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We provide an end-to-end exploration of a distinct modified gravitational theory in Jordan-Brans-Dicke
(JBD) gravity, from an analytical and numerical description of the background expansion and linear
perturbations, to the nonlinear regime captured with a hybrid suite of N-body simulations, to the
cosmological constraints from existing probes of the expansion history, the large-scale structure, and the
cosmic microwave background (CMB). We have focused on JBD gravity as it both approximates a wider
class of Horndeski scalar-tensor theories on cosmological scales and allows us to adequately model the
nonlinear corrections to the matter power spectrum. In a combined analysis of the Planck 2018 CMB
temperature, polarization, and lensing reconstruction, together with Pantheon supernova distances and the
Baryon Oscillation Spectroscopic Survey (BOSS) measurements of baryon acoustic oscillation distances,
the Alcock-Paczynski effect, and the growth rate, we constrain the JBD coupling constant to ωBD > 970

(95% confidence level; C.L.) in agreement with the General Relativistic expectation given by ωBD → ∞. In
the unrestricted JBD model, where the effective gravitational constant at present, Gmatter=G, is additionally

varied, increased dataset concordance (e.g., within 1σ agreement in S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p Þ enables us to
further include the combined (“3 × 2pt”) dataset of cosmic shear, galaxy-galaxy lensing, and overlapping
redshift-space galaxy clustering from the Kilo Degree Survey and the 2-degree Field Lensing Survey
(KiDS × 2dFLenS). In analyzing the weak lensing measurements, the nonlinear corrections due to baryons,
massive neutrinos, and modified gravity are simultaneously modeled and propagated in the cosmological
analysis for the first time. In the joint analysis of all datasets, we constrain ωBD > 1540 (95% C.L.),
Gmatter=G ¼ 0.997� 0.029, the sum of neutrino masses,

P
mν < 0.12 eV (95% C.L.), and the baryonic

feedback amplitude, B < 2.8 (95% CL), all in agreement with the standard model expectation. In fixing the
sum of neutrino masses, the lower bound on the coupling constant strengthens to ωBD > 1460 and ωBD >
2230 (both at 95% C.L.) in the restricted and unrestricted JBD models, respectively. We explore the impact
of the JBD modeling choices, and show that a more restrictive parametrization of the coupling constant
degrades the neutrino mass bound by up to a factor of three. In addition to the improved concordance
between KiDS × 2dFLenS and Planck, the tension in the Hubble constant between Planck and the direct
measurement of Riess et al. (2019) is reduced to ∼3σ; however, we find no substantial model selection
preference for JBD gravity relative to ΛCDM. We further show that a positive shift in the effective
gravitational constant suppresses the CMB damping tail, which might complicate future inferences of
small-scale physics, given its degeneracy with the primordial helium abundance, the effective number of
neutrinos, and the running of the spectral index.
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I. INTRODUCTION

As the quantity and quality of data from ground and
space-based telescopes increase, cosmological tests of
Einstein’s theory of general relativity (GR) have become
increasingly robust (e.g., [1–7]). These tests can take
a “model-independent” form, for instance through the
measurement of possible deviations of the gravitational
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potentials Ψ and Φ (denoting temporal and spatial pertur-
bations to the spacetime metric, respectively, e.g., [8–12]),
the index γG (parametrizing the linear growth rate [13,14]),
the EG parameter (encapsulating the ratio of galaxy-galaxy
lensing and galaxy-velocity cross-correlations [15,16]),
or the Bellini-Sawicki αi parameters (encompassing a
subset of effective field theories given by stable scalar-
tensor theories universally coupled to gravity with at most
second order equations of motion [17–20]). These model-
independent approaches are immensely useful for tests of
GR on cosmic scales, where large classes of modified
gravity (MG) models are simultaneously constrained (e.g.,
[1–3,5–8,16,21–34]).
A common limitation of model-independent approaches,

however, is the need to avoid or suppress nonlinear scales
in the matter density and galaxy density fields (e.g., [3–6]).
This is due to the inability to adequately simulate
the model-independent parametrizations. The screening
mechanism responsible for the suppression of power is
highly model dependent, and models that have similar
signatures on linear scales can differ substantially in the
nonlinear regime [35]. However, these nonlinear scales are
necessary to include to fully utilize the expected con-
straining power of probes of the large-scale structure with
next-generation telescopes such as Euclid [36], the Vera C.
Rubin Observatory [37], the Dark Energy Spectroscopic
Instrument (DESI) [38], and the Nancy Grace Roman
Space Telescope [39].
A further limitation of model-independent approaches

is the common assumption of a ΛCDM expansion history
(e.g., [3–6]). While a more general expansion rate can be
considered (e.g., by allowing for a change in the dark
energy equation of state), it will require additional free
parameters and will generally not correspond to a given
physical theory. In considering a distinct modified gravity
theory, however, the background expansion is naturally
determined. This implies that the distinct theory in principle
has the ability to self-consistently resolve not only dis-
cordances between datasets that measure the growth of
structure but also the expansion rate.
As a result, in this paper, we will consider a specific

extension of GR in the form of Jordan-Brans-Dicke (JBD)
gravity, where Newton’s constant is promoted to a dynami-
cal field [40]. We take a comprehensive approach by
providing the underlying theory, nonlinear description with
numerical simulations, and constraints using the latest
cosmological data. We choose this specific gravitational
theory as it is the most extensively studied extension of GR
and a fertile sandbox to explore the power of different
observations for constraining gravity. It allows for a
comparison of highly different regimes, the astrophysical
and the cosmological, and an assessment of how adequately
different types of data can be used to determine nonstand-
ard parameters. Moreover, it is one of the scalar-tensor
theories that has survived the recent observation of a binary

neutron star merger that places extremely tight constraints
(at the level of one part in 1015) on the speed of
gravitational waves [41–44].
To understand JBD theory (see e.g., [35,40,45]) it

consists of a metric, gαβ (with determinant g), and a real
scalar field, ϕ, that satisfy the following nonminimally
coupled action,

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

α

12
φ2Rþ1

2
gμν∂μφ∂νφ−2VþLm

�
:

ð1Þ

Here, R is the Ricci scalar, Lm is the Lagrangian density of
matter minimally coupled to the metric (which can include
a cosmological constant, Λ), V is the potential, and α is the
single free coupling constant which vanishes in GR. It is
customary to reexpress this theory in terms of the scalar

field M2
Pl
2
ϕ≡ − α

12
φ2 and potential M2

Pl
2
V ≡ V, where we

have identified the reduced Planck mass M2
Pl ¼ ð8πGÞ−1

(which includes the “bare” gravitational constant, G). The
action can then be rewritten as

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p

×

�
M2

Pl

2

�
ϕR−

ωBD

ϕ
gμν∂μϕ∂νϕ−2V

�
þLm

�
; ð2Þ

where the single free coupling constant in the theory is now
ωBD ¼ − 3

2α and GR is recovered in the limit ωBD → ∞. We
restrict our analysis to the simplest case of a constant
potential [which is not equivalent to replacing R by R − 2Λ
in Eq. (2)]. We note that it is possible to consider extensions
of this model by, for instance, incorporating a self-inter-
action potential VðϕÞ in the action above (see e.g., Lima &
Ferreira 2016 [45]).1

The motivation behind JBD gravity was originally to
implement Mach’s principle in GR [40], but its presence
has become ubiquitous, arising as the scalar-tensor com-
ponent of unified field theories, as the low energy phe-
nomenology of higher-dimensional theories, and as the
decoupling limit of extensions of GR with higher spin
fields (e.g., [35]). Over the years, extensions and general-
izations of JBD gravity have been proposed, culminating
in a cluster of results on general scalar-tensor theories
[48–55]. Yet, even in this extended realm, JBD gravity still
encapsulates, to some extent, the main long wavelength
features of generalized scalar-tensor theories such as
Horndeski gravity [17]. Indeed, for many scalar-tensor
theories of gravity, both the kinetic and potential terms can
be expanded as polynomials in derivatives of the scalar

1The generalized JBD action, where ωBD → ωBDðϕÞ and
V → VðϕÞ, encapsulates other distinct theories such as coupled
quintessence [46] and fðRÞ gravity [47].
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field which become subdominant on cosmological scales—
a form of gradient expansion which naturally reverts to JBD
gravity on cosmological scales [56].
There are a number of rich phenomenological properties

of JBD gravity, from cosmological tracker solutions, to
black hole no-hair theorems, and a host of observational
effects that can be measured with astrophysical observa-
tions (e.g., [57]). One of the most stringent constraints on
JBD gravity has been obtained from Shapiro time delay
measurements by the Cassini satellite, where the para-
metrized post-Newtonian (PPN) parameter η≡Φ=Ψ ¼
1þ ð2.1� 2.3Þ × 10−5 [58]. This translates into a bound
on ωBD > 4.0 × 104 at 95% confidence level (C.L.; dis-
carding the negative ωBD solution due to ghost instability;
see Sec. II for the relation between η and ωBD).
A complementary strong bound is obtained from the

analysis of the pulsar–white dwarf binary PSR J1738þ
0333, where ωBD > 1.2 × 104 (95% C.L.) [59]. The stellar
triple system PSR J0337þ 1715, where the inner pulsar–
white dwarf binary is in orbit with another white dwarf, was
shown to provide an even stronger bound of ωBD > 7.3 ×
104 (95% C.L.) [60]. A reanalysis of this same stellar triple
system with an independent observational dataset
and updated analysis methodology (e.g. pertaining to the
timing model, the determination of the masses and orbital
parameters, and treatment of systematic uncertainties)
subsequently resulted in the strongest bound to date,ωBD >
1.4 × 105 (95% C.L.) [61].
Recent attempts at constraining JBD gravity with cos-

mological observations are promising, but not competitive
with the astrophysical constraints (e.g., [56,62–72]). For
instance, in Avilez and Skordis (2014) [56], a lower bound
of ωBD > 1.9 × 103 (95% C.L.) was obtained using cosmic
microwave background (CMB) temperature and lensing
measurements from Planck 2013 [73]. In Ballardini et al.
(2016) [67], an extended JBD model with a potential in
Eq. (1) of the form VðϕÞ ∝ ϕn was considered. For the case
of a quadratic potential, the authors constrained wBD > 330
(95% C.L.) using CMB temperature, polarization, and
lensing data from Planck 2015 [74] combined with baryon
acoustic oscillation (BAO) distance measurements from the
6dF Galaxy Survey [75], SDSS Main Galaxy Sample [76],
and BOSS LOWZ/CMASS samples [77]. In Ballardini
et al. (2020) [71], this analysis was then updated to include
CMB and BAO distance measurements from Planck 2018
[4] and BOSS DR12 [78], along with the Riess et al. (2019)
[79] direct measurement of the Hubble constant, such that
ωBD > 450 (95% C.L.).
In Ooba et al. (2017) [69], a modified JBD model with a

field-dependent ωBDðϕÞ was considered instead. Using the
same dataset combination as in Ballardini et al. (2016) [67],
the authors obtained a current lower bound onωBD between
2.0 × 103 and 3.3 × 103 (95% C.L.) depending on the
shape of their prior on the JBD parameter. Another setup
consisting of a JBD model with a constant potential, a

scalar field that is unrestricted at early times (redshift of
z ¼ 1014), and an inverse coupling constant that is allowed
to be negative was considered in Solà Peracaula et al.
(2019) [70], where CMB temperature and lensing mea-
surements from Planck 2015 combined with low-redshift
cosmological datasets were used to constrain −6.0 ×
10−3 < ω−1

BD < 3.5 × 10−4 (95% C.L.). Hence, recent con-
straints on the JBD coupling constant fluctuate not only due
to the specific datasets used but also given the specific
configuration of the JBD model considered.
Beyond the CMB and postrecombination epochs con-

sidered above, the gravitational constant can be constrained
during big bang nucleosynthesis (BBN). The production of
light elements is highly sensitive to the expansion of the
universe when its temperature is around an MeV; the JBD
scalar field will affect the expansion rate (H ∝

ffiffiffiffiffiffiffiffiffi
G=ϕ

p
) and

thus the theory can be constrained through measurements
of light element abundances in distant quasars (e.g., [80–
85]; also see the review in [86]). In the GR limit, the
most recent constraint is GBBN=G ¼ 0.98þ0.06

−0.06 (95% C.L.),
which by assuming a linear time-dependence can be
translated into a constraint on the time variation
of the gravitational constant, _G=G¼ 1.4þ4.4

−4.7 ×10−12 yr−1

(95% C.L.) [85]. Naturally, these constraints might degrade
in the context of JBD theory (as the scalar field will also
source the background dynamics, thereby affecting the
expansion rate, as well as being responsible for the time
variation of G). Earlier self-consistent analyses find ωBD ≳
300 (95% C.L.) from BBN alone [80,83].
While astrophysical constraints on the JBD coupling

constant are more powerful than the constraints from
existing cosmological datasets, one expects nonlinear cor-
rections arising in generalized JBD gravity (e.g., Horndeski
gravity) to come into play that might weaken these con-
straints. Indeed, if on cosmological scales, JBD gravity is
merely the long wavelength limit of Horndeski gravity [56],
then on smaller scales, screening mechanisms may com-
pletely shield astrophysical systems from fifth forces arising
from the presence of scalar fields (for example, through the
Vainshtein [87,88], Chameleon [89,90] or Symmetron [91]
mechanisms). This provides additional motivation to con-
strain JBD gravity (and other gravitational theories) on
cosmic scales across the history of the Universe.
As the amount and quality of data increases with the next

generation of cosmological surveys (e.g., [36–39,92]), we
expect to significantly improve constraints on fundamental
parameters, in particular as related to the gravitational
Universe (e.g., [93–96]). To achieve this, it will be
important to understand and control a range of observa-
tional and theoretical systematic uncertainties. Concretely,
it will be important to accurately account for observational
systematics such as baryonic feedback, intrinsic galaxy
alignments (IA), photometric redshift uncertainties, shear
calibration uncertainties, galaxy bias, and pairwise velocity
dispersion (see for instance Joudaki et al. 2018 [5] and
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references therein); to accurately account for theoretical
systematics arising from the modeling of new physics such
as neutrino mass, dark matter, and dark energy/modified
gravity; and to understand the role of degeneracies between
the different parameters (cosmological, astrophysical,
gravitational, and instrumental) affecting the observables.
We will account for these systematic uncertainties and
parameter degeneracies, and will consider the JBD model
as a case study for constraining extensions to GR with
current and future cosmological data.
In constraining the JBD model, we primarily consider

the Planck CMB [4] and the combined data vector of
cosmic shear, galaxy-galaxy lensing, and overlapping
redshift-space galaxy clustering from KiDS × f2dFLenSþ
BOSSg [5]. In order to improve the parameter constraints,
we further include complementary information from mea-
surements of BAO distances, the Alcock-Paczynski effect,
and growth rate (final consensus BOSS DR12 [78]),
distances to type IA supernovae (SNe; Pantheon compila-
tion [97]), and the small-scale CMB (ACT [98]). We
include the key systematic uncertainties that affect these
measurements, and pay particular attention to the interplay
between modified gravity, neutrino mass, and baryonic
feedback. We also explore the ability of the extended model
to improve the concordance between cosmological data-
sets, and assess the extent to which it might be favored in a
model selection sense relative to ΛCDM.
We structure the paper as follows. In Sec. II, we describe

the background expansion and linear perturbations in JBD
gravity, highlighting its impact on probes of the expansion
history, the large-scale structure, and the CMB. In Sec. III,
we capture the impact of JBD gravity on the nonlinear
corrections to the matter power spectrum by performing a
hybrid suite ofN-body simulations (usingmodified versions
of COLA [99,100] and RAMSES [101]) and subsequently
modifying the prescription for the HMCODE [102,103] fitting
function. In Sec. IV, we outline the analysis techniques,
cosmological datasets, and treatment of systematic uncer-
tainties. In Secs. V, VI, VII, and VIII, we provide the
cosmological constraints on JBD gravity, and discuss their
dependence on the datasets considered, the complexity of
the cosmological model, and the analysis choices. We
highlight the parameter degeneracies (in particular with
massive neutrinos and baryonic feedback), model selection
preferences (mainly JBD gravity against GR), and changes
in the concordance between datasets (between Planck and
KiDS, and between Planck and Riess et al. 2019 [79]). In
Sec. IX, we conclude with a summary of the findings.

II. THEORY: BACKGROUND COSMOLOGY AND
THE LINEAR REGIME

A. Background equations

The line element in the Newtonian gauge for small scalar
perturbations, as captured by the scalar potentials Ψ and Φ,
is given by

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1 − 2ΦÞδijdxidxj; ð3Þ

where δij is the Kronecker delta function, x is the
comoving position coordinate, t refers to physical time,
a is the scale factor (equal to unity at the present time),
and we have implicitly assumed that the speed of light
in vacuum c ¼ 1. We perturb the stress-energy tensor to
linear order so that, for instance, the matter density
ρmðx⃗; tÞ ¼ ρ̄mðtÞð1þ δmðx⃗; tÞÞ, where the overbar denotes
the mean of the matter density, and δm encodes the
perturbations about the mean. In the case of JBD theory,
the perturbations in the scalar field are given by δϕ, such
that ϕðx⃗; tÞ ¼ ϕ̄ðtÞ þ δϕðx⃗; tÞ.
Following the standard approach, the JBD equations of

motion are obtained by varying the action [Eq. (2)] with
respect to the metric and scalar field (see e.g., [35,40,45]).
The former gives the Einstein equations,

Gμν ¼
1

M2
Plϕ

Tμν þ
ωBD

ϕ2

�
∇μϕ∇νϕ −

1

2
gμν∇αϕ∇αϕ

�

þ 1

ϕ
½∇μ∇νϕ − gμνð□ϕþ VÞ�; ð4Þ

where Tμν is the total matter stress-energy tensor and □

denotes the d’Alembertian. The latter gives the scalar
field’s equation of motion,

□ϕ ¼ 1

M2
Pl

�
T

3þ 2ωBD

�
−
4V − 2ϕVϕ

3þ 2ωBD
; ð5Þ

where T is the trace of the stress-energy tensor and Vϕ ¼
dV=dϕ (which vanishes in the case of the constant potential
that we consider).
We begin by considering the contribution from

the homogeneous background (i.e., no perturbations).
Equation (4) gives the two modified Friedmann equations,

3H2 ¼ ρ

M2
Plϕ

− 3H
_ϕ

ϕ
þ ωBD

2

_ϕ2

ϕ2
þ V

ϕ

2 _H þ 3H2 ¼ −
P

M2
Plϕ

−
ωBD

2

_ϕ2

ϕ2
− 2H

_ϕ

ϕ
−
ϕ̈

ϕ
þ V

ϕ
; ð6Þ

where ρ and P are the total energy density and pressure of
all components except the scalar field, respectively, the
Hubble parameterH ≡ _a=a, and theN raised dots represent
Nth-order time derivatives. We will consider a cosmology
that incorporates the usual components of the stress-energy
of the Universe (photons, baryons, neutrinos, dark matter)
along with the scalar field (which includes the constant
potential V ¼ Λ). In this more general case, the density
parameter of each component (X ) includes ϕ through
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Ω�
X ¼ ΩX

ϕ
¼ ρX

3H2M2
Plϕ

; ð7Þ

such that
P

Ω�
X ¼ 1 in a flat Universe (in other words,

when defining the density parameter of each component
using the critical density in GR, they do not add to unity
in a flat Universe—we will further discuss the implication
of the choice between Ω�

X and ΩX on the concordance
between datasets in Sec. VIII B). Moreover, in a flat
Universe, Λ ¼ 3H2

0ð1 −Ω�
m;0Þ where the “0” subscripts

refer to the present time. Reading off the first line in Eq. (6),
the energy density of the scalar field is

ρϕ ¼ M2
Pl

�
ωBD

2

_ϕ2

ϕ
− 3H _ϕþ V

�
: ð8Þ

The pressure of the scalar field is similarly read off the
second line in Eq. (6), such that the effective equation of
state of the scalar field is given by

wϕ ≡ Pϕ=ρϕ ¼
_ϕ2ωBD þ 4H _ϕϕþ 2ϕ̈ϕ − 2Vϕ

_ϕ2ωBD − 6H _ϕϕþ 2Vϕ
: ð9Þ

Hence, the scalar field (including a constant potential) is
responsible for the accelerated expansion of the Universe,
and wϕ → −1 when ϕ → constant. The evolution of the
scalar field is given by Eq. (5), which can be expressed as

ϕ̈þ 3H _ϕ ¼ 1

M2
Pl

�
ρ − 3P

3þ 2ωBD

�
þ 4V − 2ϕVϕ

3þ 2ωBD
: ð10Þ

Here, the left-hand side of the equation can further be
expressed as a−3 d

dt ð _ϕa3Þ. We immediately see that there are
two effects at play: the scalar field will affect the way that
the energy-momentum tensor of the rest of the Universe
drives the expansion rate by modifying the effective
gravitational constant (i.e., M2

Pl → M2
Plϕ), and it will also

itself be a source of energy and pressure. As we shall
further see below, GR is recovered in the limit ωBD → ∞;
the corresponding density parameter satisfies Ωϕ ¼ ΩΛ þ
Oðω−1

BDÞ and the effective equation of state satisfies wϕ ¼
−1þOðω−1

BDÞ which for large ωBD reduces to that of a
cosmological constant in GR.
In Eq. (10), we find that the scalar field begins to evolve

after the end of the radiation-dominated era (i.e., ϕ is
constant and a ∝

ffiffiffiffiffiffiffi
t=ϕ

p
during radiation domination).

During the matter-dominated regime, where ρ ∝ a−3, the
scalar field evolves as a power law of the scale factor
[35,104,105],

ϕ ¼ ϕ0a
1

1þωBD : ð11Þ

Here, the subscript “0” refers to the present time, such that
ϕ ≤ ϕ0 ≡ ϕða ¼ 1Þ as a ≤ 1 (with non-negative ωBD), and
the scale factor is given by

aðtÞ ¼
�
t
t0

�2þ2ωBD
4þ3ωBD : ð12Þ

In the limit ωBD → ∞, one recovers ϕ → ϕ0 (a constant)
and a ∝ t2=3, i.e., the standard GR result in the matter-
dominated era. The effect of the JBD coupling constant
itself is to slow down the expansion rate, i.e., the exponent
in Eq. (12) is bounded from above by the GR value
(2=3). Moreover, t0 is related to the Hubble constant
through t0H0 ¼ ð2þ 2ωBDÞ=ð4þ 3ωBDÞ.
In a “restricted” JBD cosmology, we fix ϕ0 to be given

by ϕða ¼ 1Þjrestricted ¼ 4þ2ωBD
3þ2ωBD

by requiring that the effective
gravitational constant is the same on local and cosmologi-
cal scales at present (e.g., [56]). We also consider an
“unrestricted” JBD cosmology, where we allow the data to
determine ϕ0 independently. Further in this section, we will
show that this corresponds to allowing for the effective
gravitational constant at present, ðGmatter=GÞja¼1 ∝ ϕ−1

0 , to
vary freely. At late times, the constant potential in the JBD
action gives rise to the cosmic accelerating epoch, such that
the effective equation of state of the scalar field at present is
given by wϕða ¼ 1Þ ≃ −1 (to increasing precision as ωBD

increases; evolving toward more negative values with

decreasing scale factor [45]). In this epoch, ϕ ∝ a
4

1þ2ωBD

[106,107], such that the scalar field increases marginally
more rapidly with time than in the earlier matter dominated
regime (for instance, by ≲0.3% at present for ωBD ¼
100 [45]).

B. Toy model: Modifications to distances
due to JBD gravity

In a matter-dominated Universe with zero curvature,
given the impact of JBD gravity on its expansion [Eq. (12)],
the angular diameter distance is given by

DAðzÞ ¼
2þ 2ωBD

2þ ωBD

cH−1
0

1þ z
½1 − ð1þ zÞ−

2þωBD
2þ2ωBD �; ð13Þ

where z ¼ a−1 − 1 is the redshift in terms of the scale
factor. For an improved qualitative understanding, for small
ω−1
BD, this differs from the GR angular diameter distance by

ΔDAðzÞ≃−
2c

ωBDHJBD
0 ð1þ zÞ

��
1−

1ffiffiffiffiffiffiffiffiffiffi
1þ z

p
�
−
lnð1þ zÞ
2

ffiffiffiffiffiffiffiffiffiffi
1þ z

p
�

þ 2c
1þ z

�
1−

1ffiffiffiffiffiffiffiffiffiffi
1þ z

p
��

1

HJBD
0

−
1

HGR
0

�
: ð14Þ

We note that aside from the explicit ωBD dependence in the
angular diameter distance, there is also an implicit depend-
ence on both ωBD and ðGmatter=GÞja¼1 in the Hubble
constant [when it is taken to be a derived parameter; seen
in Eq. (6)]. In Fig. 1, keeping the densities ΩXh2 fixed (for
X given by baryons, cold dark matter, scalar field, and
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massive neutrinos), we find that the angular diameter
distance is enhanced as we consider JBD instead of GR,
to a decreasing extent toward higher redshifts.
This overall enhancement is driven by the second term in

Eq. (14), as the Hubble constant in a JBD cosmology is
suppressed relative to that in GR (as also seen in Fig. 2),
while the first term in Eq. (14) drives the decrease in the
enhancement toward higher redshifts. Indeed, for fixed H0

across cosmologies, the second term in Eq. (14) vanishes,
such that at the same redshift, objects instead appear closer
than in the corresponding GR Universe. Instead of a
decrease in the difference between the distances in JBD
and GR cosmologies with redshift, here the difference
between the distances increases with redshift. Hence, as
is well known, in comparing observables between cos-
mologies, it is imperative to have clarity in the specific
parameters kept fixed.
As expected, given the assumption of small ω−1

BD in
deriving Eq. (14), the analytical approximate solution for
ΔDAðzÞ improves as ωBD increases, and the difference
between the angular diameter distances in JBD and GR
cosmologies decreases as ωBD increases. Indeed, we
recover ΔDA → 0 as ωBD → ∞ and ðGmatter=GÞja¼1 → 1.
Moreover, as expected from Eqs. (6) and (18) below, and
shown in Fig. 1, the angular diameter distance scales
inversely with the square root of the present effective
gravitational constant (i.e., DA ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðGmatter=GÞja¼1

p
).

C. Linear perturbations

We now turn to linear perturbations in JBD theory. While
δϕ can be thought of as the potential for a putative fifth
force (see Sec. III), it is often useful to consider the Einstein
field equations on subhorizon scales, i.e., k2 ≫ ðaHÞ2
where k is the wave number. In this “quasistatic” regime
(which is moreover characterized by the condition that time
derivatives of the metric and scalar-field perturbations are
negligible relative to their respective spatial derivatives),
the field equations reduce to a modified Poisson equation2

(e.g., [94,108]),

k2

a2
Ψ ≃ −4πGmatterρmδm; ð15Þ

and a gravitational slip equation that depends only on the
JBD coupling constant,

γ ≡ Ψ
Φ
≃
2þ ωBD

1þ ωBD
; ð16Þ

where the time-varying gravitational constant is given by

Gmatter

G
≃
1

ϕ̄

4þ 2ωBD

3þ 2ωBD
: ð17Þ

The motion of nonrelativistic particles is thereby dictated
by the modified potential

FIG. 1. The angular diameter distance response (left), quanti-
fied as ðDJBD

A −DGR
A Þ=DGR

A , the growth rate fðzÞ (upper right),
and the product of the growth rate and the root-mean-square of
the linear matter overdensity field on 8h−1 Mpc scales, fσ8ðzÞ
(bottom right). We consider the GR-limit (solid black, corre-
sponding to ωBD → ∞) and cosmologies with ωBD ¼ f10; 100g
from EFTCAMB (dashed pink and light dashed pink, respec-
tively), to be compared with the corresponding analytical matter-
domination approximations for ΔDAðzÞ, fðzÞ, and fσ8ðzÞ in
Eqs. (14), (21), (22) (light dotted green and dotted green for
ωBD ¼ f10; 100g, respectively). For the angular diameter dis-
tance, to assess the behavior of Eq. (14), we assume matter-
domination for both the EFTCAMB and approximate analytical
solutions, and we consider a setup where the Hubble constant is
kept fixed between JBD and GR (long dashed blue; instead of
fixing the matter density Ωmh2). We also allow the present
effective gravitational constant to deviate from the GR expect-
ation, with Gmatter=G ¼ 1.1 (dashed orange and dotted red for the
EFTCAMB and approximate analytical solutions, respectively). For
visual clarity, we only show the impact of a deviation inGmatter=G
for DAðzÞ as its impact on fðzÞ and fσ8ðzÞ is negligible. We note
that our use of “Gmatter=G” here is shorthand for ðGmatter=GÞja¼1

[as defined in Eq. (18)].

