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Due to the nonlinearity of the Euler–Poisson equations, it is possible that the nonlinear Jeans instability
may lead to a faster density growing rate than the rate in the standard theory of linearized Jeans instability,
which motivates us to study the nonlinear Jeans instability. The aim of this article is to develop a method
proving the Jeans instability for slightly nonlinear Euler–Poisson equations in the expanding Newtonian
universe. The standard proofs of the Jeans instability rely on the Fourier analysis. However, it is difficult to
generalize Fourier method to a nonlinear setting, and thus there is no result in the nonlinear analysis of Jeans
instability. We firstly develop a non-Fourier-based method to reprove the linearized Jeans instability in the
expanding Newtonian universe. Secondly, we generalize this idea to a slightly nonlinear case. This method
relies on the Cauchy problem of the Fuchsian system due to the recent developments of this system in
mathematics. The fully nonlinear Jeans instability for the Euler–Poisson and Einstein–Euler equations are in
progress.
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I. INTRODUCTION

Observations of the universe suggest that the small
inhomogeneities in the density distribution may lead to a
well-developed nonlinear structure. A useful and widely
used theoretical tool to investigate formations of protostars
and the nonlinear structures, in astrophysics, is the famous
Jeans instability, while the Jeans instability is established
based on the linearized Euler–Poisson system for the
perturbed density, pressure, velocities, and the potential,
and the standard proofs of the Jeans instability rely on the
Fourier analysis. From a mathematical point of view, Fourier
analysis can not be applied to the fully nonlinear equations.
As a consequence, there is no result in the nonlinear analysis
of Jeans instability, which has been pointed out by Rendall in
[1] since 2002. In addition, we emphasize that the famous
Jeans’ criterion is a pointwise inequality for every time rather
than a data of the Cauchy problem of the Euler–Poisson
system, since the Jeans length is time dependent for an
expanding Newtonian universe (see [2,3] and it characterizes
the competing of the pressure and gravity at every moment).
In proofs of the linear Jeans instability by Fourier

analysis, the smallness of the perturbed density is crucial,

otherwise, the large density variations will significantly
destroy the linearity of the Euler–Poisson equations.
Therefore, the linear Jeans instability can only be valid
for a small time region. We intend to develop a method
which can lead to the fully nonlinear Jeans instability by
giving the initial data, and it is expected to obtain a much
faster growing rate of the nonlinear Jeans instability. We
emphasize that our method on the nonlinear problem is
not solving the approximation equations order by order,1

and our proof is independent of the original classical
Jeans’ method. We want to directly solve the nonlinear
equation, by using certain modern mathematical tech-
niques, which will give a precise estimate on the real
solution to the original Euler–Poisson system rather than
solutions of the approximation of the Euler–Poisson
system. This article can not completely achieve this goal,
but makes a first step to this aim and gives an estimate on
the solution of the slightly nonlinear Jeans equation [see
(1.10)]. We intend to generalize this idea to the fully
nonlinear case, i.e., proving the existence of the solution
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1Usually, a solution to an approximation equation may not
approximate to the solution of the original exact equation,
although we always use this assumption to build the approxi-
mation methods. That is, the approximations in the equation level
do not mean those in the solution level.
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and estimating the exact solution to the nonlinear Euler–
Poisson equations, in the near future.
In order to develop the nonlinear analysis of Jeans

instability for the Cauchy problems of the Euler–Poisson
and Einstein–Euler systems, it is crucial to build a method
which is independent of the Fourier analysis even for the
linearized cases. The key motivation of this article is to
develop a method which is more adapted to the nonlinear
analysis of the Jeans instability of the Cauchy problems.
That is, we aim to explore some significant structures of the
equations which can also capture the nonlinear structures of
the Jeans instability. In the progressing article, we will
develop this method to the fully nonlinear Jeans instability in
a Cauchy problem without the pointwise Jeans criterion.
Jeans instability can be obtained by various methods (see,

e.g., [3–7]). The governing equations of Jeans instability
is the Euler–Poisson system for isentropic fluids which
characterizes the fluid-filled universe with Newtonian self-
gravity, 8>><

>>:
∂ρ
∂t þ∇ðρvÞ ¼ 0;

∂v
∂t þ ðv ·∇Þvþ ∇p

ρ þ∇ϕ ¼ 0;

Δϕ ¼ 4πGρ;

ð1:1Þ

where ρðt; xÞ, vðt; xÞ, pðρÞ, and ϕ are the energy density,
3-velocities, pressure of the fluids, and gravitational potential,
respectively.
The long time stability problem of Friedmann-Lemaître-

Robertson-Walker-like (i.e., FLRW-like for short) universe
has been widely investigated for linear and even for non-
linear cases with the small data perturbations in mathemati-
cal literature; see, for example, [8] for the nonlinear
Newtonian cosmology and [9–16] for the nonlinear general
relativity. We point out that [16] implies, for polytropic gas
pðρÞ ¼ κρ

nþ1
n ½n ∈ ð1; 3Þ�, if the initial background density is

smaller than certain bounds, it can conclude the global
nonlinear stability of the FLRW-like universe for time
t ∈ ½0;∞Þ. This leaves rooms and possibilities for the
nonlinear Jeans instability. We remark that the nonlinear
analysis [17,18] of the Euler–Poisson system implies that
phenomena of mass accretions are not only due to the
gravitational collapse, but can also be due to the effects of the
free-falling boundary for irregular shaped molecular clouds.
In order to avoid the famous Jeans swindle2 of the original

Jeans instability (see, e.g., [3], Sec. 6.2, and [4], Sec. 10.2),
we consider an expanding homogeneous and isotropic
Newtonian universe according to the assumptions3 in ([3],
Sec. 6.3), the background velocities, we assume, obey the
Hubble law:

