-expansion formalism that we recently developed [Phys. Rev. D 104, 123504
(2021)], which is based on a set of vacuum expectation values for bilinear hyperelectromagnetic functions
in position space. We parametrize the numerical output of our formalism in terms of three parameters (ξ,H,
and Δ, where the latter accounts for the damping of subhorizon gauge-field modes because of the finite
conductivity of the medium) and work out semianalytical fit functions that describe our numerical results
with high accuracy. Finally, we validate our results by comparing them to existing estimates in the literature
as well as to the explicit numerical results in a specific inflationary model, which leads to good overall
agreement. We conclude that the systematic uncertainties in the description of hypermagnetogenesis during
axion inflation, which previously spanned up to several orders of magnitude, are now reduced to typically
less than 1 order of magnitude, which paves the way for further phenomenological studies.

DOI: 10.1103/PhysRevD.105.043530

I. INTRODUCTION

Baryonic matter in the Universe mostly exists in the form
of plasma. Being composed of free-streaming charged
particles, plasma very efficiently screens electric fields.
On the other hand, its large electric conductivity keeps
magnetic fields frozen for a long time. Therefore, it is not
surprising that magnetic fields are observed everywhere in
the Universe, namely, in stars, galaxies, and clusters of
galaxies [1–9]. There exist several astrophysical mecha-
nisms that could be responsible for the generation of
magnetic fields on these length scales. In contrast, the

evidence for magnetic fields in voids with coherent lengths
of the order of megaparsecs based on the observation of
blazars [10–20] is quite unexpected and fascinating.
Indeed, the small matter content in voids makes the direct
generation of magnetic fields in voids impossible.
Although these fields could be induced by outflows of
magnetized matter from galaxies [21–24], such outflows
would need to be strong and coherent over tens of millions
of years, which appears implausible. As a consequence, a
cosmological origin of these magnetic fields emerges as an
interesting and realistic possibility.
Inflationary magnetogenesis [25,26] naturally addresses

the large coherence length of magnetic fields observed in
voids. In addition, cosmological magnetic fields generated
in the early Universe provide the necessary seeds for
magnetic fields in protogalaxies, whose amplification
through adiabatic compression [1] and different types of
dynamo processes [27–31] could easily explain the mag-
netic fields observed in galaxies and clusters of galaxies
today [32]. One of the most attractive features of inflation
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for cosmology is that it results in an isotropic and
homogeneous Universe consistent with the smallness of
the temperature fluctuations in the cosmic microwave
background. Since magnetic fields are not enhanced in a
conformally flat inflationary background [33], this means
that the conformal symmetry of Maxwell’s equations
should be broken to ensure the possibility of inflationary
magnetogenesis. Although this breaking can be done in
many ways (see, e.g., Refs. [25,26,34,35] or Ref. [36] for a
recent effective field-theoretical analysis), we consider in
this work the axial coupling of the Standard Model (SM)
hyperelectromagnetic field to a pseudoscalar “axion” infla-
ton field [36–64]. This scenario results in helical hyper-
magnetic fields, which enhances the chance of their
survival in the primordial plasma.
The production of hypercharge gauge fields during axion

inflation is subject to several nonlinear effects, which
highly complicates the theoretical analysis. These effects
include (i) the backreaction of the produced gauge fields on
the evolution of the inflation field [44,48,56,65] as well as
(ii) the Schwinger pair production of hypercharged matter
degrees of freedom [66–68]. The produced pairs of
particles and antiparticles quickly form an ultrarelativistic
plasma, which efficiently screens the electric field. This
strongly affects the generation and evolution of electro-
magnetic fields, especially near the end of inflation and
during reheating [49,53,55,69–91]. A quantitative descrip-
tion of hypermagnetogenesis during axion inflation is
therefore theoretically challenging, which is why up to
now only some order-of-magnitude estimates of its effi-
ciency have been worked out in the literature [49,54].
The goal of this paper is to improve on this situation,

leveraging the quantitative accuracy of the gradient-
expansion formalism [53] that we recently successfully
applied to axion inflation coupled to the SM hypercharge
gauge field in Ref. [92]. As demonstrated in Ref. [92], this
novel gradient-expansion formalism allows us to consis-
tently account for the above-mentioned nonlinear effects,
which enables us to evaluate the efficiency of gauge-field
and fermion production during axion inflation at unprec-
edented accuracy. The basic idea behind the formalism is to
consider vacuum expectation values of a truncated set of
bilinear electromagnetic functions in coordinate space rather
than momentum space. Solving the equations underlying
our formalism in a single numerical run, we are able to
describe the evolution of the electric and magnetic energy
densities at percent-level accuracy during the whole infla-
tion stage without the need for an iterative procedure. The
formalism also takes into account the fact that the number of
relevant gauge-field modes constantly grows during infla-
tion as newmodes become tachyonically unstable by adding
appropriate boundary terms in the equations of motion for
the bilinear electromagnetic functions.
In Ref. [92], we provided a detailed description of the

gradient-expansion formalism and confirmed its validity by

comparing its numerical output to existing results in the
literature for specific model and parameter benchmark
scenarios. In this paper, we shall continue our investigation
of hypermagnetogenesis during axion inflation based on
the gradient-expansion formalism, now turning to a model-
independent analysis. In the following, we will study the
efficiency of gauge-field production during axion inflation
in terms of a minimal number of parameters (the gauge-
field production parameter ξ, Hubble rate H, and damping
factor Δ; see Sec. II for the precise definition of these
quantities), which will provide us with numerical results
that are applicable across a large range of models based on
different types of scalar potentials. In fact, as we will show,
our numerical results will always provide a good estimate
of the efficiency of gauge-field production whenever the
three parameters ξ, H, and Δ vary only very slowly during
axion inflation, such that their time dependence can be
approximately neglected. To facilitate the application of our
numerical results in future studies, we will also present
semianalytical fit functions that reproduce our full numeri-
cal results to very good accuracy. These fit functions are
compact and ready to use, which means that, in future
studies, it will not be necessary to implement our full
gradient-expansion formalism and redo the entire numeri-
cal analysis.
Finally, we will also compare the model-independent

estimates in Refs. [49,54] to our new model-independent
estimates and present fit functions for the estimates in
Refs. [49,54]. An important outcome of this exercise will
be that, while the estimates in Refs. [49,54] span several
orders of magnitude, our new estimates are capable of
reducing the uncertainty in the description of hypermag-
netogenesis (without specifying a concrete model and
solving the equations of the gradient-expansion formalism
explicitly) down to roughly less than 1 order of magnitude.
This becomes particularly apparent when comparing the
explicit outcome of a specific inflationary model to three
available model-independent estimates (i.e., the two esti-
mates in Refs. [49,54] as well as our new estimate).
The paper is organized as follows. In the next section, we

will review the gradient-expansion formalism that was first
developed in Ref. [53] and then further refined in Ref. [92].
In particular, we will slightly adapt our notation compared
to our earlier work so as to account for the fact that we are
now dealing with constant values of the three parameters ξ,
H, and Δ. In Sec. III, we will then represent the numerical
output of our formalism after scanning over the three-
dimensional parameter space of our model. We will
specifically construct fit functions for our results as well
as for the estimates in Refs. [49,54] and validate our
approach by comparing it to the explicit results in a specific
model: a simplem2ϕ2=2model for three different values of
the axion–vector coupling constant. The good agreement
between our model-independent estimates and the explicit
numerical results in this model implies that the results

GORBAR, SCHMITZ, SOBOL, and VILCHINSKII PHYS. REV. D 105, 043530 (2022)

043530-2



presented in this paper provide a good description of all
scenarios of axion-driven hypermagnetogenesis that close
to the origin in field space are characterized by a simple
quadratic mass term. Finally, we will summarize our
findings and conclude in Sec. IV. In the Appendix, we
collect a number of numerical fit coefficients that enter the
constructions of our fit functions. Throughout the paper, we
use natural units and set ℏ ¼ c ¼ 1with the reduced Planck
mass equal to MP ¼ ð8πGÞ−1=2 ¼ 2.435 × 1018 GeV. We
assume that the Universe is described by a spatially flat
Friedmann-Lemaître-Robertson-Walker metric in terms of
cosmic time, gμν ¼ diagf1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞg.