2Here, we have defined our effective gravitational con-
stant to be dimensionful. However, we note that it is also
common to define the effective gravitational constant as dimen-
sionless by normalizing with the bare gravitational constant,
i.e., Gmatter=G → Gmatter.
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Ψ ¼ Gmatter

G
ΨGR ≃

�
ϕ̄ða ¼ 1Þ

ϕ̄

�
Gmatter

G

�����
a¼1

�
ΨGR: ð18Þ

Hence, the effective gravitational constant evolves with
time even when it is set to unity at present in the restricted
JBD model. Given ϕ̄ðaÞ increases with a this implies
Gmatter=G is larger in the past. A crucial point here is that
we can in principle allow both ωBD and the value of
Gmatter=G at the present time to be independent parameters
of the theory (corresponding to an unrestricted JBD
model as discussed earlier). We will consider such a
setup in this paper to obtain general constraints on JBD
gravity.3 In addition to the Poisson equation, Gmatter=G

enters the Friedmann equations via ϕ̄. As a result, the
ðGmatter=GÞja¼1 parameter that we vary in our analysis
affects the expansion rate and any other physical process
where the gravitational constant appears relative to other
physical constants.
On subhorizon scales, pressureless matter at late times

obeys an evolution equation of the form (e.g., [108])

δ00m þ
�
1þH0

H

�
δ0m −

3

2

�
4þ 2ωBD

3þ 2ωBD

�
Ω�

mðaÞδm ≃ 0; ð19Þ

where H ¼ aH and primes are derivatives with ln a [note
that Ω�

mðaÞ here includes a 1=ϕ term given its definition in
Eq. (7)]. This can be expressed in terms of the growth rate,
f ≡ d ln δm

d ln a , such that (e.g., [109])

f0 þ
�
1þH0

H

�
f þ f2 ¼ 3

2

�
4þ 2ωBD

3þ 2ωBD

�
Ω�

mðaÞ: ð20Þ

There are two distinct effects on the growth of structure: the
expansion rate (which is lower compared to GR while the

FIG. 2. The expansion history, HðzÞ, Weyl power spectrum, PWeyl ≡ PΨþΦ
2
ðkÞ, and CMB temperature power spectrum, CTTðlÞ, along

with their respective responses, defined as ðAJBD − AGRÞ=AGR, where A ∈ fHðzÞ; PðkÞ; CðlÞg. Here, the Weyl power spectrum is
considered at z ¼ 0. For our GR limit, we have effectively imposed ωBD → ∞ and Gmatter=G ¼ 1. For the JBD model, we show the four
cases ωBD ¼ 10, ωBD ¼ 100, Gmatter=G ¼ 0.5, and Gmatter=G ¼ 2.0 (such that ωBD → ∞ when Gmatter=G ≠ 1, and Gmatter=G ¼ 1 when
ωBD ≠ ∞). We emphasize that our use of “Gmatter=G” here is shorthand for ðGmatter=GÞja¼1 [as defined in Eq. (18)], and that we have
kept the density parametersΩXh2 fixed rather thanΩ�

Xh
2, where “X” denotes the matter components and the scalar field [see distinction

in Eq. (7)]. For comparison, we show the impact of the sum of neutrino masses, fixed to
P

mν ¼ 1 eV, along with baryonic feedback
corresponding to the “AGN” case of the OWL simulations (given by B ¼ 2 in HMCODE). We moreover show the impact of JBD gravity
on the polarization power spectra in the Appendix B (Fig. 22).

3We emphasize that the value ofGmatter=G at the present time is
determined by the choice of initial condition when solving Eq. (5)
for ϕ̄. Allowing this to be a free parameter is what Ref. [56] calls
the unrestricted JBD model. This is to be contrasted to the
restricted JBD model which corresponds to setting the initial
conditions such that ϕ̄ða ¼ 1Þ ¼ ð4þ 2ωBDÞ=ð3þ 2ωBDÞ im-
plying Gmatter=G ¼ 1 at the present time.
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first derivative is more negative) enters the friction term and
enhances growth, while the source term that sets the
strength of the gravitational response also boosts growth.
Unlike many proposals for scalar tensor theories, where
deviations from GR are synchronized with the onset
of Λ-domination (and thus only kick in at late times), in
JBD theory the scalar field has an effect throughout the full
evolution of the Universe.

D. Toy model: Modified growth rate in JBD gravity

Again, let us focus on a pure matter-dominated cosmol-
ogy, where we know that δm ∼ a and f ¼ 1 in GR. If we
consider the effects of the scalar field to be small, an
analytic approximation to the growth rate is given by

f ≃ 1þ 1

2ωBD
: ð21Þ

The impact of ωBD is enhanced when considering the
density weighted growth rate, fσ8 ∼ dδm=d ln a, where σ8
is the root-mean-square of the linear matter overdensity
field on 8h−1 Mpc scales, given its integrated effect over a
long time scale (essentially since the beginning of matter
domination). This can be seen via the approximate solution
for f in the matter era, which when integrated gives

fσ8 ≃ fσ8jGR
�
1þ 1

2ωBD

�
1þ ln

zeq
z

��
: ð22Þ

In Fig. 1, we illustrate this enhancement in fðzÞ and fσ8ðzÞ,
along with the agreement between the EFTCAMB and
approximate analytical solutions in the matter-dominated
regime. The insensitivity of the growth rate to the present
effective gravitational constant also agrees with that
obtained from EFTCAMB.

E. Impact of JBD gravity on the propagation of light

Lastly, we consider the impact of JBD gravity on the
propagation of light. The geodesic equation for relativistic
particles (e.g., photons) is sensitive to the sum of the metric
potentials ðΨþΦÞ. Given the quasistatic expressions
[Eqs. (15)–(18)],

ΨþΦ ¼ ð1þ γ−1ÞΨ ¼ −ð1þ γ−1ÞGmatter
4πa2ρmδm

k2

¼ −
2

ϕ̄

4πGa2ρmδm
k2

¼ 2

ϕ̄
ΨGR; ð23Þ

which differs from the GR expectation by a factor of 1=ϕ̄
(i.e., Glight ¼ ðð1þ γÞ=ð2γÞÞGmatter ¼ G=ϕ̄, where the first
relation is general and the second relation is specific to JBD
theory). We moreover consider the ratio of the metric
potential Ψ (probed by e.g., redshift-space distortions) and
the sum of the potentials ðΨþΦÞ=2 (probed by e.g., weak

lensing). This ratio of the potentials corresponds to the ratio
of Gmatter and Glight, and is targeted by measurements of the
“EG parameter” (e.g., [7,15,16]). The ratio is only sensitive
to the gravitational slip and thereby only to ωBD in JBD
theory (which holds in both the restricted and unrestricted
JBD scenarios in the quasistatic regime):

2
Ψ

ΨþΦ
¼ 2γ

1þ γ
≃
4þ 2ωBD

3þ 2ωBD
: ð24Þ

For a given ωBD, this ratio does not evolve with time
(such that any time variation observed would rule out JBD
gravity in addition to GR and a range of other models
entirely). As expected, the ratio approaches 1 in the GR
limit (ωBD → ∞), and the largest deviation is given by 4=3
as ωBD → 0. Since γ deviates from the GR expectation by
less than a percent already for ωBD ≳ 100 (where such a
small ωBD is disfavored by current cosmological measure-
ments, as discussed in Sec. I, but also see Sec. VIII D), we
do not expect even future measurements of the gravitational
slip alone (where σðγÞ ∼ 0.05 at best for Stage-IV surveys
[110–112]) to powerfully constrain the space of viable JBD
models (noting that a similar argument holds for the EG
parameter). Instead, we need to measure the expansion
history and both of the potentials distinctly in order to place
the strongest constraints on the underlying cosmology,
which is the approach taken here.

F. Connecting JBD theory to effective field theory

As a side note, we highlight that JBD theory can be
connected to effective field theory (EFT) via the αi
parameters of Bellini and Sawicki [17,20] (which
are all zero in GR), where the “Planck-mass run rate”
αM ¼ d lnϕ=d ln a, the “braiding” αB ¼ −αM, the “kinet-
icity” αK ¼ ωBDα

2
M, and the “tensor speed excess” αT ¼ 0

[113]. Here, αT encapsulates the zero deviations to the
speed of gravitational waves relative to the speed of light in
JBD theory, thereby satisfying the LIGO-Virgo bound [41],
The other αi parameters are described in terms of only the
coupling constant and the time-variation of the scalar field,
which is itself uniquely determined by the coupling
constant in standard JBD theory. Hence, the theory can
be reduced to a single independent αi parameter (along with
the expansion rate which can be expressed in terms of the
same αi and the present effective gravitational constant in
the unrestricted scenario).
Concretely, as αM is only sensitive to the logarithmic

derivative of ϕ (and thereby the logarithmic derivative of
Gmatter=G), it has no sensitivity to the overall normalization,
given by ϕ0 ≡ ϕða ¼ 1Þ. As a result, αM has no sensitivity
to deviations in the present effective gravitational constant,
ðGmatter=GÞja¼1. Instead, considering the redshift depend-
ence of ϕ (Sec. II A), αM ¼ 0 during radiation domination,
αM ¼ ð1þ ωBDÞ−1 during matter domination, and αM ¼
4ð1þ 2ωBDÞ−1 during the epoch of cosmic acceleration.
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This directly determines the braiding and kineticity
parameters given the relations with αM above. For com-
pleteness, αB ¼ f0;−ð1þ ωBDÞ−1;−4ð1þ 2ωBDÞ−1g and
αK ¼ f0;ωBDð1þ ωBDÞ−2; 16ωBDð1þ 2ωBDÞ−2g during
the radiation, matter, and cosmic accelerating epochs,
respectively.

G. Correlations between modified gravity,
massive neutrinos, and baryonic feedback in

cosmological observables

We now have the required ingredients for a qualita-
tive understanding of the impact of JBD gravity on
cosmological observables. The scalar field has an effect
throughout the history of the Universe, decreasing the
expansion rate (hence increasing BAO and SN distances)
and largely increasing the Weyl power spectrum
ðPWeyl ≡ PΨþΦ

2
ðkÞÞ, to which lensing is sensitive, as

ωBD → 0 (i.e., away from the GR limit). This is illustrated
in Fig. 2, where the suppression in the expansion rate
diminishes toward higher redshift (asymptoting to the GR
rate), and where the Weyl power spectrum has a turnover
from suppression to enhancement at k ∼ 10−2h Mpc−1 (to
within 10% for ωBD ∈ ½10; 100�) with an amplitude that
increases with the strength of JBD gravity. As a result, as
ωBD decreases, it will counter any degrees of freedom that
might suppress the Weyl power spectrum on scales below
this turnover (such as baryonic feedback4 and massive
neutrinos5).
Meanwhile, as ωBD → 0, the response of the CMB

temperature power spectrum, CTTðlÞ, is oscillatory along
the multipoles l (due to shifts in the locations of the peaks),
and is both positive and negative below l ∼ 103, above
which it gradually increases relative to GR (further see
Fig. 22 for the CMB polarization power spectrum and
polarization-temperature cross-spectrum). Here, we note
the largely opposing effects of ωBD and the sum of neutrino
masses,

P
mν, on the CMB power spectra.

We further show the impact of changes in Gmatter=G
(note that as a primary parameter we always implicitly refer
to its value at present), where a ratio below unity decreases

the expansion rate, albeit at a constant level with redshift
[given Eq. (6) where H2

JBD=H
2
GR ≃ 1=ϕ], such that there is

an overall renormalization of the expansion history when
Gmatter=G ≠ 1. Similarly, for the Weyl power spectrum,
Gmatter=G < 1 provides a constant suppression on linear
and mildly nonlinear scales (down to k ∼ 1h Mpc−1),
where it is of the same magnitude as for the expansion
rate [given Eq. (23) whereGlight=G ¼ 1=ϕ in the quasistatic
regime]. This suppression is enhanced on highly nonlinear
scales, where we have modified HMCODE to match the
numerical simulations in Sec. III. However, in contrast to
HðzÞ and PWeylðkÞ, the CMB temperature power spectrum
is enhanced as Gmatter=G < 1, such that the response
increases with l, making it a particularly suitable target
for probes of the CMB damping tail (and correlated
with other physics such as the running of the spectral
index, neutrino mass, primordial helium abundance, and
the effective number of neutrinos that affect the small-
scale CMB).
As a result, there is a particular correlation between the

effects of modified gravity, the sum of neutrino masses, and
baryonic feedback on the Weyl power spectrum, along with
distinct correlations between the effects of modified gravity
and the sum of neutrino masses on the expansion rate and
CMB power spectrum. A notable difference between the
three is that the effective gravitational constant can in
principle take on values on both ends of the fiducial
expectation, where Gmatter=G < 1 provides an enhance-
ment of power (rather than suppression) and thereby allows
for even greater neutrino masses and baryonic feedback.
The fact that the effective gravitational constant allows for
both suppression and enhancement of the cosmological
quantities (depending on whether Gmatter=G is greater or
smaller than unity) gives it greater flexibility than ωBD
which only allows for “one-sided” modifications (i.e.,
either suppression or enhancement). This implies that
Gmatter=G is better suited to alleviating possible discordan-
ces between datasets, but also to be correlated with the
other aforementioned physics.
We note that the responses to ωBD are smaller for the

expansion rate as compared to the Weyl and CMB power
spectra. While distinct physics might be correlated or even
degenerate for a single physical observable, they often have
different signatures for distinct observables, as seen in their
impact on the responses for fHðzÞ; PWeylðkÞ; CTTðlÞg. For
instance, the baryonic feedback suppresses the Weyl power
spectrum but has no impact on the expansion history and
CMB power spectra, while the sum of neutrino masses
affects both the Weyl power spectrum and CMB power
spectra but only negligibly the expansion history, and by
contrast JBD gravity has a non-negligible impact on all
three of these cosmological quantities. Hence, we expect
that a combination of multiple complementary probes is
required to robustly constrain the underlying cosmology of
the Universe.

4Baryonic feedback is incorporated in HMCODE [102] through
calibration to the overwhelmingly large (OWL) hydrodynamical
simulations [114–116], as further discussed in Sec. III and
Sec. IV C. In Fig. 2, we consider a feedback amplitude that
corresponds to the “AGN” case of these simulations.

5We note that the Weyl power spectrum response for the sum
of neutrino masses (Fig. 2) is slightly positive for k ∼
10−2h Mpc−1 because the fiducial GR cosmology here has the
sum of neutrino masses fixed to

P
mν ¼ 0.06 eV, which implies

that the suppression in the Weyl power spectrum begins on larger
scales, even though the strength of the suppression is smaller on
increasingly nonlinear scales, relative to a cosmology withP

mν ¼ 1 eV. In other words, the free streaming length of each
neutrino species is inversely proportional to its mass [117,118]
(which can in principle be used as a distinct feature with which to
probe the neutrino mass hierarchy [119]).
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H. Degeneracies with the effective gravitational
constant in the CMB damping tail

In Fig. 3, we continue to highlight the impact of the
effective gravitational constant in the CMB damping tail,
and its possible degeneracies with other physics, such
as the primordial helium abundance, YP (i.e., the mass
fraction of baryons in 4He), the running of the spectral
index, dns=d ln k, and the effective number of neutrinos,
Neff (along with the sum of neutrino masses again for
comparison). As discussed in Sec. II G, we obtain a
suppression in the damping tail for positive pertur-
bations in Gmatter=G, which is correlated with the expec-
ted suppression due to fpositive; negative; positiveg
perturbations in fYP; dns=d ln k; Neffg, respectively. In
Ref. [120], the ratio of the angular scales of the diffusion
length and sound horizon, θd=θs, is shown to be the
primary quantity that governs modifications to the damping
tail and is responsible for the correlations between YP
and Neff .
In detail, θd ¼ rd=DA and θs ¼ rs=DA, where rd is

the comoving diffusion length at recombination, rs is the
comoving size of the sound horizon at recombination, and
DA is the angular diameter distance to recombination,
such that the DA terms cancel in the ratio θd=θs ¼ rd=rs.
We define

rsða�Þ ¼
Z

a�

0

csðaÞda
a2HðaÞ ; ð25Þ

where csðaÞ¼ c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þRðaÞÞp

, RðaÞ ¼ 3ρbðaÞ=ð4ργðaÞÞ,
ρb and ργ are the energy densities of baryons and photons,
respectively, and a� is the recombination scale factor for
which the optical depth equals unity [120,121]. The
diffusion length is moreover given by

rdða�Þ ¼
π

6

�Z
a�

0

gðaÞda
a3σTneHðaÞ

�
1=2

; ð26Þ

where gðaÞ ¼ c½R2ðaÞ þ 16
15
ð1þ RðaÞÞ�=ð1þ R2ðaÞÞ, σT

is the Thomson cross section, and ne is the number
density of free electrons [120,121]. As a result, the ratio
θd=θs ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðaÞ=ne

p
, where HðaÞ refers to the prerecombi-

nation expansion rate. This can in turn be shown to be
proportional to ð1þ CNeffÞ1=4=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − YP

p
[120]. The first

term in the proportionality follows for fixed matter-radia-
tion equality redshift as H2 ∝ ρr ∝ 1þ ρν=ργ , where ρr is
the energy density of radiation which includes a contribu-
tion from the neutrino energy density ρν ¼ CNeffργ, given
the constant C ¼ ð7=8Þð4=11Þ4=3 [122]. The second term
follows from ne ¼ ð1 − YPÞρb=mp, where mp is the proton
mass, and reflects the fact that helium recombines earlier
than hydrogen which changes the free electron density at
last scattering [123].
Turning to the effective gravitational constant, we realize

that its impact through the expansion rate is H2 ∝ Gmatter=
G, such that θd=θs∝ðGmatter=GÞ1=4ð1þCNeffÞ1=4=

ffiffiffiffiffiffiffiffiffiffiffiffi
1−YP

p
.

FIG. 3. CMB temperature power spectra in extended cosmological parameter spaces along with their respective responses, defined as
CextendedðlÞ=CΛCDMðlÞ − 1. We consider deviations in the running of the spectral index, dns=d ln k, the effective number of neutrinos,
Neff , the sum of neutrino masses,

P
mν, the primordial helium abundance, YP, and the present effective gravitational constant,

Gmatter=G. We also highlight the E-mode polarization power spectrum response for YP and Gmatter=G in the inlet (for further polarization
details, see Appendix B).
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As pointed out in Ref. [120], increasing the expansion rate
decreases a� and increases neðaÞ [124], which together
slightly modify the power of 1=4 in ð1þ CNeffÞ1=4, and the
same applies in the case of Gmatter=G. We note that the
correlation between the helium abundance and baryon
density is broken through the measurement of the latter
on larger scales in the CMB (specifically by the first-to-
second peak ratio relative to the first-to-third peak ratio in
the temperature power spectrum) [125]. Meanwhile, the
degeneracy between YP and Neff (and between Gmatter=G
and Neff ) is partly broken by the early integrated Sachs-
Wolfe (ISW) effect, the potential high baryon fraction
as Neff increases, and the phase shift in the acoustic
oscillations due to neutrino perturbations [120] (for the
neutrino phase shift, also see Ref. [126]). However, these and
other physical effects do not help to break the degeneracy
between YP andGmatter=G, which persists as shown in Fig. 3.
We note that for ωBD → ∞, which is the “no-slip

gravity” limit (e.g., [127]) considered asGmatter=G is varied
in Fig. 3, the effective gravitational constant does not
evolve with time (hence, does not directly contribute to the
ISW effect). Even as we consider an unrestricted JBD
model where ωBD and Gmatter=G are simultaneously con-
strained, in forthcoming sections we find that our con-
straints are sufficiently strong that the evolution is ≲1%
(from the present to the BBN epoch), in agreement with the
BBN constraint in Ref. [85] (see Sec. VIII B 3). Focusing
on the degeneracy between Gmatter=G and YP, we have also
explicitly checked that the CMB temperature and polari-
zation power spectra remain invariant to subpercent level as
we modify these two parameters (here, up to a factor of
two) but keep θd=θs fixed according to the relation we
provide above.
We further note that Gmatter=G will in principle also

modify YP itself, as Gmatter=G > 1 enhances the expansion
rate, which leads to an earlier freeze out of the weak and
nuclear interactions in the early Universe, and thereby an
overproduction of 4He [83,128]. In Ref. [129], this depend-
ence of the helium abundance on the effective gravitational
constant is shown to take on the form YP ∝ ðGmatter=GÞ0.36
(also see Ref. [130]). We do not account for this effect in
Fig. 3, but note that this would further enhance the impact
of Gmatter=G on the CMB (∼1% change in YP for the
strongest constraint, approximately 0.03, that we obtain on
Gmatter=G in forthcoming sections).6

While the CMB polarization is useful in constraining
Gmatter=G (given the qualitatively different signature of the
effective gravitational constant on the polarization power

spectrum, as pointed out in Ref. [124] and explicitly shown
in Sec. Vand Appendix B), it exhibits a similar degeneracy
between YP and Gmatter=G (shown in Fig. 3). This level of
degeneracy also applies to the temperature-polarization
cross-spectrum as shown in Appendix B. We therefore
note that the uncertainty in the underlying gravitational
theory (or the expansion rate more generally) has the
potential to complicate inferences of small-scale physics
targeted by CMB surveys such as AdvACT [131], SPT-3G
[132], and the Simons Observatory [133]. While the direct
measurement of YP from observations of low-metallicity
extragalactic H II regions [134,135] is able to break its
degeneracies with other parameters, the correlation of
Gmatter=G with parameters such as Neff and dns=d ln k
would still remain to be disentangled (and for the CMB
would be similar in nature to the correlations of a freely
varying YP with Neff and dns=d ln k in GR).
In summary, the JBD scalar field will have an impact on

a multitude of cosmological observables that we will
consider in our analysis, such as the cosmic microwave
background temperature and polarization, along with
lower-redshift probes of the expansion history and the
growth of structure, such as supernova distances, the weak
lensing of galaxies, the weak lensing of the CMB, and the
clustering of galaxies in redshift space. In testing JBD
gravity with the latest cosmological observations, we have
implemented this theory in the Einstein-Boltzmann solver
EFTCAMB [136], and have performed an extensive com-
parison with four distinct codes [113]. The level of agree-
ment between the codes is found to be at the sub-percent
level for both the matter power spectrum and CMB
temperature, polarization, and lensing power spectra, well
within the precision required for current observations.

III. THEORY: NONLINEAR REGIME
AND N-BODY IMPLEMENTATION

A. Background: Numerical simulations
with JBD gravity

In order to more fully utilize current cosmological data,
we proceed to model the density perturbations in the
nonlinear regime. We revisit the equations of motion,
and now consider the effect of the scalar field as that of
a fifth force. Given ϕ ¼ ϕ̄þ δϕ in the quasistatic regime
(such that _δϕ=∇δϕ ≪ 1 and k2=ðaHÞ2 ≫ 1), and consid-
ering a constant potential, the scalar field equation of
motion [Eq. (5)] is well approximated by

1

a2
∇2δϕ ≃ −

1

M2
Pl

�
δρm

3þ 2ωBD

�
: ð27Þ

As δρm ¼ ρ̄mδm, this implies δϕ=ϕ̄ ¼ Ψ=ð2þ ωBDÞ. We
note that Ψ≲ 10−4 in a cosmological simulation and given
that we are interested in the ωBD ≫ 1 regime, we can
neglect terms of order ð∇ϕÞ2=ϕ̄2 in the Einstein equations.

6As similar-factor changes in Gmatter=G and YP have compa-
rable effects on the CMB, this implies that the impact of
Gmatter=G on the CMB would be enhanced by ∼30%. Put
differently, our constraints on Gmatter=G in forthcoming sections
can either be viewed as somewhat conservative (i.e., ≲30%
weaker), or alternatively in the context of a Universe where GR is
enforced during BBN.
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In other words, the standard contribution of the energy
density of the scalar field is insignificant as compared to the
clustering component of the overall energy density.
As a result, in the N-body simulations we evolve the

nonrelativistic geodesic equation (e.g., [137]),

ẍþ 2H _x ¼ −
1

a2
∇Ψ; ð28Þ

where x is the position of each particle and the raised dots
are, as before, derivatives with physical time. The geodesic
equation is evolved along with the modified Poisson
equation, reexpressed here in the form

∇2Ψ ¼ 3

2
Ωm;0H2

0a
−1Gmatter

G
δm; ð29Þ

where we emphasize that the effective gravitational
constant, Gmatter, is time-dependent [Eq. (17)]. The
initial conditions for the particles were generated with
the MG-PICOLA code [100,138] using second-order
Lagrangian perturbation theory (2LPT) given a power-
spectrum Pðk; z ¼ 0Þ from EFTCAMB [136]. The first
and second order growth factors of the density contrast in
2LPT, denoted D1 and D2, are determined by the equa-
tions [100]

D̈1 þ 2H _D1 ¼
3

2

Ωm;0

a3
Gmatter

G
H2

0D1;

D̈2 þ 2H _D2 ¼
3

2

Ωm;0

a3
Gmatter

G
H2

0ðD2 −D2
1Þ; ð30Þ

which are of the same form as in ΛCDM [139] aside from
the Gmatter=G factor.

B. Hybrid suite of N-body simulations:
COLA and RAMSES

We have modified two N-body codes to obtain an
accurate measurement of PðkÞ beyond the linear regime.7

For k < 0.5h Mpc−1, we use a modified version of the
COmoving Lagrangian Acceleration (COLA) code [99,100],
which solves for perturbations around paths predicted from
2LPT, and has been shown to be accurate and fast on large
scales. This enables the generation of a large enough
ensemble of realizations to substantially reduce sample
variance on large scales: we generate 50 realizations with
N ¼ 10243 particles in a box of size L ¼ 1000h−1 Mpc (to
cover large scales) and 100 realizations with N ¼ 5123

particles in a box of size L ¼ 250h−1 Mpc (to cover small
scales). We also use a large number of steps to increase the

accuracy on smaller scales (∼100 steps, an order of
magnitude more than typical COLA simulations). On very
small scales, to probe wavenumbers out to k ¼ 10h Mpc−1,
we use the RAMSES grid-based hydrodynamical solver
with adaptive mesh refinement [101], modified to include
JBD gravity. For each ωBD, we have generated a higher
resolution RAMSES simulation with N ¼ 5123 particles in
a box of size L ¼ 250h−1 Mpc.
The RAMSES simulation is run with the same seed as one

of the COLA simulations, chosen by the requirement that it
has a Pðk; zÞ as close as possible to the mean of the
ensemble of COLA simulations, which ensures that it is not
an outlier realization. The COLA simulations are found to
agree to 1% with the RAMSES simulation for k <
0.5h Mpc−1 at z ¼ 0, and with an improved accuracy
toward higher redshifts. For the largest wave numbers
considered here ðkmax ¼ 10h Mpc−1Þ, with our simulation
setup, the RAMSES simulation is accurate to ∼5–10%.8 The
ratio of the RAMSES and the COLA Pðk; zÞ for the same seed
are then used to correct the COLA simulations Pðk; zÞ out
to its maximum wave number. These simulations are
carried out for ωBD ¼ f50; 100; 500; 1000g, and we use
outputs at z ¼ f0; 0.5; 1.0g as the basis for producing our
modifications to the nonlinear matter power spectrum
(see Fig. 4).

FIG. 4. Matter power spectrum Pðk; z ¼ 0Þ for ωBD ¼ 100.
Here, “1 sim” refers to a single realization of the initial conditions
for which we run a high-resolution RAMSES simulation (dotted
line) in addition to the COLA simulations (dashed line). As a
result, the dip at k ∼ 0.05h Mpc−1 is due to cosmic variance (for
both RAMSES and COLA given the same initial conditions). Here,
RAMSES+COLA incorporates all of the simulations (some with a
larger box size and thereby a smaller minimum k) and the error
bars denote the 68% confidence level. For comparison, we also
show the linear theory prediction (dot-dashed line) which expect-
edly agrees with the simulations on large scales but visibly
deviates for k≳ 10−1h Mpc−1.

7A patch with the modifications to RAMSES can be found in
https://github.com/HAWinther/RamsesPatchApproxMGSolver
and the COLA code used can be found in https://github.com/
HAWinther/MG-PICOLA-PUBLIC.

8For a study of the accuracy of RAMSES compared to other N-
body codes, see e.g., Schneider et al. (2016) [140].
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C. JBD gravity modifications to HMCODE

We include these modifications to the matter power
spectrum in HMCODE [102,103] (also see Refs. [141,142]),
which is a fitting function for the nonlinear matter power
spectrum based on the halo model (reviewed in e.g., [143]).
For the dark matter power spectrum, HMCODE has been
calibrated to the Coyote N-body simulations [144] and is
accurate at the level of 5%–10% for z ≤ 2 and k ≤
10h Mpc−1 (improving toward lower neutrino mass, where
massive neutrinos suppress the clustering of matter below
the neutrino free-streaming scale). A benefit of HMCODE

over other fitting functions such as HALOFIT [145,146] is
that it has also been calibrated to the overwhelmingly large
(OWL) hydrodynamical simulations [114–116]. As a
result, it is able to capture the impact of baryonic feedback
in the nonlinear Pðk; zÞ (at ≃5% level precision for the
same redshifts and scales) and to marginalize over the
uncertainty in the modeling. HMCODE moreover improves
its modeling of the impact of massive neutrinos in the
nonlinear Pðk; zÞ by calibrating to the massive neutrino
simulations of Massara et al. (2014) [147] (agreement
achieved at the few percent level for mν ≤ 0.6 eV, z ≤ 1,
k ≤ 10h Mpc−1 [103]).
To account for JBD gravity within the HMCODE frame-

work, in addition to modifying the expansion rate, density
parameters, and growth function, we follow the approach in
Mead et al. (2016) [103] and adjust the virialized halo
overdensity, ΔV, defined through

rV ¼
�

3M
4πΔVρ̄m

�1
3

; ð31Þ

where rV is the corresponding virial radius and M is the
halo mass. We find that a good fit that accounts for JBD
gravity is given by

ΔV¼ΩmðzÞ−0.352

×

�
d0þð418.0−d0Þarctanðð0.001jωBD−50.0jÞ0.2Þ2

π

�
;

ð32Þ

where d0 ¼ 320.0þ 40.0z0.26. Our fitting function has the
desired property that as ωBD → ∞ we recover the usual GR
prescription in HMCODE.9 We note that baryonic feedback
does not modify the fitting function for the virialized halo
overdensity in HMCODE; instead it modifies the halo
concentration-mass relation and the amount of halo “bloat-
ing” [102]. However, to account for the impact of massive
neutrinos, the fitting function is further multiplied by a
factor of 1þ 0.916fν [103], where fν ¼ Ων=Ωm.