ρ ¼ ρ0ðtÞ; v ¼ v0 ¼ HðtÞx: ð1:2Þ

Then, substituting4 (1.2) into (1.1), we arrive at the con-
servation of the total mass and Friedmann equation (see [3],
Sec. 6.3, for details),

�
_ρ0 þ 3Hρ0 ¼ 0;
_H þH2 ¼ − 4πG

3
ρ0:

ð1:3Þ

First note that there is an exact solution to this homogeneous
and isotropic Euler–Poisson (1.3),

�
ρ0ðtÞ ¼ 1

6πGt2 ;

HðtÞ ¼ 2
3t :

ð1:4Þ

Then

ρ0ðtÞ ¼
1

6πGt2
; p0ðtÞ ¼ fðρ0ðtÞÞ;

v0ðt; xÞ ¼
2

3t
x; and ϕ0ðt; xÞ ¼

2

3
πGρ0jxj2; ð1:5Þ

where f is a smooth, positive and increasing function, are
the exact homogeneous solution5 to (1.1) in ðt; xÞ ∈
½1;∞Þ ×R3.
In order to analyze the behaviors of the perturbed

variables deviating from the background solution (1.4),
let us first decompose the variables ðρ; v; p;ϕÞ to the exact
background solution (1.4) and the perturbed parts as the
following:

ρ ¼ ρ0 þ δρ; v ¼ v0 þ δv; ϕ ¼ ϕ0 þ δϕ; and

p ¼ p0 þ δp ¼ p0 þ c2sδρ; ð1:6Þ

where c2s ¼ dp=dρ is the square of the speed of sound.
In this article, we first reprove, by a non-Fourier-based

proof, the linearized Jeans instability for the expanding
Newtonian universe, and improve the standard results.
Thus, we first recall, by introducing the fractional ampli-
tude of the density perturbations ϱ≡ δρ=ρ0, that ϱ satisfies
the linearized equation (see [3], Sec. 6.3, and we call it the
Jeans equation for short in this article),

ϱ̈þ 2H _ϱ −
c2s
a2

Δϱ − 4πGρ0ϱ ¼ 0; ð1:7Þ

where we noteΔ and∇ now are the derivatives with respect
to the Lagrangian coordinates q defined by x ¼ aðtÞq,

2That is, the zero order approximations (i.e., the homogeneous
background solutions) are not a solution of the zero order Euler–
Poisson equations. See [19] for details.

3Note that alternative assumptions and formulations of the
expanding universe can be found in [2].

4Take the divergence of the momentum equation in the Euler
equation and use the Poisson equation to obtain the second
equation in (1.3).

5Also see [4] for details.
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where6 að1Þ ≔ 1, and the time derivatives are obtained at
constant q (i.e., the material derivatives). Let us briefly
recall the derivations of this equation (1.7) and we refer
readers to [3], Sec. 6.3, for detailed derivations and
equations. Substituting the decomposition (1.6) into the
Euler–Poisson system (1.1), with the help of (1.3), we are
able to derive a set of linearized equations. Then using the
Lagrangian coordinates q, the linearized Euler–Poisson
system of the perturbed variables can be further simplified
by noting ∂tjx ¼ ∂tjq − v0 ·∇x and ∇x ¼ a−1∇q. At the
end, taking the divergence of the above linearized momen-
tum conservation, and using the continuity equation and the
Poisson equation to replace ∇ · δv and Δδϕ, respectively,
we are able to conclude (1.7).
For simplicity and in order to emphasize the main

structure of the equations, in this article, we take a specific
equation of state

pðρÞ ¼ κργðγ > 1Þ ð1:8Þ

(i.e., the polytropic gas) to proceed the derivations. In this
case, we further linearize (1.7) by noting c2s ¼ dp

dρ ¼
γκργ−10 ð1þ ϱÞγ−1 and aðtÞ ¼ t

2
3, then (1.7) becomes

ϱ̈þ 4

3t
_ϱ − κ̃t−2γþ2

3Δϱ −
2

3t2
ϱ ¼ 0; ð1:9Þ

where κ̃ ¼ γκð 1
6πGÞγ−1.

The second main topic of this article is the Jeans
instability with a slightly nonlinear term in above linearized
Jeans Eq. (1.9) of ϱ. More precisely, this nonlinear Jeans
equation is given by

ϱ̈þ 4

3t
_ϱ − κ̃t−2γþ2

3Δϱ −
2

3t2
ϱ ¼ ðγ − 1Þκ̃t−2γþ2

3
DiϱDiϱ

1þ ϱ
:

ð1:10Þ

In fact, we do not add the nonlinear term in the right hand of
Eq. (1.10) arbitrarily, since this nonlinear term appears in
the fully nonlinear Jeans equations (derived by the fully
nonlinear Euler–Poisson system).
The key tool of this article is the Cauchy problem of the

Fuchsian systems which was first established in [13] in a
nonlinear fashion and then has been investigated by a series
works, for examples, Oliynyk, Beyer, Olvera-Santamaría,
and the first author of this paper in [14,15,20,21]. We point
out that the Fuchsian system in these works are the more
general quasilinear ones, but in this article we only present
the simplest semilinear formulations in the Appendix B.
We emphasize that although the Fuchsian method may not
be necessary in the linear case, it will be very promising for

proof of the nonlinear Jeans instability, and we present a
simple nonlinear case in this article.
In this article, since we only focus on the perturbations of

density by Eqs. (1.9) and (1.10), and these density equations
are independent of the velocity v and Newtonian potential ϕ,
for simplicity, we solve these equations by restricting
ourselves to the region ðt; qÞ ∈ M ≔ ½1;∞Þ × T3, where
T3 ≔ S1 × S1 × S1 is a standard torus with period 1.
We point out that these methods can be generated to the
region7 ðt; qÞ ∈ M ≔ ½1;∞Þ ×R3 with minor mathematical
modifications.
In Sec. II, we rigorously reprove, for γ ¼ 4=3, the

linearized Jeans instability in an expanding Newtonian
universe by a non-Fourier-based method. In this method, a
variation of Jeans criterion appears [given in (2.4)]. Then
in the subsequent Sec. III, inspired by the method of
Sec. II, we develop the Fuchsian formulation for the
Eq. (1.9) and estimate the behavior of the solution without
a detailed solving of this equation. This section presents
the main idea of this article and it can be applied to the
nonlinear case. In the end, in Sec. IV, we generalize the
Fuchsian method in Sec. III to prove the slightly nonlinear
Jeans instability for the Eq. (1.10). The Appendixes A and
B give the necessary mathematical preparations on the
Sobolev spaces and include the main derivations of
Fuchsian system used in Sec. III and Sec. IV.