II. GRADIENT EXPANSION FORMALISM

Let us consider the Abelian gauge field Aμ (which we
will identify with the SM hypercharge gauge field shortly)
axially coupled to the pseudoscalar axion inflaton field ϕ.
The corresponding action has the form

SA¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν−

1

4
IðϕÞFμνF̃μνþLchðχa;AνÞ

�
;

ð1Þ

where g ¼ det gμν is the determinant of the spacetime
metric, IðϕÞ is the axial-coupling function, Fμν ¼
∂μAν − ∂νAμ is the gauge-field strength tensor, and

F̃μν ¼ 1

2
ffiffiffiffiffiffi−gp εμνλρFλρ ð2Þ

is the corresponding dual tensor; εμνλρ is the absolutely
antisymmetric Levi-Civita symbol with ε0123 ¼ þ1. The last
term in Eq. (1) corresponds to all matter fields χa charged
under the Uð1Þ gauge group and, therefore, coupled to Aμ.
For the sake of generality, we do not specify the

inflationary model and the axial-coupling function IðϕÞ;
we assume that the inflaton dynamics is known and
consider the generation of gauge fields on this background.
(This can be done only in the absence of the backreaction of
generated fields which will be discussed below.) The
equation of motion for the gauge field following from
action (1) reads as

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
Fμν� þ dI

dϕ
F̃μν∂μϕ ¼ jν; ð3Þ

where

jν ¼ −
∂Lchðχa; AμÞ

∂Aν
ð4Þ

is the electric 4-current induced by the Schwinger effect. In
addition, the Bianchi identity for the dual gauge-field
strength tensor must be satisfied:

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
F̃μν� ¼ 0: ð5Þ

To switch to a 3-vector notation, we introduce the
electric E ¼ ðE1; E2; E3Þ and magnetic B ¼ ðB1; B2; B3Þ
fields as follows:

F0i ¼ aEi; Fij ¼ −a2εijkBk;

F̃0i ¼ aBi; F̃ij ¼ a2εijkEk: ð6Þ

Moreover, the electric current 4-vector can be represented as

jμ ¼
�
0;
1

a
J

�
; ð7Þ

where we assumed a vanishing charge density because of
the quasineutrality of the plasma produced due to the
Schwinger effect. Note that all 3-vectors represent physical
quantities measured by a comoving observer. Then,
Maxwell’s equations read

_Eþ 2HE − ½∇ph × B� þ 2HξBþ J ¼ 0; ð8Þ

_Bþ 2HBþ ½∇ph × E� ¼ 0; ð9Þ

∇ph · E ¼ 0; ∇ph · B ¼ 0; ð10Þ

where the dot over a symbol denotes its derivative with

respect to time t, H ≡HðtÞ ¼ _aðtÞ
aðtÞ is the Hubble parameter,

and ∇ph ¼ ∂=∂xph ¼ ð1=aÞ∂=∂x is the spatial gradient
operator in physical coordinates xph ¼ ax. We also intro-
duced the dimensionless parameter

ξ ¼ dI
dϕ

_ϕ

2H
; ð11Þ

which controls the efficiency of gauge-field production due
to the axion–vector coupling.
To close the system of Maxwell’s equations, we will

assume that the induced current of charged particles
produced by the Schwinger effect satisfies Ohm’s law,

J ¼ σE; ð12Þ

where σ is the generalized conductivity, which depends
only on the absolute values of electric and magnetic fields.
In the case of one Dirac fermion of mass m and hyper-
charge Q, the Schwinger conductivity reads

σ ¼ jg0Qj3
6π2

jBj
H

coth

�
πjBj
jEj
�
exp

�
−

πm2

jg0QEj
�
; ð13Þ
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where g0 is the SM Uð1ÞY gauge coupling constant,
jEj ¼

ffiffiffiffiffiffiffiffiffi
hE2i

p
, jBj ¼

ffiffiffiffiffiffiffiffiffi
hB2i

p
, and h…i denotes the vacuum

expectation value.
This expression was derived in the case of constant and

collinear electric and magnetic fields in de Sitter spacetime
(see, e.g., Ref. [55]). We will utilize this approximation in
our analysis, too, assuming that the electric and magnetic
fields change adiabatically slowly. To be more precise, we
employ Eq. (13) in order to estimate the hyperelectric
conductivity of the SM plasma in the presence of a
hyperelectromagnetic background field,

σSM
2H

¼ aSM

ffiffiffiffiffiffiffiffiffi
hB2i
H4

r
coth

�
π

ffiffiffiffiffiffiffiffiffi
hB2i
hE2i

s �
; aSM ¼ 41g03

144π2
; ð14Þ

where the factor of 2H is moved to the left-hand side in
order to obtain a dimensionless quantity, which will
become convenient later on (see below). The expression
in Eq. (14) only accounts for the production of massless
SM fermions during axion inflation. In principle, the SM
Higgs boson, which also interacts with the hypercharge
gauge field, could be produced during axion inflation as
well. However, to ensure unbroken electroweak symmetry
and hence massless SM fermions, we assume that the SM
Higgs field remains stabilized at the origin in field space by
a large mass term throughout inflation. Such a large mass
can, e.g., be induced by a nonminimal coupling to the Ricci
curvature scalar R. In the numerical evaluation of Eq. (14),
specifically in the evaluation of the numerical coefficient
aSM, we also take into account the energy dependence of
the hypercharge gauge coupling constant [93],

1

g02ðμÞ ¼
1

g02ðmZÞ
þ 41

48π2
ln
mZ

μ
: ð15Þ

Here, we use the full SM beta function of g0; threshold
effects because of the large Higgs mass during inflation are
model dependent and numerically negligible. At the energy
scale of the Z-boson mass, mZ ≈ 91.2 GeV, the gauge
coupling equals g0ðmZÞ ≈ 0.35. For a characteristic energy
scale μ relevant for Schwinger pair production, we use

μ ¼
�hE2i þ hB2i

2

�
1=4

: ð16Þ

In any specific model of inflation, the Hubble rate H and
ξ are functions of time. However, if they change adiabati-
cally slowly (which is consistent with the slow-roll regime
during inflation), some order-of-magnitude estimates for
the generated gauge fields can be obtained by considering
the case of H ¼ const and ξ ¼ const. These estimates can
be then used in any other model where the same values ofH
and ξ are realized. The main purpose of the present work is

to derive such model-independent estimates for a wide
range of constant H and ξ.
Handling vector quantities in position space makes the

numerical analysis very demanding. That is why we will
utilize the gradient-expansion formalism developed in
Ref. [92] for the description of hypermagnetogenesis
during axion inflation. It employs the vacuum expectation
values of scalar products of the electric and/or magnetic
field vectors with an arbitrary number of spatial curls acting
on them. In this work, it will be more convenient for us to
slightly adapt our notation and introduce the following set
of dimensionless bilinear electromagnetic functions:

EðnÞ ¼ 1

Hnþ4
hE · ð∇ph×ÞnEi; ð17Þ

GðnÞ ¼ −
1

Hnþ4
hE · ð∇ph×ÞnBi; ð18Þ

BðnÞ ¼ 1

Hnþ4
hB · ð∇ph×ÞnBi: ð19Þ

Now, using Maxwell’s equations (8) and (9), we obtain the
system of equations for these functions,

EðnÞ0 þðnþ4þ4sÞEðnÞ−4ξGðnÞ þ2Gðnþ1Þ ¼ ½EðnÞ0�b; ð20Þ

GðnÞ0 þðnþ4þ2sÞGðnÞ−Eðnþ1Þ þBðnþ1Þ−2ξBðnÞ ¼ ½GðnÞ0�b;
ð21Þ

BðnÞ0 þ ðnþ 4ÞBðnÞ − 2Gðnþ1Þ ¼ ½BðnÞ0�b; ð22Þ

where the prime denotes the derivative with respect to
dimensionless time τ ¼ Ht and s≡ sðτÞ ¼ σðτÞ

2H is the
dimensionless conductivity. Terms on the right-hand sides
of these equations are the boundary terms, which take into
account that the number of physically relevant gauge-field
modes outside the horizon continuously grows in time
during inflation. Indeed, in Ref. [92], it is shown that the
momentum kh of the mode crossing the horizon [defined in
such a way that all modes with k < khðtÞ have already
experienced the tachyonic instability at time t] changes in
time as

kh ¼ aHðjξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ s2 þ s

p
Þ: ð23Þ

Since aðtÞ exponentially grows during inflation, new
modes cross the horizon, undergo the quantum-to-classical
transition and start contributing to the classical gauge field.
The explicit expressions for the boundary terms were

derived in Ref. [92]. For the dimensionless quantities
introduced in Eqs. (17)–(19), they take the form

½EðnÞ0�b ¼
Δ
4π2

½rðξ; sÞ�nþ4
X
λ¼�1

λnEλðξ; sÞ; ð24Þ
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½GðnÞ0�b ¼
Δ
4π2