10

D. JBD matter power spectrum

In Fig. 5, we show the ratio of PðkÞ measured from our
simulations to the modified HMCODE for ωBD of 50 and
1000 considering z ∈ f0; 0.5; 1.0g and k ≤ 10h Mpc−1.
We find that the agreement is within ∼10% for the full
range of nonlinear scales and redshifts, and across the wide
range of coupling strengths, which is sufficient for our
purposes given the precision of current data. The agreement
is achieved through the HMCODE modifications, and would
substantially degrade in their absence (for instance, by up to

FIG. 5. The ratio of matter power spectra between theN-body simulations and HMCODE, PN−bodyðkÞ=PHMCODEðkÞ, for ωBD ¼ 50 (left)
and ωBD ¼ 1000 (right) illustrating the accuracy of our modifications to HMCODE. The shaded bands encapsulate the 68% confidence
intervals given the variations within the simulations (for each of the considered redshifts, z ¼ 0 in grey, z ¼ 0.5 in light blue, and z ¼ 1.0
in light violet), the thin colored lines inside the bands correspond to the ratio with HMCODE given the mean of the simulations, and the
dotted (black) horizontal lines mark �5% deviations from unity. The agreement between HMCODE and the simulations improves toward
lower redshift by our construction.

9We also considered ωBD-dependent modifications to the
linear collapse threshold, δc, and the linear spectrum damping
factor, fdamp, and found that they only marginally improve the
HMCODE fit to the JBD simulations.

10In accounting for the impact of massive neutrinos on the
nonlinear matter power spectrum, we note that HMCODE further
modifies the linear collapse threshold, δc, by a factor of 1þ
0.262fν [103].
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a factor of three for ωBD ¼ 100 over the range of scales and
redshifts considered).
As PωBD¼1000ðk; zÞ=PGRðk; zÞ ≈ 1 (at the subpercent

level across scales and redshifts, as also indicated in
Fig. 2), together the ωBD ¼ 50 and ωBD ¼ 1000 cases
effectively show that our HMCODE implementation has the
same level of accuracy in JBD gravity as in GR (which is
the optimal outcome). We also employed simulations with
ðGmatter=GÞja¼1 ∈ ½0.5; 1.5�; as HMCODE includes the
effects of this degree of freedom via the linear matter
power spectrum (through an overall rescaling of the
amplitude, as seen in Fig. 2), we found that no further
HMCODE modifications were needed to fit the simulations
on nonlinear scales (with agreement due to changing
ðGmatter=GÞja¼1 to within 5% for k ≤ 10h Mpc−1).

E. Alternative approaches to capturing
nonlinear corrections

For the precision needs of future surveys, this approach
to capturing the nonlinear corrections can be improved
through both a greater number of simulations and higher-
resolution simulations taking into account the full cosmol-
ogy dependence (instead of fitting for a fixed cosmology,
and in the HMCODE context modifying parameters in
addition to ΔV entering the halo model). We note that
an alternative approach consists of creating a full simu-
lation-based emulator as has been achieved in ΛCDM (e.g
[148–150]). Given the simplicity of the JBD model (where
a JBD simulation has the same computational cost as a
standard GR simulation), an emulator accounting for JBD
gravity is feasible but computationally expensive.
In this regard, the “reaction approach” of Cataneo et al.

(2019) [151] (also see Bose et al. (2020) [152]) is
promising, as it only requires a computation of halo model
and 1-loop perturbation theory power spectra in the
modified gravity cosmology together with an emulator
for ΛCDM, and has already demonstrated percent-level
accuracy on highly nonlinear scales for more complicated
modified gravity models. Ultimately, an emulator needs to
be able to simultaneously account for a wide range of
physics, such as cold dark matter, massive neutrinos,
modified gravity, and baryonic feedback, which is increas-
ingly within reach.11

F. Including physical effects:
Independently versus combined

While we have considered changes to HMCODE by
calibrating to simulations that only include a single
extension to ΛCDM (i.e., simulations that either account
for baryonic feedback, neutrino mass, or modified gravity,
but not simultaneously), we note that their effects are

propagated in a coherent way in HMCODE through changes
to the expansion rate, density parameters, growth function,
virialized halo overdensity, the linear collapse threshold,
concentration-mass relation, and halo bloating. In a sense,
therefore, HMCODE is simultaneously accounting for the
impact of baryonic feedback, neutrino mass, and modified
gravity (also see the discussion in Ref. [103]).
We note that the differences are small (≲5% even for

k ¼ 10h Mpc−1) compared to the case where the effects of
baryonic feedback, neutrino mass, and modified gravity are
separately propagated in the nonlinear matter power spec-
trum [103]. This is in agreement with a range of simulations
where baryons and modified gravity [156–158], baryons
and massive neutrinos [159,160], and modified gravity and
massive neutrinos [161–163] have been simultaneously
considered. Lastly, we emphasize that the question of
separability of the physical effects is distinct from the
question of degeneracies between the effects; as shown in
Fig. 2 it might indeed be a challenge to distinguish the
physical imprints of baryonic feedback, massive neutrinos,
and modified gravity from one another, which we further
explore in this analysis.

IV. ANALYSIS: MODEL REQUIREMENTS,
DATASETS, SYSTEMATIC UNCERTAINTIES,

PRIORS, DATA CONCORDANCE

In our cosmological analysis, we perform Markov Chain
Monte Carlo (MCMC) calculations with a modified version
of COSMOLSS [5,164], which is based on CAMB [165] and
COSMOMC [166]. We use a convergence criterion that obeys
R − 1 < 2 × 10−2, where the Gelman-Rubin R-statistic
[167] is the variance of chain means divided by the mean
of chain variances. Here, we describe the cosmological
datasets used, systematic uncertainties included, parameter
priors enforced, approaches for performing model selection
and assessing dataset concordances, and our requirements
on extended models.

A. Requirements on extended models: What must be
satisfied to replace the standard model?

As we explore the viability of JBD gravity with current
cosmological datasets, we highlight three requirements that
need to be simultaneously satisfied for an extended cos-
mological model to be considered as a genuine alternative
to the standard ΛCDM model. In devising these require-
ments, we take the approach that the “burden of proof” is
on the extended model. We list these requirements below:
(1) The extended model needs to be strongly favored in

a model selection sense. This can be assessed by
considering statistical measures such as the Bayesian
evidence, goodness of fit, and deviance information
criterion (see Sec. IV E). The criterion for what
constitutes “strongly favored” can be determined
through for instance Jeffreys’ scale (Sec. IV E).

11We note that a separate emulator for baryonic feedback based
on the ‘baryonic correction model” [153] has been considered in
Refs. [154,155].
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(2) The extended model needs to exhibit a 5σ or greater
deviation in the additional parameters that are
introduced (with respect to their values in the
standard model limit). As an example, this imposes
the requirement that the effective gravitational con-
stantGmatter=G rules out the GR value of unity at this
statistical significance. The choice of 5σ is motivated
by the particle physics gold standard.

(3) The extended model needs to stay robust when
considering additional data. In other words, it is
not sufficient for the extended model to satisfy the
two requirements above for only a subset of estab-
lished cosmological data (such as the CMB alone),
but rather it needs to satisfy the requirements as
additional established datasets are simultaneously
considered in the analysis (such as the CMB together
with BAO and supernova distances, and in other
regimes probed by for example black holes and
gravitational waves). As part of this condition we
include the ideal scenario in which the extended
model makes a successful observational prediction
that differs from the standard model expectation at
5σ or greater statistical significance (i.e., going
beyond the second requirement above by predicting
the change for a new probe).

Further, there is an optional but strongly desired feature
that we seek in an extended model:
(4) The underlying cosmology favored by different

probes are in agreement within the extended model.
This is a particularly desired feature in the event of
discordances between cosmological probes in the
standard model. The ability of the extended model
to bring about concordance among probes ideally,
but not necessarily, holds for all probes (in other
words, the ability to solve both the H0 and S8 ≡
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
tensions rather than only one of the

two). We consider this to be an optional feature of the
extended model to allow for the possibility that
remaining discordances between probes are caused
by unaccounted systematic uncertainties in the data
(which admittedly requires careful consideration as
unaccounted systematic uncertainties would also have
an effect on model selection and extended model
parameter preferences). Conversely, if the extended
model worsens tensions among probes, this would
raise strong concerns about its viability (especially if
the first three conditions are not already satisfied).

As an example of an extended model that illustrates these
conditions, we refer to evolving dark energy as expressed
by the equation of state wðaÞ ¼ w0 þ ð1 − aÞwa, where w0

and wa are the additional free parameters of the model. In
considering cosmic shear data from the Kilo Degree Survey
(KiDS) and CMB temperature and polarization data from
the Planck satellite, in Ref. [22] this model was found to
completely resolve the tension between these datasets

(as further manifested through the S8 parameter). This
allowed for the combined analysis of KiDS and Planck
which favored a deviation in the extended parameters at 3σ
statistical significance. The combined data moreover found
the extended model to be moderately favored relative to
ΛCDM from a model selection standpoint.
However, in Ref. [5], this promising model was revisited

in the context of additional galaxy-galaxy lensing and
redshift-space galaxy clustering data fromKiDS overlapping
with the 2-degree Field Lensing Survey and the Baryon
Oscillation Spectroscopic Survey. Here, the additional
probes reintroduced the S8 tension and thereby prevented
the combined analysis of these datasets with the Planck
CMB. This in turn lowered the statistical significance of the
deviation of the extended (w0; wa) parameters from their
standard model expectation and removed themodel selection
preference relative to ΛCDM. Hence, the extended model
visibly failed the third requirement above and was no longer
considered to be a promising candidate.
Our past experiences are reflected in the conditions

described here, which illustrate that it is not straightforward
to replace the standard model (by construction as the
burden of proof is on the extended model and the burden
itself is high). We use these conditions to assess the
viability of JBD gravity in forthcoming sections.

B. Cosmological datasets

We consider the following datasets in our cosmological
analysis, either separately or in combination.

1. Cosmic microwave background

We consider the CMB temperature, polarization, and
lensing reconstruction angular power spectra from the
Planck satellite. We consider the 2018 dataset of Planck
[4], and in some cases also contrast the differences in the
parameter constraints with the 2015 dataset of Planck [74].
We distinguish between two setups for Planck 2018, one

that we denote “Planck18”which includes the CMB temper-
ature and polarization data (TT;TE;EEþ lowE; where the
low-multipole polarization is obtained from the High
Frequency Instrument, HFI), and another that we denote
“All-Planck18” which additionally includes the lensing
reconstruction (TT;TE;EEþ lowEþ lensing). The corre-
sponding two cases for Planck 2015 are “Planck15” which
includes the CMB temperature and low-l polarization data
(TTþ lowP; where the low-multipole polarization is
obtained from the Low Frequency Instrument, LFI), along
with “All-Planck15”which additionally includes theTE and
EE spectra at high multipoles together with lensing
reconstruction (TT;TE;EEþ lowPþ lensing).
In addition to Planck, we consider the improvements

in the parameter constraints from a combined analysis
with the small-scale CMB temperature and polarization
measurements from the 2008–2018 observing seasons of
the Atacama Cosmology Telescope (ACT; primarily DR4
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[98] but also contrasting against DR3 [168]). We note that
the covariance between Planck and ACT is not included,
which is estimated to be adequate at the ≲5% level in
ΛCDM (and certain one-parameter extensions) following
the scale cuts imposed on the ACT temperature power
spectrum [98]. As a precaution, therefore, we only consider
the combined analysis of Planck and ACT in distinct cases.
For the primary CMB anisotropies, JBD gravity provides

a shift in the locations of the peaks due to the change in the
expansion history (as seen in Fig. 2 and Fig. 22; where the
JBD expansion history directly modifies quantities such as
the epoch of matter-radiation equality and angular size
of the sound horizon at recombination [35,62,169]). By
modifying the time-variation in the gravitational potentials,
d
dt ðΨþΦÞ, JBD gravity in principle also affects the lowest
multipoles in the CMB temperature power spectrum (and
cross-correlations) via the integrated Sachs-Wolfe (ISW)
effect [170]. The impact of JBD gravity on the CMB due to
the ISW effect, however, is statistically diminished due to
cosmic variance (along with the generally mild evolution of
the scalar field). The CMB lensing potential power spec-
trum [171,172], Cϕϕ

l ðθÞ, is affected by JBD gravity through
modifications to the sum of the metric potentials ðΨþΦÞ
and the expansion history, and to lesser extent through the
growth function, as described in Sec. II (also see Ref. [3] on
the impact of modified gravity on the CMB).

2. Weak gravitational lensing tomography and
overlapping redshift-space galaxy clustering

Following the analysis of Joudaki et al. (2018) [5],
we consider measurements of cosmic shear, galaxy-galaxy
lensing, and redshift-space galaxy clustering from the Kilo
Degree Survey (KiDS-450) [173,174] overlapping with the
2-degree Field Lensing Survey [175] (2dFLenS) and the
Baryon Oscillation Spectroscopic Survey (BOSS DR1012)
[177]. The measurements are given by fξijþ; ξij− ; γjt ; P0; P2g,
where ξij�ðθÞ are the tomographic two-point shear correla-
tion functions (for bins i and j, and angular scales θ), γitðθÞ
is the tomographic galaxy-galaxy lensing angular cross-
correlation function, and P0=2ðkÞ are the monopole and
quadrupole power spectra [5]. We emphasize that the
galaxy-galaxy lensing and multipole power spectrum
measurements are only considered in the overlapping areas
with KiDS.
This data vector is constructed from four tomographic

bins of source galaxies in the redshift range 0.1 < zB <
0.9, where ΔzB ¼ 0.2 and zB is the best-fit redshift
by the Bayesian photometric redshift code BPZ [178].
Moreover, there are four samples of lens galaxies:
f2dFLOZ;BOSSLOWZg which cover the redshift range

0.5 < z < 0.43 and f2dFHIZ;BOSSCMASSg which
cover the redshift range 0.43 < z < 0.7. We include the
full covariance between these observables using numerical
simulations, as detailed in Ref. [5]. This covariance
assumes a fixed ΛCDM cosmology, which is a sufficient
approximation to current data [179].13

KiDS-450 [174] encompasses 360 deg2 on the sky,
contains an effective number density neff ¼ 8.5 galaxies
arcmin−2, possesses a median source redshift zm ¼ 0.53,
and yields similar cosmological constraints to the sub-
sequent analysis of the KiDSþ VIKING-450 cosmic shear
dataset [180]. The cosmological constraints are further in
close agreement, both in terms of the posterior mean and
uncertainty, with those obtained from the cosmic shear
dataset of the Dark Energy Survey (DES-Y1 [182]) when
considered in a homogenized analysis setup as shown
in Ref. [183]. We consider both KiDS × 2dFLenS and
KiDS × f2dFLenSþ BOSSg [5] as described here, in
order to explore the capabilities of a “3 × 2pt” dataset
where the galaxy clustering is restricted to the overlapping
regions with KiDS, as compared to a combined analysis of
KiDS with the full spectroscopic datasets (where the impact
of galaxy-galaxy lensing becomes negligible given the
substantial difference in current imaging and spectroscopic
observing areas). We do not consider the recent KiDS-1000
cosmic shear dataset [181] as it was not available during the
course of this work, and we do not consider the combined
cosmic shear dataset of KiDSþ VIKING-450 and DES-Y1
[183], with similar constraining power to KiDS-1000.
The wide spectroscopic surveys of fBOSS; 2dFLenSg

contain f1 × 106; 4 × 104g galaxies over f1 × 104; 7 ×
102g deg2 on the sky, respectively [175,177]. We restrict
both of these surveys to the overlapping regions with
KiDS-450, such that in these regions LOWZ contains 5044
lens galaxies over 125.0 deg2, CMASS contains 20476
lens galaxies over 221.7 deg2, 2dFLOZ contains 2214 lens
galaxies over 122.4 deg2, and 2dFHIZ contains 3676 lens
galaxies over 122.4 deg2 (also see below for use of the full
BOSS dataset) [5].
To avoid nonlinearities in the galaxy bias, we restrict the

galaxy-galaxy lensing and redshift-space galaxy clustering

12We note that subsequent BOSS and eBOSS data releases
[176] do not contain additional observations in the KiDS
footprint.

13As shown in Ref. [179], the bias due to the parameter
dependence of the covariance decreases as the number of modes
in a given survey increases, and is found to be at most 0.2σ for
combined analyses of weak lensing and galaxy clustering even
for surveys targeting less than 1% of the sky or very large scales
(multipoles l < 20). One approach to account for the “wrong”
cosmology of the covariance is to infer the best-fit cosmology,
and then use it to obtain an updated covariance that enters a new
run, iteratively until there is convergence between the two
cosmologies. For the particular case of KiDS, this has been
shown to impact the parameter constraints at the level of < 0.1σ
[180,181]. While the impact of the fixed covariance might
increase in the case of modified gravity, we still expect it to
be insignificant (additionally given the overall small deviations
from GR).
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measurements to linear scales, such that θmin ¼ 12 arcmin
for galaxy-galaxy lensing and kmax ¼ 0.125h Mpc−1 for
the multipole power spectra in accordance with the “fidu-
cial” analysis in Ref. [5] (see Table 2 therein). The cosmic
shear measurements are allowed to extend into the non-
linear regime, and correspond to the same scale cuts as in
the fiducial KiDS-450 analyses [5,174].
Analogous to CMB lensing, the galaxy lensing ξij�ðθÞ

and galaxy-galaxy lensing γjt ðθÞ measurements are mainly
sensitive to JBD gravity via the modifications to the
expansion history and the auto and cross-spectrum of
ΨþΦ (i.e., we integrate over the Weyl power spectrum
rather than the matter power spectrum for the weak lensing
and galaxy-galaxy lensing calculations; there is also a
minor contribution to the intrinsic galaxy alignments
through the growth function). In turn, the multipole power
spectra P0=2 are sensitive to JBD gravity via the expansion
history, matter power spectrum, and the growth rate (and
thereby the potential Ψ), discussed in Sec. II.

3. Growth rate, baryon acoustic oscillations,
and Alcock-Paczynski effect

In order to more fully utilize the statistical power of
BOSS, we also consider the “final BAOþ FS consensus”
constraints on ffσ8; DV=rd; FAPg from the BOSS DR12
dataset [78] (i.e., not restricted to the overlapping regions
with KiDS-450).14 Here, we use the distance scale,
DVðzÞ ¼ ½D2

MðzÞ cz
HðzÞ�1=3, where DMðzÞ is the comoving

angular diameter distance, along with the comoving size of
the sound horizon, rd ¼

R∞
zd

csðzÞ=HðzÞdz, at the end of the
baryon-drag epoch, zd, where csðzÞ is the sound speed, and
the Alcock-Paczynski parameter FAPðzÞ ¼ DMðzÞHðzÞ=c.
In combining these measurements with the cosmic

shear, galaxy-galaxy lensing, and overlapping redshift-
space galaxy clustering measurements of Sec. IV B 2,
we avoid double-counting BOSS by only including the
KiDS × 2dFLenS measurements (i.e., excluding the
KiDS × BOSS galaxy-galaxy lensing and multipole power
spectrum measurements). Given the significantly larger
amount of BOSS data outside of the overlapping regions
with KiDS (in our case by more than a factor of 50), we
expect this trade-off to increase the cosmological con-
straining power. We do not include a covariance between
the BOSS ffσ8; DV=rd; FAPg measurements with the
galaxy-galaxy lensing and galaxy clustering measurements
involving 2dFLenS as the two datasets encompass distinct
areas on the sky. To distinguish these BOSS measurements
from those restricted to the overlapping regions with KiDS,

we will refer to these as “All-BOSS” (given their use of the
full BOSS dataset).
As discussed in Sec. II, JBD gravity directly modifies

these observables through its impact on the growth rate
and expansion history (and thereby distances and sound
horizon).

4. Supernovae

To further improve the cosmological constraining power,
we consider Type Ia supernova (SN) distance measure-
ments from the Pantheon compilation [97] in some of
our calculations. This compilation contains a total of 1048
SNe between 0.01 < z < 2.3 from Pan-STARRS1, SDSS,
SNLS, various low-z and HST samples, and constitutes
the largest combined sample of SN Ia. We use these SN
distances to constrain JBD gravity through the impact of
the expansion history (described in Sec. II).

C. Systematic uncertainties

1. Cosmic microwave background (temperature,
polarization, lensing reconstruction)

In obtaining unbiased cosmological results, we account
for the systematic uncertainties affecting the measure-
ments. For the fPlanck 2018; 2015g CMB temperature
and polarization power spectra, this includes marginalizing
over f21; 27g astrophysical foreground and instrumental
modeling parameters in the MCMC analysis, respectively
(15 nuisance parameters for TT alone and f6; 12g addi-
tional parameters when further including TEþ EE; in
particular due to galactic dust emission, the cosmic infrared
background, the thermal and kinetic Sunyaev-Zel’dovich
effects, radio and infrared point sources, and power
spectrum calibration uncertainties) [185,186]. The differ-
ence in the number of nuisance parameters between the
2018 and 2015 datasets of Planck is that the dust ampli-
tudes in EE are fixed from the cross-correlations with the
353-GHz maps in the 2018 analysis [185]. When including
the Planck CMB lensing power spectrum, the map-based
calibration parameter is varied in the analysis, which
already belongs to the above set of CMB nuisance
parameters [171,172].
Moreover, in combining Planck with ACT, one addi-

tional calibration parameter is varied in the analysis, which
linearly scales the estimated ACT temperature-polarization
cross-spectrum and quadratically scales the polarization
auto-spectrum [98,168].

2. 3 × 2pt (cosmic shear, galaxy-galaxy lensing,
multipole power spectra)

For the KiDS × f2dFLenSþ BOSSg cosmic shear, gal-
axy-galaxy lensing, and redshift-space galaxy clustering
observables, we include uncertainties due to the intrinsic
galaxy alignments, baryonic feedback, photometric redshift

14We do not use the eBOSS DR16 dataset [176,184] as the
likelihood has not yet become publicly available. This dataset
will allow for higher redshifts to be probed than considered here
(i.e., z > 0.7), in particular through the higher-redshift growth
rate measurements (as the impact of JBD gravity on BAO
distances diminishes with redshift).
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distributions, multiplicative shear calibration, galaxy bias,
pairwise velocity dispersion, and non-Poissonian shot
noise in our analysis in accordance with the treatment in
Joudaki et al. (2018) [5]. This introduces 14 additional
parameters that are varied in the MCMC calculations
(1 from intrinsic galaxy alignments, 1 from baryonic
feedback, 4 from galaxy bias, 4 from velocity dispersion,
4 from non-Poissonian shot noise).
The intrinsic galaxy alignments encapsulate correlations

of the intrinsic ellipticities of galaxies with themselves and
with the shear of background sources (i.e., the lensing two-
point functions are constructed from correlations of the sum
of shear and intrinsic ellipticity). We modify the strength of
the intrinsic alignment signal by allowing for the amplitude
AIA in the “nonlinear linear alignment (NLA) model”
[187,188] to vary freely (noting that the results are robust
to the redshift dependence [5]), which affects the theoreti-
cal estimates for cosmic shear and galaxy-galaxy lensing.
We note that the modeling of the intrinsic alignments is
assumed to be the same as in GR (i.e., we have not modified
the NLAmodel), and further work is required to understand
how separable the modeling of this systematic uncertainty
is from physics such as modified gravity and massive
neutrinos. However, as our parameter constraints tend to
be consistent with GR (and zero neutrino mass; shown
in Secs. VI–VIII), any correction to the NLA model is
expected to be small (as in a sense it is a “correction to a
correction”).
We propagate the uncertainties in the photometric red-

shift distributions of the source samples by performing each
MCMC calculation over 1000 bootstrap realizations of the
redshift distributions (until convergence) [174], which does
not introduce additional parameters and affects only the
cosmic shear and galaxy-galaxy lensing estimates (we do
not allow for uncertainties in the spectroscopic redshift
distributions used for the lens samples). We assume a linear
galaxy bias for each lens sample (2dFLOZ, 2dFHIZ,
LOWZ, CMASS), motivated by our linear scale cuts for
galaxy-galaxy lensing and redshift-space galaxy clustering
(described in Sec. IV B 2), which introduces 4 additional
parameters that are varied. The same holds for the velocity
dispersion and non-Poissonian shot noise, where a param-
eter is introduced for each lens sample, leading to 8
additional parameters that modify the theoretical estimates
for the multipole power spectra. The uncertainties in the
multiplicative shear calibration are propagated via the
covariance matrix as in Hildebrandt et al. (2017) [174]
and does not introduce additional degrees of freedom.
Lastly, we allow for the baryonic feedback amplitude, B,

to vary via HMCODE (as discussed in Sec. III), which
modifies the halo concentration-mass relation (and further
modifies the halo bloating parameter η0 through the
relationship given in Ref. [5]). We place particular empha-
sis on baryon feedback given the degeneracy with modified
gravity and neutrino mass through their impact on the

nonlinear matter power spectrum (as shown in Fig. 2; also
see Refs. [103,189]), Here, we have assumed that calibrat-
ing HMCODE to simulations that separately include baryonic
physics, massive neutrinos, and modified gravity provides a
close approximation to one where it is calibrated to
simulations that simultaneously include these effects (see
Sec. III for a discussion). As different approaches to
simulating baryonic feedback lead to quantitatively differ-
ent predictions for the nonlinear matter power spectrum
[190], we aim to capture this uncertainty by our wide prior
on the feedback amplitude (1 < B < 4) in accordance with
Ref. [5] (effectively “washing out” some of the information
in the nonlinear regime). Here, B ¼ 3.13 corresponds to
“dark matter only” (i.e., no feedback), while B ¼ 2.0
corresponds to the AGN case of the OWL simulations
[102,115].15

3. BAO distances, Alcock-Paczynski effect,
and growth rate

For the BOSS growth rate and BAO measurements
ðfσ8; DV=rd; FAPÞ, survey-related systematics are propa-
gated into the galaxy weights (e.g., due to redshift failures,
fiber collisions, and dependencies between the number
density of observed galaxies and stellar density and seeing)
and modeling systematics are propagated into the covari-
ance matrix (e.g., due to differences between different
prereconstruction and postreconstruction measurement
approaches, modeling of redshift space distortions and
galaxy bias, and differences in covariance matrix
approaches) [77,78,191]. As a result, no additional param-
eters are varied in the MCMC analysis when these BOSS
measurements are considered.
We emphasize that the KiDS × BOSS galaxy-galaxy

lensing and multipole power spectrum measurements are
not used together with these BOSS growth rate and BAO
measurements to avoid double-counting the BOSS data
(i.e., we restrict to combining KiDS × 2dFLenS with only
either of the two, as described in Sec. IV B 3). We also note
that our Jordan-Brans-Dicke gravity analysis brings about
secondary systematic uncertainties, as for instance the
redshift-space distortion and galaxy bias modeling and
reconstruction methods have not been adequately tested in
the context of modified gravity, but we expect that these
uncertainties are subdominant to the present statistical
uncertainties.

4. Supernova distances

For the Pantheon supernova distances, uncertainties due
to e.g., calibration, distance bias corrections, coherent flow
corrections, and Milky Way extinction corrections are

15We note that the AGN case of the OWL simulations is quoted
as corresponding to B ¼ 2.3 in Mead et al. (2015) [102], but it is
given by B ¼ 2.0 following the updated η0–B parametrization in
Ref. [5].
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included in the analysis [97]. These uncertainties are not
propagated via additional parameters in the MCMC, but
instead through a correction to the covariance matrix (i.e.,
by adding a systematic covariance matrix to the statistical
covariance matrix).

D. Parameter priors

We consider uniform priors on the standard cosmologi-
cal parameters, with ranges given in Table I (similar to
Ref. [5]). Concretely, this model includes the 6 standard, or
“vanilla”, cosmological parameters: the present cold dark
matter density parameter, Ωch2 ∈ ½0.001; 0.99�, the present
baryon density parameter, Ωbh2 ∈ ½0.013; 0.033�, the
present density parameter of the flat JBD potential which
constitutes a component of the full JBD density in Eq. (8),
ΩVh2 ∈ ½0.01; 0.99� (varied in lieu of the approximation to
the angular size of the sound horizon, θMC), the amplitude
of the scalar spectrum, lnð1010AsÞ ∈ ½1.7; 5.0�, the scalar
spectral index, ns ∈ ½0.7; 1.3�, and the optical depth to
reionization, τ ∈ ½0.01; 0.8�. Here, the informative uniform
prior on the baryon density is motivated by measurements
of the primordial deuterium abundance [192,193], where
our prior range encapsulates the 10σ uncertainties.

In our fiducial model, we fix the neutrinos to be massless.
We note that this massless neutrino setup yields similar
results to one where the sum of neutrino masses is fixed toP

mν ¼ 0.06 eV (for existing datasets) and is chosen for
increased computational speed.However, we also consider a
setup where the sum of neutrino masses is varied, where we
impose a uniform prior on

P
mν ∈ ½0; 2; 0� eV. We use the

pivot scale kpivot ¼ 0.05 Mpc−1, and note that the Hubble
constant H0 ¼ 100h kms−1Mpc−1 is a derived parameter,
for which we impose the implicit bound h ∈ ½0.4; 1.0�. We
will also consider constraints on the derived parameter
S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, where σ8 is the present root-mean-

square of the linear matter density contrast on 8h−1 Mpc
scales and Ωm is the present matter density parameter.
For the KiDS × f2dFLenSþ BOSSg nuisance parame-

ters, we impose the same fiducial priors as given in Ref. [5],
and for the CMB nuisance parameters, we impose the
same priors as used by Planck [4]. Notably, as discussed
in Sec. IV C, we allow for a wide uniform prior on the
baryonic feedback amplitude B ∈ ½1; 4�. We moreover
impose a uniform prior on lnω−1

BD in agreement with the
approach in Avilez and Skordis (2014) [56]. As the GR-
limit is obtained for ωBD → ∞, we have taken lnω−1

BD ∈
½−17;−2.3� such that we obtain the upper bound ωBD ≲
2.4 × 107 (noting that this limit yields close to identical
MCMC results to a pure ΛCDM run) while the lower
bound is given by ωBD ≥ 10. When allowing for variations
in the present effective gravitational constant, Gmatter=G
(written as shorthand for ðGmatter=GÞja¼1Þ, we impose a
uniform prior in the range [0.5, 2.0], designed to be
noninformative (i.e., constraints restricted to a narrower
region within the range) and motivated by our numerical
simulations (Sec. III).