II. A NON-FOURIER-BASED PROOF OF
STANDARD JEANS INSTABILITY

In this section, we present a non-Fourier-based proof of
standard linearized Jeans instability in the expanding
Newtonian universe, based on the technique of separation
of variables, and in the next section, we develop a method,
without calculating the solution, to estimate the behavior
of the solution, which can be applied to the nonlinear case.
By separating the spatial and time variables, we obtain a
Helmholtz equation of the spatial variable and a time-
dependent variable coefficient ordinary differential equa-
tion (ODE) with respect to the time. The Helmholtz
equation can be solved by the well-known methods and
the difficult part is to solve the time-dependent variable
coefficient ODE. In the following statement, in order to
simplify the calculations and emphasize the key idea of
the proof, let us fix γ ¼ 4

3
in the equation of state (1.8), and

denote ϱ
∘ ≔ ϱjt¼1 and ϱ

∘
μ ≔ ð∂μϱÞjt¼1 (μ ¼ 0;…; 3).

We assume λ ≤ 0 and gλðqÞ are eigenvalues and eigen-
functions (which is not equal to 0 identically) of the

6In fact, aðtÞ ¼ að1Þt23 ¼ t
2
3 provided að1Þ ¼ 1, since by the

Hubble law (1.2) and the Lagrangian coordinates x ¼ aðtÞq, we
obtain HðtÞ ≔ _aðtÞ

aðtÞ. Then by (1.4), we can solve aðtÞ.

7In fact, for fully nonlinear case, the equation of density can
not be fully decoupled, and the background potential ϕ0 given by
(1.5) can not be defined on T 3. However, an alternative model by
considering a Poisson equation with positive cosmological
constant will leads to a uniform ϕ0 which can be defined on
T3. We leave these details to later works.
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Laplace operator Δ on a manifold8 M, i.e., gλðqÞ solves the
Helmholtz equationΔg ¼ λg for the eigenvalues λ onM. In
this condition, without loss of generality, we also assume
the initial data of density satisfies9

ϱ
∘ ¼ gλðqÞ and ϱ

∘
0 ¼

2

3
gλðqÞ ð2:1Þ

for a specific eigenvalue λ satisfies

λ ∈
�
−
25ð6πGÞ13

48κ
; 0

�
: ð2:2Þ

In the next section, we will prove the solution of Eq. (1.9) is

ϱðt; qÞ ¼
�
1

2
−

5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃ þ 25

p
�
t
2
3
−5þ ffiffiffiffiffiffiffiffiffi25þ36λκ̃

p
6 gðqÞ

þ
�

5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃ þ 25

p þ 1

2

�
t
2
3
−5−
ffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6 gðqÞ; ð2:3Þ

where, we recall, κ̃ ¼ 4
3
κð 1

6πGÞ
1
3. Furthermore, from (2.3),

we can see if λ satisfies the Jeans criterion:

λ ∈
�
−
ð6πGÞ13
2κ

; 0

�
; ð2:4Þ

then for every ðt; qÞ ∈ R>0 × D where the domain
D ≔ fq ∈ T 3jgλðqÞ > 0g, ϱ is growing.
We point out that (2.4) can be viewed as the Jeans’

criterion in this context. For example, if M ¼ T 3, i.e., for
q ∈ T 3, gλðqÞ ¼ eik·q, then λ ¼ −ðk21 þ k22 þ k23Þ. Then
(2.4) implies

k21 þ k22 þ k23 <
ð6πGÞ13
2κ

;

which, in fact, is the Jeans’ criterion.
Now let us calculate ϱ is given by (2.3). First we assume

the density ϱ has the following separation of variables, i.e.,
assume there is a function fðtÞ, such that:

8>><
>>:

ϱðt; qÞ ¼ t
2
3fðtÞgðqÞ;

ϱ0ðt; qÞ ¼ f0ðtÞgðqÞt23 þ 2
3
t−

1
3fðtÞgðqÞ;

ϱiðt; qÞ ¼ t
2
3fðtÞgiðqÞ;

ð2:5Þ

where gi ≔ ∂ig. Then substituting (2.5) into (1.9) (noting
γ ¼ 4=3), and by using (2.1), we arrive at a Helmholtz
equation Δg ¼ λg and a system of fðtÞ,

8<
: f̈ þ 8

3t
_f − λκ̃

1

t2
f ¼ 0;

fjt¼1 ¼ 1 and f0jt¼1 ¼ 0:
ð2:6Þ

The standard theory on Laplace operator and Helmholtz
equations gives the explicit expressions of the eigenvalues λ
and eigenfunctions gλ in various regions and coordinates,
we omit the details, but only focus on the equation of
fðtÞ here.
By letting f0 ≔ ∂tf, direct calculations imply (2.6) can

be rewritten as a first-order system,

8>>><
>>>:

∂tf0 þ
8

3t
f0 − λκ̃

1

t2
f ¼ 0;

∂tf ¼ f0;

fjt¼1 ¼ 1 and f0jt¼1 ¼ 0:

ð2:7Þ

We introduce a time transform τ ¼ 1
t, new variables f0ðτÞ ≔

−tf0ðtÞ and fðτÞ ≔ fðtÞ, and denote VðτÞ ≔ ðf0ðτÞ; fðτÞÞT .
Then, we reexpress (2.7) into the Fuchsian form,10