½rðξ; sÞ�nþ4
X
λ¼�1

λnþ1Gλðξ; sÞ; ð25Þ

½BðnÞ0�b ¼
Δ
4π2

½rðξ; sÞ�nþ4
X
λ¼�1

λnBλðξ; sÞ; ð26Þ

where

Eλðξ; sÞ ¼
eπλξ

r2ðξ; sÞ jðirðξ; sÞ − iλξ − sÞW−iλξ;1
2
þsð−2irðξ; sÞÞ þW1−iλξ;1

2
þsð−2irðξ; sÞÞj2; ð27Þ

Gλðξ; sÞ ¼
eπλξ

rðξ; sÞ fℜe½Wiλξ;1
2
þsð2irðξ; sÞÞW1−iλξ;1

2
þsð−2irðξ; sÞÞ� − sjW−iλξ;1

2
þsð−2irðξ; sÞÞj2g; ð28Þ

Bλðξ; sÞ ¼ eπλξjW−iλξ;1
2
þsð−2irðξ; sÞÞj2: ð29Þ

Here, W−iλξ;1
2
þs is the Whittaker function, and rðξ; sÞ ¼

jξj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ sþ s2

p
is the dimensionless physical momen-

tum of the horizon-crossing mode.
We would also like to highlight the parameter Δ in

Eqs. (24)–(26), which was recently discussed for the first
time in Ref. [92] and which modulates the magnitude of the
boundary terms. It originates from the fact that gauge-field
vacuum fluctuations inside the horizon are damped in the
conducting medium. Indeed, as is shown in Ref. [92], the
mode function deep inside the horizon (i.e., for k ≫ kh) is
represented by the damped Bunch-Davies vacuum

Aλðt; kÞ ¼
ffiffiffiffiffiffiffiffiffi
ΔðtÞ
2k

r
e−ikηðtÞ; ð30Þ

where η ¼ R t dt0=aðt0Þ is the conformal time and

ΔðtÞ ¼ exp

�
−
Z

t

−∞
σðt0Þdt0

�
ð31Þ

is the damping factor which depends on the conductivity at
times t0 ≤ t and thus makes the gauge-field evolution
inherently nonlocal in time. Note that, in Eq. (31), we
integrate over t0 up to the infinite past t0 → −∞. This
implies that nonzero conductivity at some t0 results in a
suppression of all subhorizon gauge-field modes up to
arbitrarily large k values, even modes that are deep inside
the Hubble horizon at time t0 and which only become
tachyonically unstable at times much later than t0. To some
extent, this is an approximation and technical simplifica-
tion, as we expect the range of k values affected by the
electric conductivity on subhorizon scales to be finite.
Gauge-field modes with momenta much larger than the
momenta of the charged fermions in the plasma should,
e.g., not suffer from the damping induced by the non-
vanishing conductivity. In principle, the lower integration

boundary in Eq. (31) should therefore be replaced by a
finite k-dependent cutoff tUVðkÞ, ensuring that Δ only
receives contributions from times t0 ≥ tUVðkÞ when the
gauge-field mode with momentum k has a spatial extent
larger than some UV length scale. However, at present, no
exact expression for tUVðkÞ is known. In the following, we
will therefore stick to the standard approach in the literature
and simply treat all k modes on an equal footing. In
particular, we do not attempt to determine the UV cutoff
scale that is expected to enter Eqs. (30) and (31) at some
point. This task requires further investigation and is left for
future work. For the purposes of this work, it suffices to
note that the conductivity σ is often a monotonically (even
exponentially) increasing function of time that reaches its
largest value toward the end of inflation. In realistic
scenarios, the integral in Eq. (31) is therefore typically
dominated by the upper integration boundary, which
drastically reduces the sensitivity to the lower integration
boundary.
Even without a more sophisticated treatment of the lower

integration boundary in Eq. (31), the dependence of the
boundary terms on Δ complicates our model-independent
analysis for several reasons. For instance, if two models
exhibit the same values of H and ξ, they could still have
different values of Δ because of a different prehistory.
Moreover, even though the parameters H and ξ can be
constant (or changing adiabatically slowly) in a real
situation, the parameter Δ always decreases in time unless
the conductivity vanishes. Finally, in contrast to H and ξ,
a priori, it is difficult to estimate the value of the parameter
Δ without solving the full self-consistent system of
equations for the inflaton, gauge fields, and charged
particles. Nevertheless, we will show in the subsequent
section that the magnitude of the generated field, in the case
when the Schwinger effect is important, depends only
weakly on Δ. Therefore, one does not necessarily need to
know the exact value of Δ; a rough estimate suffices.
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This serves as an other reason why we defer a more detailed
investigation of the lower integration boundary in Eq. (31)
to future work.
The system of equations (20)–(22) for the gradient-

expansion formalism is infinite by construction, since the
equation for the quantity of order n contains quantities of
order (nþ 1). However, there exists a simple approxima-
tion, allowing us to truncate this chain at some finite order.
Indeed, for large enough n, the dominant contributions to
the quantities EðnÞ, BðnÞ, and GðnÞ correspond to the shortest
modes in their spectra, i.e., modes in the vicinity of the
horizon crossing mode kh. This allows us to express the
higher-order quantities in terms of the lower-order ones
[92], e.g.,

Eðnþ1Þ ≈ rðξ; sÞ2Eðn−1Þ ð32Þ

and so on. Applying these relations for some n ¼ nmax, one
can truncate the infinite system of equations (20)–(22).

III. NUMERICAL ANALYSIS

The gradient-expansion formalism outlined in the pre-
vious section now allows us to determine model-indepen-
dent estimates for the efficiency of gauge-field production
during axion inflation. To this end, we need to fix the values
of the parameters H, ξ, and Δ and look for the stationary
solution of the system of equations (20)–(22). We repeat
this analysis for a large set of parameter points in the three-
dimensional parameter space spanned by H, ξ, and Δ and
present our numerical results for the electric and magnetic
energy densities ρE and ρB as well as for jhE · Bij in Fig. 1.
In the following, we will compare our numerical results to
existing estimates of ρE, ρB, and jhE · Bij in the literature
[49,54] (see Secs. III A and III B) and construct semi-
analytical fit functions for these old estimates as well as for
our own new results, i.e., for all functions shown in the first
row of Fig. 1 (see Sec. III C). Rows 2 to 7 in Fig. 1 show the
differences between these fit functions and the correspond-
ing exact numerical results in row 1, which clearly
demonstrates the high accuracy of our fit functions.
Based on these fit functions, it is therefore now possible
to reconstruct and utilize all existing estimates of gauge-
field production during axion inflation, including the
estimates in Refs. [49,54] as well as our new estimates
based on the gradient-expansion formalism, without any
further numerical analysis. Our fit functions provide all the
necessary information in a compact and ready-to-use form
for future applications. Finally, to validate our results, we
will compare all estimates of ρE, ρB, and jhE · Bij to the
exact numerical results in a specific inflationary model,
namely,m2ϕ2=2 inflation, in Sec. III D. This will lead us to
the conclusion that our new model-independent results can
reproduce the exact results in a given model within an order
of magnitude or so as well as that our new estimates
typically improve over the existing estimates.

A. Maximal estimate

The authors of Refs. [49,54] account for the effect of
fermion production during axion inflation in terms of an
effective gauge-field production parameter ξeff. This is
possible in the limit of perfectly parallel or antiparallel
electric and magnetic fields, in which the induced current J
can also be expressed in terms of the magnetic field,

J¼ σE¼ sgnðE ·BÞσjEjjBj B; sgnðE ·BÞ¼−sgnðξÞ; ð33Þ

where the relation between sgnðE · BÞ and sgnðξÞ follows
from our sign convention in the axion–vector coupling in
Eq. (1). Making use of this relation, Ampère’s law in the
axion-inflationary background [see Eq. (8)] reads

_Eþ 2HE − ½∇ph × B� þ 2HξeffB ¼ 0; ð34Þ

with the effective gauge-field production parameter ξeff
being defined as

jξeff j ¼ jξj − σjEj
2jBjH ¼ jξj − aSM coth

�
πjBj
jEj
� jEj
H2

: ð35Þ

The same effective parameter also appears in the equation
that describes the time evolution of the energy density
stored in the hyperelectromagnetic field [92],

_ρem þ 4Hρem ¼ ½_ρem�b − 2ξhE · BiH − σhE2i;

ρem ¼ ρE þ ρB ¼ 1

2
ðhE2i þ hB2iÞ; ð36Þ

which, in the limit of parallel or antiparallel electric and
magnetic fields, turns into

_ρem þ 4Hρem ¼ ½_ρem�b þ 2jξeff jjEjjBjH: ð37Þ

Based on Eqs. (34) and (37), the authors of Refs. [49,54]
now construct two estimates for the electric and magnetic
fields generated during axion inflation. We will first discuss
the estimate based on Eq. (37), which we will refer to as the
“maximal estimate” in the following, for reasons that will
become clear shortly.
Let us consider the idealized situation of a stationary

de Sitter background with constant values of ξ and H.
In such a background, we expect the electric and magnetic
field strengths to reach a stationary attractor solution that is
solely described by the values of ξ and H.1 This solution
will therefore be independent of time, which allows us to