E. Model selection and data concordance assessment:
Connection between different estimators

There has been a substantial amount of recent activity
in devising the optimal approach for performing model
selection and assessing dataset concordances (e.g.,
[164,194–210]). Here, we consider the deviance informa-
tion criterion (DIC) [194] to assess the relative preference
of two distinct cosmological models. The DIC is given by

DIC ¼ χ2effðθ̂Þ þ 2pD ¼ 2χ2effðθÞ − χ2effðθ̂Þ; ð33Þ

where the first term is the best-fit effective χ2 (here defined
as the effective χ2 at the posterior maximum point, θ̂,
equivalent to the maximum likelihood point for uniform
priors) and the second term is the Bayesian complexity pD

(given by the difference of the mean of the χ2 over the
posterior, captured by the overbar, and the best-fit effective
χ2). The Bayesian complexity encapsulates the effective
number of parameters of a model, such that more complex
models are penalized. In this definition of the DIC, we have

TABLE I. Priors on the cosmological and astrophysical param-
eters varied in the MCMC runs (excluding the CMB nuisance
parameters). Here, “JBD potential density” refers to the density
parameter of the scalar potential [see e.g., Eq. (8)], and the
Hubble constant is a derived parameter. While varied independ-
ently, we impose the same prior ranges on the galaxy bias,
pairwise velocity dispersion, and shot noise for all four lens
samples (2dFLOZ, 2dFHIZ, LOWZ, CMASS) in the over-
lapping regions with KiDS. Here, our ΛCDM limit corresponds
to lnω−1

BD ¼ −17 and Gmatter=G ¼ 1.0 (we have confirmed the
agreement in our results between this choice and pure ΛCDM).
We note that the effective gravitational constant parameter is
defined at present and “Gmatter=G” is here shorthand for
ðGmatter=GÞja¼1 [see Eq. (18)].

Parameter Symbol Prior

Cold dark matter density Ωch2 [0.001, 0.99]
Baryon density Ωbh2 [0.013, 0.033]
JBD potential density ΩVh2 [0.01, 0.99]
Amplitude of scalar spectrum ln ð1010AsÞ [1.7, 5.0]
Scalar spectral index ns [0.7, 1.3]
Optical depth τ [0.01, 0.8]
Dimensionless Hubble constant h [0.4, 1.0]
Pivot scale ½Mpc−1� kpivot 0.05
Intrinsic alignment amplitude AIA ½−6; 6�
Baryonic feedback amplitude B [1, 4]
Linear galaxy bias bx [0, 4]
Velocity dispersion ½h−1 Mpc� σv;x [0, 10]
Non-Poissonian shot noise ½h−1 Mpc�3 Nshot;x [0, 2300]
Sum of neutrino masses [eV]

P
mν [0.06, 10]

JBD coupling constant lnω−1
BD ½−17;−2.3�

Effective gravitational constant Gmatter=G [0.5, 2.0]
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neglected a factor of −2 lnZ, where Z ≡ PðDjMÞ is the
probability (P) of the data (D) given the model (M),
known as the Bayesian evidence (e.g., Ref. [198]). For
reference, we take a difference of ΔDIC ¼ DICextended −
DICΛCDM ¼ f5; 10g to correspond to fmoderate; strongg
preference in favor of the standard cosmological model
(given odds of 1=12 and 1=148, respectively).
In assessing the concordance between distinct cosmo-

logical datasets, we consider the log I statistic [164], where
“log” denotes the common logarithm. This concordance
statistic is obtained from the DIC estimates, such that

logIðD1;D2Þ¼A½DICðD1 ∪D2Þ−DICðD1Þ−DICðD2Þ�;
ð34Þ

where A ¼ −½2 lnð10Þ�−1, while D1 and D2 denote two
distinct datasets and DICðD1 ∪ D2Þ is the joint DIC of the
two datasets. This allows us to estimate the probability of
the combined data with respect to the individual data
probabilities (in a similar form to the Bayes factor). The
DIC has the advantages that it is symmetric (neither dataset
is considered to be more fundamental than the other), it is
simple to compute (in particular compared to the full
evidence), and it can be used to assess possible discor-
dances between constraints from the same dataset (allowing
for improvements in the treatment of systematic uncertain-
ties). Turning to the drawbacks, among others, its use of a
point estimate can be stochastically affected by the data,
and beyond brute force, no accurate and efficient method
exists for computing the uncertainties in the DIC (for
further details, see e.g., Ref. [164]).
We will further show that our logI statistic can be

related to a combination of the Bayesian evidence, the
Kullback-Leibler (KL) divergence, and the goodness of fit.
To this end, we can express the deviance information
criterion as

DIC ¼ χ2effðθ̂Þ þ 2pD ¼ 2χ2effðθÞ − χ2effðθ̂Þ

¼ −4
Z

P lnLdθ − χ2effðθ̂Þ

¼ −4
Z

P ln
L
Z
dθ − 4 lnZ − χ2effðθ̂Þ

¼ −4
Z

P ln
P
Π
dθ − 4 lnZ − χ2effðθ̂Þ

¼ −4
�
DKL þ lnZ þ 1

4
χ2effðθ̂Þ

�
; ð35Þ

where we have used Bayes’ theorem, P ¼ LΠ=Z, to
reexpress the equation in terms of the Kullback-Leibler
divergence, DKLðP;ΠÞ ¼

R
P ln P

Π dθ, which measures the
“relative entropy” or information gain from the prior to the
posterior. Here, P ≡ PðθjD;MÞ is the posterior, L≡
PðDjθ;MÞ is the likelihood, Π≡ PðθjMÞ is prior, and

we note that
R
P lnZdθ ¼ lnZ

R
Pdθ ¼ lnZ becauseR

Pdθ ¼ 1 by definition. As a result, the DIC can be
expressed as the sum of the Kullback-Leibler divergence,
the Bayesian evidence, and the goodness of fit. We can
therefore express our tension statistic as

logIðD1;D2Þ
¼−4A½DKLðD1 ∪D2Þ−DKLðD1Þ−DKLðD2Þ�
−4A½lnZðD1 ∪D2Þ− lnZðD1Þ− lnZðD2Þ�
−A½χ2effðθ̂;D1 ∪D2Þ−χ2effðθ̂;D1Þ−χ2effðθ̂;D2Þ�; ð36Þ

which can then be defined in terms of the differences (see
Refs. [204–206])

lnIKL ¼DKLðD1ÞþDKLðD2Þ−DKLðD1 ∪D2Þ;

lnR¼ ln
ZðD1 ∪D2Þ
ZðD1ÞZðD2Þ

;

QDMAP ¼ χ2effðθ̂;D1 ∪D2Þ−χ2effðθ̂;D1Þ−χ2effðθ̂;D2Þ; ð37Þ

where R is known as the Bayes ratio (and IKL is commonly
expressed as I, see e.g., Refs. [205,206]), such that

logIðD1; D2Þ ¼ −4A
�
lnR − ln IKL þ

1

4
QDMAP

�
: ð38Þ

Hence, we find that the log I measure of the concor-
dance between datasets can be expressed in terms of
corresponding measures involving the Bayesian evidence,
the Kullback-Leibler divergence, and the goodness of fit.
In its purest form, this reduces down to a measure of the
mean and best-fit effective χ2, which eliminates the prior
volume dependence in the R and IKL terms (see also e.g.,
Refs. [205,211]).
For reference, we follow Jeffreys’ scale [212,213] and

take j logI j≳ f1=2; 1; 2g to reflect fsubstantial; strong;
decisiveg concordance between the datasets (given prob-
ability ratios in excess of 3.2, 10, and 100, respectively).
Similar negative values correspond to discordance, or
“tension,” between datasets. We also consider the tension
between datasets for distinct cosmological parameters, such
as H0 and S8, by evaluating

TðpÞ ¼ jpD1 − pD2 j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðpD1Þ þ σ2ðpD2Þ

q
ð39Þ

for a given parameter p, where overbar denotes the
posterior mean, the vertical bars denote absolute value,
and σ refers to the symmetric 68% confidence interval
about the posterior mean (we note that the posterior
maximum is another popular choice, with similar results
for current data; e.g., [183,211]).
Given the computational simplicity, we restrict the

model selection and dataset concordance assessments to
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the DIC and log I statistic, respectively. However,
we note that similar results are expected for analogous
computations with the Bayesian evidence and Bayes
factor [198], respectively (see for example the agree-
ment between the approaches in Ref. [164]). Further
alternative approaches for data concordance assessments
include, among others, the “surprise” [201,202], the
“index of inconsistency” [203], the “debiased evidence
ratio” [204], the QDMAP statistic [204], the QUDM statistic
[204], the “suspiciousness” [205,206], and posterior
predictive distributions (e.g., [207,208]). As noted in
Refs. [204,211], and shown in this section, these con-
cordance statistics can often be directly related; of
particular relevance here

log I ¼ ½2 lnð10Þ�−1½QDMAP þ 4 ln S�; ð40Þ

where S≡ R=IKL is the suspiciousness.

V. RESULTS: COSMIC MICROWAVE
BACKGROUND

We nowmethodically present the cosmological results of
the JBD model, with a particular focus on the impact of

different data combinations, modeling choices, and
possible degeneracies between modified gravity, massive
neutrinos, and astrophysics (especially baryonic feedback).
Henceforth, we interchangeably refer to “Gmatter” and
“Gmatter=G” when considering the normalized effective
gravitational constant at present, ðGmatter=GÞja¼1, as a free
parameter in our analysis. In the assessment of the con-
cordance between datasets, this is self-consistently per-
formed under the same cosmological model.
We consider the following six distinct cosmologies:

(a) “ΛCDM” which refers to our ΛCDM limit of the JBD
model (see Table I), (b) “ΛCDMþP

mν” where we allow
the sum of neutrino masses to be further varied, (c) “JBD”
where the modified gravity parameter lnω−1

BD is varied in
addition to the ΛCDM parameters (referred to as the
standard, or restricted, JBD model), (d) “JBDþP

mν”
where the sum of neutrino masses is varied in the restricted
JBD model, (e) “JBDþGmatter” where the present effective
gravitational constant, ðGmatter=GÞja¼1, is varied together
with lnω−1

BD in addition to theΛCDMparameters (referred to
as the unrestricted JBD model), and (f) “JBDþ GmatterþP

mν” where the sum of neutrino masses is varied together
with the two modified gravity parameters in the unrestricted
JBD model.

TABLE II. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters. For the JBD
parameter ωBD and the sum of neutrino masses

P
mν, we quote the 95% confidence lower and upper bounds, respectively. The Hubble

constant H0 is in units of km s−1 Mpc−1,
P

mν is in units of eV, and S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. A table element with “� � �” implies that the

parameter is not varied in the analysis. Here, “ΛCDM” includes massless neutrinos and is taken as the limiting case of the JBD model, in
principle as ωBD → ∞, and in practice as lnω−1

BD ¼ −17 (along withGmatter=G ¼ 1). We note that minor deviations in the ΛCDM results
from those reported by Planck [4,74] and ACT [98,168] are due to this limit and the specific priors used (e.g., we do not add an external
Gaussian prior on τ as in ACT, and all three neutrinos are massless in our fiducial model). The tensions TðH0Þ and TðS8Þ are against
Riess et al. 2019 [79] and KiDS × f2dFLenSþ BOSSg, respectively (in the latter case only against KiDS × 2dFLenS when Planck is
combined with BOSS), and are evaluated in a consistent manner where the datasets are considered in the same cosmology relative to one
another (in practice only applies for S8).

Probe setup ωBD Gmatter=G
P

mν H0 S8 TðH0Þ TðS8Þ
Planck18ðΛCDMÞ � � � � � � � � � 67.84þ0.60

−0.61 0.838þ0.016
−0.016 4.0 2.4

Planck18ðΛCDM þP
mνÞ � � � � � � 0.38 66.73þ1.48

−0.69 0.830þ0.018
−0.018 4.1 2.5

Planck18ðJBDÞ 1150 � � � � � � 68.00þ0.60
−0.71 0.837þ0.016

−0.016 3.9 2.4
Planck18ðJBDþP

mνÞ 1710 � � � 0.37 66.79þ1.44
−0.76 0.831þ0.018

−0.018 4.0 2.4
Planck18ðJBDþGmatter þ

P
mνÞ 1120 0.993þ0.026

−0.038 0.43 66.40þ1.99
−1.97 0.835þ0.023

−0.023 3.1 1.5
Planck18þ ACTDR4ðΛCDMÞ � � � � � � � � � 68.00þ0.55

−0.56 0.841þ0.015
−0.015 4.0 2.5

Planck18þ ACTDR4ðJBDÞ 1380 � � � � � � 67.88þ0.55
−0.65 0.840þ0.015

−0.015 3.9 2.5
ACTDR4ðΛCDMÞ � � � � � � � � � 68.68þ1.69

−1.92 0.833þ0.042
−0.042 2.3 1.6

ACTDR4ðJBDÞ 330 � � � � � � 69.25þ2.35
−1.67 0.831þ0.042

−0.042 1.9 1.6
All-Planck18ðΛCDMÞ � � � � � � � � � 67.97þ0.55

−0.54 0.834þ0.012
−0.013 4.0 2.4

All-Planck18ðJBDÞ 810 � � � � � � 68.15þ0.50
−0.75 0.833þ0.013

−0.013 3.8 2.3
Planck18þ PantheonðJBDÞ 1440 � � � � � � 68.05þ0.57

−0.64 0.835þ0.015
−0.015 3.9 2.3

Planck18þ All-BOSSðJBDÞ 1170 � � � � � � 68.18þ0.45
−0.54 0.832þ0.013

−0.013 3.9 2.3
Planck15ðΛCDMÞ � � � � � � � � � 67.94þ1.00

−0.98 0.853þ0.025
−0.025 3.5 2.5

Planck15ðJBDÞ 530 � � � � � � 68.27þ0.93
−1.29 0.850þ0.025

−0.025 3.2 2.4
Planck15ðJBDþGmatterÞ 850 1.024þ0.046

−0.053 � � � 69.86þ2.57
−2.88 0.842þ0.034

−0.034 1.6 1.6
Planck15þ ACTDR3ðJBDÞ 900 � � � � � � 67.97þ0.92

−1.10 0.851þ0.023
−0.024 3.5 2.5
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A. Planck and ACT

It is well established that the CMB currently constrains
the standard cosmological model more powerfully than any
other cosmological probe (e.g., [4]). Here, we find the
strongest independent constraints on the JBD model from
the Planck CMB, in particular through the impact of JBD
gravity on the location of the CMB peaks and the damping
tail (as discussed in Secs. II and IV B 1).

1. Constraining the JBD coupling constant

As shown in Table II and Figs. 6 and 7, our constraints
are sensitive to the specific details of the CMB data and
cosmological model, but are generally at the ωBD ≳ 103

level (at 95% C.L., where the inequality symbol is here
taken to denote “greater than approximately”). Concretely,
ωBD > f1150; 1710; 1120g at 95% C.L. from the Planck
2018 CMB temperature and polarization measurements
when considering the restricted JBD model, the restricted
JBD model where the sum of neutrino masses is allowed to
vary, and the unrestricted JBD model where the sum of
neutrino masses is allowed to vary, respectively. For
comparison, by further including the Planck CMB lensing
reconstruction in our “All-Planck18” setup, the lower

bound in the restricted JBD model with fixed neutrino
masses weakens to ωBD > 810 (95% C.L.).
We emphasize that larger values of ωBD imply greater

consistency with GR. Moreover, while the uncertainty on
ωBD improves as we add more data, the one-sided bound
will either weaken or strengthen depending on how much
JBD gravity is favored by the additional data (i.e., it reflects
a shift in the posterior rather than a narrowing of the
posterior, similar to the one-sided bound for the sum of
neutrino masses). Our results can be contrasted with the
Planck constraints on ωBD in Refs. [56,67,69–71,214],
where the upper bound fluctuates between approximately
102 to 103 at 95% C.L. depending on the specific datasets
and details of the JBD modeling. We will return to this
comparison in Secs. VIII B and VIII D.
We moreover consider the high-multipole CMB temper-

ature and polarization measurements from ACT DR4,
which on its own constrains ωBD > 330 (95% C.L.) in
the restricted JBD model with fixed neutrino masses. By
combining Planck 2018 (temperature and polarization) and
ACT DR4 in this model, we find a strengthening in the
lower bound on ωBD from 1150 to 1380 (see Table II). We
again note that this does not imply a correspondingly
significant improvement in the uncertainty on ωBD, but
rather a shift in the amount of modified gravity favored by
the data (given the one-sided bound). In Fig. 7, we show the
marginalized posteriors for the coupling constant for
Planck and ACT, along with other datasets such as
BOSS and Pantheon, where the lower bound on ωBD is
largely unchanged for Planck combined with BOSS and it
strengthens to 1440 for Planck combined with Pantheon.

FIG. 7. Marginalized posterior distributions for the JBD
parameter lnω−1

BD. We simultaneously vary all standard cosmo-
logical parameters (but keep

P
mν and Gmatter=G fixed). For

visual clarity, we have zoomed in on the lnω−1
BD axis, as the

distributions continue to stay flat toward the GR limit at lnω−1
BD ¼

−∞ (in practice to the negative end of our prior range at
lnω−1

BD ¼ −17).
FIG. 6. Marginalized posterior distributions (inner 68% C.L.,
outer 95% C.L.) of the JBD parameter lnω−1

BD, the Hubble
constant H0 (in units of kms−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from the CMB temperature and polarization measurements of
Planck 2018 and ACT DR4. All other standard cosmological
parameters are simultaneously varied. For visual clarity, we have
zoomed in on the lnω−1

BD axis where the contours begin to flatten
in the plane with H0, as they stay flat and unbounded to the
negative end of our prior (at lnω−1

BD ¼ −17).
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2. Impact of restricted JBD gravity on H0 and S8
In Fig. 6, we show the Planck and ACT constraints for

the restricted JBD model in the subspace flnω−1
BD; H0; S8g,

where the Hubble constant increases as ωBD decreases
(i.e., as the strength of JBD gravity increases). The upturn
in H0 is stronger for ACT because its constraint on the
coupling constant is weaker, and it is less pronounced for
Planck when the sum of neutrino masses is varied (as
compared to fixed neutrino masses; given the stronger
constraint on the coupling constant). As expected, the
contours in the plane of lnω−1

BD and H0 flatten as we
approach the GR limit, here in practice as lnω−1

BD ≲ −9.
Meanwhile, the contour in the plane of S8 and lnω−1

BD has a
negligile downturn in S8 as JBD gravity increases, and
appears largely flat.
The Hubble constant is H0 ¼ 68.00þ0.60

−0.71 kms−1Mpc−1

and H0 ¼ 69.25þ2.35
−1.67 kms−1Mpc−1 in the restricted JBD

model for Planck and ACT, respectively. These constraints
are both approximately 10% weaker and positively shifted
by 0.3σ relative to the corresponding constraints in ΛCDM.
As compared to the direct measurement of the Hubble
constant by Riess et al. 2019 [79], where H0 ¼ 74.03�
1.42 kms−1Mpc−1, this implies f0.1σ; 0.4σg decreases in
the tension for fPlanck; ACTg, respectively. The combined
Planckþ ACT constraint on the Hubble constant is
H0 ¼ 67.88þ0.55

−0.65 kms−1Mpc−1, which corresponds to a
marginal increase in the uncertainty and decrease of the
tension (by 8% and 0.1σ, respectively) compared toΛCDM.
Turning to theS8 parameter, themarginalized constraints are
effectively unchanged relative to ΛCDM for these datasets.

3. The effective gravitational constant and
its impact on tensions

Focusing on Planck 2018 alone, in addition to the
coupling constant, in the unrestricted JBD model
with massive neutrinos, we constrain the present
effective gravitational constant at few-percent level pre-
cision, such that Gmatter=G ¼ 0.993þ0.026

−0.038 , in full agree-
ment with GR. As shown in Table II (and illustrated in the
forthcoming sections), when the present effective
gravitational constant is varied, the uncertainties in the
Hubble constant and S8 increase substantially. Concretely,
H0 ¼ 66.40þ1.99

−1.97 kms−1 Mpc−1 and S8 ¼ 0.835þ0.023
−0.023 . As

compared to the restricted JBD model with massive
neutrinos (i.e., where Gmatter=G ¼ 1), the posterior means
are marginally shifted (by 0.2–0.3σ), while the uncertain-
ties on H0 and S8 increase by 80% and 25%, respectively.
As a result, the discordance with the Riess et al. (2019)
measurement of H0 alleviates to 3.1σ in this model,
while the difference in S8 with low-redshift probes such
as KiDS × f2dFLenSþ BOSSg (discussed further in
Sec. VI) narrows down to 1.5σ. As compared to the
ΛCDM model with massive neutrinos, this implies a 1.0σ
decrease in both tensions.

We can understand these results in the context of
Fig. 2, where Gmatter=G has a greater flexibility in its
modification of the CMB power spectra (i.e., both sup-
pression and enhancement of the responses depending on
whether Gmatter=G < 1 or Gmatter=G > 1, while ωBD → 0
largely enhances the fluctuations). Indeed, larger H0 is
favored byGmatter=G > 1. For a given response in the CMB
temperature power spectrum by either ωBD or Gmatter=G,
the corresponding response in the expansion rate is more-
over substantially larger for the effective gravitational
constant. We note that this is qualitatively similar in the
case of S8. In forthcoming sections, we will revisit the
unrestricted JBD model as additional datasets are consid-
ered and will explicitly show the positive correlation
between Gmatter=G and H0, and the negative correlation
between Gmatter=G and S8 (and, correspondingly, the
negative correlation between H0 and S8).

4. The sum of neutrino masses

The constraint on the sum of neutrino masses is robust,
changing from 0.38 eV in ΛCDM to 0.37 eV in the
restricted JBD model and to 0.43 eV in the unrestricted
JBD model. However, we note that the marginalized
constraints (on the sum of neutrino masses, along with

FIG. 8. Marginalized posterior distributions for the Hubble
constant, H0 (in units of kms−1 Mpc−1), from the Planck 2018
dataset. The different distributions either include or exclude the
small-scale polarization data (i.e., “TT;TE;EEþ lowE” as com-
pared to “TTþ lowE”) and consider either the unrestricted JBD
model, the restricted JBD model, or ΛCDM (in all cases withP

mν fixed).
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other parameters such as the present effective gravitational
constant) possess some dependence on the choice of
parametrization of the coupling constant, which we explore
further for the full combination of datasets in Sec. VIII D.

5. The significance of the small-scale CMB polarization
for the parameter constraints

In Appendix B, we discuss how the different
signatures of JBD gravity on the CMB polarization power
spectrum (and temperature-polarization cross spectrum)
can be used to improve the constraints on this theory
and the physics that correlates with it. In assessing the
impact of the CMB polarization on the parameter con-
straints, we thereby consider a case where it is removed in
the analysis of the Planck 2018 dataset on small scales (i.e.,
we consider “TTþ lowE” instead of the fiducial case of
“TTþ TEþ EEþ lowE”). For concreteness, we fix the
sum of neutrino masses in carrying this out.
In the restricted JBD model, the 95% lower bound on the

coupling constant degrades from 1150 to 430 as the small-
scale CMB polarization is excluded. As a result, the
exclusion of the polarization allows for higher values
of H0 and lower values of S8, with a more pronounced
“hook-shaped” turn of the respective contours in the plane
with ωBD (as compared to that seen in Fig. 6). This in turn
is manifested in wider tails in the high-H0 and low-S8
regime of the respective one-dimensional marginalized
posteriors. In Fig. 8, we provide an illustration of this for
the H0 posterior, which in addition to the restricted JBD
model includes the corresponding cases (i.e., Planck 2018
including or excluding small-scale polarization) for the
unrestricted JBD model and ΛCDM.
For all three models, the constraints on H0 and S8

substantially improve as the small-scale CMB polarization
is included in the cosmological analysis. In the restricted
JBDmodel, the constraint onH0 ¼ 67.89þ0.83

−1.35 kms−1Mpc−1

improves by 40% to H0 ¼ 68.00þ0.60
−0.71 kms−1 Mpc−1, while

the constraint on S8 ¼ 0.840þ0.025
−0.025 improves by 35% to

S8 ¼ 0.837þ0.016
−0.016 . Hence, the small-scale CMB polarization

improves the H0 and S8 constraints to agree more closely
with the corresponding results in ΛCDM. This allows for a
strengthening of theH0 tension with Riess et al. (2019) [79]
from 3.4σ to 3.9σ and a marginal strengthening of the S8
tension with KiDS × f2dFLenSþ BOSSg from 2.2σ to
2.3σ. The discordances are not substantially modified as
the CMB temperature uncertainties onH0 and S8 are already
subdominant to those from Riess et al. (2019) [79] and
KiDS × f2dFLenSþ BOSSg, respectively.
In the unrestricted JBD model, the small-scale CMB

polarization improves the constraint on Gmatter=G by
35%. As expected by the degeneracy with the Hubble
constant, the constraint on H0 ¼ 67.85þ2.36

−2.36 kms−1Mpc−1

in turn improves by the same percentage to H0 ¼
67.58þ1.47

−1.58 kms−1Mpc−1. This corresponds to a strength-
ening of the tension with Riess et al. (2019) [79] from 2.2σ

to 3.1σ. In Fig. 8, we find that the small-scale polari-
zation narrows the H0 posterior on both ends, while
primarily the low-H0 end of the posterior is narrowed in
ΛCDM. Similarly, the small-scale CMB polarization
improves the constraint on S8 ¼ 0.840þ0.033

−0.036 by 40% to
S8 ¼ 0.841þ0.021

−0.022 , which marginally strengthens the tension
with KiDS × f2dFLenSþ BOSSg from 1.6σ to 1.7σ. Here,
the improvement in the S8 posterior is approximately
symmetric, as compared an asymmetric improvement in
the high end of the posterior inΛCDM. Hence, while the S8
tension is largely unaffected (as the CMB temperature
uncertainty on S8 is already subdominant), the small-scale
CMB polarization is a driving force behind the persistence
of the H0 tension and complicates the ability of an
extension such as JBD gravity to resolve it.

6. Planck 2018+ACT DR4 versus
Planck 2015+ACT DR3

We can further contrast the Planck 2018 constraints to
those obtained with the baseline 2015 dataset (in other
words, we are here comparing Planck 2018 “TT;TE;
EEþ lowE” with Planck 2015 “TTþ lowP”). As shown
in Table II and Fig. 7, in the restricted JBDmodel, the lower
bound on ωBD for Planck 2018 is more than a factor of two
stronger than Planck 2015,while the lower bound for Planck
2018þ ACT DR4 is 50% stronger than the bound from
Planck 2015þ ACT DR3. As our Planck 2018 baseline
setup includes both the CMB temperature and polarization,
while the Planck 2015 setup only includes the CMB
temperature (and low-lLFI polarization), this highlights
the impact of including the high-multipole CMB polariza-
tion in the analysis (along with the new HFI low-multipole
polarization likelihood in lieu of the LFI likelihood).
Moreover, by allowing for the effective gravitational

constant to vary, the tension in the Hubble constant is
ameliorated by 2σ for Planck 2015 (instead of 1σ for Planck
2018, where high-multipole polarization is notably
included). Indeed, as the Planck 2018 small-scale polari-
zation is excluded from the analysis in Sec. VA 5, the
parameter constraints are more comparable to those from
Planck 2015. In Appendix E, we will further contrast the
constraints from these two datasets when including the
CMB temperature, polarization, and lensing reconstruction
in both cases.

7. Model selection

We quantify the model selection preference for the JBD
gravity model relative to the standard model by the
deviance information criterion (discussed in Sec. IV E),
where the additional degrees of freedom impose a penalty
on the extended model through the Bayesian complexity.
As shown in Appendix D (specifically Table VII), for all
of the models considered here, ΔDIC≳ 0, indicating
no model selection preference for JBD gravity relative
to ΛCDM.
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VI. RESULTS: WEAK LENSING AND
OVERLAPPING REDSHIFT-SPACE GALAXY

CLUSTERING

We next consider the combined analysis of KiDS over-
lapping with 2dFLenS and BOSS, where JBD has an impact
on both the expansion history and the growth of structure
(see Sec. IV B 2).We do not consider KiDS cosmic shear on
its own but always in conjunction with the spectroscopic
surveys to leverage the ability to constrain modified gravity.

A. KiDS × 2dFLenS+BOSS

1. Correlations of modified gravity, neutrino mass,
baryonic feedback, and intrinsic alignments

In the analysis of KiDS × 2dFLenSþ BOSS, we con-
strain ωBD ≳ 100 (shown in Table III) for all of the different
cosmological models considered (where we include or
exclude the baryonic feedback amplitude, B, the sum of
neutrino masses,

P
mν, and the present effective gravita-

tional constant, Gmatter=G, as free parameters in the model).
As shown in Fig. 9, this consistency in the bounds is
explained by the lack of correlation between ωBD and
fB;Pmν; Gmatter=Gg. The effective gravitational constant
is further marginally correlated with the baryonic feedback
amplitude and uncorrelatedwith the sumof neutrinomasses,
while the latter two are anticorrelated with one another.
The 95% upper bound on the sum of neutrino masses is

within 1.6 eV to 1.7 eV for the different cases, and the
upper bound on the baryonic feedback amplitude varies
between 3.1 to 3.4 (near the border of the no-feedback, or
“dark matter only,” value of B ¼ 3.13 [102]). We find,
however, that the posterior for the baryonic feedback

amplitude peaks at B≲ 2 suggesting a preference for
strong feedback (as noted in Ref. [5]). Moreover, we do
not find a significant correlation between the intrinsic
alignment amplitude and fB;Pmν;ωBD; Gmatter=Gg, such
that the posterior mean for AIA varies between 1.54 to 1.78
for the different cosmological setups while the uncertainty
changes by less than 5% (from 0.47 to 0.49).
Beyond ωBD, in the unrestricted JBD model, we con-

strain Gmatter=G ¼ 1.07þ0.12
−0.15 when the neutrinos are

assumed massless and Gmatter=G ¼ 1.03þ0.11
−0.15 when the

sum of neutrino masses is allowed to vary (the marginally
tighter constraint on Gmatter=G is due to the one-sided
nature of the neutrino mass bounds), both in full agreement
with the GR expectation and nearly a factor of four weaker
than the constraint from the Planck CMB.