∂τV ¼ 1

τ

0
B@ 5

3
λκ̃

1 0

1
CAV: ð2:8Þ

We denote Ṽ ≔ ðh1; h2Þ and let

Ṽ ≔

 
1 −5þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ36λκ̃
p

6

1 −5−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6

!
V ¼

 
f0 þ −5þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ36λκ̃
p

6
f

f0 þ −5−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6

f

!
: ð2:9Þ

Then interpreting the (2.8) in terms of Ṽ, we arrive at

∂τṼ ¼ 1

τ

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃þ25

p þ5
6

0

0 5−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃þ25

p
6

!
Ṽ: ð2:10Þ

Noting this system (2.10) has decoupled the equations of h1
and h2, we can now solve these ODEs, respectively. Further
calculations for equations of h1 and h2, respectively, we
obtain

∂τ

�
τ
−5−
ffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6 h1

	
¼ 0 and ∂τ

�
τ
−5þ ffiffiffiffiffiffiffiffiffi25þ36λκ̃

p
6 h2

	
¼ 0: ð2:11Þ

Solving equations (2.11) and replacing, via (2.9), h1 and h2
by f0 and f, we reach

8If we takeM ¼ T3 or various special regions and coordinates,
we can calculate λ and gλðqÞ; see, for example, [22].

9For general data ϱ
∘ ¼ ϕðqÞ and ϱ

∘
0 ¼ ψðqÞ, we can use

the following technique of separation of variables, as usual
with the help of the linear superposition principle, to further
derive the solution. 10This sheds some lights on the methods in Sec. III.
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f0 þ
−5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ 36λκ̃
p

6
f ¼ −5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ 36λκ̃
p

6
t−

5þ ffiffiffiffiffiffiffiffiffi25þ36λκ̃
p

6 ;

ð2:12Þ

f0 þ
−5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 36λκ̃

p

6
f ¼ −5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 36λκ̃

p

6
t−

5−
ffiffiffiffiffiffiffiffiffiffiffiffi
25þ36λκ̃λκ̃

p
6 :

ð2:13Þ

Solving (2.12)–(2.13) and expressing the solutions in terms
of f and f0 yield

fðtÞ ¼
�
1

2
−

5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃ þ 25

p
�
t−

5þ ffiffiffiffiffiffiffiffiffi25þ36λκ̃
p

6

þ
�

5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36λκ̃ þ 25

p þ 1

2

�
t−

5−
ffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6 ;

f0ðtÞ ¼ −
3λκ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25þ 36λκ̃
p ðt−11þ ffiffiffiffiffiffiffiffiffi25þ36λκ̃

p
6 − t−

11−
ffiffiffiffiffiffiffiffiffi
25þ36λκ̃

p
6 Þ:

Then with the help of (2.5), we conclude (2.3).

III. FUCHSIAN METHODS FOR THE LINEAR
JEANS INSTABILITY

Inspired by the expression of (2.8), in this section, we
develop the Fuchsian formulation associating to the Eq. (1.9)
and estimate the behavior of the solution to the Eq. (1.9)
without a detailed solving of this equation. This section
presents the main idea of this article and it can be applied to
the nonlinear case (see Sec. IV). However, before the
nonlinear setting, we use the linear case to state the method
in order to convey the main idea, but leave the slightly
nonlinear Jeans instability to the next section.
Recall that, in the last section, we have obtained the

solution to (1.9) under the data given by the certain
eigenfunctions of the Laplacian [the eigenvalues are
restrained by (2.2)]. For a large class of the general initial
data, we are able to use the linear superposition principle to
construct the solution. In order to simplify the calculations
and highlight the main structures, we, in this section, only
focus on M ¼ T 3 and the initial data ϱ

∘
perturbing around

g0 ¼ Constant > 0 (i.e., the eigenvalue λ ¼ 0). It is clear g0
satisfies the Jeans criterion (2.4). In other words, we assume
the Fourier series of ϱ

∘
is ϱ

∘ ¼ c0 þ
P

0≠k∈Zn ckeik·q, where
ck are the Fourier coefficients, then we require c0 > 0. We
also need ck to be bounded in the certain sense given in the
following and ϱ

∘
μ have similar requirements. It turns out we

can obtain the increasing solutions for every γ > 1 (this can
also be seen in the previous calculations in Sec. II) instead of
the only fixed γ ¼ 4=3 if the data is near a positive constant
g0. In fact, this initial profile of density with vanishing wave
number (i.e., g0 > 0) leads to the essential accretion.
In order to state the main statement of this case rigorously,

we have to introduce a type of function spaces, called
Sobolev spaces, used widely in the analysis of the nonlinear

partial differential equations. We present two definitions in
Appendix A and one of them is strongly related to the high
order derivatives, while the other is from the aspect of
Fourier transforms. In order to find a way to prove Jean’s
instability for the full nonlinear Euler–Poisson system,
complex function spaces such as Sobolev spaces are
required. It turns out that the conditions and methods given
in Sobolev spaces and the following Fuchsian system can be
generated to the slightly nonlinear Jean’s instability and are
very promising for the full nonlinear Euler–Poisson system.
Now let us present the main statement of this section:
Suppose s ∈ R≥3 and γ > 1 are constants and ϱ

∘ ≔ ϱjt¼1

and ϱ
∘
μ ≔ ð∂μϱÞjt¼1 (μ ¼ 0;…; 3). Let the initial data of the

density satisfy an estimate





ϱ∘ − β

2






HsðT3Þ

þ




ϱ∘0 − β

3






HsðT3Þ

þ kϱ∘ ikHsðT3Þ ≤ β0; ð3:1Þ

where 0 < β < þ∞ is any given constant and β0 > 0 is a
small enough constant [the detailed range of β0 is given by
(B3)]. Then we will prove the solution of Eq. (1.9) satisfies