1We expect that, in a stationary de Sitter background with
constant ξ and H, a refined treatment of the lower integration
boundary in Eq. (31) will turn Δ from an independent parameter
into a dependent parameter, Δ ¼ Δðξ; HÞ; see the discussion
below Eq. (31).
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set _ρem ¼ 0 in Eq. (37). Moreover, if we momentarily
interpret ρem as the energy density stored in the entire
hyperelectromagnetic field on super- and subhorizon scales
and not only stored in the gauge-field modes that have
already become tachyonically unstable, we can also drop
the boundary term in Eq. (37),

4Hρem ¼ 2jξeff jjEjjBjH: ð38Þ

This relation represents a consistency condition, based on
the requirement of energy conservation, that applies to any
stationary solution for the electric and magnetic fields.
In the context of our gradient-expansion formalism and
introducing the shorthand notation E ≡ Eð0Þ, B≡ Bð0Þ,
G≡ Gð0Þ, the condition in Eq. (38) obtains the form

EþB− jξeff jjGj¼ 0; jξeff j¼ jξj−aSMcothðπ
ffiffiffiffiffiffiffiffiffi
B=E

p
Þ
ffiffiffi
E

p
;

ð39Þ

which can be solved for jGj≡ jhE · Bij=H4 as a function of
the ratio of the electric and magnetic field strengths, R,

jGjR ¼ 1

a2SMR
3
ð1þR2 − jξjRÞ2tanh2ðπ=RÞ;

R ¼ jEj
jBj ¼

ffiffiffiffi
E
B

r
; ð40Þ

where R takes values in the range

1

2
ðjξj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξj2 − 4

q
Þ ≤ R ≤

1

2
ðjξj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξj2 − 4

q
Þ: ð41Þ

FIG. 1. Model-independent results for the efficiency of hypermagnetogenesis during axion inflation, specifically, for the hyperelectric
energy density ρE (column a), hypermagnetic energy density ρB (column b), and hypercharge Chern-Pontryagin density jhE · Bij
(column c), in dependence on the gauge-field production parameter ξ, Hubble rate H, and damping factor Δ. The Hubble rate is varied
between 108 and 1014 GeV; the dependence on H is shown in the form of bands whose upper (lower) edges correspond to H ¼
108 GeV (H ¼ 1014 GeV). The gray and purple bands in the first row, respectively, correspond to the maximal and equilibrium
estimates derived in Refs. [49,54] (see Secs. III A and III B). All other colorful bands in the first row correspond to our new results based
on the gradient-expansion formalism. For all three types of estimates, we derive fit functions; in rows 2 to 7, we compare these fit
functions to the exact numerical results in row 1.
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Outside this interval, no solution of the consistency con-
dition in Eq. (39) exists. Any attractor solution with
_ρem ¼ 0 satisfies the relation between jGj and R in
Eq. (40), which means in particular that any attractor
solution for jGj is always bounded from above by the
maximal value that jGjR can obtain as a function of R,

jGjmax ¼ max
R

jGjR: ð42Þ

Because of the nontrivial functional dependence of jGjR on
R, it is unfortunately not possible to write down a closed
analytical expression for jGjmax. Instead, we need to
maximize jGjR, for fixed jξj, over the admissible range
of R values numerically. Moreover, once we know the
value Rmax that maximizes jGjR for a given jξj, we can use
it to determine the corresponding values of E and B,

Emax ¼ RmaxjGjmax; Bmax ¼
jGjmax

Rmax
: ð43Þ

We caution that Emax and Bmax do not correspond to the
maximal values of E and B that are consistent with the
condition in Eq. (39); they rather correspond to the pair of
jGj andR values that maximize jGjR. Together, Emax, Bmax,
and jGjmax represent what we will refer to as the maximal
estimate in the following. Our numerical results for the
maximal estimate, based on the maximization described in
Eq. (42), are shown by the gray bands in the first row in
Fig. 1. The dependence on the Hubble rate in these results
enters through the running of the hypercharge gauge
coupling constant inside the factor aSM, which we deter-
mine in a self-consistent manner so as to satisfy the
relations in Eqs. (15) and (16). As can be seen in Fig. 1,
the gray bands extend down to jξj ∼ 4 − 5. At lower values
of jξj, the numerical results for Emax, Bmax, and jGjmax begin
to exceed the corresponding quantities in the free case
without any backreaction or fermion production, which is
physically not motivated. The effect of fermion production
should always suppress the efficiency of gauge-field
production and not enhance it. At low jξj values, we
therefore show the free solutions for E, B, and jGj rather
than the numerical output of Eqs. (42) and (43).
In the following, we will now discuss simple and novel

fit functions that manage to describe our exact numerical
results for Emax, Bmax, and jGjmax to high accuracy. The
starting point of our construction is going to be the value of
jGjR evaluated at R ¼ 1, which corresponds to equal
amounts of energy in the electric and magnetic fields,

jGjR¼1 ¼
1

a2SM
ðjξj − 2Þ2 tanh2ðπÞ: ð44Þ

It then turns out that our numerical data are well described
by the fit functions

Emax ≃ ð1.5922þ 0.4561jξjÞjξj−1jGjR¼1; ð45Þ

Bmax ≃ ð0.2706þ 0.0472jξjÞjξjþ1jGjR¼1; ð46Þ

jGjmax ≃ ð0.6637þ 0.1472jξjÞjξj0jGjR¼1: ð47Þ

In addition to jξj, these three functions also depend on H
through the energy dependence of the hypercharge gauge
coupling constant. To the first approximation, this effect
may be neglected, and g0 may be simply set to a character-
istic value around g0 ∼ 0.4. However, to obtain even more
accurate estimates, we are actually able to determine the
self-consistent value of g0 analytically. To this end, we need
to express the renormalization scale μ in Eq. (16) in terms
of the semianalytical expressions for Emax and Bmax
and factor out the dependence on the gauge coupling
constant g0,

μ ¼ H

21=4
ðEmax þ BmaxÞ1=4 ¼

μ̄max

g03=2
; ð48Þ

where the rescaled quantity μ̄max,

μ̄max ¼
H

21=4
ðĒmax þ B̄maxÞ1=4; ð49Þ

is defined in terms of rescaled versions of Emax and Bmax
that no longer depend on g0,

Ēmax ≃
1

ā2SM
ð1.5922þ 0.4561jξjÞjξj−1ðjξj − 2Þ2 tanh2ðπÞ;

ð50Þ

B̄max ≃
1

ā2SM
ð0.2706þ 0.0472jξjÞjξjþ1ðjξj − 2Þ2 tanh2ðπÞ;

ð51Þ

because they are no longer proportional to aSM but instead
proportional to

āSM ¼ aSM
g03

¼ 41

144π2
: ð52Þ

Making use of these definitions, the hypercharge gauge
coupling constant in Eq. (15) can be written as

1

g02
¼ 1

g02ðmZÞ
þ 41

48π2
ln

�
g03=2

mZ

μ̄max

�
: ð53Þ

The self-consistent solution for g0 at the one-loop level thus
follows from solving this relation for g0,

g0max ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bW0ðzmaxÞ
p ; ð54Þ
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where the subscript “max” again indicates that this expres-
sion for g0 corresponds to the self-consistent solution in the
case of the maximal estimate. W0 denotes the principal
branch of the Lambert W function or product logarithm,
and the argument of the Lambert W function, zmax, and the
numerical coefficient b are given as follows:

zmax¼
1

b
exp

�
1

bg02ðmZÞ
��

mZ

μ̄max

�
4=3

; b¼ 41

64π2
: ð55Þ

Numerically, zmax evaluates to

zmax ≃
3.6232 × 1041

ð6.3212=jξj − 4.5105þ 0.8441jξj − 0.4344jξj2 þ 0.0812jξj3 þ 0.0468jξj4Þ1=3
�
1012 GeV

H

�
4=3

; ð56Þ

which makes the dependence on the value of the Hubble
rate H explicit. If we now use the result in Eq. (54) in order
to evaluate aSM in Eqs. (44), (45), (46), and (47), we obtain
semianalytical fit functions for Emax, Bmax, and jGjmax that
self-consistently account for the running of the gauge
coupling constant. In row 2 of Fig. 1, we compare these
fit functions to the exact numerical result indicated by the
three gray bands in row 1 and find excellent agreement.
Finally, before we move on to the next estimate, which

we will refer to as the “equilibrium estimate,” we mention
that g0max in Eq. (54) is also well approximated by the
following, much simpler expression:

g0max ≃ 0.4162þ 0.0068 log10H12 þ 0.0030 ln

�jξj
10

�
;

H12 ≡ H
1012 GeV

: ð57Þ

Using this expression in Eqs. (44), (45), (46), and (47)
results in nearly equally accurate fit functions.