2. Impact on the S8 tension

KiDS × f2dFLenSþ BOSSg is not sufficiently power-
ful to meaningfully constrain the Hubble constant.
However, this dataset does constrain S8 in a way that is
sensitive to the cosmological modeling. In the ΛCDM
limit, S8 ¼ 0.746þ0.034

−0.035 , which is only marginally affected
(at the subpercent level) by a restricted coupling to the JBD
scalar field (i.e., to ωBD; see Table III). We find a 20%
decrease in the uncertainty in S8 and ∼1σ shift toward
lower values when neglecting baryonic feedback, in agree-
ment with earlier KiDS analyses (e.g., Refs. [5,174]; also
see Refs. [180,181]). Moreover, as found in earlier analyses
(e.g., Refs. [5,22]), varying the sum of neutrino masses
decreases the posterior mean of S8, here by approximately
ΔS8 ∼ −0.01 corresponding to a 0.3σ negative shift (with
marginal change in the uncertainty).

TABLE III. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters. For the JBD
parameter, ωBD, and the sum of neutrino masses,

P
mν (in units of eV), we quote the 95% confidence lower and upper bounds,

respectively. We also quote the 95% confidence upper bound for the feedback amplitude, B. The Hubble constant, H0, is in units of
km s−1 Mpc−1 and we define S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. The tensions TðH0Þ and TðS8Þ are against Riess et al. (2019) [79] and Planck18,

respectively. The symbol “⋄” implies that the parameter is effectively unconstrained by the data, and the symbol “∘” implies that the
tension T is not meaningful to quote (i.e., T ∼ 0). See Table II for further details.

Probe setup ωBD Gmatter=G B AIA
P

mν H0 S8 TðH0Þ TðS8Þ
KiDS × 2dFLenSðΛCDMÞ � � � � � � 3.5 1.23þ0.69

−0.55 � � � ⋄ 0.736þ0.039
−0.038 ∘ 2.4

KiDS × f2dFLenSþ BOSSgðΛCDMÞ � � � � � � 3.2 1.71þ0.48
−0.47 � � � ⋄ 0.746þ0.034

−0.035 ∘ 2.4

KiDS × 2dFLenSþ All − BOSSðΛCDMÞ � � � � � � 3.3 1.12þ0.52
−0.46 � � � 70.6þ5.8

−4.4 0.745þ0.029
−0.028 0.65 2.8

KiDS × f2dFLenSþ BOSSgðΛCDM þP
mνÞ � � � � � � 3.1 1.65þ0.48

−0.44 1.7 ⋄ 0.736þ0.033
−0.033 ∘ 2.5

KiDS × f2dFLenSþ BOSSgðJBDÞ 56 � � � 3.3 1.64þ0.49
−0.48 � � � ⋄ 0.747þ0.035

−0.035 ∘ 2.4

KiDS × f2dFLenSþ BOSSgðJBD; no feedbackÞ 63 � � � � � � 1.78þ0.49
−0.49 � � � ⋄ 0.718þ0.028

−0.028 ∘ 3.7

KiDS × f2dFLenSþ BOSSgðJBDþP
mνÞ 80 � � � 3.2 1.67þ0.46

−0.46 1.7 ⋄ 0.739þ0.034
−0.034 ∘ 2.4

KiDS×f2dFLenSþBOSSgðJBDþP
mν;nofeedbackÞ 71 � � � � � � 1.76þ0.48

−0.48 1.6 ⋄ 0.707þ0.028
−0.028 ∘ 3.7

KiDS × f2dFLenSþ BOSSgðJBDþ GmatterÞ 50 1.07þ0.12
−0.15 3.4 1.54þ0.47

−0.47 � � � ⋄ 0.717þ0.064
−0.073 ∘ 1.7

KiDS×f2dFLenSþBOSSgðJBDþGmatterþ
P

mνÞ 78 1.03þ0.11
−0.15 3.3 1.67þ0.47

−0.47 1.7 ⋄ 0.731þ0.064
−0.070 ∘ 1.6

KiDS×2dFLenSþAll−BOSSðJBDþGmatterþ
P

mνÞ 83 1.05þ0.18
−0.20 3.2 1.36þ0.49

−0.44 1.4 73.9þ8.1
−8.2 0.737þ0.064

−0.085 0.02 1.3
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As we consider an unrestricted JBDmodel (whereGmatter
is varied alongside ωBD), the additional degree of freedom
degrades the uncertainty on S8 by nearly a factor of two,
such that the level of concordance with Planck improves to
TðS8Þ ¼ 1.6σ (an improvement by jΔTðS8Þj ¼ 0.8σ).
Moreover, the anticorrelation of S8 with Gmatter lowers
the posterior mean by ΔS8 ¼ −0.030 when the neutrinos
are assumed massless and by ΔS8 ¼ −0.008 when the sum
of neutrino masses is varied. In other words, while a
variation of

P
mν lowers the posterior mean of S8 by

approximately 0.01 in ΛCDM and in a restricted JBD

model, the parameter correlations in the unrestricted JBD
model drive the opposite behavior (i.e., a positive shift
of ΔS8 ¼ 0.014).

3. Model selection

As shown in Appendix D (specifically Table VII), and in
agreement with earlier findings (e.g., [5,174]), including
baryonic feedback is marginally favored in a model
selection sense (ΔDIC ≃ −1). For all of the cosmological
extensions considered, there is no meaningful statistical
preference for the extended model (considering both

FIG. 9. Marginalized posterior distributions (inner 68% C.L., outer 95% C.L.) of the JBD parameter lnω−1
BD, the present effective

gravitational constant, Gmatter=G, the baryonic feedback amplitude, B, the sum of neutrino masses,
P

mν, and S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from

KiDS × 2dFLenSþ BOSS. All other standard cosmological and systematics parameters are simultaneously varied. For visual clarity,
we have zoomed in on the lnω−1

BD axis where the distributions begin to flatten, as they stay flat and unbounded in the direction of the GR
limit (i.e., toward the negative end of our prior range at lnω−1

BD ¼ −17). We do not include the ΛCDM case for visual clarity, given the
similar constraints on fB; S8g to the JBD case.
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restricted and unrestricted JBD gravity, with and without
massive neutrinos) relative to ΛCDM, with ΔDIC≳ 0.

B. KiDS × 2dFLenS+All-BOSS

As the BOSS dataset in Sec. VI A is restricted to the
overlapping regions with KiDS, we also consider a scenario
where the full BOSS dataset is included in our analysis.
Here, we do not consider the galaxy-galaxy lensing signal
between KiDS and BOSS given the marginal improve-
ments in the cosmological constraining power that this
would provide.16 Instead, we consider “3 × 2pt” measure-
ments for KiDS and 2dFLenS (i.e., cosmic shear, galaxy-
galaxy lensing, and overlapping redshift-space galaxy
clustering) along with the BOSS DR12 growth rate, AP
parameter, and BAO distance measurements (described in
sections IV B 2 and IV B 3, respectively). We denote this
setup “KiDS × 2dFLenSþ All-BOSS”.

1. ΛCDM comparisons: Smaller overlapping
spectroscopic area versus larger disconnected area

We first compare the ΛCDM results for KiDS ×
2dFLenS þ All-BOSS against KiDS × f2dFLenSþ
BOSSg, finding a constraint on S8 ¼ 0.745þ0.029

−0.028 in our
new setup as compared to S8 ¼ 0.746þ0.034

−0.035 when BOSS is
restricted to the overlapping area with KiDS. This corre-
sponds to a remarkable consistency in the posterior mean
(less than 0.03σ shift) and a 20% improvement in the
uncertainty. As a result, the S8 tension with the Planck
CMB is at the level of 2.8σ (an increase by 0.4σ). We
further note that as compared to KiDS × 2dFLenS alone,
where S8 ¼ 0.736þ0.039

−0.038 , the posterior mean increases by
0.3σ and the uncertainty decreases by 25%. Given the full
BOSS dataset, we are moreover able to infer the Hubble
constant,H0¼70.6þ5.8

−4.4 kms−1Mpc−1,which reflects a strong
(closer than 1σ) agreement with both the Planck CMB and
Riess et al. (2019) [79]measurements of theHubble constant.
We can also compare the constraints on the astrophysi-

cal systematics, focusing on the self-calibration of the
baryonic feedback and intrinsic alignments. As the con-
straint on the baryonic feedback amplitude, B, is driven by
the cosmic shear (given its sensitivity to nonlinear scales
in the matter power spectrum along with the linear-scale
restriction for the galaxy-galaxy lensing and multipole
power spectra to avoid nonlinearities in the galaxy bias in
KiDS × f2dFLenSþ BOSSg), we find strong consistency
in the upper bound on the baryonic feedback amplitude,
such that B < 3.3 for KiDS × 2dFLenSþ All-BOSS as

compared to B < 3.2 for KiDS × f2dFLenSþ BOSSg
and B < 3.5 for KiDS × 2dFLenS alone (all at 95% C.L.).
The intrinsic alignment amplitude is constrained to

AIA¼1.12þ0.52
−0.46 for KiDS×f2dFLenSþAll-BOSSg, which

reflects an approximately 1σ downward shift as compared
to the measurement from KiDS × f2dFLenSþ BOSSg
(where AIA ¼ 1.71þ0.48

−0.47 ). The downward shift in the ampli-
tude brings it in greater agreement with the result from
KiDS alone (where AIA ¼ 1.16þ0.77

−0.60 in Ref. [5]) and from
KiDS × 2dFLenS (where AIA ¼ 1.23þ0.69

−0.55 ). In spite of
the overall weaker parameter constraints, we note that
the constraint on AIA is marginally stronger (by 3%) in the
case of KiDS × f2dFLenSþ BOSSg relative to KiDS×
f2dFLenSþ All-BOSSg, given the additional information
from galaxy-galaxy lensing between KiDS and BOSS (this
can be compared to the 30% improvement in the AIA uncer-
tainty that galaxy-galaxy lensing provides for KiDS ×
f2dFLenSþ BOSSg as compared to KiDS alone [5]).

2. Moving beyond ΛCDM
As we turn to an extended cosmological model with

unrestricted JBD gravity and massive neutrinos, we con-
strain

P
mν < 1.4 eV (95% C.L.), ωBD > 83 (95% C.L.),

and Gmatter=G ¼ 1.05þ0.18
−0.20 , all in agreement with the

fiducial model expectation. While the
P

mν and ωBD
bounds are marginally different to those obtained from
the KiDS × f2dFLenSþ BOSSg dataset (where the
respective bounds are ωBD > 78 and

P
mν < 1.7 eV at

95% C.L.), the constraint on Gmatter=G is approximately
50% weaker as compared to that obtained from
KiDS × f2dFLenSþ BOSSg. In other words, in con-
straining modified gravity through the unrestricted JBD
model, the self-consistent 3 × 2pt analysis in KiDS ×
f2dFLenSþ BOSSg is here found to be more powerful
than the alternative approach where growth rate and
distance measurements from the full BOSS dataset are
independently included in KiDS × 2dFLenSþ All-BOSS.
In the unrestricted JBD model with massive neutrinos,

we continue to find a weak correlation for the baryonic
feedback amplitude with the neutrino mass and modified
gravity degrees of freedom (similarly for the intrinsic
alignments). Concretely, B < 3.2 (95% C.L.), which agrees
to within jΔBj ¼ 0.1 with the corresponding bound in
ΛCDM (and to that obtained from KiDS × f2dFLenSþ
BOSSg). Analogous to that found for the Planck CMB,
mainly as a result of the positive correlation between
Gmatter=G and H0, the Hubble constant is shifted to larger
values (by ΔH0 ¼ 3.3 km s−1Mpc−1). As expected, in this
extended cosmology, the uncertainty on the Hubble
constant is larger than in ΛCDM (by 60%), and continues
to be consistent with both the Planck CMB and Riess et al.
(2019) [79] measurements to within 1σ.
Driven by the anticorrelation with Gmatter=G, in the

unrestricted JBD model with massive neutrinos we con-
strain S8 ¼ 0.737þ0.064

−0.085 , which reflects a downward shift by

16As discussed in Sec. IV B 3, this is because the overlapping
area between KiDS-450 and BOSS DR10 is more than a factor of
50 smaller than the full BOSS area, and does not increase for later
BOSS data releases. As a result, the improvement in the BOSS
galaxy bias constraints from including galaxy-galaxy lensing
with KiDS is modest, as shown in e.g., Ref. [5].

TESTING GRAVITY ON COSMIC SCALES: A CASE STUDY OF … PHYS. REV. D 105, 043522 (2022)

043522-27



ΔS8 ¼ −0.008 (0.3σ relative to the ΛCDM uncertainty)
and factor of 2.6 increase in the uncertainty relative to
ΛCDM. The constraint on S8 is weaker (by 10%) than that
obtained from KiDS × f2dFLenSþ BOSSg, which is con-
sistent with the correspondingly weaker constraint on
Gmatter=G. Here, the constraint on S8 agrees with the
Planck CMB constraint at 1.0σ. Although the concordance
between probes increases for this extended cosmology, and
the best-fit χ2eff is marginally improved relative to ΛCDM
(by Δχ2eff ¼ −1.5), the unrestricted JBD model is not found
to be favored from the standpoint of model selection
(given ΔDIC ¼ 1.9).

VII. RESULTS: DISTANCES AND GROWTH
RATES IN COMBINED ANALYSES

A. All-Planck+ All-BOSS+Pantheon

1. Constraining JBD gravity

We next turn to the combined analysis of the Planck
2018 CMB temperature, polarization, and lensing
reconstruction (“All-Planck”), the BOSS BAO distances,
AP parameters, and growth rates (“All-BOSS”), along with
the Pantheon supernova distances. The combined analysis
of these datasets allows for constraints on the coupling
constant ωBD > 1460 (95% C.L.) in the restricted JBD
model with massless neutrinos, and ωBD > 970 (95% C.L.)
when including the sum of neutrino masses as an additional
degree of freedom (see Table IV and Fig. 10).
These constraints can be contrasted with those found for

the Planck CMB temperature and polarization alone
(Sec. V), where ωBD > 1150 (95% C.L.) in the restricted
JBD model and ωBD > 1710 (95% C.L.) when further
allowing the sum of neutrino masses to vary in the analysis.
In other words, as Planck (temperature and polarization) is
combined with the lower redshift probes (BOSS, Pantheon,
and Planck lensing reconstruction), the lower bound on the
coupling constant increases in the massless neutrino
scenario and decreases as the sum of neutrino masses is
allowed to vary.

The lower bound on the coupling constant further
sharpens as we consider an unrestricted JBD model.
Here, ωBD > 2040 (95% C.L.) in a model with massless
neutrinos, and ωBD > 1340 (95% C.L.) in a model where
the sum of neutrino masses is further varied (which can be
compared to the bound from the Planck temperature and
polarization alone, where ωBD > 1120 at 95% C.L.). In the
unrestricted JBD model with massless neutrinos, we con-
strain Gmatter=G ¼ 0.989þ0.030

−0.030 in concordance with the GR
expectation to within 1σ. This constraint is robust to the
corresponding setup where the sum of neutrino masses is
varied, as ΔGmatter=G ¼ þ0.008 with effectively the same
uncertainty, and is driven by the Planck CMB temperature
and polarization (as the uncertainty narrows by 6% with the
inclusion of the additional datasets).

2. The sum of neutrino masses

The sum of neutrino masses is constrained to
P

mν <
0.11 eV (95% C.L.) in ΛCDM, which remains robust as we
consider a cosmology with JBD gravity (i.e., less than
0.01 eV degradation; both restricted and unrestricted
models; up to factor of ∼4 improvement compared to
the Planck CMB temperature and polarization alone
through the breaking of the geometric degeneracy). As
seen in Fig. 10, there are only mild correlations between the
extended cosmological parameters fPmν;ωBD; Gmatterg,
which allows for largely decoupled constraints (with the
exception of the ωBD bound).
On closer inspection, as the strength of JBD gravity

increases (i.e., as ωBD decreases), there is a rise in the
sum of neutrino masses, while Gmatter=G appears mar-
ginally positively correlated with

P
mν and negatively

correlated with lnω−1
BD, such that a stronger effective

gravitational constant allows for larger neutrino masses
and weaker coupling constant. However, as the data
favors Gmatter=G ≃ 1 (to within 1σ), these mild correla-
tions are manifested in the posterior mean to lesser
extent.

TABLE IV. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters. For the JBD
parameter, ωBD, and the sum of neutrino masses,

P
mν, we quote the 95% confidence lower and upper bounds, respectively. The sum of

neutrino masses is in units of eV, the Hubble constant H0 is in km s−1 Mpc−1, S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, and “� � �” implies that the parameter is

not varied in the analysis. The tensions TðH0Þ and TðS8Þ are against Riess et al. (2019) [79] and KiDS × 2dFLenS, respectively. See
Table II for further details.

Probe setup ωBD Gmatter=G
P

mν H0 S8 TðH0Þ TðS8Þ
All-Planck18þ All-BOSSþ PantheonðΛCDMÞ � � � � � � � � � 68.15þ0.42

−0.41 0.830þ0.010
−0.010 4.0 2.3

All-Planck18þ All-BOSSþ PantheonðΛCDMþP
mνÞ � � � � � � 0.11 67.86þ0.51

−0.44 0.826þ0.011
−0.011 4.1 2.7

All-Planck18þ All-BOSSþ PantheonðJBDÞ 1460 � � � � � � 68.22þ0.42
−0.48 0.830þ0.010

−0.010 3.9 2.3

All-Planck18þ All-BOSSþ PantheonðJBDþP
mνÞ 970 � � � 0.11 67.97þ0.51

−0.52 0.826þ0.011
−0.011 4.0 2.6

All-Planck18þ All-BOSSþ PantheonðJBDþ GmatterÞ 2040 0.989þ0.030
−0.030 � � � 67.80þ1.28

−1.32 0.835þ0.015
−0.016 3.2 0.7

All-Planck18þAll-BOSSþPantheonðJBDþGmatterþ
P

mνÞ 1340 0.997þ0.029
−0.031 0.11 67.82þ1.29

−1.28 0.828þ0.016
−0.016 3.2 0.6
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3. Impact on H0 and S8
The two derived parametersH0¼68.15þ0.42

−0.41 kms−1Mpc−1

and S8 ¼ 0.830þ0.010
−0.010 in ΛCDM degrade by 10% and

mildly shift downward (by 0.7σ in H0 and 0.4σ in S8)
as we allow the sum of neutrino masses to vary (such that
H0 ¼ 67.86þ0.51

−0.44 km s−1Mpc−1 and S8 ¼ 0.826þ0.011
−0.011 ). In

the restricted JBD model, as in Sec. VA, the Hubble
constant increases as the coupling constant decreases with

the characteristic “hook-shape” upturn of the contour in the
lnω−1

BD–H0 plane (which expectedly flattens toward the GR
limit). However, the marginalized constraint on H0 only
changes mildly relative to that in ΛCDM (positive shift in
the posterior mean by 0.2σ and ≲10% broadening of the
uncertainty; negligible changes in the case of S8), similar to
that found for the Planck CMB temperature and polariza-
tion alone.

FIG. 10. Marginalized posterior distributions (inner 68% C.L., outer 95% C.L.) of the JBD parameter, lnω−1
BD, the present effective

gravitational constant, Gmatter=G, the sum of neutrino masses,
P

mν, the Hubble constant, H0 (in units of km s−1 Mpc−1), and S8 ¼
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from the Planck, BOSS, and Pantheon datasets. All other standard cosmological and systematics parameters are

simultaneously varied. For visual clarity, we have zoomed in on the lnω−1
BD axis where the distributions flatten toward the GR limit at

−∞ (in practice toward lnω−1
BD ¼ −17).
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In the unrestricted JBD model, the contour in the plane
of lnω−1

BD and H0 is substantially flattened (likewise
for the contour in the ωBD–S8 plane), and the correlation
between these parameters becomes negligible. Instead,
there is a strong correlation of H0 and S8 with the
present effective gravitational constant (given its impact
on the metric potentials along with the expansion and
growth histories; see Figs. 1 and 2). Here, there is a
factor of 3.1 and 1.5 increase in the uncertainties on H0

and S8 relative to ΛCDM, respectively, such that H0 ¼
67.80þ1.28

−1.32 km s−1Mpc−1 and S8 ¼ 0.835þ0.015
−0.016 . While the

posterior means shift marginally relative to ΛCDM (by
ΔH0 ¼ −0.35 km s−1 Mpc−1 and ΔS8 ¼ −0.005), given
the increase in the uncertainties, the concordances with
the Riess et al. (2019) [79] and KiDS × 2dFLenS datasets
improve to 3.2σ (from 4.0σ in ΛCDM) and 0.7σ (from 2.3σ
in ΛCDM), respectively. In the unrestricted JBD model
with massive neutrinos, the additional degree of freedom inP

mν has only a marginal impact on H0 and S8 (the
strongest impact is on S8 which shifts downward by 0.5σ
compared to the unrestricted JBD model with fixed
neutrino masses, such that the concordance with KiDS ×
2dFLenS improves to 0.6σ).
As compared to the corresponding constraints from the

Planck CMB temperature and polarization alone (i.e., by
adding BOSS, Pantheon, and Planck lensing), the con-
straints on H0 and S8 respectively strengthen by 30%
and 40% in both ΛCDM and the restricted JBD model,
which in the case of H0 increases to a 60% improvement in
ΛCDM and 50% improvement in the restricted JBD model
when additionally including massive neutrinos (the
improvement in S8 remains at the 40% level in these
cosmologies). In the unrestricted JBD model with massive
neutrinos, there is a 35% improvement in the uncertainty on
H0 and 30% improvement in the uncertainty on S8. Across
the different cosmologies, the posterior mean of H0

“stabilizes” with the additional datasets, covering a range
of ΔH0 ¼ 0.4 km s−1 Mpc−1 in the “All-Planck18þ
All-BOSSþ Pantheon” setup, as compared to ΔH0 ¼
1.6 km s−1Mpc−1 from the Planck CMB temperature and
polarization alone, which reflects an increase in the agree-
ment with the standard model (however, noting that the
spread inΔS8 ≲ 0.01 is approximately the same between the
two data setups).

4. Model selection

As discussed in Sec. IVA, for an extended cosmologi-
cal model to replace the standard model, we require that it
exhibits a statistically significant deviation (by > 5σ) in
any extended parameters from the standard model expect-
ation, shows a “strong” improvement (e.g., given Jeffreys’
scale [212]) in a model selection comparison with the
standard model (employing statistical tools such as the
deviance information criterion or Bayesian evidence

[194,198]), and ideally alleviates possible discordances
between datasets.
We have shown above that the last condition is partly

satisfied. However, in spite of the successes of the unre-
stricted JBD model in improving the concordance between
datasets, we note that it is not favored in a model selection
comparison with ΛCDM (given ΔDIC≳ 0). This also
holds for all of the other extended cosmological models
considered here (i.e., models involving restricted JBD and
massive neutrinos). The extended cosmological parameters
fωBD; Gmatter;

P
mνg moreover do not exhibit a sta-

tistically significant deviation from the fiducial expectation,
such that any increase in the concordance between datasets
is driven by the increase in the parameter uncertainties
rather than a change in the actual cosmology.

5. Comparing against the Planck 2015 dataset

In Fig. 10, we further compare the constraints from
“All-Planck18þAll-BOSSþPantheon” in the unrestricted
JBD model with massive neutrinos to the corresponding
constraints from “Planck15þ All-BOSSþ Pantheon”,
where only the baseline Planck 2015 CMB temperature
and LFI low-l polarization is considered instead of the
full Planck 2018 dataset. Here, we find substantially
weaker constraints on the subspace of parameters
flnω−1

BD; Gmatter=G;
P

mν; H0; S8g. In particular, the ten-
sion in H0 with the measurement of Riess et al. (2019)
[79] decreases by 1.0σ, down to 2.2σ. As seen in Sec. V,
this is similar to the difference in the Hubble constant
tension in the unrestricted JBD model when comparing
the Planck 2018 temperature and polarization (where
TðH0Þ ≈ 3σ) with the Planck 2015 temperature and LFI
low-l polarization (where TðH0Þ≲ 2σ). In other words, it
is predominantly the Planck 2018 polarization informa-
tion that is driving the H0 tension higher in this model.
We have also considered constraints on the restric-

ted JBD models where the Planck 2018 and 2015 setups
both include the respective high-multipole polarization and
lensing measurements (i.e., comparing “All-Planck18þ
All-BOSSþPantheon” with “All-Planck15þAll-BOSSþ
Pantheon”). As shown in Appendix E (specifically Fig. 25,
also see Table IX), we find no significant differences in the
inferences in the subspace of flnω−1

BD;
P

mν; τ; H0; S8g
aside from the constraint on

P
mν, driven by the greater

than factor-of-two improved 2018 constraint on the optical
depth to reionization, τ (as Cl ∝ Ase−2τ, such that the con-
straint on the primordial scalar amplitude, As is comparably
improved given the degeneracy with the optical depth [4]).
Combining All-BOSS and Pantheon with All-

Planck15, we obtain the lower bound on ωBD > 1050
(95% C.L.) in a restricted JBD model with massless
neutrinos, and ωBD > 590 (95% C.L.) in a restricted
JBD model with massive neutrinos (which in both cases
corresponds to a weakening of the bound by ΔωBD ≈
−400 as compared to the equivalent setup with Planck
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2018). The sum of neutrino masses is constrained toP
mν < 0.19 eV (95% C.L.), which corresponds to a

70% weakening relative to the bound from the equivalent
setup with Planck 2018.
Moreover, as shown in Appendix E (see Fig. 25

therein), the H0 and S8 constraints are marginally
affected by the change between the Planck 2015 and
2018 datasets, and the respective tensions in these
parameters with other datasets remain at a similar level
(< 0.1σ differences). For the restricted JBD model, we
have also checked that we continue to find no meaningful
model selection preference relative to ΛCDM for the
Planck 2015 data combination (given ΔDIC≳ 0 for both
neutrino setups).

B. KiDS × 2dFLenS+All-BOSS+Pantheon

1. Impact of including Pantheon distances

In comparing the cosmological parameter constraints
from KiDS × 2dFLenSþ All-BOSSþ Pantheon with the
earlier constraints from KiDS × 2dFLenSþ All-BOSS
(Sec. VI B), we find that the addition of Pantheon super-
nova distance measurements has a marginal impact. In
ΛCDM, we constrain B>3.1 (95% C.L.), AIA¼1.13þ0.53

−0.46 ,
H0 ¼ 70.8þ6.0

−3.7 km s−1Mpc−1, andS8¼0.746þ0.028
−0.028 .Ascom-

pared to a setup that excludes the Pantheon dataset, this
reflects a minor change in the upper bound of the baryonic
feedback amplitude (by ΔB ¼ −0.2), along with marginal
shifts in the posterior mean of the IA amplitude (by
ΔAIA ¼ 0.01, with subpercent level change in the uncer-
tainty), the Hubble constant (by ΔH0 ¼ 0.2 km s−1Mpc−1,
with 5% decrease in the uncertainty), and S8 (by 10−3, with
subpercent level change in the uncertainty).
We find similarly small changes in these parameters for

an extended cosmology that includes massive neutrinos and
unrestricted JBD gravity. The extended cosmological
parameters are constrained to

P
mν<1.3eV (95% C.L.),

ωBD > 79 (95% C.L.), andGmatter=G ¼ 1.05þ0.18
−0.20 , such that

the lower and upper bounds differ by ΔωBD ¼ −4 and
Δ
P

mν ¼ −0.1 eV, respectively, while the constraint on
the effective gravitational constant agrees to within sub-
percent level from that found when the Pantheon dataset is
excluded.

2. Robustness in the cosmological constraints

In comparing the KiDS × 2dFLenSþ All-BOSSþ
Pantheon constraints in different JBD cosmologies with
one another (restricted and unrestricted JBD cosmologies
with and without neutrino mass), we find a robustness in
the constraints to the extended cosmological degrees of
freedom. In general,

P
mν ≲ 1 eV (95% C.L.), ωBD ≳ 102

(95% C.L.), and Gmatter=G ∼ 1 to within 68% C.L.
where the uncertainty is at the ΔGmatter=G ≃ 0.2 level
(the inequalities here respectively denote “less/greater than
approximately”).
These constraints are substantiallyweaker than those found

for All-Planck18þAll-BOSSþPantheon (Sec. VII A),
such that the respective bounds on ωBD and

P
mν are

approximately an order of magnitude weaker and the con-
straint on Gmatter is a factor of six weaker. The weak
correlations between the modified gravity parameters and
the sum of neutrino masses (along with weak lensing
systematics such as baryonic feedback) are shown in
Fig. 11, and are consistent with the comparably weak
correlations found for KiDS × f2dFLenSþ BOSSg and
KiDS × 2dFLenSþ All-BOSS (Secs. VI A and VI B).

