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Cosmological backreaction corresponds to the effect of inhomogeneities of structure on the global
expansion of the Universe. The main question surrounding this phenomenon is whether or not it is important
enough to lead to measurable effects on the scale factor evolution, eventually explaining its acceleration or
the Hubble tension. One of the most important results on this subject is the Buchert-Ehlers theorem [T.
Buchert and J. Ehlers, Astron. Astrophys. 320, 1 (1997)] stating that backreaction is exactly zero when
calculated usingNewton’s theory of gravitation,whichmay not be the case in general relativity. It is generally
said that this result implies that backreaction is a purely relativistic effect. We will show that this is not
necessarily the case, in the sense that this implication does not apply to a universewhich is still well-described
by Newton’s theory on small scales but has a non-Euclidean topology. The theorem should therefore be
generalized to account for such a scenario. In a heuristic calculation where we construct a theory which is
locally Newtonian but defined on a non-Euclidean topology, we show that the backreaction is nonzero,
meaning that it might be nonrelativistic depending on the topological class of our Universe. However, that
construction is not unique and remains to be justified from a nonrelativistic limit of general relativity.

DOI: 10.1103/PhysRevD.105.043524

I. INTRODUCTION

The cosmological principle asserts that there exists a
scale above which the Universe can be considered homo-
geneous and isotropic. The Standard Model of Cosmology
then assumes that the inhomogeneities under this scale do
not affect the dynamics of domains of size bigger than the
homogeneity scale. This implies that the expansion of such
domains is given by the (homogeneous) Friedmann-
Lemaître-Robertson-Walker (FLRW) solution of general
relativity, and the Friedmann expansion laws. That is why
the dynamics of structures, under the standard model, is
solved as a deviation around a FLRW background expan-
sion. However, this assumption is not a consequence of the
cosmological principle and is an additional hypothesis.
In reality the inhomogeneities (with scales typically smaller
than the homogeneity scale) might affect the expansion at
large scales. This effect is called the cosmological back-
reaction. The main question surrounding this phenomenon
is whether or not it is important enough to lead to
measurable effects on the scale factor evolution, eventually
explaining its acceleration [1] or the Hubble tension [2].
One of the main and most fundamental results

obtained about backreaction, known as theBuchert-Ehlers

theorem [3], states that, when calculated using Newton’s
theory of gravitation, the cosmological backreaction is
exactly globally zero (when periodic boundary conditions
are assumed), which is not necessarily the case when using
general relativity. This has two consequences widely
accepted today (e.g., [4]): the study of the backreaction
phenomenon has to be done using general relativity (e.g.,
[5–7]), and if our Universe is well-described locally by the
Newtonian dynamics, then the backreaction of the inho-
mogeneities on the expansion should be negligible and
could not explain the dark energy. In other words, the
backreaction is a relativistic phenomenon,meaning that in a
Newtonian limit of general relativity, it should arise only at
post-Newtonian orders.
The goal of this paper is to show that this last statement

might not be true as the Buchert-Ehlers theorem has two
limitations, which need to be solved in order to show
whether or not the backreaction is really a relativistic effect:
(1) The theorem relies on a description of expansion in

Newton which differs from the one in general
relativity;

(2) The interpretation of the theorem is only valid for a
model universe whose topology lies in the Euclidean
class of topologies (see Sec. IVA for precisions on
the definition of that term), as Newton’s theory is
defined on such a topology.*quvigneron@gmail.com, quentin.vigneron@ens-lyon.fr
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In particular, solving the second limitation requires an
extension of Newton’s theory to non-Euclidean classes of
topologies such that it can be retrieved by a nonrelativistic
limit of general relativity, i.e., with c → ∞. This paper does
not intend to propose such an extension, but rather give
arguments for its search, which is a new problem of
cosmology and general relativity.
In the following, we will first introduce the relativistic

and Newtonian approaches to describe backreaction
(Sec. II). We will then present the two limitations of the
Buchert-Ehlers theorem in Secs. III and IV. We will see that
the first one has already been solved by [8], and we will
propose a heuristic solution to the second one.