1

4
βt

2
3 ≤ ϱ ≤

3

4
βt

2
3

for every ðt; qÞ ∈ R>0 × T3.
Now let us prove this statement. The main idea is to

transform (1.9) into the Fuchsian form of (B1) since we
have a well-controlled solution of these Fuchsian formu-
lations (see Appendix B). To achieve this purpose, let us
first introduce the following transformation:

8><
>:

wðt; qÞ ≔ ϱðt; qÞ − 1
2
βt

2
3;

w0ðt; qÞ ≔ ∂twðt; qÞ ¼ ∂tϱðt; qÞ − 1
3
βt−

1
3;

wiðt; qÞ ≔ ∂iwðt; qÞ ¼ ∂iϱðt; qÞ:
ð3:2Þ

Substituting (3.2) into (1.9), we reexpress (1.9) into a first-
order system,

8><
>:

∂tw0 þ 4
3t w0 − κ̃t−2γþ2

3δij∂jwi − 2
3t2 w ¼ 0;

κ̃t−2γþ
2
3δik∂twi − κ̃t−2γþ

2
3δik∂iw0 ¼ 0;

∂tw ¼ w0:

ð3:3Þ

Then rescaling the above set of variables ðw0; wi; wÞ and
letting τ ¼ 1

t ∈ ð0; 1�, we denote

8>><
>>:

uðτ; qÞ ≔
ffiffi
6

p
3
t−

2
3wðt; qÞ ¼

ffiffi
6

p
3
t−

2
3ϱðt; qÞ −

ffiffi
6

p
6
β;

u0ðτ; qÞ ≔ t
1
3w0ðt; qÞ ¼ t

1
3∂tϱðt; qÞ − 1

3
β;

uiðτ; qÞ ≔ t
2
3
−γwiðt; qÞ ¼ t

2
3
−γ∂iϱðt; qÞ:

ð3:4Þ
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Replacing the variables (3.4) into (3.3), we arrive at

8>>>>><
>>>>>:

∂τu0 þ κ̃τγ−
7
3δij∂jui ¼ 1

τ

�
u0 −

ffiffi
6

p
3
u

�
;

κ̃δik∂τui þ κ̃τγ−
7
3δik∂iu0 ¼ κ̃ðγ−2

3
Þ

τ δikui;

∂τu ¼ 1
τ

�
2
3
u −

ffiffi
6

p
3
u0

�
:

ð3:5Þ

In terms of the matrix formulations, (3.5) becomes

B0∂τUþ τγ−
7
3Bi∂iU ¼ 1

τ
BPU; ð3:6Þ

where U ≔ ðu0; uj; uÞT and B0, Bi, B, and P are constant
matrices, i.e.,

B0 ¼

0
B@

1

κ̃δjk

1

1
CA; Bi ¼

0
B@

0 κ̃δij 0

κ̃δik 0 0

0 0 0

1
CA; ð3:7Þ

B¼

0
B@

5
3

κ̃ðγ− 2
3
Þδik

5
3

1
CA; P¼

0
BB@

3
5

0 −
ffiffi
6

p
5

0 δji 0

−
ffiffi
6

p
5

0 2
5

1
CCA: ð3:8Þ

We can, by directly using the model Eq. (B1) and
Theorem B. 1 in Appendix B, Sobolev’s inequality (see
Theorem A. 1 in Appendix A), it follows that the solution
U ¼ ðu0; uj; uÞT exists on the time interval τ ∈ ð0; 1� and
satisfies

kUðτÞkL∞ ≤ CskUðτÞkHs ≤ CskU
∘ kHs; ð3:9Þ

where Cs > 0 is the Sobolev constant from Theorem A. 1.
By (3.9), the initial data (3.1) and the transformation (3.4),
we obtain for τ ∈ ð0; 1�,

kUðτÞkL∞ ≤ CskU
∘ kHs ≤

ffiffiffi
6

p

3
β0Cs ≤

ffiffiffi
6

p

12
β: ð3:10Þ

It, with the help of (3.10) and the transform (3.4), implies
that

1

4
βt

2
3 ≤ ϱ ≤

3

4
βt

2
3:

This completes the statement and implies ϱ increases in the
order ∼t23.

IV. NONLINEAR ANALYSIS OF THE JEANS
INSTABILITY

In this section, we consider the Jeans equation with a
slightly nonlinear term given by (1.10), i.e.,

ϱ̈þ 4

3t
_ϱ − κ̃t−2γþ2

3Δϱ −
2

3t2
ϱ ¼ ðγ − 1Þκ̃t−2γþ2

3
DiϱDiϱ

1þ ϱ
:

ð4:1Þ

We point out that the nonlinear term in the right hand of
Eq. (4.1) is not chosen arbitrarily, we select this nonlinear
term since it appears in the fully nonlinear Jeans equations
(derived by the fully nonlinear Euler–Poisson system).
In this section, we are going to prove the similar

statement to the above section. That is, suppose s ∈ R≥3
and γ > 1 are constants and ϱ

∘ ≔ ϱjt¼1 and ϱ
∘
μ ≔ ð∂μϱÞjt¼1

(μ ¼ 0;…; 3). Let the initial data of the density satisfy an
estimate



ϱ∘ − β

2






HsðT3Þ

þ




ϱ∘0 − β

3






HsðT3Þ

þ kϱ∘ ikHsðT3Þ ≤ β0; ð4:2Þ

where 0 < β < þ∞ is any given constant and β0 > 0 is a
small enough constant [the detailed range of β0 is given by
(B3)]. Then we will prove the solution of Eq. (4.1) satisfies