3. H0 and S8 constraints

Turning to the constraints on the derived H0 and S8
parameters, correlations with Gmatter=G continue to
give rise to both a shift in the posterior mean and increase
in the uncertainty. Concretely, for the unrestricted
JBD model, H0 ¼ 74.7þ8.5

−9.3 km s−1Mpc−1 (while for the
restricted JBD model, where Gmatter=G is fixed to unity,
H0¼ 71.3þ5.9

−4.0 kms−1Mpc−1). In comparison with ΛCDM,

TABLE V. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters. For the JBD
parameter, ωBD, and the sum of neutrino masses,

P
mν (in units of eV), we quote the 95% confidence lower and upper bounds,

respectively. We also quote the 95% confidence upper bound for the feedback amplitude, B. The Hubble constant, H0, is in units of
km s−1 Mpc−1 and we define S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. The tensions TðH0Þ and TðS8Þ are against Riess et al. (2019) [79] and Planck18,

respectively. See Table II for further details.

Probe setup ωBD Gmatter=G B AIA
P

mν H0 S8 TðH0Þ TðS8Þ
KiDS × 2dFLenSþ All − BOSSþ PantheonðΛCDMÞ � � � � � � 3.1 1.13þ0.53

−0.46 � � � 70.8þ6.0
−3.7 0.746þ0.028

−0.028 0.64 2.8

KiDS×2dFLenSþAll−BOSSþPantheonðΛCDMþP
mνÞ � � � � � � 3.1 1.34þ0.49

−0.48 1.1 71.0þ5.7
−3.2 0.748þ0.028

−0.028 0.65 2.5

KiDS × 2dFLenSþ All − BOSSþ PantheonðJBDÞ 140 � � � 3.3 1.12þ0.51
−0.45 � � � 71.3þ5.9

−4.0 0.746þ0.028
−0.028 0.53 2.8

KiDS×2dFLenSþAll−BOSSþPantheonðJBDþP
mνÞ 100 � � � 3.2 1.36þ0.51

−0.46 1.2 71.7þ5.4
−3.8 0.748þ0.028

−0.028 0.48 2.5

KiDS×2dFLenSþAll−BOSSþPantheonðJBDþGmatterÞ 120 1.10þ0.19
−0.22 3.4 1.13þ0.51

−0.45 � � � 74.7þ8.5
−9.3 0.719þ0.062

−0.085 0.08 1.5

KiDS × 2dFLenSþ All − BOSS
þPantheonðJBDþGmatter þ

P
mνÞ

79 1.05þ0.18
−0.20 3.3 1.36þ0.51

−0.47 1.3 73.4þ8.4
−8.3 0.737þ0.063

−0.085 0.07 1.4
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these constraints correspond to a positive shift in the posterior
mean by ΔH0 ¼ 0.5 km s−1Mpc−1 (with percent-level
increase in the uncertainty) when allowing ωBD to vary
(i.e., for the restricted JBDmodel), and an additional increase
in the posterior mean by ΔH0¼ 3.4 kms−1Mpc−1 (with an
80% increase in the uncertainty) when further allowing
Gmatter=G to vary (i.e., for the unrestricted JBD model).

For the S8 parameter, the constraints are effectively
at the subpercent level between the restricted JBD model
andΛCDM, while S8 ¼ 0.719þ0.062

−0.085 in the unrestricted JBD
model which corresponds to a decrease in the posterior
mean by ΔS8 ¼ 0.027 and a factor of 2.6 increase in the
uncertainty (similar to that found when the Pantheon
dataset is excluded from the analysis in Sec. VI B).

FIG. 11. Marginalized posterior distributions (inner 68% C.L., outer 95% C.L.) of the JBD parameter, lnω−1
BD, the present effective

gravitational constant, Gmatter=G, the baryonic feedback amplitude, B, the sum of neutrino masses,
P

mν, the Hubble constant, H0 (in
units of km s−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from the KiDS, 2dFLenS, BOSS, and Pantheon datasets. We also include the Planck18

ΛCDM constraints for comparison. All other standard cosmological and systematics parameters are simultaneously varied. For visual
clarity, we have zoomed in on the lnω−1

BD axis where the distributions begin to flatten, as they stay flat and unbounded in the direction of
the GR limit (in practice toward lnω−1

BD ¼ −17).

JOUDAKI, FERREIRA, LIMA, and WINTHER PHYS. REV. D 105, 043522 (2022)

043522-32



While the increased uncertainly on S8 is robust to varyingP
mν, we note that allowing for this additional degree of

freedom gives rise to an increase in the posterior mean by
ΔS8 ¼ 0.018 (such that S8 ¼ 0.737þ0.063

−0.085 in an unrestricted
JBDmodel with massive neutrinos; similar to that found for
KiDS × f2dFLenSþ BOSSg). As in the case of H0, this
impact of the sum of neutrino masses on the S8 posterior
mean decreases as we fixGmatter=G to unity in the restricted
JBD and ΛCDM models (shown in Table V).

4. H0 and S8 tensions

Given the increase in the S8 uncertainty in the unrestricted
JBD model, the concordance with the Planck CMB
increases, such that the respective S8 constraints differ by
1.5σ as compared to 2.8σ in both ΛCDM and the restricted
JBD model (1.4σ and 2.5σ, respectively, as the sum of
neutrino masses is further varied). In ΛCDM, the posterior
mean of S8 differs from that obtained by All-Planck18þ
All-BOSSþ Pantheon by ΔS8 ¼ 0.084. This difference
in S8 is maximal for an unrestricted JBD model with fixed
neutrino masses, where ΔS8 ¼ 0.116. However, given the
increase in the uncertainty on S8 (as noted, by a factor
of 2.6 for KiDS × 2dFLenSþ All-BOSSþ Pantheon and
a factor of 1.5 for All-Planck18þ All-BOSSþ Pantheon,
both relative to ΛCDM), this increase in ΔS8 indeed corre-
sponds to a decrease in the statistical significance of the
tension between the datasets, as illustrated in Fig. 18.
While the constraint on the Hubble constant is consistent

to within 68% C.L. with both the direct measurement from
Riess et al. (2019) [79] and that inferred by the Planck
CMB, we note that the posterior mean is generally in
greater agreement with the direct measurement (both in
ΛCDM and the extended cosmologies). In other words, the
Hubble constant constraint from KiDS × 2dFLenSþ
All-BOSSþ Pantheon favors a ΔH0 ¼ 2.6 km s−1Mpc−1

larger value as compared to All-Planck18þ All-BOSSþ
Pantheon in ΛCDM, and this difference increases to as
much as ΔH0 ¼ 6.9 km s−1Mpc−1 in an unrestricted JBD
model with fixed neutrino masses (albeit with larger
uncertainty). We show this difference in the H0 constraints
between KiDS × 2dFLenSþ All-BOSSþ Pantheon and
All-Planck18þ All-BOSSþ Pantheon in Fig. 18.

5. Model selection

As shown in Appendix D (specifically Table VII),
despite a decrease in the tension between datasets, we find
no model selection preference for the extended cosmologi-
cal models relative to ΛCDM (given ΔDIC≳ 0).

VIII. RESULTS: FULLY COMBINED DATA
ANALYSIS OF THE JBD MODEL

We now proceed to constraining the JBD model with
the full combination of datasets. This includes the cosmic
shear, galaxy-galaxy lensing, and overlapping redshift-space

galaxy clustering (KiDS × 2dFLenS), BAO distances, AP
distortions, and growth rates (All-BOSS), supernova dis-
tances (Pantheon), and the cosmic microwave background
temperature, polarization, and lensing reconstruction (All-
Planck). In Sec. VIII C alone, we additionally include the
small-scale CMB data of ACT.17 The KiDS, 2dFLenS, and
BOSS datasets are combined as in Sec. VI B, where we
avoid double-counting information by restricting the 3 × 2pt
dataset to KiDS × 2dFLenS instead of KiDS × f2dFLenSþ
BOSSg, in order to separately utilize the full BOSS dataset
(i.e., All-BOSS).

A. Assessing concordance as a requirement for
combining datasets

We have further taken care to only perform a combined
analysis of concordant datasets. As shown in Fig. 12,
the tension between KiDS × f2dFLenSþ BOSSg and
All-Planckþ All-BOSSþ Pantheon in the S8 −Ωm plane
diminishes as we transition from ΛCDM to the unrestricted
JBD cosmology. This holds to even greater extent as
we consider the concordance between KiDS × 2dFLenS
and All-Planckþ All-BOSSþ Pantheon (such that the
95% confidence level contours fully overlap and there is
agreeement in S8 to within 1σ in the unrestricted JBD

FIG. 12. Marginalized posterior distributions (inner 68% C.L.,
outer 95% C.L.) in the S8–Ωm plane for the dataset combinations
All-PlanckþAll-BOSSþPantheon, KiDS×f2dFLenSþBOSSg,
and KiDS × 2dFLenS in the unrestricted JBD modified gravity
model with massive neutrinos (JBDþGmatter þ

P
mν) and in

ΛCDM. Here, “All-Planck” refers to the Planck 2018 CMB
temperature, polarization, and lensing reconstruction, and we
simultaneously vary all standard cosmological and systematics
parameters.

17With the exception of Sec. VIII C, where we target degen-
eracies between parameters that modify the CMB damping tail,
we do not include ACT DR4 in the final setup as its covariance
with Planck 2018 is neglected in favor of further scale cuts, which
has been validated to 5% precision for certain single-parameter
extensions in addition to ΛCDM [98].
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model). As observed in Fig. 11, in the unrestricted JBD
model, Planck is also concordant in e.g., the S8–H0 plane
with KiDS×2dFLenSþAll-BOSSþPantheon.
In assessing the concordance betweenKiDS×2dFLenSþ

All-BOSSþPantheon and All-Planck over the full param-
eter space, we find log I ¼ 0.93 in the unrestricted JBD
model with massless neutrinos and log I ¼ 0.37 in the
unrestricted JBDmodel where the sum of neutrinomasses is
varied, corresponding to substantial and weak concordance
between the datasets, respectively. This concordance
decreases by Δ log I ≈ −1 when instead assessing the
concordance between All-PlanckþAll-BOSSþPantheon
and KiDS × 2dFLenS. In other words, the “order” in which
datasets are combined has an impact on the assessment of
whether a fully combined analysis of the datasets is
warranted. In our case, we take not only the concordance
in the combination of All-Planck with the other datasets, but
also the agreement in the parameters that lensing constrains
most powerfully as motivation for performing a fully
combined analysis of the datasets in the unrestricted JBD
model. However, we do not quote constraints using the full
combination of datasets in ΛCDM and the restricted JBD
model where the datasets are evidently discordant.

B. KiDS × 2dFLenS+All-BOSS+
All-Planck+Pantheon

1. JBD gravity and massive neutrinos

We now consider “KiDS × 2dFLenSþ All-BOSSþ
All-Planck18þ Pantheon” in the unrestricted JBD model
(see Fig. 13 and Table VI). We obtain our strongest bounds
on ωBD > 2230 (95% C.L.) andGmatter=G ¼ 0.996þ0.029

−0.029 as
the sum of neutrino masses is fixed, and ωBD > 1540

(95% C.L.) and Gmatter=G ¼ 0.997þ0.029
−0.029 in the unrestricted

JBD model as the sum of neutrino masses is varied (whereP
mν < 0.12 eV at 95% C.L.). In both neutrino setups, the

constraints are in agreement with the GR expectation. As
compared to “All-Planck18þ All − BOSSþ Pantheon”,
where KiDS × 2dFLenS is excluded, the ωBD bounds are
strengthened by ΔωBD ¼ f190; 200g in the fmassless;
massiveg neutrino scenarios, respectively, while the uncer-
tainties on Gmatter=G are marginally narrowed (by 0.01 in
both neutrino scenarios). Meanwhile, the bound on the sum
of neutrino masses is robust (at the 0.01 eV level), as it is
driven by the combination of Planck and BOSS.

2. Baryonic feedback and intrinsic alignments

In accordancewith earlier results using subsets of the data,
there are weak correlations between fωBD; Gmatter;P

mνg in this unrestricted JBD model. The parameters are
alsoweakly correlated with the baryonic feedback amplitude,
whereB < 2.8 (95%C.L.) in bothneutrino setups.This upper
bound on the feedback amplitude is in agreement with the
bounds from subsets of the data involving KiDS (Secs. VI A,
VI B, VII B) and differs from the “no feedback” (or “dark
matter only”) value of B ¼ 3.13 at greater than 98% C.L..
The constraints on the IA amplitude are improved

by more than 20% relative to the equivalent data setup
without Planck (i.e., as compared to KiDS × 2dFLenSþ
All-BOSSþ Pantheon). Concretely, we constrain AIA ¼
1.52þ0.038

−0.038 in the unrestricted JBD model with massive
neutrinos, which remains practically identical as we fix the
sum of neutrino masses. The constraints are mildly shifted
toward larger values (by ΔAIA ∼ 0.2–0.4) with the addition
of Planck, and are both positive at 4.0σ. However, we note
that the large posterior mean favored here is likely driven
(at least partly) by the uncertainties in the photometric
redshift distributions (see e.g., Refs. [215–217]).

3. H0 and S8
In addition to the primary parameters, we constrain

H0 ¼ 68.37þ1.24
−1.24 km s−1Mpc−1 and S8 ¼ 0.822þ0.014

−0.014 in

TABLE VI. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters. For the JBD
parameter, ωBD, and the sum of neutrino masses,

P
mν, we quote the 95% confidence lower and upper bounds, respectively. We also

quote the 95% confidence upper bound for the baryonic feedback amplitude, B, and the tension, TðH0Þ, with the Riess et al. (2019) [79]
direct measurement of the Hubble constant. The sum of neutrino masses is in units of eV and the Hubble constant, H0, is in units of
km s−1 Mpc−1. See Table II for further details. There is a minor improvement in the H0 (and AIA) constraint when the sum of neutrino
masses is varied in the Planck 2015 setup, as explained in Appendix E. For visual clarity, we do not show the constraints on
S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
in a separate column, but quote them here as S8 ¼ ½0.822þ0.014

−0.014 ; 0.817
þ0.015
−0.015 ; 0.818

þ0.015
−0.015 ; 0.809

þ0.016
−0.015 � from the first to

the fourth row, respectively.

Probe setup ωBD Gmatter=G B AIA
P

mν H0 TðH0Þ
KiDS×2dFLenSþAll-BOSSþAll-Planck18þPantheonðJBDþGmatterÞ 2230 0.996þ0.029

−0.029 2.8 1.54þ0.38
−0.39 � � � 68.37þ1.24

−1.24 3.0

KiDS × 2dFLenSþ All-BOSSþ All-Planck18
þPantheonðJBDþGmatter þ

P
mνÞ

1540 0.997þ0.029
−0.029 2.8 1.52þ0.38

−0.38 0.12 68.13þ1.26
−1.25 3.1

KiDS×2dFLenSþAll-BOSSþAll-Planck15þPantheonðJBDþGmatterÞ 2270 1.010þ0.030
−0.029 2.8 1.49þ0.38

−0.39 � � � 68.87þ1.32
−1.32 2.7

KiDS × 2dFLenSþ All-BOSSþ All-Planck15
þPantheonðJBDþGmatter þ

P
mνÞ

1640 1.017þ0.029
−0.030 2.8 1.52þ0.36

−0.39 0.21 68.71þ1.27
−1.26 2.8
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the unrestricted JBD model with fixed neutrino masses,
which are modified to H0 ¼ 68.13þ1.26

−1.25 km s−1 Mpc−1 and
S8 ¼ 0.817þ0.015

−0.015 in the unrestricted JBD model where
the sum of neutrino masses is additionally varied. The
H0 constraints are consistent at the 0.2σ level and are
marginally stronger (by ∼5%) than the respective

constraints from All-Planck18þ All-BOSSþ Pantheon.
Given the positive shifts in the posterior mean as com-
pared toAll-Planck18þ All-BOSSþ Pantheon, byΔH0 ¼
f0.57; 0.30g km s−1Mpc−1 in the fixed, varying neutrino
mass scenarios, the discordance with the Riess et al.
(2019) [79] measurement of the Hubble constant decreases

FIG. 13. Marginalized posterior distributions (inner 68% C.L., outer 95% C.L.) of the JBD parameter, lnω−1
BD, the present effective

gravitational constant, Gmatter=G, the baryonic feedback amplitude, B, the sum of neutrino masses,
P

mν, the Hubble constant, H0 (in
units of km s−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from different combinations of the KiDS, 2dFLenS, BOSS, Pantheon, and Planck

datasets. All other standard cosmological and systematics parameters are simultaneously varied. For visual clarity, we have zoomed in
on the lnω−1

BD axis where the distributions flatten toward the GR limit at −∞ (in practice toward the negative end of the prior range at
lnω−1

BD ¼ −17).
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marginally to TðH0Þ ¼ f3.0σ; 3.1σg, respectively (i.e.,
despite the narrower uncertainty).
By the inclusion of KiDS × 2dFLenS, the S8 constraints

from the full combination of datasets are shifted
by ΔS8 ¼ f−0.8σ;−0.7σg as compared to All-Planck18þ
All-BOSSþ Pantheon alone, and are consistent at the
0.3σ level between the two neutrino mass setups. However,
the constraints are closer to the posterior mean favored by
Planck, rather than KiDS × 2dFLenS, given its comparably
higher constraining power.

4. Correlations with the matter density

In Fig. 14, given the full combination of datasets
for both Planck 2018 and Planck 2015 (i.e., “KiDS×
2dFLenSþ All-BOSSþ All-Planck18þ Pantheon” and
“KiDS×2dFLenSþAll-BOSSþAll-Planck15þPantheon”),
we show a subset of the correlations with the matter
density ðΩmÞ. As expected, the matter density is negatively
correlated with fH0; Gmatterg and positively correlated with
S8. Here, the correlation for the novel pair fΩm; Gmatterg
is negative as the parameters are to first order multipli-
cative in the Poisson equation, such that a positive shift
in one parameter is counteracted by an equally negative
shift in the other parameter to obtain the same fit to the
data; a qualitatively similar relation holds for these
two parameters in the Friedmann equation, where H2 ∝
Gmatterρ (as shown in Sec. II).
We constrain Ωm ¼ 0.305þ0.011

−0.012 in the unrestricted JBD
model with massive neutrinos from the full combination of
datasets, which is robust between the two Planck datasets
(to within 0.5σ, as Ωm ¼ 0.298þ0.011

−0.012 when Planck 2018 is
replaced with Planck 2015), and is also robust to the
exclusion of KiDS × 2dFLenS (to within 0.3σ, as Ωm ¼
0.309þ0.012

−0.012 for All-Planck18þ All-BOSSþ Pantheon).

5. Model selection

Although the unrestricted JBD model is able to
alleviate dataset discordances, we find no model selection

preference for this model, as ΔDIC ¼ 2.0 in our setup with
fixed neutrino masses and ΔDIC ¼ 4.6 when allowing the
sum of neutrino masses to vary.

6. Comparing against the Planck 2015 dataset

We can further compare the differences in the parameter
constraints from KiDS × 2dFLenSþ All-BOSSþ All-
Planckþ Pantheon between the 2018 and 2015 datasets
of Planck. As shown in Appendix E (specifically Fig. 26),
and similar to that found in the restricted JBD model (see
Fig. 25), there is strong consistency in the parameter
constraints between the two setups. The sum of neutrino
masses constitutes the main exception (along with the
primordial scalar amplitude) due to its strong correlation
with the optical depth, τ, which is improved by 65% in
the data combination with All-Planck18 (as compared to
the data combination with All-Planck15).18 As a result,P

mν < 0.12 eV (95% C.L.) which reflects a 40%
improvement in the upper bound (relative to the bound
from the data combination with All-Planck15).
In combining KiDS × 2dFLenS, All-BOSS, Pantheon,

and All-Planck15, we constrain ωBD > f2270;1640g
(95% C.L.) in the unrestricted JBD model with ffixed;
varyingg sum of neutrino masses, respectively (correspond-
ing to differences of jΔωBDj≲ 100 with the equivalent
bounds from the data combination with All-Planck18). The
effective gravitational constant remains in agreement with
the GR expectation, as Gmatter=G ¼ 1.017þ0.029

−0.030 , which
corresponds to percent-level degradation in the uncer-
tainty and shift of jΔGmatter=Gj ¼ 0.021 in the posterior
mean relative to that from the data combination with
All-Planck18.

FIG. 14. Marginalized posterior distributions (inner 68% C.L., outer 95% C.L.) of the matter density Ωm against the present effective
gravitational constant Gmatter=G, Hubble constant H0 (in units of km s−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from the KiDS, 2dFLenS,

BOSS, Pantheon, and Planck datasets. We consider an unrestricted JBD cosmology with massive neutrinos (JBDþ Gmatter þ
P

mν),
where all standard cosmological and systematics parameters are simultaneously varied.

18We note that for the data combination with All-Planck18, the
τ constraint is effectively unchanged between the restricted and
unrestricted JBD models, while it is degraded by 30% for the data
combination with All-Planck15 as we transition from the re-
stricted to the unrestricted JBD model.
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Meanwhile, the constraint on the Hubble constant is
positively shifted by 0.5σ (with effectively no change in the
uncertainty), such that H0 ¼ 68.71þ1.27

−1.26 km s−1 Mpc−1 and
TðH0Þ ¼ 2.8 (a decrease in the tension with Riess et al.
2019 by 0.3σ). As expected, the baryonic feedback and IA
amplitude constraints are effectively unchanged (as these
are driven by KiDS × 2dFLenS); however, given the
weaker neutrino mass bounds in the data combination
with All-Planck15 (relative to All-Planck18), the cosmo-
logical parameter constraints are generally less robust, in an
absolute sense, to allowing

P
mν vary in the analysis (as

shown in Table IX).

c. Take-away of JBD constraints, parameter
degeneracies, model selection, and dataset

concordances

1. JBD coupling constant and the effective
gravitational constant

We summarize the constraints on the JBD coupling
constant in Fig. 15, considering different combinations of
datasets (consisting of KiDS, 2dFLenS, BOSS, Planck, and
Pantheon) and different cosmological models (with a focus
on the possible inclusion of

P
mν andGmatter). As shown in

this figure (and discussed in Secs. V–VIII A), the strongest
bounds on ωBD are from the Planck CMB, approximately
an order of magnitude stronger than the bounds from KiDS,
2dFLenS, BOSS, and Pantheon (even when combined).
The ωBD bound favors the modified gravity solution more
strongly as massive neutrinos are simultaneously considered,
while the transition from a restricted to unrestricted JBD
model (i.e., allowing for Gmatter to vary) results in an ωBD
bound that is in greater agreement with the GR expectation.

We obtain the strongest bound on the JBD coupling
constant in the unrestricted JBD model with fixed neutrino
masses, where ωBD > 2230 (95% C.L.) from the combi-
nation of all datasets. As described in Sec. VIII A, this
bound weakens by approximately ΔωBD ≃ −700 as we
allow for the sum of neutrino masses to vary, and by an
additional ΔωBD ≃ −600 when we transition to a restricted
JBD model (i.e., fix Gmatter=G ¼ 1; noting that we remove
KiDS × 2dFLenS to maintain dataset concordance in the
restricted JBD model).
For the unrestricted JBD model, we summarize the

constraints on the effective gravitational constant in
Fig. 16, where Gmatter=G ¼ f0.996þ0.029

−0.029 ; 0.997
þ0.029
−0.029g as

the sum of neutrino masses is ffixed; variedg, and which
remains robust as we exclude any one of the datasets. The
constraints on the JBD coupling constant and effective
gravitational constant are also largely robust to whether the
2018 or 2015 dataset of Planck is considered (given the
same observables). In particular, we note that the agreement
with the GR expectation improves by 0.5σ with the 2018
dataset, which is driven by the improved measurement of
the optical depth to reionization (as also seen in Fig. 26).

2. Comparison of JBD constraints to earlier work

We can compare our bounds on ωBD to those
obtained in earlier work. As discussed in the forthcoming
Sec. VIII D, this is not straightforward given the different
modeling choices. The most relevant comparison is to
Avilez and Skordis (2014) [56] given the similar JBD
modeling, where ωBD > f1901; 2441g at 95% C.L. in the
frestricted; unrestrictedg JBD model with Planck 2013
(temperature and lensing), respectively. In addition to the
comparable bounds on ωBD to our analysis, these authors

FIG. 15. Marginalized posterior distributions for the JBD parameter lnω−1
BD. We simultaneously vary all standard cosmological and

systematics parameters, along with the sum of neutrino masses
P

mν. We keep Gmatter=G fixed unless indicated otherwise. In the
MCMC analysis, lnω−1

BD is allowed to vary down to −17, zoomed in here for visual clarity (noting that the posteriors continue to stay flat
below lnω−1

BD ¼ −12).

TESTING GRAVITY ON COSMIC SCALES: A CASE STUDY OF … PHYS. REV. D 105, 043522 (2022)

043522-37



find a qualitatively similar difference in the ωBD bounds
between the restricted and unrestricted JBD models.
However, while the ωBD bounds are comparable between

the analyses, we note that these are one-sided parameter
bounds and therefore not a reflection of the overall con-
strainingpowerof thedatasets considered.This canbeseenby
comparing the constraints on the effective gravitational
constant in the unrestricted JBD model, where Avilez and
Skordis (2014) [56] constrain this parameter to be in agree-
ment with GR at the σðGmatter=GÞ ≃ 0.053 level from Planck
2013 (temperature and lensing), ACT, and SPT, which we
improve on by nearly a factor of two in our full analysis.

3. Evolution of the effective gravitational constant and
consistency with big bang nucleosynthesis

As we constrain the coupling constant, ωBD, to be larger
than ∼1 × 103 from the Planck CMB temperature and
polarization alone and ∼2 × 103 when Planck is combined
with other probes (both at 95% C.L.), the scalar field and
thereby the effective gravitational constant is approxi-
mately constant with time, to within 0.5–1% from the
present to the BBN epoch (concretely from the present to
matter-radiation equality, after which it freezes, as dis-
cussed in Sec. II). Given the distinct ωBD and Gmatter=G
constraints in the unrestricted JBDmodel (Sec. VIII A), this
implies that we constrain the gravitational constant during
BBN to GBBN=G ¼ 1.00� 0.03. This constraint holds for
both fixed and varying sum of neutrino masses, and it
additionally holds at the epoch of recombination as the
effective gravitational constant evolves by a mere 0.05%–
0.1% between recombination and BBN.
If we instead consider a restricted JBD model

(Sec. VII A), where the effective gravitational constant at
present is not a free parameter but fixed to unity, we

can place an upper bound on its value during recombina-
tion and BBN from our lower bound on the coupling
constant. Here, we constrain GBBN=G − 1 < 5.8 × 10−3

and Grecomb=G − 1 < 5.0 × 10−3 as the sum of neutrino
masses is fixed, along with GBBN=G − 1 < 8.7 × 10−3 and
Grecomb=G − 1 < 7.5 × 10−3 as the sum of neutrino masses
is varied (all at 95% C.L.). For both the restricted and
unrestricted JBD models, we can also compute the first and
second order time-derivatives of the effective gravitational
constant. In Appendix A, we show that the ffirst; secondg
order derivatives are fnegative; positiveg since the onset of
matter domination and that their magnitudes are presently
less than approximately 10−13 year−1 and 10−26 year−2,
respectively. In other words, as earlier discussed in Sec. II,
the effective gravitational constant is decreasing with time
and it is doing so more slowly as time progresses.
The mild evolution of the gravitational constant and

consistency with the standard model expectation is in
agreement with the nucleosynthesis inference in
Ref. [85], where the primordial helium and deuterium
abundances are used to constrain GBBN=G ¼ 0.98� 0.03
(i.e., similar precision to our constraint in the unrestricted
JBD model, and evolution of the gravitational constant by
0.02 to reach the standard model expectation at present).

4. Neutrino mass, baryonic feedback, and intrinsic
alignments

As summarized in Fig. 17, our strongest bound on the
sum of neutrino masses is

P
mν < 0.11 eV (95% C.L.)

from Planck, BOSS, and Pantheon, which is not particu-
larly affected by the assumptions of the JBD modeling or
by the inclusion of the KiDS × 2dFLenS dataset (at the
0.01 eV level). The baryon feedback amplitude is most

FIG. 16. Marginalized posterior distributions for the present effective gravitational constant (Gmatter=G). We simultaneously vary all
standard cosmological and systematics parameters, along with the JBD parameter lnω−1

BD and the sum of neutrino masses
P

mν. In the
MCMC analysis, Gmatter=G is allowed to vary between −1=2 to 2 (zoomed in here for visual clarity). The dashed grey vertical line
indicates the GR expectation.
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strongly bounded in the unrestricted JBD model where all
datasets are considered, such that B < 2.8 at 95% C.L. (as
compared to the “no-feedback” scenario of B ¼ 3.13). This
bound is only weakly sensitive to the cosmological model
and specific datasets considered in addition to KiDS (such
that it weakens by at most ΔB ≃ 0.6 as we consider an
exclusion of Planck and fixed neutrino masses).
InFig. 17,we also show that the IAamplitude ismarginally

larger in the JBD model relative to ΛCDM (by ΔAIA ≈ 0.2)
and we improve the constraint on the amplitude by more than
20% as Planck is considered alongside KiDS in the unre-
stricted JBD model. However, we emphasize that the large
amplitude (positive by up to 4σ) might be partly explained by
the systematic uncertainties in the photometric redshift dis-
tributions (as noted in Sec. VIII A).