II. THE COSMOLOGICAL BACKREACTION

A. Backreaction in general relativity

Quantifying the effects of small-scale inhomogeneities
on higher scales requires an averaging procedure. This has
been developed for dust irrotational fluids in [5], perfect
irrotational fluids in [6], and general rotational fluids in [7].
For the purpose of this paper we will only consider a dust
irrotational fluid.
The formalism is based on averages of scalar quantities

performed on a spatial domain D comoving with the fluid
in its orthogonal foliation. The averaging procedure on a
scalar ψ is defined as hψiDðtÞ ≔ 1

VD

R
D ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhabÞ

p
d3x,

where h is the spatial metric and VD ≔
R
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhabÞ

p
d3x

the volume of D.
The goal is then to find an evolution equation for the

expansion of the volume VD and compare it with the
Friedmann expansion laws. As inhomogeneities are present
inside D, the averaging procedure allows us to quantify
their effect at the scale of D. The domain D is arbitrary but
should be bigger than the homogeneity scale to properly
quantify the backreaction on the global expansion of the
Universe. However as the boundary conditions ofD are still
unknown, it is generally assumed that the model universe is
spatially closed1 and that the averaging procedure is
performed over the whole volume of that universe. This
choice of boundary conditions is the most physical in a
cosmological context. From now on wewill consider such a
model universe and we denote its spatial sections as Σ.
Then, performing the averaging procedure on the scalar

parts of the Einstein equation, and introducing the scale
factor aðtÞ ≔ V1=3

Σ which quantifies the expansion of Σ, one
finds the following expansion laws:

3
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− 8πG
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; ð1Þ
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ä
a
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VΣ
− Λ ¼ QΣ; ð2Þ

where

QΣ ≔ hθ2iΣ −
2

3
hθi2Σ − hΘcdΘcdiΣ: ð3Þ

R is the spatial scalar curvature, MΣ is the total mass in Σ,
θ ≔ Θcdhcd with Θ the expansion tensor of the cos-
mic fluid.
Equations (1) and (2) are similar to the Friedmann

expansion laws, but with the additional effective source
term QΣ. This term is related to the inhomogeneities in Σ
via the expansion tensor Θ and is a source for the
acceleration of the scale factor. In this sense this term
quantifies the effects of inhomogeneities on the expansion
of Σ, and therefore is called the cosmological backreaction
term. In part because the averaging procedure is only well
defined for scalars, the vector and tensor parts of the
Einstein equation are missing and the system (1)–(3) is not
closed. In particular the time dependence of QΣ is
unknown.

B. Backreaction in Newton’s theory

In the classical formulation of Newton’s theory, expan-
sion is not present at a fundamental level. To be able to apply
this theory in a cosmological context the velocity v is
decomposed into an expansion velocity2 vH with vaH ≔
HðtÞxa (in Cartesian coordinates), and a peculiar velocity P;
thus we have v ¼ vH þ P (e.g., [9]). The peculiar velocity
along with the mass density are periodically defined on the
absolute Euclidean spaceE3. The periodicity corresponds to
a cubic domain, denoted ΣðtÞ, whose expansion rate is H.
Because the absolute Euclidean space is periodically

tiled with the domain Σ, a natural interpretation of this
decomposition is to describe an effective flat 3-torus which
is expanding, i.e., a closed universe in expansion. In this
interpretation, once the expansion velocity is introduced,
the spatial velocity which describes the fluid is considered
to be the peculiar velocity P. Therefore, this construction
allows for the description of global expansion via vH, and
inhomogeneities via P.
In this approach the expansion rate HðtÞ is not pre-

scribed. The goal is then to use Newton’s equations to find
an evolution equation for this variable. This was done by
Buchert & Ehlers [3], where the authors use the same
averaging formalism described in the previous section for
general relativity. Then, when the averaging operator is
applied to the Raychaudhuri equation, one obtains the
following evolution equation:1We stress that “closed” does not necessarily mean spherical as

there exists multiconnected, nonspherical topologies which are
closed, including with a negative scalar curvature. 2Also called Hubble flow, or homogeneous deformation.
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3
ä
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MΣ