1

4
βt

2
3 ≤ ϱ ≤

3

4
βt

2
3 ð4:3Þ

for every ðt; qÞ ∈ R>0 × T3 as well.
Similar to Sec. III, we substitute (3.2) into (4.1) and

obtain the following first-order system:8>>><
>>>:
∂tw0þ 2Hw0− κ̃t−2γþ2

3δij∂jwi − 2
3t2w¼ ðγ−1Þκ̃t−2γþ2

3δijwiwj

wþ1
2
βt

2
3þ1

;

κ̃t−2γþ2
3δik∂twi − κ̃t−2γþ2

3δik∂iw0 ¼ 0;

∂tw¼w0:

ð4:4Þ

By similar steps as above, replacing the variables in (4.4) by
(3.4), we have the following matrix expression:

B0∂τUþ τγ−
7
3Bi∂iU ¼ 1

τ
BPUþ 1

τ
H; ð4:5Þ

where U ≔ ðu0; uj; uÞT , B0, Bi, B, and P are constant
matrices given by (3.7)–(3.8), and H is

H ¼
�
−
2κ̃ðγ − 1Þδijuiujffiffiffi

6
p

uþ β þ 2τ
2
3

; 0; 0

�
T
: ð4:6Þ

This has turned (4.1) into the Fuchsian form in (B1).
Similarly using Theorem B. 1, we conclude the above
statement.

V. CONCLUSIONS AND DISCUSSIONS

We emphasize that we only consider a nonlinear toy model
(4.1) in Sec. IV of this article due to the complexity of the
fully nonlinear Jeans instability, and, in this toy model,
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eventually the nonlinearity does not affect the solution too
much, no matter if the initial perturbations are large or small.
In fact, this is the exact reason why we study this relatively
simple nonlinearity at the first step. In other words, our proof
rigorously indicates that the nonlinearity of the nonlinear
equation (4.1) in Sec. IV can not overwhelm the linear effects
in the evolutions. Of course, for the fully nonlinear case, we
believe the solution will be affected significantly by other
nonlinearities of the system and will be studied in the near
future. We emphasize that this paper currently aims to
rigorously prove this linear dominant phenomenon for the
given slightly nonlinear equations. Since we are directly
solving and estimating the exact solution of the nonlinear
equation (4.1), the transition from linear to the nonlinear
case in fact has already been included in the detailed proof of
the Fuchsian method (see Appendix B) of solving this
slightly nonlinear equation, as we said before; in fact, this
nonlinear equation is dominated by the linear one, and we use
a small perturbation of the increasing mode of the linear Jeans
analysis given in Sec. II and Sec. III (by a non-Fourier-based
proof) and use the Fuchsian method to conclude an estimate
which implies the growing mode of the solution to this
nonlinear equation is exactly the same as the linear one.
Roughly speaking, in the proof of the Fuchsian model in
Appendix B, it implies the nonlinearity of (4.1) can be fully
absorbed by the “good” 1=τ̃ singular term (which helps the
proof); thus its behavior is fully like the linear one. No matter
how large the data is, the rigorous proof yields that the
nonlinear solution is indeed dominated by the linear one, but
we highlight that this is true only for this special nonlinearity
given in (4.1) rather than the fully nonlinear Euler–Poisson
system. For general nonlinear case, we have to use more
delicate method and we are attempting to generalize this
Fuchsian method to indicate how the nonlinear behavior
dominates. On the other hand, our proof is independent of the
original classical Jeans’ method, thus our initial density
perturbations could be large (mathematically allowable) just
representing it is already in the procedure of the mass
accretions [but note it may not represent the physical reality
due to the fact that we are only considering the slightly
nonlinear toy model (4.1)]. The estimate (4.3) bounds the
exact solution for all time rather than a small time since the
proof of this slightly nonlinear equation (4.1) is rigorous
without approximations, but it only works for this equa-
tion (4.1) instead of the fully nonlinear Euler–Poisson
equations. Therefore, the estimates (4.3) of the exact solution
still can not conclude the fully nonlinear Jeans instability
since we can not include all other nonlinearities of Euler–
Poisson equations.
In summary, we have rigorously proved the slightly

nonlinear Jeans instability in the expanding Newtonian
universe and obtained that the increasing rate of ϱ is not
affected by the nonlinearity given by the square of spatial
derivatives. However, we conjecture that the increasing rate
will be significantly changed by other more difficult

nonlinearities and the increasing rate of Jeans instability
of the fully nonlinear Euler–Poisson system is very different
from t

2
3 since, roughly speaking, we can see if the density ϱ is

increasing, then the coefficient term of the pressure term
− c2s

a2 Δϱ in (1.7) will change significantly and these effects
will feedback to the system leading to faster increasing rates.
Instabilities are very different from the stabilities and thus

the stability can be approximated by the solutions of the
linearized equations, but the instability of solutions will
deviate from solutions to the linearized equations signifi-
cantly. Therefore, it is necessary to consider the Jeans
instability of the fully nonlinear Euler–Poisson system, and
if we can obtain a very fast increasing rate, then we may
explain the large inhomogeneities today by small assumptions
on the inhomogeneities at the early universe; that is, we may
not require strong constraints on the initial spectrum of the
perturbations at the early stage of the universe. The proceed-
ing works are on the fully nonlinear Jeans instability both for
the Newtonian universe and general relativity.
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APPENDIX A: SOBOLEV INEQUALITIES AND
CAUCHY-SCHWARZ INEQUALITIES

In this Appendix, let us very briefly introduce the
Sobolev spaces without further mathematical terminolo-
gies and details. We refer to, for example, [23,24] and the
references therein for details. We give two equivalent
definitions of function spaces HsðTnÞ and explain these
two Hs norms which are both used in this article are
equivalent. Mathematically, if the norms are equivalent,
then it does not matter which norms one uses, they do not
affect the analysis since they characterize, in mathematical
terminology, the same topology.
Definition A.1: When s is a real number, the Sobolev

space HsðTnÞ consists of all functions u satisfying

kukHsðTnÞ ≔

 X
ξ∈Zn

jûðξÞj2ð1þ jξj2Þs
!