5. H0 and S8
In Fig. 18, we illustrate the fH0; S8g discordances (for S8

between the CMB and weak lensing, and H0 between the
CMB and the direct measurement of Riess et al. 2019 [79]).
The BOSS and Pantheon datasets can be combined with
either KiDS or Planck, such that the S8 tension between
KiDS and Planck becomes more significant.
We show that the H0 and S8 tensions are ameliorated

by the widening of the posteriors as we consider an
unrestricted JBD model (i.e., a decrease in the H0 tension
down to approximately 3σ, and in the S8 tension to
below 1σ). We also show how the constraints improve
in a combined analysis of all datasets in this extended
model (which again increases the H0 tension), and we
contrast the results between the 2018 and 2015 datasets of
Planck (notably finding that the H0 tension decreases
down to 2σ given the baseline Planck 2015 dataset which
excludes the high-multipole polarization in particular).
The fact that the H0 and S8 posteriors do not significantly

shift, but are rather broadened, is further reflected in the
agreement of ωBD and Gmatter=G with the respective GR
expectations.

6. Ωm versus Ω�
m: Impact on assessing the S8 tension

In assessing the S8 tension, we have used Ωm for each
dataset in the computation of the respective S8 estimates,
while in Sec. II [specifically Eq. (7)] we showed that Ω�

m ¼
Ωm=ϕ is the density for which the sum of all densities add
to unity. As a result, there is a freedom in whether we
evaluate the S8 tensions using the respective Ωm or Ω�

m,
which will increasingly differ as ωBD decreases and
Gmatter=G increasingly deviates from unity.
As our constraints on the coupling constant are generally

greater than 102 (forwhich the difference in thematter density
is at thepercent level;noting thatΩm > Ω�

m asωBD decreases),
thedominant causeof thedifference inΩm andΩ�

m isdue to the
effective gravitational constant where the difference scales
linearly (i.e., Ω�

m ∝ Gmatter=G). The linear scaling of the
density with the effective gravitational constant implies that
S�8 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmatter=G

p
. Inassessing the tensionbetweenKiDSand

Planck, let us therefore consider a specific example. In
TableV,we find thatGmatter=G is centeredat 1.104forKiDS ×
2dFLenSþ All-BOSSþ Pantheon (whileωBD ≫ 1),which
implies that the S8 tension of 1.5σ is lowered by≳0.3σ, such
that theS�8 tension is1.2σ. However, as the constraints on JBD
gravity tighten towardagreementwithGR, as in the caseof the
fully combined datasets, where generally ωBD > 103 and
jΔGmatter=Gj < 10−2, the difference between S8 and S�8
becomes negligible.

7. Model selection when including Riess et al. (2019)

Turning back to the Hubble constant, to assess whether
the H0 constraint from Planck (and data combinations with

FIG. 17. Marginalized posterior distributions for the sum of neutrino masses,
P

mν, the baryonic feedback amplitude, B, and the
intrinsic alignment amplitude, AIA. We simultaneously vary all standard cosmological and systematics parameters in an unrestricted JBD
model with massive neutrinos (along with ΛCDM for comparison). The grey vertical line at B ¼ 3.13 corresponds to the “no feedback”
scenario.
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Planck) is more concordant with the direct measurement of
Riess et al. (2019) [79] in an extended cosmological model,
we have avoided a data analysis that includes both the
Planck and Riess et al. (2019) measurements (i.e., our H0

constraints have consistently excluded any “external”
measurement from Riess et al. 2019). In this setup (which
excludes Riess et al. 2019), both the restricted and
unrestricted JBD models are at most weakly favored from
a model selection standpoint relative to ΛCDM (see
Table VII in Appendix D).
However, in assessing the model selection preference of

the unrestricted JBD model, which does exhibit a smaller
tension between Planck and Riess et al. (2019) [79], we
also consider MCMC inferences that include the Riess
et al. (2019) measurement. For a combined analysis of the
2018 dataset of Planck CMB temperature and polarization
(i.e., excluding lensing reconstruction) and Riess et al.
(2019), Δχ2eff ¼ −4.0 and ΔDIC ¼ −4.8, reflecting weak-
to-moderate preference in favor of the extended model
relative to ΛCDM.
In a combined analysis of all datasets (KiDS×2dFLenSþ

All-BOSSþAll-PlanckþPantheon, where Planck now fur-
ther includes the 2018 lensing reconstruction) with Riess

et al. (2019), Δχ2eff ¼ −4.7 and ΔDIC ¼ −2.7, correspond-
ing to weak preference in favor of the extended model.
Hence, while the unrestricted JBD model is able to alleviate
the H0 and S8 tensions, the extra parameters of the model
are consistent with the GR expectation, and the extended
model is only weakly favored in a model selection sense
relative toΛCDM. Given the current cosmological datasets,
JBD gravity therefore does not simultaneously satisfy all of
the conditions in Sec. IVA required to replace the stan-
dard model.

8. Constraining the effective field theory parameters

In Sec. II F, we discussed the relationship between the
EFT and JBD parameters, noting that the tensor speed
excess αT ¼ 0 (at all times) and that the other αi ¼ 0
during radiation domination in JBD gravity. During the
matter and cosmic accelerating epochs, the remaining
EFT parameters can be obtained from the JBD coupling
constant. In particular, as the scalar field unfreezes at the
onset of matter domination, the Planck-mass run rate
αM ¼ ð1þ ωBDÞ−1, and as the Universe enters the epoch
of cosmic acceleration, αM ¼ 4ð1þ 2ωBDÞ−1.

FIG. 18. Marginalized posterior distributions for S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
(left) and the Hubble constant, H0 (right), given in units of

km s−1 Mpc−1. We simultaneously vary all standard cosmological and systematics parameters in an unrestricted JBD model with
massive neutrinos (along with ΛCDM for comparison). The grey vertical bars show the 68% C.L. (inner) and 95% C.L. (outer)
constraints on H0 from Riess et al. (2019) [79].
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Given the lower bounds on the coupling constant in the
unrestricted JBD model (Sec. VIII A), we thereby constrain
αM< f0.44;0.65g×10−3 (95% C.L.) as the sum of neu-
trino masses is respectively ffixed; variedg during matter
domination, and αM<f0.90;1.3g×10−3 (95% C.L.) as the
sum of neutrino masses is respectively ffixed; variedg
during the epoch of cosmic acceleration. In the restricted
JBD model (Sec. VII A), we constrain αM < f0.68; 1.4g ×
10−3 (95% C.L.) as the sum of neutrino masses is
respectively ffixed; variedg during matter domination,
and αM < f1.4; 2.1g × 10−3 (95% C.L.) as the sum of
neutrino masses is respectively ffixed; variedg during the
epoch of cosmic acceleration.
These upper bounds in turn translate into lower bounds

for αB ¼ −αM. The bounds on αM moreover translate into
upper bounds for αK ¼ ωBDα

2
M, noting that for larger

values of the coupling constant consistent with our con-
straints, αK ≃ αM during matter domination and αK ≃ 2αM
during the epoch of cosmic acceleration.

D. Degeneracies with small-scale physics
in the CMB damping tail

In Sec. II H, we showed how extended cosmological
parameters targeted by small-scale CMB experiments,
such as the effective number of neutrinos, primordial
helium abundance, and the running of the spectral index
ðNeff ; YP; dns=d ln kÞ can be highly degenerate with the
underlying gravitational theory in the CMB damping tail
(which holds for both the temperature and polarization
auto- and cross-power spectra). In the case of JBD gravity,
this degeneracy is driven by the impact of the scalar field on
the prerecombination expansion rate (such that as ωBD is
more tightly constrained, the impact of the scalar field on
the expansion rate is increasingly dominated by Gmatter=G
through a constant rescaling of ðH=H0Þ2).
In Fig. 19, we concretely illustrate this degeneracy for the

case of Neff andGmatter=G with Planck 2018 and ACT DR4.
As discussed in Sec. IV B 1, the covariance between theCMB
datasets has not been included (which has been shown to be
adequate inΛCDMandcertainsingle-parameter extensions to
better than 5% [98]) and we include ACT primarily to better
understand the extent to which the parameter constraints are
affected. The anti-correlation between Gmatter=G and Neff in
Fig. 19 is consistent with the effect of these parameters on the
CMB damping tail in Fig. 3, where Gmatter=G > 1 induces a
suppression in the damping tail that can be counteracted by
negative shifts in Neff .
We constrain Gmatter=G ¼ 1.020þ0.044

−0.045 and Neff ¼
2.62þ0.24

−0.29 from the CMB alone, which are 60–70% less
stringent than the respective constraints in cosmologies
where one of the parameters is fixed to the standard model
expectation (noting that in fixing Gmatter=G to unity,
we also take the GR limit of ωBD). When further
combining the CMB datasets with the lower-redshift

probes of KiDS × 2dFLenS, All-BOSS, Pantheon, and the
Planck CMB lensing reconstruction, we obtain a marginal
(≲10%) improvement in Gmatter=G¼1.023þ0.042

−0.042 and Neff ¼
2.65þ0.22

−0.26 . These constraints are consistent with, but 70%–
80% less stringent than, the scenario where one of the
respective degrees of freedom is fixed. The corresponding
shifts in the posterior means are ΔNeff ∼ 0.1 and ΔGmatter=
G ∼ 0.02 in all cases. While these are ≲1σ shifts (relative to
the fixed-case uncertainties), we note that they would need to
decrease as the constraining power of the future datasets
increase to avoid growing in statistical significance.
The inclusion of the effective number of neutrinos as a

free parameter moreover induces a widening of the YP
posterior given the enforced BBN consistency relation
(e.g., Ref. [218]) between the two parameters and the
baryon density Ωbh2 (i.e., YP is a derived and not primary
parameter in this scenario). Concretely, from the CMB
alone, σðYPÞ ¼ 5.8 × 10−5 in ΛCDM, σðYPÞ ¼ 2.4 × 10−3

in ΛCDM with a varying Neff , and σðYPÞ ¼ 3.9 × 10−3 in
the unrestricted JBD model with a varying Neff . As
compared to ΛCDM, we thereby find factors of 41 and
67 degradations in the constraining power, and note that the
constraints improve by ≲10% as the CMB is considered
together with the lower-redshift probes. The large widening
of the uncertainty can further be contrasted with that found
for the unrestricted JBD model with a fixed Neff . Here,
σðYPÞ ¼ 8.2 × 10−5 is widened by 40% as compared

FIG. 19. Marginalized posterior distributions (inner 68% C.L.,
outer 95% C.L.) in the plane of the present effective gravitational
constant, Gmatter=G, and the effective number of neutrinos, Neff ,
from the Planck 2018 and ACT DR4 datasets. The two contours
either include (dark cyan) or exclude (grey) additional datasets
that probe the Universe at lower redshifts, which we take to be
the Planck 2018 CMB lensing reconstruction along with
KiDS × 2dFLenSþ All − BOSSþ Pantheon. In this unre-
stricted JBD cosmology (JBDþGmatter þ Neff ), the sum of
neutrino masses is kept fixed and the horizontal dashed line
denotes the GR expectation (Gmatter=G ¼ 1).
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to ΛCDM (and exhibits a degeneracy with Ωbh2 and
Gmatter=G as also noted in Ref. [219]), but substantially
less than when Neff is varied.
As both Neff andGmatter=G are varied in the analysis, their

separate degeneracies with the Hubble constant are softened.
In constraining H0 ¼ 65.8þ1.2

−1.5 km s−1Mpc−1 from the
CMB alone and H0 ¼ 67.0þ1.1

−1.1 km s−1Mpc−1 from the
CMB and lower-redshift probes in the unrestricted JBD
model with a varyingNeff , the constraints improve by≲10%
as either Neff or Gmatter=G is fixed. However, in the case of
the S8 parameter, it is largely uncorrelated with Neff , such
that (for instance) S8 ¼ 0.832þ0.022

−0.025 from the CMB alone in
the unrestricted JBD model with a varying Neff , which
improves to S8 ¼ 0.840þ0.015

−0.015 inΛCDMwith a varying Neff ,
and the latter constraint persists as Neff is additionally fixed.
In summary, we have provided a concrete example that

the degeneracies observed in Sec. II H have a substantial
impact on the parameter constraints from Planck and ACT,
and we have found that these degeneracies are not broken
by the current non-CMB datasets. We leave a more detailed
investigation for future work, including a full quantification
of the degeneracies between Gmatter=G, Neff , YP, and
dns=d ln k for both current and next-generation CMB
and large-scale structure surveys.

E. Impact of JBD modeling choices

We next highlight two interrelated caveats to the modi-
fied gravity constraints presented, in the form of the prior
range and parametrization of the JBD coupling constant. As
the coupling constant favors GR in the limit ωBD → ∞, we
seek to parametrize it in a way that allows for both weak
and strong levels of modified gravity to be well sampled.
Our fiducial parametrization is taken to be PðωBDÞ ¼
lnω−1

BD in accordance with the choice in Avilez and
Skordis (2014) [56],19 and we have uniformly varied

lnω−1
BD as a primary parameter in the range ½−17;−2.3�

in our fiducial MCMC analyses (as described in Sec. IV D).

1. Impact of the JBD prior range
on the ωBD bounds

In Appendix C (specifically Fig. 24), we explore the
impact of extending the lower prior bound such that lnω−1

BD
is uniformly sampled in the range ½−47;−2.3� (we do not
extend the upper prior bound as it is already ruled out by the
data). As increasingly negative values of lnω−1

BD continue to
be favored by the data, given its consistency with GR, we
find that the lnω−1

BD constraint (and by extension the
constraint on ωBD) is sensitive to the prior range. In other
words, the lnω−1

BD posterior has a relatively sharp transition
and eventually flattens given the inability of the data to
distinguish between lower values of lnω−1

BD (between e.g.,
lnω−1

BD of −10 and −15). As a result, the 95% confidence
region of lnω−1

BD is pushed to increasingly negative values as
the prior range is widened (and by extension the lower
boundary of ωBD is increasingly positive). This is an
inescapable feature of any logarithmic parameter that is
uniformly sampled without a well-motivated or constrained
finite boundary.
In the Appendix, as an example, we have considered the

data combination KiDS × 2dFLenSþ All-BOSSþ All-
Planck18þ Pantheon, where for our fiducial prior range
of lnω−1

BD we obtain ωBD > 1540 (95% C.L.), and for our
extended prior range we obtainωBD > 17600 (95%C.L.). In
other words, the ωBD bounds from cosmology need to be
interpretedwith caution.However, given theweak correlation
of lnω−1

BD with the other cosmological and systematics para-
meters (includingwithGmatter=G), as shown in the Appendix,
the constraints on these other parameters are robust.

2. Impact of the JBD parametrization on the ωBD bounds

In Fig. 20, we moreover explore how the constraint on
the JBD coupling constant changes as a result of how
we parametrize it. In addition to the fiducial parametriza-
tion (P ¼ lnω−1

BD), designed to allow for a wide range
of JBD gravity to be well sampled [56], we consider

FIG. 20. Marginalized posterior distributions for the JBD coupling constant from the full combination of datasets
(KiDS × 2dFLenSþ All-BOSSþ All-Planck18þ Pantheon) considering four distinct parametrizations: lnω−1

BD, lnð1þ ω−1
BDÞ, ω−1

BD,
and ðlog10 ωBDÞ−1. These are the effective primary parameters varied in the respective MCMC analysis (along with the other
cosmological and systematics parameters).

19We note that this parametrization is qualitatively similar to an
earlier ln½ð4ωBDÞ−1� parametrization advocated by Acquaviva
et al. (2004) [64].
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the parametrization of Wu and Chen (2009) [65], where
P ¼ lnð1þ ω−1

BDÞ, along with a simple P ¼ ω−1
BD para-

metrization. We expect these last two parametrizations to
be effectively identical in the limit of large ωBD given the
Mercator series (where to first order lnð1þ ω−1

BDÞ ≈ ω−1
BD for

jω−1
BDj ≤ 1 and ω−1

BD ≠ −1). A benefit of these two para-
metrizations is that the GR limit is obtained at zero instead
of infinity (negative infinity in the fiducial parametrization).
However, in an MCMC analysis with a uniform prior on P,
they tend to penalize weaker JBD gravity scenarios by not
adequately sampling large ωBD.

20

We moreover consider a parametrization of the form
P ¼ ðlog10ωBDÞ−1, created to allow for a wide range
of ωBD to be sampled more uniformly [as compared to
for instance P ¼ ω−1

BD or P ¼ lnð1þ ω−1
BDÞ], while at the

same time having the GR-limit at P ¼ 0 (thus avoiding a
GR-limit at infinity). Given an example prior range of
P ∈ ½0.05; 0.5�, ωBD is sampled in the range ½102; 1020�,
where a non-negligible region of P probes each decade in
ωBD. Here, concrete values of ωBD ¼f102;104;1010;1020g
correspond to P ¼ f0.5; 0.25; 0.1; 0.05g, while in the
case of the ω−1

BD or lnð1þ ω−1
BDÞ parametrizations

P ≃ f10−2; 10−4; 10−10; 10−20g. Hence, with the new para-
metrization, we expect to adequately sample a wider range of
JBD gravity strengths.
For each parametrization, we can translate the constraints

on P (posteriors shown in Fig. 20) into constraints on ωBD.
As a concrete example, for the same dataset combination
of KiDS×2dFLenSþAll-BOSSþAll-PlanckþPantheon,
in the case of the four parametrizations P ¼
flnω−1

BD; lnð1þ ω−1
BDÞ;ω−1

BD; ðlog10 ωBDÞ−1g, the coupling
constant is respectively constrained to ωBD > f1540;
160; 160; 350g (95% C.L.). As expected, the JBD con-
straints are approximately the same for the lnð1þ ω−1

BDÞ and
ω−1
BD parametrizations. We also note that the constraints

using the latter three parametrizations do not suffer from
the same dependence on the prior interval of ωBD as the
fiducial parametrization, given their GR limit at P → 0 (for
completeness, however, we have maintained the same prior
interval as for the fiducial parametrization in the case of the
lnð1þ ω−1

BDÞ and ω−1
BD parametrizations).

3. Impact of the JBD parametrization on the
effective gravitational constant, neutrino mass,

and baryonic feedback

The constraint on the effective gravitational constant is
Gmatter=G ¼ 0.997þ0.029

−0.029 in the fiducial parametrization,

and deviates by at most to Gmatter=G ¼ 0.970þ0.033
−0.033 for

both the lnð1þ ω−1
BDÞ and ω−1

BD parametrizations, which
corresponds to a 15% increase in the uncertainty and 0.9σ
shift away from the GR expectation. While the other
cosmological and systematics parameters are largely robust
to the choice of JBD parametrization, in Fig. 21 we
highlight an exception to this for the constraints in the
plane of the sum of neutrino masses and the baryonic
feedback amplitude. These constraints demonstrate the
interplay of modified gravity, neutrino mass, and baryonic
feedback, where the contours expectedly expand in theP

mν–B plane for the parametrizations that allow for
stronger JBD gravity.
Considering the four different JBD parametrizations, we

find 95% upper bounds on B in the range 2.8 to 3.1 and onP
mν in the range 0.12 eV to 0.32 eV. In other words,

notably, the bound on the sum of neutrino masses degrades
by up to a factor of three as we consider a JBD para-
metrization that favors a stronger coupling constant. This
exploration of the effects of the prior and parametrization of
the JBD coupling constant on the parameter constraints
underscores the need for clarity of the assumptions that
enter the cosmological analysis, and illustrates the more
complete inference that is possible from a broader consid-
eration of these assumptions.

IX. CONCLUSIONS

As the precision and accuracy of cosmological datasets
continue to improve, we will increasingly be able to test

FIG. 21. Marginalized posterior distributions (inner 68% C.L.,
outer 95% C.L.) in the plane of the sum of neutrino masses,P

mν, and the baryonic feedback amplitude, B, from the full
combination of datasets (KiDS × 2dFLenSþ All-BOSSþ
All-Planck18þ Pantheon). The different contours correspond
to four distinct parametrizations P of the JBD coupling constant
ðlnω−1

BD; ðlog10 ωBDÞ−1; lnð1þ ω−1
BDÞ;ω−1

BDÞ. For comparison, the
horizontal dashed line shows the 95% upper bound on

P
mν

from All-Planck18þ All-BOSSþ Pantheon in ΛCDM.

20As a concrete example, translating the prior range
for lnω−1

BD to lnð1þ ω−1
BDÞ, the latter is sampled in the range

½4.1 × 10−8; 0.095�. Hence, 10 ≤ ωBD < 100 covers 90% of the
prior space of lnð1þ ω−1

BDÞ, while ωBD > 100 is restricted to 10%
of the space, ωBD > 1000 is restricted to 1% of the space, and so
on. This hinders the ability of the MCMC to adequately sample
parts of the lnð1þ ω−1

BDÞ space that corresponds to large ωBD.
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extensions to the standard cosmological model. One such
extension consists of a modification of the gravitational
theory, general relativity, underpinning the expansion and
the growth of structure in the Universe. To this end, we
have performed a robust exploration of “modified gravity”
with current cosmological data, capturing its impact on
nonlinear scales with numerical simulations, and focusing
on possible degeneracies with other cosmological and
astrophysical degrees of freedom, such as the sum of
neutrino masses and baryonic feedback, which we simul-
taneously constrain.
We specifically consider the scalar-tensor theory of

Jordan-Brans-Dicke (JBD) [40], where Newton’s constant
is promoted to a dynamical field as the scalar curvature
becomes coupled to a hypothesized scalar field. We
consider this model as a testbed for cosmological analyses
of modified gravity (and extended cosmologies more
broadly), given its rich history and the role it plays in
some of the fundamentally motivated extensions to the
standard model of particle physics: in particular in string
theory, extra-dimensional theories, and the decoupling limit
of theories with higher spin fields [35]. While JBD gravity
can be considered the simplest modified gravity theory
[35,220], it approximates a wider range of scalar-tensor
theories (within Horndeski) on cosmological scales where
gradients are suppressed [56]. JBD gravity is also one of the
remaining viable theories after the LIGO-Virgo measure-
ment of the speed of gravitational waves [41–44].
We provide an analytical and numerical description of JBD

gravity in the linear regime, detailing its impact on the
background evolution and linear perturbations (through
modifications of the EFTCAMB Einstein-Boltzmann solver).
Weextend thismodelingof JBDgravity to nonlinear scales by
performing a hybrid suite of N-body simulations to calibrate
the HMCODE fitting function for the matter power spectrum to
within 5–10% precision. As HMCODE is further calibrated to
simulations that separately include baryonic feedback and
massive neutrinos [102,103], we use this single fitting
function to describe the nonlinear matter power spectrum
in a Universe with cold dark matter, baryons, massive
neutrinos, and modified gravity (neglecting the subdominant
differences with an approach where all are simultaneously
included in a single simulation suite [156–163]).
We methodically constrain the JBD model (via MCMC

computations using our extended COSMOLSS analysis pack-
age), mainly considering the CMB temperature, polariza-
tion, and lensing reconstruction from Planck 2018 [4], the
“3 × 2pt” combined dataset of cosmic shear, galaxy-galaxy
lensing, and overlapping redshift-space galaxy clustering
from KiDS × 2dFLenS (restricted to 450 deg2) [5], the
Pantheon supernova distances [97], along with the BOSS
DR12 measurements of BAO distances, Alcock-Paczynski
effect, and the growth rate [78]. We consider both a
restricted JBD model with the coupling constant, ωBD,
as a new degree of freedom, along with an unrestricted JBD

model where the effective gravitational constant at present,
Gmatter=G, is additionally varied. In GR, ωBD → ∞ and
Gmatter=G ¼ 1. For both types of JBD gravity (and GR), we
consider setups where the sum of neutrino masses,

P
mν, is

either fixed or allowed to vary. The baryonic feedback
amplitude, B, moreover varies when we probe nonlinear
scales.
In the restricted JBD model, the Planck CMB temperature

and polarization anisotropies constrain ωBD > 1150, which
degrades toωBD > 430 as the CMBpolarization is excluded,
and improves to ωBD > 1380 when combined with the
anisotropy measurements of the Atacama Cosmology
Telescope (ACT DR4; both at 95% C.L.). For both datasets,
the Hubble constant,H0, rises as the strength of JBD gravity
increases, with a “hook shape” in the ωBD–H0 plane.
However, the uncertainties in our marginalizedH0 and S8 ¼
σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
increase by ≲10% and the parameters shift by

≲0.3σ due tomodified gravity alone, and so the discordances
in these parameters persist; the former at the level of∼4σwith
the direct measurement of the Hubble constant from Riess
et al. (2019) [79], and the latter at ∼2.5σ with weak lensing
(e.g., CFHTLenS [164], KiDS [180,181], DES [182], HSC
[221], and combinations thereof [183,222]; however also see
[223,224]).
The full Planck dataset (temperature, polarization, lens-

ing reconstruction) in combination with the lower redshift
datasets of BOSS and Pantheon constrain ωBD > 1460
(95% C.L.) as the sum of neutrino masses is kept fixed, and
ωBD > 970 (95% C.L.) as the sum of neutrino masses is
additionally varied (where

P
mν < 0.11 eV at 95% C.L.).

We further combine the joint datasets of Planck, BOSS, and
Pantheon with the 3 × 2pt dataset of KiDS × 2dFLenS in
the unrestricted JBD cosmology, where the 2.3σ S8
discrepancy in ΛCDM is reduced to 0.7σ (0.6σ as the
sum of neutrino masses is varied), and where there is weak-
to-substantial concordance between the datasets over the
full parameter space as estimated by the log I statistic
(which we connected to other known tension statistics).
The Planck, BOSS, and Pantheon joint constraint on H0

is also weakened in the unrestricted JBD cosmology, such
that the tension with Riess et al. (2019) decreases to 3.0σ
for the full combination of datasets (3.1σ as the sum of
neutrino masses is varied). In this model, we constrain
ωBD > 2230 (95% C.L.) and Gmatter=G ¼ 0.996þ0.029

−0.029
given fixed neutrino masses, along with ωBD > 1540

(95% C.L.) and Gmatter=G ¼ 0.997þ0.029
−0.029 as the sum of

neutrino masses is simultaneously varied, both in excellent
agreement with GR. These constraints on the coupling
constant and present effective gravitational constant are
driven by the Planck CMB and are the strongest to
date, where in particular the Gmatter=G constraints are
improved by nearly a factor of two relative to comparable
past analyses (e.g., Ref. [56]). The 3% constraint on
Gmatter=G is also comparable to the precision of the
BBN constraint in Ref. [85].
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Given our bounds on the JBD coupling constant, we
constrained the EFT parameters αM ≲ 10−3, αB ≳ −10−3,
and αK ≲ 2 × 10−3 since the onset of matter domination
(in addition to αT ¼ 0 in JBD theory). As the evolution
of the effective gravitational constant is uniquely determined
by the coupling constant, we moreover showed that
jd lnGmatter=dtja¼1 ≲ 10−13 year−1 (95% C.L.) in JBD
gravity.
In the unrestricted JBDmodel, the neutrinomass bound is

marginally weakened to
P

mν < 0.12 eV (95% C.L.). The
combined datasets improve the constraint on the intrinsic
alignment amplitude by 40% relative to KiDS × 2dFLenS
alone (by 20% relative to KiDS × f2dFLenSþ BOSSg),
such that AIA ¼ 1.52þ0.38

−0.38 is positive at 4.0σ. However, we
note that this large amplitude is not found favored in direct
measurements of AIA [215] and is likely driven by the
photometric redshift uncertainties (e.g., [216,217]). We also
constrain the baryonic feedback amplitude to B < 2.8
(95% C.L.), which corresponds to a shift of ΔB ¼ −0.7
in the upper bound relative to the ΛCDM constraint
of KiDS × 2dFLenS (ΔB ¼ −0.4 relative to KiDS ×
f2dFLenSþ BOSSg), and mildly favors a deviation from
the “no feedback” scenario of B ¼ 3.13.
Employing the deviance information criterion, we find

no meaningful model selection preference for JBD gravity
(relative to ΛCDM) for the different dataset combinations
and specific cosmologies considered. Given the alleviation
of the fH0; S8g discordances in the unrestricted JBD
model, we additionally performed a model selection assess-
ment with the Riess et al. (2019) measurement of the
Hubble constant included in the analysis. For Planck 2018
combined with Riess et al. (2019), we find ΔDIC ¼ −4.8,
which corresponds to weak-to-moderate preference in favor
of the extended model. However, for the full combination
of datasets (which here includes Riess et al. 2019), this
decreases to ΔDIC ¼ −2.7, corresponding to weak pref-
erence in favor of the extended model.
In addition to our fiducial cosmological constraints, we

have examined their sensitivity to the modeling choices. In
particular, we have illustrated how the choice of para-
metrization of the coupling constant can affect the con-
straints on Gmatter=G, B, and