VΣðtÞ
− Λ ¼ QΣ; ð4Þ

with

QΣ ≔ hθ2iΣ −
2

3
hθi2Σ − hΘcdΘcdiΣ þ hΩcdΩcdiΣ; ð5Þ

where Θab ≔ ∇ðavbÞ and Ωab ≔ ∇½avb� are respectively the
expansion and the vorticity tensors of the velocity v, with
θ ≔ Θcdhcd and ∇a the spatial covariant derivative related
to the flat metric hab.
Similar to the relativistic case we retrieve the Friedmann-

like expansion law (2) for the acceleration of the scale
factor with, apparently, an additional effective source term
QΣ depending on the inhomogeneities in Σ.3 But while in
the relativistic case the expansion tensorΘ present inQΣ is
unknown without additional assumptions on the behavior
of the inhomogeneities, in the Newtonian case this tensor
along with the vorticity tensor is explicitly known as a
function of the expansion rate H and the peculiar velocity
P, with

Θab ¼ Hhab þ∇ðaPbÞ; Ωab ¼ ∇½aPb�: ð6Þ

This is a major difference as it implies that the cosmological
backreaction in Newton is a boundary term:

QΣ ≔ h∇cðPc∇dPd − Pd∇dPcÞiΣ −
2

3
h∇cPci2Σ: ð7Þ

Because P is by definition periodic on the domain Σ, then
this equation implies QΣ ¼ 0. This is the Buchert-Ehlers
theorem.4 This result is true for any inhomogeneous
solution taken for P and any type of cosmic fluid.
Because QΣ ¼ 0 is a consequence of a boundary term,
then this result is also true for any closed topology of the
Euclidean class (see Sec. IVA), and not only for the
3-torus.
As stated in the introduction, the Buchert-Ehlers theorem

seems to imply that the backreaction phenomenon is a

purely relativistic effect, meaning that its study requires
either post-Newtonian considerations or the full general
relativity. Wewill see in the next sections that this statement
can be questioned, first because the theorem relies on a
description of expansion that differs from the one in general
relativity, second because its physical implications are
restricted to a model universe with a Euclidean topology.

III. IS THE BUCHERT-EHLERS THEOREM
COMPATIBLE WITH GENERAL RELATIVITY?

In the relativistic calculation (Sec. II A) the expansion
corresponds to the growth rate of the total volume of a
closed universe. In the Newtonian case, the expansion
arises from a construction where the velocity v is decom-
posed into an expansion velocity and a peculiar velocity,
the expansion corresponding to the growth rate of the
volume of the periodic domain on which P is defined. This
description of expansion fundamentally differs from the
relativistic case as the manifold on which Newton’s
equations are defined is not closed, but is the (infinite)
Euclidean space E3. Indeed, while P could be defined on a
closed space with E3 being the covering space, the
expansion velocity vH cannot because it is not periodic
in E3. So the interpretation in terms of an expanding closed
space is only effective. Then, because expansion is not
described in the same way in the two theories, and because
in the Newtonian case it arises from a construction not yet
justified from general relativity, this questions the compat-
ibility with the latter theory of the results discussed in
Sec. II B, especially the Buchert-Ehlers theorem.
A solution would be to suppose that the space on which

Newton’s equations are defined is closed and derive an
expansion law for the volume of this space. However, the
Poisson equation would imply that the mass density should
be zero everywhere, which can be seen when integrating
this equation over the volume of the closed space [10].
Therefore from the classical formulation of Newton’s
theory it is not possible to have a description of expansion
which would match the one of general relativity. This
strengthens the question raised in the previous paragraph
and therefore the need for a derivation of the Buchert-
Ehlers theorem as a limit of general relativity.
We performed such a derivation in [8] using the Newton-

Cartan formalism. This formalism is the closest formulation
of Newton’s theory to general relativity, both in terms of
equations and conceptually (see [11] for a complete
formulation of the Newton-Cartan theory). Furthermore,
the Newton-Cartan equations have been derived from
general relativity using a well-defined nonrelativistic covar-
iant limit [12]. This contrasts with the usual way of
performing the Newtonian limit which is generally
done using specific coordinate systems (see, e.g., [13]).
Hence, we can consider that retrieving the conclusion
of the Buchert-Ehlers theorem from the Newton-Cartan

3The form of the first equation (1) can also be retrieved by the
time integrating equation (4).