B. Equilibrium estimate

Next, we turn to the second estimate proposed by the
authors of Refs. [49,54], the equilibrium estimate, which is
based on the modified version of Ampère’s law in Eq. (34).
The maximal estimate constructed in the previous section
represents an upper bound on all attractor solutions in a
stationary de Sitter background with constant ξ and H. The
equilibrium estimate, by contrast, aims at actually con-
structing an explicit attractor solution. The basic idea is
that, once the electric and magnetic fields have reached the
attractor solution, Ampère’s law in Eq. (34) will have the
same solution as in the free case without any backreaction
or fermion production, the only difference being that the
parameter ξ in this solution needs to be replaced by ξeff. If
this is the case, the equations of motion for the gauge-field
modes in Fourier space will also be solved by the usual
Whittaker functions, with ξ → ξeff , such that

EðnÞ ¼
X
λ¼�

λn

4π2

Z
2jξeff j

0

dx xnþ1eπλξeff

× jiðx − λξeffÞW−iλξeff ;12
ð−2ixÞ þW1−iλξeff ;12

ð−2ixÞj2;
ð58Þ

GðnÞ ¼
X
λ¼�

λnþ1

4π2

Z
2jξeff j

0

dx xnþ2eπλξeff

×ℜe½Wiλξeff ;
1
2
ð2ixÞW1−iλξeff ;12

ð−2ixÞ�; ð59Þ

BðnÞ ¼
X
λ¼�

λn

4π2

Z
2jξeff j

0

dxxnþ3eπλξeff jW−iλξeff ;12
ð−2ixÞj2: ð60Þ

Thus, an underlying assumption of this approach is that,
after a sufficiently long time, the system reaches an
attractor solution that resembles the free solution (modulo
the replacement ξ → ξeff ) not only at the level of the
integrated quantities E, B, and jGj but also at the level of the
Fourier mode spectrum. For large values of the effective
gauge-field production parameter, jξeff j ≫ 3, the quantities
in Eqs. (58), (60), and (59), for n ¼ 0, can in particular be
written as

Eeq ¼CE
e2πjξeff j

jξeff j3
; Beq¼CB

e2πjξeff j

jξeff j5
; jGjeq ¼CG

e2πjξeff j

jξeff j4
;

ð61Þ

where the numerical coefficients are roughly given by
CE ≃ 2.6 × 10−4, CB ≃ 3.0 × 10−4, and CG ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
CECB

p
≃

2.8 × 10−4. In the following, we will explicitly work with
the relation CG ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
CECB

p
, which is valid in the limit of

parallel or antiparallel electric and magnetic fields, i.e., the
limit that has been used in the derivation of the induced
current.
Equation (61) implicitly defines the equilibrium estimate

for E, B, and jGj. The evaluation of this estimate is,
however, complicated by the fact that the effective param-
eter ξeff in Eq. (61) also depends on the electric and
magnetic field strengths. Again, we are thus not able to
write down a closed analytical solution but have to resort to
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a numerical approach. To this end, we first note that
Eq. (61) results in a simple relation between R and jξeff j,

Req ¼
ffiffiffiffiffiffi
CE

CB

s
jξeff j: ð62Þ

Using the definition of the effective gauge-field production
parameter jξeff j in Eq. (35), we are therefore able to write

Req ¼
ffiffiffiffiffiffi
CE

CB

s �
jξj − aSM coth

�
π

Req

�
E1=2
eq

�
; ð63Þ

which can be solved for Eeq as a function of jξeff j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CB=CE

p
Req. Together with the relations [see Eq. (61)]

Beq ¼
CB

CE

Eeq

jξeff j2
; jGjeq ¼

ffiffiffiffiffiffi
CB

CE

s
Eeq

jξeff j
; ð64Þ

we thus find

Eeq ¼
1

a2SM
ðjξj − jξeff jÞ2 tanh2

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!
; ð65Þ

Beq ¼
CB=CE

a2SMjξeff j2
ðjξj− jξeff jÞ2 tanh2

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!
; ð66Þ

jGjeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CB=CE

p
a2SMjξeff j

ðjξj − jξeff jÞ2 tanh2
 ffiffiffiffiffiffi

CB

CE

s
π

jξeff j

!
: ð67Þ

By comparing these expressions with the expressions in
Eq. (61), we obtain a single consistency condition for jξeff j,

CE
e2πjξeff j

jξeff j3
¼ 1

a2SM
ðjξj − jξeff jÞ2 tanh2

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!
: ð68Þ

Therefore, to evaluate the equilibrium estimate, we need to
numerically solve this condition for jξeff j, for fixed values
of ξ andH, while making sure that the relations in Eqs. (15)
and (16) are self-consistently satisfied. The numerical result
for jξeff j that we obtain in this way can then be used in
Eq. (61). This procedure defines our numerical results for
Eeq, Beq, and jGjeq, which are shown in the form of purple
bands in the first row of Fig. 1.
Similarly as in the case of the maximal estimate, we are

again able to describe our numerical results in terms of fit
functions. This time, the entire relevant information can be
encoded in the fit function for jξeff j,

jξeff jeq ≃ aeq ln ðjξj þ beqÞ þ ceq; ð69Þ

with coefficients

aeq ≃ 0.3679 − 0.0004 log10H12; ð70Þ

beq ≃ −3.3668þ 0.0099 log10H12; ð71Þ

ceq ≃ 3.7012 − 0.0152 log10H12; ð72Þ

where H12 denotes again the Hubble rate in units of
1012 GeV [see Eq. (57)]. In the third row of Fig. 1, we
compare the approximate results for Eeq, Beq, and jGjeq
based on this fit function to the exact numerical results in
the first row. Again, we find excellent agreement, in the
regime where the expressions in Eq. (61) are valid, i.e.,
for jξeff j ≫ 3.
By construction, the fit function in Eq. (69) already takes

into account the running of the gauge coupling constant.
It is therefore not necessary to work out an independent fit
function for g0. This differs from the case of the maximal
estimate, where we were able to solve the maximization
condition in Eq. (42) without specifying the coefficient
aSM. For completeness, we, however, note that the same
strategy that eventually led to g0max in Eq. (54) can be
applied in order to determine the self-consistent solution for
the gauge coupling constant in the case of the equilibrium
estimate,

g0eq ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bW0ðzeqÞ
p ;

zeq ¼
1

b
exp

�
1

bg02ðmZÞ
��

mZ

μ̄eq

�
4=3

; ð73Þ

where the rescaled renormalization scale μ̄eq is now
given by

μ̄eq ¼
H

21=4
ðĒeq þ B̄eqÞ1=4; ð74Þ

Ēeq ¼
1

ā2SM
ðjξj − jξeff jÞ2 tanh2

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!
; ð75Þ

B̄eq ¼
CB=CE

ā2SMjξeff j2
ðjξj − jξeff jÞ2 tanh2

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!
: ð76Þ

Equation (73), together with jξeff jeq in Eq. (69), results in
excellent agreement (at the level of 10−3%) with our
numerical results for g0eq. Alternatively, we can simply
solve the consistency condition in Eq. (68) for g0,
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g0eq ¼
�

1

CE

jξeff j3
e2πjξeff j

�
1=6

×

"
144π2

41
ðjξj− jξeff jÞ tanh

 ffiffiffiffiffiffi
CB

CE

s
π

jξeff j

!#
1=3

: ð77Þ

This is an exact expression for g0eq, which, however, is more
sensitive to deviations of the fit function in Eq. (69) from
the exact numerical result. The combination of Eqs. (69)
and (77) still results in a good approximation of the exact
numerical result for g0eq, with the numerical deviations
mostly remaining below the percent level. Finally, we are
also able to describe the exact numerical result for g0eq with
the simple fit function [see also Eq. (57)]

g0eq ≃ 0.4131þ 0.0067 log10H12 þ 0.0025 ln
�jξj
10

�
; ð78Þ

which reproduces the exact result up to deviations at the
level of around 0.1%.