P
mν, in the latter case

degrading the upper bound by up to a factor of three. We
have further highlighted the possible degeneracy of the
effective gravitational constant with other physics that
affect the CMB damping tail. As the effective gravitational
constant gives rise to a response in the CMB temperature
and polarization power spectra that coherently strengthens
toward smaller scales, it is correlated with physics such as
the primordial helium abundance, the effective number of
neutrinos, and the running of the spectral index, targeted by
CMB surveys such as AdvACT [131], SPT-3G [132], and
the Simons Observatory [133]. Given the CMB datasets of
Planck and ACT (along with the lower-redshift datasets of
KiDS, 2dFLenS, BOSS, Pantheon) we provided an illus-
tration of an up to 80% degradation in the constraints on the

effective gravitational constant and the effective number of
neutrinos when analyzed simultaneously.
We note that our bounds on the JBD coupling constant

are more than an order of magnitude weaker than the bounds
from astrophysical probes (i.e., ωBD ≳ 103 from cosmology
as compared to ωBD ≳ 104 − 105 from astrophysics).
Concretely, our strongest bound on the coupling constant is
a factor of 18 weaker than that obtained from Shapiro time
delay measurements by the Cassini satellite [58], a factor of 5
weaker than the lower bound from the analysis of the pulsar–
white dwarf binary PSR J1738þ 0333 [59], and a factor 63
weaker than the stellar triple system PSR J0337þ 1715
[60,61]. However, we emphasize the usefulness of con-
straining modified gravity through multiple pathways. In
the case of JBD theory, as it can be considered an approxi-
mation to awider class of Horndeski scalar-tensor theories on
cosmological scales [56], which may be endowed with
screeningmechanisms on astrophysical scales, these stronger
astrophysical bounds might not be representative of the true
strength of its corrections on the cosmological observables.
We expect approximately an order of magnitude

improvement in the constraints on JBD gravity with
next-generation (Stage-IV) surveys of the CMB, the
large-scale structure, and the radio sky [94], which can
be further improved in a combined analysis with a future set
of gravitational wave standard siren events (as future
electromagnetic and gravitational wave surveys have been
shown to yield comparable improvements in the constraint
on the EFT parameter αM [225]). This will allow for
cosmological constraints on JBD gravity that are at a
similar precision to the most powerful astrophysical probes.
For the expected improvements in cosmological infer-

ences to be realized, a series of conditions need to be met,
in particular: continued progress in the nonlinear modeling
of the modified gravity, the disentanglement of possible
degeneracies with other cosmological and systematics
degrees of freedom, and concordance between distinct
cosmological datasets (required for multiprobe analyses;
noting that the concordance might only emerge in the
extended cosmology, as we have shown). The impact of
modeling choices, for instance concerning the choice of
modified gravity parametrization and prior ranges, also
needs to be highlighted in a robust cosmological analysis.
We have illustrated these different ingredients for JBD
gravity, and anticipate the advent of more powerful datasets
which will either signpost deviations to or confirm the
standard cosmological model to ever higher precision.
We publicly release the MCMC chains together with the

code and data products needed to reproduce them in [226].
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APPENDIX A: EVOLUTION OF THE EFFECTIVE
GRAVITATIONAL CONSTANT

We now consider the time-variation of the effective
gravitational constant (Gmatter) in JBD theory. Given the
scalar field (ϕ) and its relation to the effective gravitational
constant in Sec. II, it is straightforward to express

GmatterðaÞ ¼ Gmatter;0a−fðωBDÞ; ðA1Þ
where fðωBDÞ ¼ − lnðGmatter=Gmatter;0Þ= lnðaÞ is a constant
of time and is given by

fðωBDÞ ¼

8>><
>>:

0 radiation

1=ð1þ ωBDÞ matter

4=ð1þ 2ωBDÞ acceleration;

ðA2Þ

during the radiation, matter, and cosmic accelerating
epochs. Here, Gmatter;0 is the value of the effective gravi-
tational constant at the onset of each epoch.
We can subsequently express the first time-derivative as

d lnGmatter=dt ¼ −fðωBDÞHðaÞ; ðA3Þ
and the second time-derivative as

d2 lnGmatter=dt2 ¼ −fðωBDÞdHðaÞ=dt: ðA4Þ
The second time-derivative can also be expressed in the
form

d2Gmatter=dt2

Gmatter
¼ dlnGmatter=dt½dlnGmatter=dtþdlnHðaÞ=dt�;

ðA5Þ
which we can approximate as 16ð1þ2ωBDÞ−2H2ðaÞ during
the cosmic accelerating epoch and ðð5þ 3ωBDÞ=2Þð1þ
ωBDÞ−2H2ðaÞ during matter domination (along with a zero
second derivative during radiation domination). Hence,

while the first derivative is negative, the second derivative
is positive during the cosmic accelerating and matter-
dominated epochs given our positivity prior on ωBD (except
in the GR limit ofωBD → ∞where both derivatives vanish).
We now consider the full combination of datasets to

evaluate these derivatives at the present time. In the
unrestricted JBD model, this includes the KiDS,
2dFLenS, BOSS, Planck, and Pantheon datasets, and in
the restricted JBD model, this includes the BOSS, Planck,
and Pantheon datasets (as in Sec. VIII). In the unrestricted
JBD model, we thereby constrain jd lnGmatter=dtja¼1 <
6.5 × 10−14 year−1 as the sum of neutrino masses is fixed
and jd lnGmatter=dtja¼1 < 9.4 × 10−14 year−1 as the sum of
neutrino masses is varied (both at 95% CL). In the restricted
JBD model, we constrain jd lnGmatter=dtja¼1 < 9.7×
10−14 year−1 as the sum of neutrino masses is fixed and
jd lnGmatter=dtja¼1 < 1.4 × 10−13 year−1 as the sum of
neutrino masses is varied (both at 95% CL).
For the second derivative, in the unrestricted JBD model,

we provide the upper bound ððd2Gmatter=dt2Þ=GmatterÞja¼1 <
4.2×10−27 year−2 as the sum of neutrinomasses is fixed and
ððd2Gmatter=dt2Þ=GmatterÞja¼1 < 8.8 × 10−27 year−2 as the
sum of neutrino masses is varied (both at 95% CL). In
the restricted JBD model, we constrain ððd2Gmatter=dt2Þ=
GmatterÞja¼1 < 9.4 × 10−27 year−2 as the sum of neutrino
masses is fixed and ððd2Gmatter=dt2Þ=GmatterÞja¼1 < 2.1 ×
10−26 year−2 as the sum of neutrino masses is varied
(both at 95% CL). Here, given its stronger bounds on the
coupling constant, the constraints on the time evolution of
the effective gravitational constant are stronger in the
unrestricted JBD model as compared to the restricted
JBD model.

APPENDIX B: IMPACT OF JBD GRAVITY ON
THE CMB POLARIZATION

In addition to showing the impact of JBD gravity on the
CMB temperature power spectrum in Figs. 2 and 3, we
illustrate the impact of JBD gravity on the CMB polari-
zation power spectrum and polarization-temperature cross-
spectrum in Fig. 22 (along with the CMB temperature
power spectrum again for comparison). Similar to the CMB
temperature power spectrum, the peaks of the polarization
power spectrum are primarily shifted by the coupling
constant, ωBD, while the damping tail is coherently sup-
pressed (enhanced) as the present effective gravitational
constant ðGmatter=GÞja¼1 is greater (smaller) than unity.
However, while a positive shift in the effective gravitational
constant induces a suppression in the temperature power
spectrum across scales, the polarization power spectrum
primarily exhibits an enhancement for l≲ 103 (as also
pointed out in Ref. [124]). For the CMB temperature-
polarization cross-spectrum, the peaks oscillate about zero,
such that a positive ωBD and ðGmatter=GÞja¼1 < 1 counteract
one another. Thedifferent signatures in theCMBtemperature
and polarization power spectra can thereby be used to place
stringent constraints on JBD gravity, as shown in Sec. V.
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Whilewe are showing the differences between the JBD and
GR (technically GR-limit) power spectra in Fig. 22, the
absolutevalue of the response jRlj ¼ jCJBD

l =CGR
l − 1j coher-

ently increases with l in the damping tail for both the
temperature and polarization auto spectra as ðGmatter=GÞja¼1

deviates from unity. This is shown explicitly for the polariza-
tion in Fig. 23 (and for the temperature in Figs. 2 and 3), and
implies that the impact of the present effective gravitational
constant will be correlated in both the temperature and
polarization power spectra with that of other physics affecting

FIG. 22. CMB temperature (T) and polarization (E) power spectra in a cosmology with JBD gravity along with their respective
differences relative to GR, defined as AJBD − AGR, where A ∈ fTT; EE; TEg (noting that TT here is the same as in Fig. 2 and shown for
comparison with EE and TE). For our GR limit, we have effectively imposed ωBD → ∞ and Gmatter=G ¼ 1. For the JBD model, we
show the four cases ωBD ¼ 10, ωBD ¼ 100, Gmatter=G ¼ 0.5, and Gmatter=G ¼ 2.0 (such that ωBD → ∞ when Gmatter=G ≠ 1, and
Gmatter=G ¼ 1 when ωBD ≠ ∞). We emphasize that our use of “Gmatter=G” here is shorthand for ðGmatter=GÞja¼1 [as defined in Eq. (18)].

FIG. 23. CMB polarization power spectra (EE) and temperature-polarization cross-spectra (TE) in extended cosmological parameter
spaces, whereDðlÞ ¼ l3ðlþ 1Þ=2πCðlÞ, along with the EE responses, defined asCextendedðlÞ=CΛCDMðlÞ − 1, and the TE differences,
defined as CextendedðlÞ − CΛCDMðlÞ. We consider deviations in the running of the spectral index, dns=d ln k, the effective number of
neutrinos, Neff , the sum of neutrino masses,

P
mν, the primordial helium abundance, YP, and the present effective gravitational

constant, Gmatter=G.
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thesmall-scaleCMB,suchas theprimordialheliumabundance
in particular (discussed in Sec. II H), but also the effective
number of neutrinos, mass of the neutrinos, and running of the
spectral index (targeted by surveys such as AdvACT [131],
SPT-3G [132], and Simons Observatory [133]).

APPENDIX C: IMPACT OF THE JBD
PRIOR RANGE

InFig. 24,we show the impact of the uniformprior range of
the primaryparameter lnω−1

BD,whereωBD is the JBDcoupling

constant, on the cosmological parameter constraints in an
unrestricted JBD model (considering the KiDS, 2dFLenS,
BOSS, Planck, and Pantheon datasets combined). While the
constraints are shown for only a subset of the parameters
(where H0 and S8 are derived parameters), the agreement in
theconstraintsbetween the fiducial andextendedpriorcases is
strong for the other cosmological and systematics parameters
simultaneously varied in the analysis (see Table I for a list of
additional primary parameters). We discuss these results in
Sec. VIII D.

FIG. 24. Marginalized posterior distributions (inner 68% CL, outer 95% CL) of the JBD parameter, lnω−1
BD, the present effective

gravitational constant, Gmatter=G, the baryonic feedback amplitude, B, the sum of neutrino masses,
P

mν, the Hubble constant, H0 (in
units of kms−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, considering two different choices of the prior range of the primary parameter lnω−1

BD. In
the fiducial setup, −17 ≤ lnω−1

BD ≤ −2.3, while in the extended setup, −47 ≤ lnω−1
BD ≤ −2.3. All other standard cosmological and

systematics parameters are simultaneously varied.
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APPENDIX D: MODEL SELECTION AND
ADDITIONAL PARAMETER CONSTRAINTS

In Table VIII, we provide parameter constraints and

assess dataset tensions for a subset of additional com-

binations of probes (namely KiDS × 2dFLenS alone, and

All-BOSSþ Pantheon alone). In Table VII, we provide the

changes in the best-fit χ2eff and deviance information
criterion (DIC) relative to ΛCDM for a range of different
combinations of probes and parameter extensions. The
datasets consist of KiDS, 2dFLenS, Planck, BOSS,
Pantheon, and ACT, and the parameter extensions con-
sist ofΛCDMþP

mν, JBD, JBDþP
mν, JBDþGmatter,

and JBDþGmatter þ
P

mν. Here, a negative DIC (and χ2eff )

TABLE VII. The changes in the best-fit χ2eff and deviance information criterion (DIC) relative to ΛCDM for different data
combinations and parameter extensions. A negative change indicates preference in favor of the extended model. For completeness, the
absolute numbers for the best-fit χ2eff and DIC of the two most central runs are All-Planck18þ All-BOSSþ PantheonðJBDþP

mνÞ,
where χ2eff ¼ 3820.4 and DIC ¼ 3865.1, and KiDS × 2dFLenSþ All-BOSSþ All-Planck18þ PantheonðJBDþ Gmatter þ

P
mνÞ,

where χ2eff ¼ 4019.7 and DIC ¼ 4072.7.

Probe setup Δχ2eff ΔDIC

Planck18ðΛCDMþP
mνÞ 1.1 3.9

Planck18ðJBDÞ −0.41 1.0

Planck18ðJBDþP
mνÞ 1.6 3.3

Planck18ðJBDþGmatter þ
P

mνÞ 2.7 4.0

ACTDR4ðJBDÞ −0.10 0.22

Planck18þ ACTDR4ðJBDÞ −0.04 0.34

All − Planck18ðΛCDMþP
mνÞ 0.83 3.0

All − Planck18ðJBDÞ −0.84 1.3

KiDS × 2dFLenSðΛCDMþP
mνÞ 0.097 0.030

KiDS × 2dFLenSðJBDÞ 0.15 −0.41
KiDS × 2dFLenSðJBDþP

mνÞ −0.32 0.62

KiDS × 2dFLenSðJBDþGmatterÞ 0.12 1.2

KiDS × 2dFLenSðJBDþGmatter þ
P

mνÞ −0.41 2.3

All-BOSSþ PantheonðΛCDMþP
mνÞ 0.0044 −0.072

All-BOSSþ PantheonðJBDÞ −0.0038 −0.033
All-BOSSþ PantheonðJBDþP

mνÞ 0.0012 −0.10
All-BOSSþ PantheonðJBDþGmatterÞ −0.061 −0.060
All-BOSSþ PantheonðJBDþGmatter þ

P
mνÞ −1.4 1.3

KiDS × f2dFLenSþ BOSSgðΛCDMþP
mνÞ 0.34 0.55

KiDS × f2dFLenSþ BOSSgðJBDÞ 0.46 −0.098
KiDS × f2dFLenSþ BOSSgðJBD; no feedbackÞ 3.2 1.4

KiDS × f2dFLenSþ BOSSgðJBDþP
mνÞ −1.3 2.1

KiDS × f2dFLenSþ BOSSgðJBDþP
mν; no feedbackÞ 3.9 2.8

KiDS × f2dFLenSþ BOSSgðJBDþGmatterÞ 3.3 1.4

KiDS × f2dFLenSþ BOSSgðJBDþGmatter þ
P

mνÞ 0.62 2.2

KiDS × 2dFLenSþ All-BOSSþ PantheonðΛCDMþP
mνÞ −1.2 −0.48

KiDS × 2dFLenSþ All-BOSSþ PantheonðJBDÞ 0.43 −0.60
KiDS × 2dFLenSþ All-BOSSþ PantheonðJBDþP

mνÞ −1.8 0.0055

KiDS × 2dFLenSþ All-BOSSþ PantheonðJBDþ GmatterÞ 0.50 1.5

KiDS × 2dFLenSþ All − BOSSþ PantheonðJBDþGmatter þ
P

mνÞ −1.8 1.9

All-Planck18þ All-BOSSþ PantheonðΛCDMþP
mνÞ 2.1 0.53

All-Planck18þ All-BOSSþ PantheonðJBDÞ 0.14 −0.22
All-Planck18þ All-BOSSþ PantheonðJBDþP

mνÞ 0.076 2.4

All-Planck18þ All-BOSSþ PantheonðJBDþ GmatterÞ 1.6 3.3

All-Planck18þ All-BOSSþ PantheonðJBDþ Gmatter þ
P

mνÞ 1.5 4.1

KiDS × 2dFLenSþ All-BOSSþ All-Planck18þ PantheonðJBDþ GmatterÞ 0.45 1.7

KiDS × 2dFLenSþ All-BOSSþ All-Planck18þ PantheonðJBDþ Gmatter þ
P

mνÞ −2.0 4.6

Planck18þ Riess 2019ðJBDþ Gmatter þ
P

mνÞ −4.0 −4.8
KiDS×2dFLenSþAll-BOSSþAll-Planck18þPantheonþRiess2019ðJBDþGmatterþ

P
mνÞ −4.7 −2.7
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implies a model selection preference in favor of the
extended model (the significance of which is des-
cribed in Sec. IV E). We find that none of the cases favor

an extended model beyond ΔDIC ≃ −5 which is the
threshold of moderate preference in favor of the extended
model.

TABLE VIII. Marginalized posterior means and 68% confidence intervals for the Hubble constant, H0, in units of km s−1 Mpc−1, and
S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. The symbol “⋄” implies that the parameter is effectively unconstrained by the data, and the symbol “∘” implies that

the tension T is not meaningful to quote (i.e., T ∼ 0).

Probe setup H0 S8 TðH0ÞRiess19 TðS8ÞPlanck18
KiDS × 2dFLenSðΛCDMÞ ⋄ 0.736þ0.039

−0.038 ∘ 2.4
KiDS × 2dFLenSðΛCDMþP

mνÞ ⋄ 0.723þ0.037
−0.037 ∘ 2.6

KiDS × 2dFLenSðJBDÞ ⋄ 0.738þ0.039
−0.039 ∘ 2.4

KiDS × 2dFLenSðJBDþP
mνÞ ⋄ 0.725þ0.035

−0.035 ∘ 2.5

KiDS × 2dFLenSðJBDþGmatterÞ ⋄ 0.768þ0.083
−0.105 ∘ 0.8

KiDS × 2dFLenSðJBDþGmatter þ
P

mνÞ ⋄ 0.772þ0.080
−0.095 ∘ 0.7

H0 S8 TðH0ÞRiess19 TðS8ÞPlanck18 TðS8ÞKiDS×2dFLenS
All-BOSSþ PantheonðΛCDMÞ 71.1þ6.3

−4.3 0.805þ0.051
−0.052 0.54 0.6 1.1

All-BOSSþ PantheonðΛCDMþP
mνÞ 69.7þ6.2

−4.3 0.812þ0.051
−0.051 0.79 0.3 1.4

All-BOSSþ PantheonðJBDÞ 73.7þ4.9
−7.9 0.802þ0.051

−0.051 0.04 0.7 1.0

All-BOSSþ PantheonðJBDþP
mνÞ 72.3þ5.2

−7.5 0.810þ0.051
−0.051 0.26 0.4 1.3

All-BOSSþ PantheonðJBDþGmatterÞ ⋄ ⋄ ∘ ∘ ∘
All-BOSSþ PantheonðJBDþGmatter þ

P
mνÞ ⋄ ⋄ ∘ ∘ ∘

TABLE IX. Marginalized posterior means and 68% confidence intervals for a subset of the cosmological parameters when analyzing
the Planck 2015 dataset (instead of Planck 2018). For the JBD parameter, ωBD, and the sum of neutrino masses,

P
mν, we quote

the 95% confidence lower and upper bounds, respectively. The sum of neutrino masses,
P

mν, is in units of eV, the Hubble constant,
H0, is in km s−1 Mpc−1, and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. A table element with “� � �” implies that the parameter is not varied in the analysis.

There is a minor improvement in the H0 (and AIA) constraint as we allow the sum of neutrino masses to vary in
KiDS × 2dFLenSþ All − BOSSþ All − Planck15þ Pantheon, as the fiducial

P
mν is located at the boundary of the posterior

when varied, such that the widest range in H0 is favored at this boundary, and due to the weak correlation between the parameters (see
Fig. 26). The tensions TðH0Þ and TðS8Þ are against Riess et al. 2019 [79] and KiDS × f2dFLenSþ BOSSg, respectively (in the latter
case only against KiDS × 2dFLenS when Planck is combined with BOSS). See the caption of Table II for further details.

Probe setup ωBD Gmatter=G
P

mν H0 S8 TðH0Þ TðS8Þ
Planck15ðΛCDMÞ � � � � � � � � � 67.94þ1.00

−0.98 0.853þ0.025
−0.025 3.5 2.5

Planck15ðΛCDMþP
mνÞ � � � � � � 0.64 65.59þ1.63

−2.43 0.843þ0.026
−0.026 3.4 2.5

Planck15ðJBDÞ 530 � � � � � � 68.27þ0.93
−1.29 0.850þ0.025

−0.025 3.2 2.4
Planck15ðJBDþP

mνÞ 860 � � � 0.62 65.95þ2.49
−1.92 0.842þ0.026

−0.025 3.3 2.4
Planck15ðJBDþGmatterÞ 850 1.024þ0.046

−0.053 � � � 69.86þ2.57
−2.88 0.842þ0.034

−0.034 1.6 1.6
Planck15þ ACTDR3ðΛCDMÞ � � � � � � � � � 67.76þ0.94

−0.95 0.853þ0.024
−0.024 3.7 2.5

Planck15þ ACTDR3ðJBDÞ 900 � � � � � � 67.97þ0.92
−1.10 0.851þ0.023

−0.024 3.5 2.5
All-Planck15ðΛCDMÞ � � � � � � � � � 68.02þ0.64

−0.64 0.834þ0.012
−0.013 3.9 2.4

All-Planck15ðJBDÞ 1110 � � � � � � 68.18þ0.65
−0.74 0.835þ0.013

−0.013 3.7 2.3
Planck15þ All − BOSSþ PantheonðΛCDMÞ � � � � � � � � � 68.16þ0.54

−0.54 0.843þ0.018
−0.017 3.9 2.5

Planck15þ All − BOSSþ PantheonðΛCDMþP
mνÞ � � � � � � 0.20 67.85þ0.59

−0.60 0.832þ0.020
−0.020 4.0 2.5

Planck15þ All − BOSSþ PantheonðJBDÞ 840 � � � � � � 68.26þ0.53
−0.63 0.844þ0.018

−0.018 3.8 2.5
Planck15þ All − BOSSþ PantheonðJBDþP

mνÞ 480 � � � 0.22 68.02þ0.60
−0.71 0.832þ0.020

−0.020 3.8 2.5
Planck15þ All − BOSSþ PantheonðJBDþGmatterÞ 1460 1.014þ0.045

−0.045 � � � 68.79þ1.89
−1.90 0.839þ0.023

−0.025 2.2 0.7
Planck15þ All − BOSSþ PantheonðJBDþGmatter þ

P
mνÞ 1140 1.029þ0.045

−0.044 0.22 69.03þ1.80
−1.83 0.822þ0.026

−0.026 2.2 0.6
All-Planck15þ All-BOSSþ PantheonðΛCDMÞ � � � � � � � � � 68.11þ0.45

−0.45 0.832þ0.011
−0.011 4.0 2.4

All-Planck15þ All-BOSSþ PantheonðJBDÞ 1050 � � � � � � 68.22þ0.46
−0.52 0.833þ0.011

−0.011 3.9 2.3
All-Planck15þ All-BOSSþ PantheonðJBDþP

mνÞ 590 � � � 0.19 67.88þ0.59
−0.61 0.828þ0.012

−0.012 4.0 2.6

ωBD Gmatter=G B AIA
P

mν H0 S8 TðH0Þ
KiDS×2dFLenSþAll-BOSSþPlanck15ðJBDþGmatterþ

P
mνÞ 840 1.034þ0.042

−0.046 3.0 1.50þ0.41
−0.41 0.30 69.51þ1.80

−1.79 0.790þ0.025
−0.025 2.0

KiDS × 2dFLenSþ All-BOSSþ All-Planck15
þPantheonðJBDþ GmatterÞ

2270 1.010þ0.030
−0.029 2.8 1.49þ0.38

−0.39 � � � 68.87þ1.32
−1.32 0.818þ0.015

−0.015 2.7

KiDS × 2dFLenSþ All-BOSSþ All-Planck15
þPantheonðJBDþ Gmatter þ

P
mνÞ

1640 1.017þ0.029
−0.030 2.8 1.52þ0.36

−0.39 0.21 68.71þ1.27
−1.26 0.809þ0.016

−0.015 2.8
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APPENDIX E: MULTIPROBE PARAMETER
CONSTRAINTS INCLUDING EITHER PLANCK

2015 OR PLANCK 2018

For completeness, we consider a comparison of the
cosmological constraints for dataset combinations that

respectively include the Planck 2015 and Planck 2018
CMB datasets. The datasets that we combine are BOSS
(growth rates, AP distortions, and BAO distances) and
Pantheon (SN distances) together with Planck which
includes the CMB temperature, polarization, and lensing
reconstruction from either the 2015 [74] or 2018 [4] dataset

FIG. 25. Marginalized posterior distributions (inner 68% CL, outer 95% CL) of the JBD parameter, lnω−1
BD, the sum of neutrino

masses,
P

mν, the optical depth, τ, the Hubble constant, H0 (in units of km s−1 Mpc−1), and S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from

All-Planckþ All-BOSSþ Pantheon, where for “All-Planck” we consider either Planck 2015 (TTþ TEþ EEþ lowTEBþ lensing)
or Planck 2018 (TTþ TEþ EEþ lowlþ lowEþ lensing). All other standard cosmological and systematics parameters are
simultaneously varied in this restricted JBD model. For visual clarity, we have zoomed in on the lnω−1

BD axis where the distributions
flatten toward the GR limit at −∞ (in practice toward the end of the prior range at lnω−1

BD ¼ −17).
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(i.e., “TT;TE;EEþ lowPþ lensing” and “TT;TE;EEþ
lowEþ lensing” for Planck 2015 and 2018, respectively).
In constraining the unrestricted JBD model, we further
consider the KiDS × 2dFLenS 3 × 2pt dataset of cosmic
shear, galaxy-galaxy lensing, and redshift-space galaxy clus-
tering (all datasets as described in Sec. IVB).

We show a comparison of the constraints on a subset of
the parameter space flnω−1

BD;
P

mν; τ; H0; S8g for the
restricted JBD model in Fig. 25 and an expanded subset
flnω−1

BD; Gmatter=G;
P

mν; τ; B;H0; S8g for the unrestricted
JBD model in Fig. 26. A range of Planck 2015 constraints

FIG. 26. Marginalized posterior distributions (inner 68% CL, outer 95% CL) of the JBD parameter, lnω−1
BD, the present

effective gravitational constant, Gmatter=G, the baryonic feedback amplitude, B, the sum of neutrino masses,
P

mν, the optical
depth, τ, the Hubble constant, H0 (in units of km s−1 Mpc−1), and S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
from the full dataset combi-

nation KiDS × 2dFLenSþ All-BOSSþ All-Planckþ Pantheon, where for “All-Planck” we consider either Planck 2015
(TTþ TEþ EEþ lowTEBþ lensing) or Planck 2018 (TTþ TEþ EEþ lowlþ lowEþ lensing). All other standard cosmological
and systematics parameters are simultaneously varied. For visual clarity, we have zoomed in on the lnω−1

BD axis where the distributions
flatten toward the GR limit at −∞ (in practice toward the negative end of the prior range at lnω−1

BD ¼ −17).
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are also summarized in Table IX. As expected, we find
substantial improvements in the constraints on the optical
depth (and scalar amplitude) and thereby the sumof neutrino
masses when the Planck 2018 dataset is considered (instead
of Planck 2015). However, the constraints on the other parts
of the subspace, in particular the constraints on JBD gravity,
baryonic feedback, theHubble constant, andS8 seem largely
robust between the two dataset combinations. This also
seems to hold for the correlations and degeneracies between
the parameters over the full subspace.
For the dataset combination KiDS × 2dFLenSþ All-

BOSSþ All-Planck15þ Pantheon, we note that there is a
minor unexpected improvement in the H0 (and AIA) con-
straint when the sum of neutrino masses is varied in the
unrestricted JBDmodel, as the fiducial

P
mν is located at the

boundary of theposteriorwhenvaried,where thewidest range
inH0 is favored, and due to the weak correlation between the
parameters (quoted in Table IX and shown in Fig. 26). We
obtain the expected change in the uncertainty on the Hubble
constant with the inclusion of massive neutrinos as Planck
2018 is considered instead of Planck 2015. For both the
Planck 2015 and 2018 dataset combinations, we also observe
that the anticorrelation between the sum of neutrino masses
and the Hubble constant diminishes as we transition from the
restricted to the unrestricted JBD model, due to the positive
correlation of both parameters with the effective gravitational
constant.
In Table IX,we can also compare the parameter constraints

from KiDS × 2dFLenS þ All-BOSS þ All-Planck15 þ
Pantheon to those from the data combination KiDS ×
2dFLenSþ All-BOSSþ Planck15 in the unrestricted JBD
model.As expected, we findweaker parameter constraints for
the latter data combination, as ωBD > 840 (95% CL) and
Gmatter=G ¼ 1.034þ0.042

−0.046 in the unrestricted JBD model with
massive neutrinos (where

P
mν < 0.30 eV at 95% CL).

These weaker constraints (notably by 50% for Gmatter) are
driven by the absence of the CMB polarization and lensing
reconstruction (i.e., Planck instead of All-Planck, rather
than the Pantheon SNe). The constraints on H0 and S8
are also weakened (by 40% and 60%, respectively), as

H0¼ 69.5þ1.8
−1.8 kms−1Mpc−1 and S8 ¼ 0.790þ0.025

−0.025 . This
highlights the significance of the additionalCMBobservables
in both strengthening the parameter constraints in the unre-
stricted JBDmodel and increasing the agreementwith theGR
expectation.

APPENDIX F: JBD THEORY IN EFTCAMB

Since the scalar field is expected to remain frozen during
radiation domination at early times due to the Hubble
friction term in its equation of motion [Eq. (5)], we set its
initial velocity, _ϕi, to zero and find its initial value, ϕi, by
means of a binary search enforcing ϕða ¼ 1Þ to be the
desired value. The background evolution is commenced at
ai ¼ 10−10, and we ensure that the flatness condition is
respected and verified up to a tolerance of ∼10−4, which is
important for the overall soundness and stability of the
model. In the language of EFTCAMB [136], the effective field
theory functions that describe the background dynamics and
linear perturbations of JBD gravity are given by (e.g., [113])

ΩEFTðtÞ ¼ ϕ − 1

γEFTi∈f1;2;3g ¼ 0

ΛEFTðtÞ ¼ 1

2

ωBD

ϕ
_ϕ2 − VðϕÞ

cEFTðtÞ ¼ 1

2

ωBD

ϕ
_ϕ2; ðF1Þ

where the potential VðϕÞ is fixed to the cosmological
constant as discussed in Sec. II, and we have added the
superscripts “EFT” to avoid confusion with Ω, γ, Λ, and c
defined elsewhere. We note that ΛEFTðtÞ and cEFTðtÞ are not
independent functions, but can be expressed in terms of
ΩEFTðtÞ (encapsulating the scalar field coupling to gravity
and matter in the Jordan and Einstein frames, respectively),
the Hubble parameter, and the matter density and pressure
(e.g., [19,136]), and that a direct one-to-one correspon-
dence can be established between the EFT functions and
the αi parametrization (e.g., [3,94,113,228]).
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