4It is also possible to describe an anisotropic global expansion
by choosing vaH ≔ Hxa þ δacHcdxd, with HabðtÞ a symmetric
traceless matrix (see Appendix B of [3]). In this case a nonzero
backreaction appears, with QΣ ≔ −hHcdHcdiΣ. However, it is
necessarily negative, hence it cannot mimic dark energy and as
for now there is no evidence for a substantial anisotropy in the
expansion of our Universe. Furthermore this “backreaction” does
not correspond to a backreaction of inhomogeneities as it only
depends on the global anisotropy of the expansion, for which it is
not possible to obtain a constraint equation from Newton’s
equations [8]. [3] also considers a more general expansion
velocity with a nonsymmetric tensor Hab. This has been proven
to be incompatible with general relativity in [8] (see Appendix B,
where ωab plays the role of H½ab�).
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formulation ensures the compatibility of that result with a
nonrelativistic limit of general relativity.
In [8], we performed a 1þ 3 decomposition of the

Newton-Cartan equations to obtain covariant three-
dimensional equations, the 1þ 3-Newton-Cartan equa-
tions. From this system of equations an expansion law is
derived (see Eq. (52) in [8]). This law is equivalent to the
Friedmann equation if the isotropy of the expansion is
assumed, i.e., Ξ ¼ 0 in [8]. In particular it features no
backreaction, thus retrieving the conclusion of the Buchert-
Ehlers theorem. A fundamental aspect in this derivation is
the fact that the expansion and vorticity tensors of the
cosmic fluid acquire the same form as in Eq. (6), but with a
major difference: the term Hhab does not arise from the
gradient of a vector as in the classical case, but from the
unique scalar-vector-tensor decomposition of Θ (see [14]
for the proof of the decomposition theorem), hence HðtÞ is
a fundamental field of the theory. Furthermore, we showed
in [8] that this term represents the expansion rate of the
volume of a closed space, hence reconciling the Newtonian
description of expansion with the relativistic one.

IV. THE ISSUE OF TOPOLOGY

While the compatibility of the Buchert-Ehlers theorem
with general relativity seems to imply that cosmological
backreaction is a relativistic effect, we will see in this
section that taking into account the topological class of the
Universe questions this statement.

A. Classes of topology

We get precise in this section with some notions of
topology that are used in the remainder of this paper.
In three dimensions, the classification of the closed 3-

manifolds is given by Thurston’s classification [15,16],
which says that the topology of any closed differentiable 3-
manifold can be decomposed into a connected sum of
pieces so that each has one of the eight Thurston topol-
ogies. Among those eight classes of topology we have in
particular the Euclidean, spherical, and hyperbolic topol-
ogies. A topology is said to be Euclidean (respectively
spherical; hyperbolic) if its universal cover is homeomor-
phic to E3 (respectively to S3; to H3) and whose funda-
mental group is a discrete subgroup of R3 × SOð3Þ
[respectively of SOð4Þ; of PSLð2;CÞ]. These three classes
of topology are the only ones where an isotropic Ricci
curvature tensor can be defined, which is the reason why
they are the only ones used in the Λ-Cold-Dark-Matter
model (ΛCDM) model. For the description of the other five
classes of topologies, see Lachieze-Rey & Luminet [17].
Then the term “Euclidean topology” that we use throughout
the present paper refers to the topology of a 3-manifold that
lies in the Euclidean class of Thurston’s decomposition,
while a “non-Euclidean topology” refers to all the other
possible three-dimensional topologies.