C. Semianalytical fit functions

In the previous two sections, we constructed novel fit
functions for the two estimates of the efficiency of gauge-
field production that had originally been proposed in
Refs. [49,54]. Now, we turn to our own numerical results
based on the gradient-expansion formalism, i.e., the color-
ful bands for Δ ¼ 10−6, 10−4, 10−2, and 1 in the first row of
Fig. 1. To fit our numerical results, we make an ansatz for
X ¼ E, B, and jGj of the form

Xðξ; H;ΔÞ ¼ SXðξ; H;ΔÞXΔ¼1ðξ; HÞ; ð79Þ

where XΔ¼1 is supposed to describe our data for Δ ¼ 1 and
the function SX accounts for the suppression of the quantity
X if the parameter Δ is smaller than unity. In fact, it turns
out convenient to write SX as a power of Δ,

SXðξ; H;ΔÞ ¼ Δ1=PX ; PX ¼ PXðξ; H;ΔÞ: ð80Þ

We furthermore approximate XΔ¼1 by two different expres-
sions at small and large values of jξj,

XΔ¼1ðξ; HÞ ¼
�
X<
Δ¼1ðξ; HÞ; jξj ≲ jξjX

X>
Δ¼1ðξ; HÞ; jξj ≳ jξjX

; ð81Þ

where the threshold value jξjX at which we switch from one
expression to the other is chosen as

jξjE ≃ 4.6; jξjB ≃ 5.0; jξjjGj ≃ 4.8; ð82Þ

for E, B, and jGj, respectively. At small jξj, we relate our
results to the free solution without any backreaction or
fermion production, while at large jξj, we express our

results in relation to the maximal estimate defined in
Sec. III A,

X<
Δ¼1ðξ; HÞ ¼ TXðξ; HÞXfreeðξ; HÞ;

X>
Δ¼1ðξ; HÞ ¼ UXðξ; HÞXmaxðξ; HÞ: ð83Þ

Here, Xfree (X ¼ E;B; jGj) is given by the three integral
expressions in Eqs. (58), (60), and (59) for n ¼ 0 and
after undoing the replacement jξj → jξeff j; Xmax
(X ¼ E;B; jGj) corresponds to our three fit functions for
the maximal estimate in Eqs. (45), (46), and (47) in
combination with our result for g0max in Eq. (54).
The nontrivial information contained in our numerical

results is thus captured by the three functions PX, TX, and
UX, for each of the three quantities E, B, and jGj, in
Eqs. (80) and (83). For each of these functions, we make a
particular (purely phenomenological) ansatz that turns out
to describe our numerical data to very good accuracy,

PX ¼ 1þ exp ðaSX þ bSX jξj þ cSX jξj2Þ
jξjdSX ; ð84Þ

TX ¼
�
1þ exp ðaTX

þ bTX
jξjÞ

1þ jξjcTX
�−1

; ð85Þ

UX ¼ aUX

�
1 −

exp ðbUX
þ cUX

jξjÞ
jξjdUX

�
: ð86Þ

For each X, we hence need to determine 11 fit coefficients:
aSX , bSX , cSX , dSX , aTX

, bTX
, cTX

, aUX
, bUX

, cUX
, and dUX

.
Our results for these, in total, 33 coefficients, which depend
on the logarithm of H as well as partially on the logarithm
of Δ, are listed in the Appendix. In rows 4 to 7 of Fig. 1, we
compare the resulting fit functions for E, B, and jGj with the
exact numerical results shown in row 1. As before, we find
excellent agreement. On a logarithmic scale, our fit
functions begin to deviate from the exact numerical results
typically only in the third significant digit. In summary, we
therefore conclude that the semianalytical fit functions
constructed in Secs. III A and III B as well as in the present
section are capable of reproducing all relevant numerical
results with very good accuracy. In future work, it will no
longer be necessary to repeat the numerical analysis that
originally led to these fit functions.

D. Validation in a specific model

In this section, we test the accuracy of our model-
independent approach by comparing it to the exact
results for a specific inflationary model. For this purpose,
we consider the simple model with a quadratic inflaton
potential,

VðϕÞ ¼ m2ϕ2

2
: ð87Þ
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This quadratic dependence is universal for a wide class of
inflaton potentials close to their minima; therefore, validat-
ing our formalism in this model will allow us to make more
general conclusions. Indeed, since the most efficient gauge-
field production occurs close to the end of inflation, the
behavior of the inflaton potential far from its minimum is
not of great importance for hypermagnetogenesis. In our
numerical analysis, we will set m ¼ 6 × 10−6MP, for
concreteness, which is the same value that we used in
Ref. [92]. However, because of the one-to-one relation
betweenm and the Hubble rate [see Eq. (91)], we stress that
other values of the inflaton mass will only lead to
logarithmic corrections to our results. We therefore expect
that the following analysis applies, in fact, to a large range
of m values.
We take the axial-coupling function in a linear form,

IðϕÞ ¼ β
ϕ

MP
; ð88Þ

with a dimensionless coupling parameter β. To obtain the
exact numerical results for the generated gauge fields in this
model for a given value of β, we apply the gradient-
expansion formalism developed by us in Ref. [92]. It is
worth noting that the gradient-expansion formalism is itself
an approximate method; however, it was shown in Ref. [92]
that its error compared to the exact mode-by-mode solution
can be made as small as 1%–2% during the whole stage of
inflation. As we will see, such an accuracy is much better
than that of the model-independent approach; therefore, we
can use the gradient-expansion result as a reference
solution.
In practice, we proceed as follows. For a given value of β,

we first apply the gradient-expansion formalism of
Ref. [92] and obtain the hyperelectric and hypermagnetic
energy densities, ρE and ρB, as well as the Chern-
Pontryagin density jhE · Bij as functions of the number
of e-folds Ne until the end of inflation. In addition, we also
compute the corresponding values of the gauge-field
production parameter ξ, the Hubble rate H, and the
damping factor Δ. Knowing the latter three parameters
at the same moment of time then allows us to apply our
model-independent approach and find the predictions for
the generated gauge fields at this moment. Comparing these
predictions with the reference solutions, we are able to
draw conclusions concerning the accuracy of the model-
independent approach.
One may argue that such a usage of the model-inde-

pendent approach has no advantage compared to the full
gradient-expansion formalism because we have to launch
the latter method in any case in order to obtain the set of
parameters ðξ; H;ΔÞ for the former method. However, this
is done only for the purpose of comparing the two methods.
Normally, to arrive at model-independent predictions, it
suffices to determine the parameters ðξ; H;ΔÞ from some

other, much simpler consideration. For instance, the values
of ξ and H can be estimated by considering the inflaton
dynamics neglecting the backreaction of the generated
gauge fields (it is shown in Ref. [92] that this is a
reasonable approximation for a wide range of parameters
in the presence of the Schwinger effect). However, the
parameter Δ cannot be determined by a simple method.
Therefore, it is interesting to check whether one can simply
use the fixed value Δ ¼ 1 in the model-independent
approach. This value is well motivated by the following
arguments. For small ξ, when the dependence of the
generated gauge fields on Δ is strong (see Fig. 1), the
gauge fields are rather weak; therefore, the Schwinger
conductivity is small compared to the Hubble parameter,
and Δ is indeed close to unity (unless the system had a
nontrivial prehistory including a period with very high
conductivity). In the opposite case of large ξ, the parameter
Δ can be much less than unity; however, the generated
fields exhibit only a very weak dependence on Δ, and their
values do not differ much from those with Δ ¼ 1; see
Fig. 1. Therefore, to check the validity of this approxima-
tion, we will in addition also apply the model-independent
approach to the same values of ðξ; HÞ as before in
combination with a fixed value of Δ ¼ 1.
Finally, for given ξ andH, we also compute the maximal

and equilibrium estimates discussed in the previous sec-
tions. Thus, for a fixed value of β, we obtain exact
numerical results for the generated gauge fields and four
different approximate results. We compare them in Figs. 2,
3, and 4 for β ¼ 10, 15, and 20, respectively. The upper
rows of the respective figures show the magnitude of the
hyperelectric energy density ρE [column a], hypermagnetic
energy density ρB [column b], and hypercharge Chern-
Pontryagin density jhE · Bij [column c] as functions of the
parameter ξ. Here, note that for a fixed β there is a one-to-
one correspondence between the number of e-folds before
the end of inflation and the value of the parameter ξ; we
show the corresponding values of Ne on the top horizontal
axes. The black solid curves show the results of the full
gradient-expansion formalism (the reference solution),
while the curves of different colors and dashing types
show the approximate solutions: the model-independent
predictions for given values of ξ, H, and Δ (red dashed
lines); the model-independent results for given ξ, H, and
fixed Δ ¼ 1 (blue dashed-dotted lines); the maximal
estimates for given ξ and H (green dotted lines); and the
equilibrium estimates for given ξ and H (purple dashed-
dotted lines with double dot). The lower rows of the
respective figures represent the deviation between the
approximate solutions and the reference one on a loga-
rithmic scale.
Let us now analyze and comment on the obtained

numerical results. First of all, we mention that the
model-independent approach presented in this paper allows
us to estimate the magnitude of the generated gauge field
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within at most 1 order of magnitude in comparison to the
exact numerical results. The maximal deviation occurs very
close to the end of inflation (during the last one to two
e-folds), where the change in the parameters ξ, H, and Δ
cannot be considered to be adiabatically slow (see Fig. 5
and its discussion below). This deviation can be easily
understood since the model-independent approach assumes
that the above-mentioned parameters are constant. Second,
the model-independent approach with a fixed value of
Δ ¼ 1 typically results in a slightly worse agreement
(although it is still comparable with the model-independent
approach with the exact value of Δ). However, for larger
values of β, at the very end of inflation, its predictions are
accidentally even in better accordance with the exact result
(compare the red and blue curves in Figs. 3 and 4). Third,
the model-independent approach typically gives more
accurate results than the equilibrium or maximal estimates.
Only for the hyperelectric energy density, it sometimes
happens that the latter estimates have a comparable
accuracy with the model-independent approach.
Finally, let us discuss the reasons for the deviation of

the approximate methods considered above from the

exact numerical solution. As we already pointed out, all
approximate methods rely on the fact that their input
parameters ξ, H, and Δ are constant. Such an approxima-
tion would be reasonable if these parameters were changing
adiabatically slowly, i.e., their change during the Hubble
time was much smaller than the absolute value of the
parameter. This condition can be characterized by the
adiabaticity parameter ϵP defined for any P ¼ fξ; H;Δg
in the following way:

ϵP ¼ 1

H

_P
P
: ð89Þ

In particular, the parameter ϵH is the well-known slow-roll
parameter that controls when inflation terminates. Some
preliminary estimates for the parameters ϵH and ϵξ can be
obtained from the slow-roll analysis. For the inflationary
model with the scalar potential (87) in the absence of any
backreaction from the generated gauge fields, it is possible
to analytically find the dependence of the inflaton field on
the number of e-folds before the end of inflation,

FIG. 2. Model-independent (MI) estimates of the generated gauge fields during axion inflation in a specific inflationary model with
potential (87) and the axial-coupling function (88) for the coupling parameter β ¼ 10, compared to the numerical results in the same
model obtained by means of a full-fledged numerical analysis in the gradient-expansion formalism. The magnitude of the generated
hyperelectric energy density ρE [column a], hypermagnetic energy density ρB [column b], and hypercharge Chern-Pontryagin density
jhE · Bij [column c] are shown in row 1 as functions of the gauge-field production parameter ξ (lower labels on the horizontal axis) and
the number of e-folds until the end of inflation (upper labels on the horizontal axis). The black solid lines show the numerical results
obtained from the full gradient-expansion formalism of Ref. [92] for the specific model under consideration. The values of the
parameters ξ, H, and Δ obtained from this numerical analysis are then used to compute the model-independent predictions for the
generated fields: the red dashed lines show the model-independent gradient-expansion predictions for given ξ, H, and Δ; the blue
dashed-dotted lines show the model-independent gradient-expansion results for the given values of ξ andH, and a fixed value of Δ ¼ 1;
the green dotted lines give the maximal estimates; and the purple dashed-dotted lines with double dot show the equilibrium estimates for
given ξ andH. Row 2 shows the accuracy of the model-independent results compared to the exact numerical solution; the types of curves
correspond to those shown in row 1.
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ϕðNeÞ ¼ MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2NeÞ

p
; ð90Þ

from which one immediately obtains the slow-roll
expressions for ϵH, ϵξ, given the coupling function
IðϕÞ ¼ βϕ=MP,

H ≃
mϕffiffiffi
6

p
MP

¼ mffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ne

p
; ð91Þ

jξj ≃ βMP

2

����V 0

V

���� ¼ βMP

ϕ
¼ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ 2NeÞ
p ; ð92Þ

jϵHj ≃
M2

P

2

�
V 0

V

�
2

¼ 2M2
P

ϕ2
¼ 1

1þ 2Ne
; ð93Þ

jϵξj ≃M2
P

����V 00

V
−
V 02

V2

���� ¼ 2M2
P

ϕ2
¼ 1

1þ 2Ne
: ð94Þ

FIG. 4. Same quantities as shown in Fig. 2 for the case of the axial-coupling function (88) with β ¼ 20.

FIG. 3. Same quantities as shown in Fig. 2 for the case of the axial-coupling function (88) with β ¼ 15.
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Concerning the parameter ϵΔ, it follows from Eq. (31)
that

ϵΔ ¼ σ

H
¼ 2s: ð95Þ

Although we cannot derive any slow-roll estimates for this
parameter, it is clear that it increases when the generated
gauge field becomes stronger. Figure 5 shows the param-
eters ξ, H, and Δ during the last 15 e-folds of inflation
(row 1) and the corresponding parameters ϵξ, ϵH, and ϵΔ
(row 2).
In panel a1 of Fig. 5, we show the parameter ξ for β ¼ 10

(red line), β ¼ 15 (green line), and β ¼ 20 (blue line). The
solid lines correspond to the exact numerical result, while
the dashed lines of the same colors give the slow-roll
estimates according to Eq. (92). Since ξ ∝ β, the parameter
ϵξ does not depend on β. The same also holds forH and ϵH,
if there is no backreaction from the generated gauge fields
on the inflaton dynamics (this is indeed the case in our
model). Therefore, in panels a2, b1, and b2, we show exact
results for ϵξ,H, and ϵH, respectively, by the blue solid lines
and the corresponding slow-roll estimates by the red dashed
lines. It is worth noting that in the slow-roll approximation
ϵξ ¼ ϵH. As expected, ϵH and ϵξ tend to unity when
inflation ends. Panel c1 of Fig. 5 shows the dependence
of the parameter Δ on the number of e-folds for β ¼ 10
(red dotted line), β ¼ 15 (green dashed line), and β ¼ 20
(blue solid line). Far from the end of inflation, this
parameter is very close to unity because the gauge fields
are weak and, consequently, the Schwinger conductivity is
small (see panel c2, where the corresponding values of
ϵΔ ¼ σ=H are shown). However, when inflation ends, it
becomes exponentially small. The corresponding

adiabaticity parameter exceeds unity (this happens earlier
for larger β), and the adiabatic approximation fails. The
behavior illustrated in Fig. 5 thus explains why the
approximate model-independent results begin to differ
from the exact solution close to the end of inflation.

IV. CONCLUSION

The description of gauge-field production during axion
inflation is relevant for a variety of phenomena, ranging
from primordial magnetic fields over baryogenesis to
primordial gravitational waves and black holes. In the
presence of the Schwinger effect, this process becomes
highly nonlinear, and typical approaches dealing with
separate gauge-field modes in Fourier space become inap-
plicable. To overcome this difficulty, we proposed in
Ref. [92] a novel gradient-expansion formalism that oper-
ates with a set of bilinear gauge-field quantities in coor-
dinate space and that allows us to build a complete and
self-consistent system of equations for studying hyper-
magnetogenesis during axion inflation in the presence of
nonlinear effects, such as the backreaction of the generated
fields on the inflaton field and the Schwinger effect.
Although this system of equations can be explicitly solved
in a given inflationary model, such an analysis is quite
complicated and requires some computational efforts.
However, for many practical purposes, it would be desirable
and convenient to have some model-independent predic-
tions allowing one to estimate the magnitude of the
generated gauge fields without carrying out a complicated
numerical analysis. In the free case involving no nonlinear
effects at all, such model-independent estimates are well
known in the literature: the electric energy density, magnetic
energy density, and Chern-Pontryagin density, respectively,

FIG. 5. Row 1: gauge-field production parameter ξ (column a), Hubble parameterH (column b), and damping parameterΔ (column c)
as functions of the number of e-folds to the end of inflation Ne in the inflationary model with the quadratic potential (87) with
m ¼ 6 × 10−6MP and the axial-coupling function (88) for three values of the coupling parameter β ¼ 10, 15, and 20. Row 2: adiabaticity
parameters ϵP ¼ ð1=HÞð _P=PÞ for the corresponding quantities. In panels a1, a2, b1, and b2, the solid lines show exact numerical results
obtained in the full gradient-expansion formalism, while the dashed lines represent the approximate slow-roll expressions (91)–(94). In
panels c1 and c2, only exact numerical results are shown; the three types of curves correspond to the three values of β.
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scale likeH4e2πξ=ξ3, H4e2πξ=ξ5, andH4e2πξ=ξ4 for large ξ,
if all nonlinear effects can be neglected. The aim of the
present work was to generalize these model-independent
estimates to the full SM case in the presence of Schwinger
pair production of all SM fermions.
The fact that gauge-field production during axion inflation

is controlled by ξ andH has been known for a long time. We
recall once more that the parameter ξ characterizes the
velocity of the inflaton field and H denotes the Hubble
expansion rate. Both parameters can be easily determined
from the standard slow-roll analysis in a concrete inflationary
model. In the presence of Schwinger pair production, there
appears one additional parameter Δ, which describes the
damping of the vacuum gauge-field fluctuations due to the
finite conductivity of the Universe on subhorizon scales [92].
This parameter depends on the prehistory of the system [see
Eq. (31)] and thus makes its evolution nonlocal in time,
which complicates themodel-independent analysis of gauge-
field production to some degree.
The main assumption behind our analysis was that

gauge-field production at some moment of time during
axion inflation is determined by the momentary values of
the parameters ξ,H, andΔ. This assumption is based on the
fact that the exponentially fast cosmic expansion quickly
dilutes the gauge fields generated at earlier times and thus
the dominating contribution to the magnitude of the gauge
fields at some moment of time originates from the modes
that crossed the horizon just shortly before. A convenient
criterion for the validity of this assumption is the adiaba-
ticity of evolution of all three parameters: their change
during the Hubble time must be much less than the absolute
value of the parameter itself. For the parameters ξ and H,
this adiabatically slow evolution indeed holds during slow-
roll inflation. As for the parameter Δ, it changes slowly
only in the weak-field regime when the corresponding
Schwinger conductivity is much less than the Hubble
parameter, σ ≪ H; see Fig. 5 for an explicit example.
To derive our new model-independent results, we

employed the gradient-expansion formalism presented in
Ref. [92], for which we used constant values of ξ,H, and Δ
as input parameters. The main difference compared
to our earlier model-dependent analysis in Ref. [92] is
that, in the full system of equations, these parameters are
computed self-consistently by considering the evolution of
the inflaton field and scale factor together with the gauge
fields. However, as we have shown in this paper, the
approximation of constant ξ, H, and Δ indeed works well
when their respective time variation in a concrete model
remains adiabatically slow. In our numerical analysis, we
fixed the parameters ξ, H, and Δ and looked for the
stationary solution of our system of equations, which
provided us with the prediction for the generated gauge
field. Then, we scanned over wide ranges of parameter
values that are sufficient for most physical applications,
namely, 1 < ξ < 15, 108 GeV < H < 1014 GeV, and

