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We consider warm inflation in the context of holographic cosmology. The weak and the strong
dissipative regime are analyzed in the slow-roll approximation and within what is known as intermediate
inflation. For an appropriate choice of the equation of state, the intermediate inflation is not only an exact
solution in general relativity, but it is also in the holographic setup considered in this paper. Within this
approach several dissipative and physically relevant functions are considered. We constrain our model
using the latest Planck data. We conclude that three of the models analyzed are consistent with Planck data
for some ranges of the model parameters. However, one of them is ruled out by the observations.
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I. INTRODUCTION

The inflationary paradigm was proposed to sort out
several shortcomings of the standard big bang theory [1-6].
In addition, this paradigm reproduces correctly the distri-
bution of the large scale structure [7-11] and the observed
anisotropy of the cosmic microwave background [12-16].
The zoo of the inflationary models is quite wild and many
models are consistent with the current observations.
Therefore, it would be quite interesting to have some
approach that alleviate such a degeneracy [17-21].
Within the inflationary scenario with a slow roll approach,
two roads can be taken. On the one hand, in the cold
inflationary scenario, the inflaton does not interact with its
environment and the reheating of the Universe takes place
at the end of inflation when the scalar field reach the bottom
of the potential and starts oscillating. However, this kind of
approach might face some fine-tuning problems and the
reheating problem itself. Furthermore, the latest Planck
data ruled out many forms of inflaton potentials, including,
for instance, the quadratic and quartic potentials, both well
motivated from a particle physics perspective. On the other
hand, there is the warm inflationary scenario, where the
radiation production occurs gradually as the Universe
inflates through the dissipation of the inflaton field into
a thermal radiation [22,23]. In addition, initial density
fluctuations (the seeds of the large scale structure) is
produced during the warm inflationary era; i.e., the fluc-
tuation of the inflaton field is due to a thermal process
rather than to a quantum one as in cold inflation [24-28].
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This thermal process affect deeply the background and the
perturbative results of the inflationary dynamics [29,30].

Furthermore, cold and warm inflation have been well
studied in the framework of an effective approach to
quantum gravity. Indeed, for example in extra-dimensions
models, motivated by superstring theory [31,32] such as
braneworld models where matter is considered to be
confined in a 3-brane while gravity can propagate in the
bulk, have been a natural arena for inflation. In addition,
warm inflation has been analyzed in a modified theory of
gravity, like braneworlds [33-42] and in loop quantum
cosmology [43-47]. We would to remember that the
Randall and Sundrum model [48] is extremely well
motivated and can be used as the main setup of the
AdS/CFT correspondence. We recall that the AdS/CFT
correspondence, conjectured by Maldacena [49], consists
in describing the five-gravitational theory as a conformal
field theory on the 4D boundary space-time. This duality
can be seen as an holographic approach. The effect of the
holographic picture on cold inflation has been analyzed in
[50,51] by a conformal field theory on its four-dimensional
boundary space-time. Previous study of the effect of this
holographic picture on cold inflation scenario might be
found in Refs. [50,51], and its extension by a nonminimal
coupling to the induced gravity by means of the dynamical
system and the modifications of the amplitude of the
primordial perturbation in [52,53]. Recently, we have
studied a nonminimal coupling Higgs inflation in this
context [54].

In this paper, we study warm inflation within an holo-
graphic view point in order to complete our previous study
[51] and to see how well is warm inflation supported within
the holographic picture. In this context, we consider a well-
known form of the scale factor and named as intermediate

© 2022 American Physical Society
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inflation. This kind of model was already studied in general
relativity and in a modified theory of gravity [55-60].
The outline of the paper is as follow. In Sec. II, we
construct the main formulas of warm inflation in the
context of the holographic duality. In Sec. III, we show
how the intermediate inflation occurs according to the
holographic setup. In Sec. IV, we review the main formulas
used in warm inflation at the perturbative level. In Secs. V
and VI we consider the case of the weak and the strong
dissipation regime respectively. In these sections, we
compute the main parameters of these regime in terms
of the holographic parameter and of the perturbation
parameters. We conclude our paper in Sec. VIL.

II. HOLOGRAPHIC WARM INFLATION

In the AdS/CFT correspondence, the Friedmann equa-
tion is modified as [50,61]

2
Hz_&(1+e,/1_£),
3 Pe

where k = fi,? = 8zm;,* and m,, is the four-dimensional
Planck mass, p is the total energy density, p. = Sﬁi‘,‘, /8¢,
and ¢ =m§/M® is the conformal anomaly coefficient
which is defined as the ratio between the four-dimensional
Planck mass and the five-dimensional mass M. At the low-
energy limit, p < p., and for the branch ¢ = —1 the
standard form of the Friedmann equation can be recovered.
In the following only this branch will be considered. In
warm inflation, we will consider that the Universe is filled
with a self-interacting scalar field with energy density p,
and a radiation energy density p,.