This notion of “Euclidean” and “non-Euclidean” is not to
be confused with Euclidean and non-Euclidean geometries
which generally refer, in the literature about cosmology and
general relativity, to the presence or lack of presence of a
nonzero Ricci curvature tensor. In particular, while
Euclidean geometry implies by definition a zero Ricci
tensor, a 3-manifold whose topology lies in the Euclidean
class can have a nonzero Ricci tensor. This is not the case in
Newton’s theory, where the topology is Euclidean and the
curvature is zero, but this is the case for some solutions of
general relativity (see, for instance, the relativistic numeri-
cal simulations of [18] which are performed on a 3-torus,
i.e., a Euclidean topology, but where the spatial Ricci tensor
is nonzero). The same applies for spherical and hyperbolic
topologies, for which the Ricci tensor is not necessarily of
the form Rab ¼ R=3hab. In other words, the terms
“Euclidean” and “non-Euclidean” used in the present paper
characterize the topology of the 3-manifold and not its
Ricci curvature.
Of course there are constraints on the relation between

the topology and the curvature. For instance, a 3-manifold
with an everywhere-zero Ricci tensor necessarily has a
Euclidean topology, which is why Newton’s theory is
defined only for Euclidean topologies. This implies that
it is not possible to define an everywhere-zero Ricci tensor
on a non-Euclidean topology, hence the need for a nonzero
Ricci tensor in the spherical or hyperbolic cases.

B. The need for a non-Euclidean Newtonian theory

To apply the conclusions of the Buchert-Ehlers theorem
to our Universe, the latter would have to be well-described
by Newton’s theory on small scales, but also on the global
scale by having the same kind of topology as the one of that
theory, i.e., a Euclidean topology, along with the closedness
of space. However, general relativity a priori allows for any
of the closed 3-manifolds described by Thurston’s classi-
fication. If we consider this theory to be the genuine theory
of gravitation, then our Universe could have a non-
Euclidean topology, while still being well-described locally
by Newton’s theory. In that case, the Buchert-Ehlers
theorem could not be used to estimate the smallness or
not of backreaction. Therefore, we need a generalization of
this theorem to non-Euclidean topologies, i.e., valid for a
model universe which is locally Newtonian but with a non-
Euclidean topology. Such a generalization requires the
construction of an extension of Newton’s theory to non-
Euclidean topologies. We call such an extension a non-
Euclidean Newtonian theory. By definition, this theory
should be equivalent to Newton’s theory on scales small
with respect to the (finite) volume of the model universe. In
addition to generalizing the Buchert-Ehlers theorem, such a
theory would be a powerful tool to study the effects of
topology on structure formation. In particular, we expect
that theory to provide a theoretical framework for N-body
calculation on a non-Euclidean topology.
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To understand more deeply the importance of the issue of
topology, we can define the following non-Euclidean
Newtonian theory, using the procedure developed in
[10,19], and derive its backreaction:
(1) We consider a spherical or hyperbolic topology. This

implies that the spatial Ricci curvature must be non-
zero as stated at the end of Sec. IVA. For simplicity,
we take it to be purely scalar withRab ¼ RðtÞ=3hab.
This choice of Ricci tensor implies a one-to-one
relation between the topological class considered
and the sign of the scalar curvature: R > 0 for a
spherical topology, and R < 0 for a hyperbolic
topology.

(2) We algebraically keep the classical Newtonian
equations in their kinematical form, especially the
Raychaudhuri equation and formulas (6) for the
kinematical tensors, and we assume that the spatial
metric involved in the connection ∇ is nonflat with
the above curvature.

This means that we have the following system of equations:

Θij ¼ Hhij þ∇ðiPjÞ ∶ Ωij ¼ ∇½iPj�; ð8Þ

ð∂t þ LPÞρþ ρθ ¼ 0; ð9Þ

ð∂t þ LPÞθ ¼ −4πGρþ Λ − ΘijΘij þΩijΩij þ∇iai≠grav;

ð10Þ

ð∂t þ LPÞΩij ¼ ∇½iða≠gravÞj�; ð11Þ

Rab ¼ RðtÞ=3hab in ∇i; ð12Þ

where a≠grav is the nongravitational spatial acceleration
underwent by the cosmic fluid and LP is the Lie derivative
with respect to the peculiar velocity.
The theory described by these equations is therefore

defined on a manifold with a non-Euclidean topology
because Rab ≠ 0, but reduces to Newton’s theory on small
scales with respect to the curvature scale, i.e., small with
respect to the size of that manifold.5 Hence this defines a
non-Euclidean Newtonian theory. We stress that the addi-
tion of a spatial curvature is not done in order to take into
account relativistic effects, as in [20], but only to allow for
non-Euclidean topologies, i.e., it is not a relativistic
correction. Therefore, we expect that if this theory can
be retrieved via a nonrelativistic limit of general relativity,
this curvature should be the zeroth order of the real spatial
curvature, contrary to the purely Newtonian case where that
zeroth order vanishes. We also expect that it should play a
minor role on small scales, as it is spatially constant, but, as
we will see, might play a major role on the global scale.