1=2

< ∞; ðA1Þ

where û denotes the Fourier transform of u and kukHsðTnÞ is
called the Hs-norm of u.
Another equivalent definition is given by
Definition A.2: When s is a real number, the Sobolev

space HsðTnÞ consists of all functions u satisfying

kukHsðTnÞ ≔

 X
jαj≤s

Z
Tn
jDαuj2dx

!
1=2

< ∞; ðA2Þ

where Dαu is the αth-weak partial derivative of u.
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Hs-norms given by (A1) and (A2) are equivalent in the
following meaning.
Definition A.3: Suppose k · k and k · k0 are two norms

on HsðTnÞ. Then we call k · k and k · k0 are equivalent if
there exist two positive real numbers C2 ≥ C1 > 0 such
that

C1kuk ≤ kuk0 ≤ C2kuk; ∀ u ∈ HsðTnÞ:

Theorem A.1: (Sobolev Embedding Theorem). If s >
kþ n=2 for some integer k ≥ 0, then there is a positive
constant Cs > 0, such that

X
jαj≤k

k∂αukL∞ðTnÞ ≤ CskukHsðTnÞ; ∀ u ∈ HsðTnÞ;

where kfkL∞ðTnÞ ≔ supx∈Tn jfðxÞj is the L∞-norm of f and
the constant Cs depends only on s, n and k.
We present next the following variations of Moser’s

estimates11 which are widely used in the nonlinear PDEs.
Theorem A.2: (Moser’s estimates). Let s ∈ Z≥3, F be

smooth. Then, there are constants C̃m > 0 and Cm > 0
depending on the maximums of DkF (k ¼ 1; � � � s), such
that for u ∈ HsðT3Þ ∩ L∞ðT 3Þ,

kFðuÞkHs ≤ C̃mkuks−1L∞ kukHs ≤ CmkuksHs :

Theorem A.3: (Moser’s estimates). Suppose s ∈ Z≥3,
fi ∈ HsðT 3Þ, then there is a constant C > 0, such that

kf1 � � � fikHs ≤ C
Yl
i¼1

kfikHs:

The following inequalities are also widely used in the
nonlinear PDEs, we list them without proof.
Theorem A.4: (Hölder inequality). For any functions f

and g, there is an inequality,

jhf; gij ≤
Z
Tn
jfgjdx ≤

�Z
Tn
jfj2dx

�1
2

�Z
Tn
jgj2dx

�1
2

;

where we denote hg1; g2i ≔
R
T3 g1g2d3q.

Theorem A.5: (Cauchy–Schwarz inequality). For any
vectors ðuiÞ and ðviÞ, there is an inequality,

�X
i

uivi

�
2

≤
�X

i

u2i

��X
i

v2i

�
:

APPENDIX B: FUCHSIAN SYSTEMS

The systems given in (3.6) and (4.5) are in the Fuchsian
formulation. The initial value problem of quasilinear
Fuchsian system has been investigated in a series works
by Oliynyk, Beyer, Olvera-Santamaría, and the first author
of this paper in [13–15,20,21]. In this Appendix, we only
focus on the simplest case serving to this article.
Let us, by introducing τ̃ ¼ −τ, denote (3.6) and (4.5)

uniformly by

B0∂ τ̃U− ð−τ̃Þγ−7
3Bi∂iU ¼ 1

τ̃
BPUþ ϵ

τ̃
H; for τ̃ ∈ ½−1; 0Þ;

ðB1Þ

where ϵ ¼ 1 is corresponding to (4.5) and ϵ ¼ 0 is corre-
sponding to (3.6), U ≔ ðu0; uj; uÞT , B0, Bi, B, and P are
constant matrices given by (3.7)–(3.8), and H is given by
(4.6). For this system, we have the following conclusion.
Theorem B.1: Suppose s ∈ Z≥3, the initial data

U
∘
≔ Ujτ̃¼−1 ∈ HsðT 3Þ, and if there is a small enough

[see (B3)] constant β0 > 0, such that the initial data has
an upper bound kU∘ kHs ≤ β0, then there exists a solution
U ∈ C1ð½−1; 0Þ × T3Þ to the equation (B1), such that
kUðτ̃ÞkHs is a nonincreasing function for τ̃ ∈ ½−1; 0Þ and
thus satisfies the estimate

kUðτ̃ÞkHsðT3Þ ≤ kU∘ kHsðT3Þ ðB2Þ

for τ̃ ∈ ½−1; 0Þ.
Remark B.1: In fact, one can calculate if taking

β0 ≤ min

�
β

8Cs
;
1

2

�
λ0
ϵCm

� 1
sþ1

�
and

λ0 ≔
minf5

3
; γ − 2

3
g

maxf1; 1κ̃g
; ðB3Þ

where β is given by (3.1), Cm is given by (B7) from the
following proof, and Cs is the Sobolev constant given later,
then the above theorem holds.
Proof.—The local in time existence and uniqueness can

be obtained, as a special case, by the standard theory of
nonlinear hyperbolic equations (for example, see [25],
Chap. 16). Now let us obtain the estimates (B2) from
the Eq. (B1) and derive the solution that exists for
τ̃ ∈ ½−1; 0Þ. Firstly, let us find a time T ∈ ð−1; 0Þ in the
local existence interval such that kUðτ̃ÞkHs ≤ 2β0 for τ̃ ∈
½−1; TÞ (this can be done by the continuity of solution U
and the initial data kU∘ kHs ≤ β0). This leads, by the Sobolev
embedding Theorem A.1, to

kUðτ̃ÞkL∞ ≤ CskUðτ̃ÞkHs ≤ 2Csβ0; ðB4Þ
11These Moser’s estimates can be obtained by theorems in

[25], Proposition 3.9, or [14], Lemma A.3, with the help of the
Sobolev embedding theorem A.1.
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where Cs > 0 is the Sobolev constant and it is independent
of τ̃.
Acting on the both sides of (B1) by DαðB0Þ−1 yields