10−6 < Δ < 1. Our numerical results for the hyperelectric
and hypermagnetic energy densities, ρE and ρB, as well as
the Chern-Pontryagin density jhE · Bij are summarized in
Fig. 1, which is the main result of our study. There, we also
compare our predictions to estimates that had previously
been obtained in the literature, in particular, the maximal
and equilibrium estimates derived in Refs. [49,54]. They
were derived as upper and lower constraints on jhE · Bij
without taking into account the damping of vacuum
fluctuations by the parameter Δ, i.e., for Δ ¼ 1. Our
predictions for jhE · Bij in the case Δ ¼ 1 lie between
the two above-mentioned estimates, thus being in good
accordance with them.
For small values of Δ, the results change dramatically

only for small values of ξ, when the gauge fields are weak.
Indeed, in such a case, each new mode crossing the horizon
makes an important contribution to the total energy density.
Damping of these newmodes thus significantly changes the
resulting gauge field. On the contrary, for the case of strong
gauge fields, the contributions of new modes crossing the
horizon are small compared to those that are already
outside the horizon and are enhanced due to the axion
coupling. Therefore, damping of these new modes by the Δ
parameter makes a small impact on the generated field.
These features are clearly seen from Fig. 1.
By construction, our new model-independent estimates

do not account for possible backreaction effects, as they are
based on the assumption of adiabatically slowly varying
values of ξ and H. This, however, does not limit the range
of applicability of our results as severely as one may
naively think. In Ref. [92], we showed that Schwinger pair
production often suppresses backreaction effects in scenar-
ios in which it would otherwise be relevant. In the presence
of the Schwinger effect, backreaction therefore only occurs
in extreme regions of parameter space. As long as it is
negligible, our results are applicable and can be considered
as the straightforward generalization of the corresponding
expressions in the free case (i.e., the expressions propor-
tional to H4e2πξ=ξ3, H4e2πξ=ξ5, and H4e2πξ=ξ4). To make
our results more accessible and easier to use, we provide
semianalytical fit functions that describe our entire numeri-
cal data with very high accuracy across the full range of
parameter values that we considered in this paper.
To validate our model-independent results, we consid-

ered a concrete inflationary model with potential VðϕÞ ¼
m2ϕ2=2. Although such a potential is already discarded by
cosmic microwave background observations, it is still
worth considering because many other inflaton potentials
can be approximated bym2ϕ2=2 close to their minima, and
this region appears to be the most important for the
generation of gauge fields, which occurs during the last
few e-folds of inflation (this is because the generation is
determined by the parameter ξ ∝ _ϕ and the inflaton velocity
_ϕ typically is the largest close to the end of inflation). We
implemented the inflationary model with potential VðϕÞ ¼
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m2ϕ2=2 in the full gradient-expansion formalism. Then, we
used the exact values of the parameters ξ, H, and Δ at a
sequence of moments of time close to the end of inflation
and launched the model-independent approach for these
values of parameters (again treating them as constants). By
comparing these approximate results with the results of the
self-consistent gradient-expansion formalism, we conclude
that the model-independent results indeed can be used to
estimate the magnitude of the produced gauge fields with
an error typically less than 1 order of magnitude. This is a
significant improvement over previous estimates, which
spanned several orders of magnitude. The main accom-
plishment of the present paper is therefore a significant
reduction in the theoretical error in the description of
hypermagnetogenesis during axion inflation. The largest
error is reached close to the end of inflation, where the
adiabaticity conditions for ξ, H, and Δ break down, while
far from the end of inflation, the accuracy of the model-
independent result is much better. Moreover, we show that
one can even use the fixed value Δ ¼ 1 during the whole
stage of inflation and the accuracy of our model-indepen-
dent predictions remains of the same order, which facili-
tates the usage of our results.
We stress again that our model-independent results are

particularly well suited to estimate the efficiency of gauge-
field production during inflation. Toward the end of
inflation, where the slow-roll approximation breaks down,
only estimates within 1 order of magnitude are possible
(which, however, still improves on earlier estimates). In
future work, we will therefore turn to a dedicated and more
precise description of the initial conditions for reheating
after the end of inflation. This analysis will then allow
one to connect the dynamics of hypermagnetogenesis
during axion inflation to the subsequent evolution during
reheating and the radiation-dominated stage after axion
inflation.
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APPENDIX: NUMERICAL FIT COEFFICIENTS

We list our results for the numerical fit coefficients
appearing in Eqs. (84), (85), and (86). For X ¼ E,

aSE ≃−13.6184þ0.1408 log10H12−0.0842 log10Δ; ðA1Þ

bSE ≃−4.9636þ0.0299 log10H12−0.6690 log10Δ; ðA2Þ

cSE ≃ 0.1750 − 0.0006 log10H12 þ 0.0263 log10Δ; ðA3Þ

dSE ≃−21.8036þ0.1577 log10H12−1.8936 log10Δ; ðA4Þ

aTE
≃ −8.6139þ 0.0523 log10H12; ðA5Þ

bTE
≃ 4.7885þ 0.0402 log10H12; ðA6Þ

cTE
≃ 6.6715þ 0.1143 log10H12; ðA7Þ

aUE
≃ 1.6893þ 0.0004 log10H12; ðA8Þ

bUE
≃ −0.0412þ 0.0633 log10H12; ðA9Þ

cUE
≃ −0.8612þ 0.0096 log10H12; ðA10Þ

dUE
≃ −2.5081þ 0.0751 log10H12: ðA11Þ

For X ¼ B,

aSB ≃−11.7274þ0.1166 log10H12þ0.6398 log10Δ;

ðA12Þ

bSB ≃−3.1377þ0.0162 log10H12−0.1007 log10Δ; ðA13Þ

cSB ≃0.0829−0.0003 log10H12þ0.0044 log10Δ; ðA14Þ

dSB ≃ −15.8943þ 0.1065 log10H12 þ 0.0206 log10Δ;

ðA15Þ

aTB
≃ −9.4153þ 0.1065 log10H12; ðA16Þ

bTB
≃ 3.8583þ 0.0576 log10H12; ðA17Þ

cTB
≃ 3.9415þ 0.2121 log10H12; ðA18Þ

aUB
≃ 0.1217þ 0.0014 log10H12; ðA19Þ

bUB
≃ −2.7356 − 0.0477 log10H12; ðA20Þ

cUB
≃ −1.2804 − 0.0200 log10H12; ðA21Þ

dUB
≃ −5.5354 − 0.0867 log10H12: ðA22Þ
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For X ¼ jGj,

aSjGj ≃ −12.2423þ 0.1270 log10H12 þ 0.4276 log10Δ;

ðA23Þ

bSjGj≃−3.0879þ0.0230 log10H12−0.1879 log10Δ; ðA24Þ

cSjGj ≃0.0798−0.0005 log10H12þ0.0066 log10Δ; ðA25Þ

dSjGj ≃ −16.3383þ 0.1292 log10H12 − 0.3635 log10Δ;

ðA26Þ

aT jGj ≃ −8.0575þ 0.0274 log10 H12; ðA27Þ

bT jGj ≃ 4.8661þ 0.0167 log10H12; ðA28Þ

cT jGj ≃ 7.5636þ 0.0318 log10H12; ðA29Þ

aUjGj ≃ 0.4511þ 0.0027 log10H12; ðA30Þ

bUjGj ≃ −1.3945þ 0.0150 log10H12; ðA31Þ

cUjGj ≃ −1.0690 − 0.0045 log10H12; ðA32Þ

dUjGj ≃ −4.0335þ 0.0004 log10H12: ðA33Þ
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