In that theory, the cosmological backreaction is still given
by the formula (5) (which is obtained by averaging the
Raychaudhuri equation), but due to the presence of a nonzero
Ricci tensor, it is no longer zero but acquires a dependence on
the peculiar velocity and the scalar curvature with

hQiΣ ¼ R
3
hPcPciΣ ≠ 0: ð13Þ

This nonzero term arises from a commutation of the spatial
connection when inserting Eq. (6) into Eq. (5).
We see that the backreaction depends on the topological

class via the scalar curvature 2R=3 (but not explicitly on
the specific topology within a class), and also on the
inhomogeneities in the model universe, via the mean
specific kinetic energy hPcPciΣ=2. As this energy is linked
to the virialization of the structures, this second dependence
is an expected behavior of backreaction (see [1]). For a
hyperbolic model universe R < 0 and the backreaction is
necessarily negative; for a spherical model universe R > 0
and the backreaction is necessarily positive. The constant
sign property of QΣ suggests that built up effects over the
life of the Universe could lead to a departure of its
expansion with respect to the ΛCDM model, due to a
non-Euclidean topology. However, the second-order
dependance of this effect on the peculiar velocity could
prevent this departure from being significant enough to be
measured. For instance, assuming ΛCDM cosmology and
using the current upper bound for the late-universe
curvature parameter jΩ0

Rj ≔ jc2R=ð6H2
0Þj≲ 10−3 (from

Planck’s data and baryonic acoustic oscillations measure-
ments [21]) and the typical estimate of the peculiar velocity
with P · P=c2 ∼ 10−6, then jΩ0

Qj ≔ jQΣ=ð6H2
0Þj≲ 10−9,

which is negligible with respect to the contribution of
the matter density and the cosmological constant.
Still the result (13) means that in the non-Euclidean

Newtonian theory defined above, the conclusion of the
Buchert-Ehlers theorem does not hold anymore and that
cosmological backreaction might be nonrelativistic depend-
ing on the topology of our Universe. This result is still
heuristic as the non-Euclidean Newtonian theory we defined
above lacks a clear justification from general relativity which
should come in the form of a nonrelativistic limit. Therefore
we strongly emphasize that we should not take formula (13)
and its interpretation as physical before this justification
arrives. Nevertheless this calculation motivates the need for
the construction of a non-Euclidean Newtonian theory
compatible with general relativity.

1. Caveats of the procedure

The main problem with the theory defined by the
system (8)–(12) is that N-body calculation is not possible
anymore. If one reintroduces the peculiar gravitational
potential ∇iΦ ≔ −ð∂t þ Pj∇jÞPi − 2HPi, as defined for
Newtonian cosmology (see [9]), in that system, then we
obtain

5With Rab ¼ RðtÞ=3hab, the volume of the 3-manifold is
proportional to jRj−3=2.
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ΔΦ ¼ 4πGðρ − hρiΣÞ −
R
3
ðPcPc − hPcPciΣÞ: ð14Þ

Similar to the weak field limit of general relativity around a
spatially curved FLRW model, this equation features an
additional term, with respect to the Poisson equation,
proportional to the curvature. However, because that term
is nonlinear (contrary to the weak field limit where it is
ΦR=2), N-body calculation is not possible. In other words,
the theory defined by the system (8)–(12) loses one of the
main strengths Newton’s theory has over general relativity.
The reason why the Poisson equation is not retrieved is

because once we introduce a nonzero Ricci curvature tensor
in the spatial connection, the kinematical system of
Newton’s theory is no longer equivalent to the gravitational
system, which is