∂ τ̃DαU − ð−τ̃Þγ−7
3ðB0Þ−1Bi∂iDαU

¼ 1

τ̃
ðB0Þ−1BDαPUþ ϵ

τ̃
ðB0Þ−1DαHðτ̃;U;PUÞ: ðB5Þ

By denoting hg1; g2i ≔
R
T3 g1g2d3q, and using hDαU; ·i to

act on (B5), with the help of the integration by parts, we
arrive at12

1

2
∂ τ̃hDαU; DαUi − ð−τ̃Þγ−7

3hDαU; ðB0Þ−1Bi∂iDαUi

¼ 1

τ̃
hDαPU; ðB0Þ−1BDαPUi

þ ϵ

τ̃
hDαU; ðB0Þ−1DαHðτ̃;U;PUÞi: ðB6Þ

Note

2hDαU; ðB0Þ−1Bi∂iDαUi

¼
Z
T3

∂iððDαUÞTðB0Þ−1BiDαUÞd3q ¼ 0;

due to the divergence theorem and the integration by parts.
We denote, by recalling Definition A.2, the energy norm

kUk2Hs ¼
X
jαj≤s

hDαU; DαUi:

Let us, by Theorems A.2 and A.3, and noting τ ∈ ð−T; 1�
(i.e., τ̃ ∈ ½−1; TÞ), firstly estimate H [we recall H is given
by (4.6)],

kHkHs ¼




 − 2κ̃ðγ − 1Þδijuiujffiffiffi

6
p

uþ β þ 2τ
2
3






Hs

≤ C





 − 2κ̃ðγ − 1Þffiffiffi
6

p
uþ β þ 2τ

2
3






Hs
kPUk2Hs

≤ CmkuksHskPUk2Hs ≤ Cmð2β0ÞskPUk2Hs; ðB7Þ

where the constant Cm can be chosen (large enough) to be a
time-independent constant for the finite τ ∈ ð−T; 1�. Note
that in the above calculations, we have used, by (B4)
and (B3),

ffiffiffi
6

p
uþ β ≥ −

ffiffiffi
6

p kukL∞ þ β > −2
ffiffiffi
6

p
Csβ0þ

β ≥ ð1 −
ffiffi
6

p
4
Þβ > 0.

Then let us, by using (B7), Hölder and Cauchy–Schwarz
inequalities (see Theorem A.4 and A.5), estimate the last
term of (B6) for τ̃ ∈ ½−1; TÞ,

����X
jαj≤s

hDαU; ðB0Þ−1DαHðτ̃;U;PUÞi
����

≤
Hölder inequality

max

�
1;
1

κ̃

�X
jαj≤s

�Z
T3

jDαUj2d3q
�1

2

�Z
T3

jDαHj2d3q
�1

2

≤
Cauchy inequality

max

�
1;
1

κ̃

��X
jαj≤s

Z
T3

jDαUj2d3q
�1

2

�X
jαj≤s

Z
T3

jDαHj2d3q
�1

2

¼ max

�
1;
1

κ̃

�
kUkHskHkHs

≤ Cmð2β0Þs max

�
1;
1

κ̃

�
kUkHskPUk2Hs

≤ Cmð2β0Þsþ1max

�
1;
1

κ̃

�
kPUk2Hs: ðB8Þ

In addition, we note

hDαPU; ðB0Þ−1BDαPUi ≥ min

�
5

3
;

�
γ −

2

3

��
kPUk2Hs: ðB9Þ

Next, by using 2
P

jαj≤s acting on (B6) and taking β0 small enough [at least, such that (B3) holds], with the help of (B8)
and (B9), we reach the estimate (note τ̃ < 0 in the following calculations)

12Note, by (3.7)–(3.8) and direct calculations, PT ¼ P, ½ðB0Þ−1B;P� ¼ 0 and P2 ¼ P, then we have hDαU; ðB0Þ−1BDαPUi ¼
hDαPU; ðB0Þ−1BDαPUi.
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∂ τ̃kUðτ̃Þk2Hs ≤
2

τ̃
max

�
1;
1

κ̃

�

×

�
λ0 − ϵCmð2β0Þsþ1

�
kPUk2Hs ≤ 0:

Therefore, the function kUðτ̃ÞkHs is a nonincreasing func-
tion with respect to time τ̃ ∈ ½−1; TÞ. From this, we find
that for any τ̃ ∈ ½−1; TÞ,

kUðτ̃ÞkHs ≤ kU∘ kHs ≤ β0: ðB10Þ

By continuous extensions, i.e., letting UðTÞ ≔
limτ̃→TUðτ̃Þ, we extend the solution Uðτ̃Þ for τ̃ ∈ ½−1; TÞ
to τ̃ ¼ T satisfying kUðTÞkHs ≤ β0. Then usingUðTÞ as the
initial data, we are able to apply above derivations to the

time interval ½T;−1þ 2ðT þ 1ÞÞ, and concludeU exists for
½−1;−1þ 2ðT þ 1ÞÞ × T3 and kUðτ̃ÞkHs is a nonincreasing
function in this time interval. Furthermore, repeatedly using
the above method and calculations, it yields that the
solution can be extended to the time interval τ̃ ∈ ½−1;−1þ
lðT þ 1ÞÞ (for l ∈ Z>0) and the estimate (B10) holds for
τ̃ ∈ ½−1;−1þ lðT þ 1ÞÞ. Then there must be a finite step
l ¼ l0 such that l0 is the smallest number satisfying
−1þ l0ðT þ 1Þ ≥ 0. This means13 we can enlarge the time
interval of the existence of the solution to τ̃ ∈ ½−1; 0Þ and
kUðτ̃ÞkHs is a nonincreasing function for τ̃ ∈ ½−1; 0Þ
[which implies (B2) as well]. Then we complete the proof.▪
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