g ¼ _v − a≠grav; _ρþ ρ∇ivi ¼ 0 ð15Þ

∇½igj� ¼ 0; ∇igi ¼ −4πGρ ð16Þ

Rab ¼ RðtÞ=3hab in ∇i: ð17Þ

Hence, the system (8)–(12) and the system (15)–(17)
represent two different theories that can be said to be
locally Newtonian (they reduce to Newton’s theory on
scales small with respect the curvature scale) but defined on
a 3-manifold with a non-Euclidean topology. This shows
that the procedure of [10,19], namely adding a nonzero
Ricci tensor in Newton’s equations, suffers from a major
caveat: it is not unique.
One might want to use the system (15)–(17) instead of

the system (8)–(12), as the Poisson equation is by definition
present. However, in that case, it is no longer possible to
describe expansion, as defining the Hubble flow vector
field vaH ≔ HðtÞxa on a non-Euclidean topology is not
possible.

2. Proposed strategy

In Sec. IV B, we considered a theory to be Newtonian if
it features algebraically the same equations, but with the
presence of a nonzero spatial Ricci tensor. This ensured that
on small scales with respect to the closed topological space
(i.e., small with respect to 1=

ffiffiffiffiffiffiffijRjp
), the equations reduce

to Newton’s equations. However this approach lead to at
least two different non-Euclidean Newtonian theories
which both have major caveats.
Following Sec. III and Vigneron [8], we saw that

Newton’s theory is best formulated in its geometrized form
with Galilean manifolds, i.e., with the Newton-Cartan
formulation. Therefore if one still wants to use the
procedure of [10,19] to extend Newton’s theory on non-
Euclidean topologies, the addition of the spatial Ricci
tensor needs to be done in the (spacetime) Newton-
Cartan equations. In this approach a theory is said to be

Newtonian if it is defined on a Galilean manifold whatever
the topological class considered. This means that the
Galilean invariance is taken as a fundamental principle
of the theory. This strategy is used in a follow up paper [22].
Ultimately, the right non-Euclidean Newtonian theory

needs to be derived from general relativity in a limit where
c → ∞. While such a limit has been defined in various
ways in the literature, often using specific coordinate
systems which imposed a Euclidean topology, the use of
Galilean structures proposed above suggests that the non-
relativistic limit which needs to be considered is the
Galilean limit of Lorentzian spacetimes (e.g., [12,23]).
In this limit, a family a Lorentzian structures on a four-
manifold becomes, when c → ∞, a Galilean structure.
Because such a structure can be defined on four-manifolds
with any spatial topology, it would be possible to obtain a
non-Euclidean Newtonian theory from general relativity in
this way (see [22]).

V. CONCLUSION

In this paper we analyzed the Buchert-Ehlers theorem
and showed that it has two limitations, implying that
cosmological backreaction might be nonrelativistic.
First, the description of expansion made in this theorem,

using Newton’s theory of gravitation, is different from the
one of general relativity, implying an eventual incompat-
ibility with the latter theory. We showed that this problem
was already solved by [8], where the Buchert-Ehlers
theorem was retrieved using the Newton-Cartan formalism.
As this formulation of Newton’s theory is close to general
relativity and has been derived from it with a covariant limit
[12], this ensures the compatibility of the Buchert-Ehlers
theorem with the latter theory.
Second, we noted that the interpretation of the theorem is

limited to Euclidean topologies, i.e., it cannot be applied to
a model universe which is well-described by Newton’s
theory on small scales but has a non-Euclidean topology.
To strengthen the importance of this statement we proposed
a heuristic calculation of a “Newtonian backreaction” in a
model universe with a non-Euclidean topology. This lead to
a nonzero backreaction of the inhomogeneities on the
expansion, suggesting that this phenomenon might be
nonrelativistic depending on the topological class of our
Universe. To justify this result, one needs to develop an
extension of Newton’s theory to non-Euclidean topologies
which can be retrieved with a nonrelativistic limit of
general relativity. Searching for such a theory is a new
problem of general relativity and cosmology.
Follow up work is dedicated, first to propose non-

Euclidean extensions of Newton’s theory directly based
on the Newton-Cartan formalism and study their cosmo-
logical backreaction [22]; then to derive one of them as a
limit of general relativity using the Galilean limit of general
relativity.
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