The conservation law of the total energy density p =

Py + p, reads

(2.1)

py +3H(py + py) +p, +4Hp, = 0. (2.2)
The dynamical equations for the energies densities, p,
and p,, in warm inflation are described, respectively, by [23]

Py +3H(py + py) = =Y (2.3)

p, +4Hp, = Y4, (2.4)
where a dot means derivative with respect to the cosmic
time. The positive dissipation factor, Y, is responsible for
the reheating the Universe through the decay of the scalar
field ¢. Several phenomenological expression for the

dissipation term Yé’)z are given in the literature [62-68].
Following Refs. [66,67], we consider the general form of
the dissipative coefficient, given by

Tﬂ’l

where m is an integer and C, is associated to the dissipative
microscopic dynamics. Different expressions for the dis-
sipation coefficient, i.e., different choices of values of m,
have been analyzed in [66—68]. In this paper, we will
discuss the following cases
(i) m = —1 which corresponds to the dissipation rate of
the nonsupersymmetric model [63,64].

(i) m = 0in which the dissipation coefficient represents
an exponentially decaying propagator in the high
temperature regime. A dissipation coefficient which
depends only on the scalar field was first considered
in warm inflation in [69].

(iii) m = 1 corresponds to the high temperature regime
[29,70-72].

(iv) m =3 is motivated by a supersymmetric model
[29,67,73], a minimal warm inflation [74-76], a
quantum field theory model of inflation [77], and
through axion inflation [78]. Furthermore, this case
is used in other contexts such as in a hilltop model
[79], in a stochastic approach [80], in a potential
with an inflection point [81] and in runway poten-
tials [82]. By using a sphaleron rate in a non-Abelian
gauge fields [74], a Chern-Simons diffusion rate in a
minimal warm inflation [75] and in the Dirac-Born
infeld [76], the authors show that the dissipative
coefficient in the case m = 3 does not depend on the
inflaton fields as in Eq. (2.5).

The energy density, p,, and the pressure, p,, of the

standard scalar field can be written as
<5 <5
=0V, p=C-v).

where V(¢) represents the effective potential.
By introducing the dimensionless dissipation parameter
Q, defined as

(2.6)

Y
= 2.7
0=1p. )
Eq. (2.3) can be rewritten as
py = =3HP*(1+ Q). (2.8)

We will consider two dissipative regimes on this paper. The
strong dissipative one characterized by Q > 1 and the
weak dissipative one in which Q < 1.

At the epoch of warm inflation it is safe to assume that
the energy density of the scalar field is the dominant
component of the cosmic fluid (p, > p,) [23,24,27].
Therefore, the effective Friedmann Eq. (2.1) reduces to

sz%<l— 1—p—¢)

3 Pe
_ 2kp, {/'72 +V(¢)
_T<1_ 1_T>’ (2.9)
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Furthermore, by combining Eq. (2.8) and the derivative
of Eq. (2.9), one can show that

P = 171G (2.10)
where
0 2H
and
3H?
G=1- p (2.12)

are the kinetic energy density of the scalar field in standard
warm cosmology [83] and the correction term character-
izing the effect of AdS/CFT correspondence, respectively.

We can notice that at the low energy limit, (p < p,), the
correction term reduces to one and the standard expression
of the scalar field is recovered.

We suppose that during warm inflation the radiation
production is quasistable, i.e., p, < 4Hp, and p, < Y4’
[23,24,27]. The combination of Egs. (2.4) and (2.10) yields

Py = lpyaG: (2.13)

where [p, 4 is the radiation energy density in standard
warm inflation [83] expressed as

YH
= 2.14
Furthermore, the energy density of radiation is related to
the temperature as [84]

Py = CyT4, (2.15)
where C, = n?g,/30 and g, characterize the number of
relativistic degrees of freedom. Substituting Eq. (2.15) into
Eq. (2.13), the temperature of the thermal bath 7 can be
written as

T = [T),,G", (2.16)

where [T is the temperature in standard warm inflation
[83]

YH F

[Ty = [—m (2.17)

Substituting Eq. (2.16) in (2.5), we get that

1 1% [ H|* o
YT:C(pLKC] P! m[—ﬁ] (1+0Q)%G%.  (2.18)

4

At low energy limit, (p < p,.), the standard expression [83]
of Eq. (2.18) is recovered.

Furthermore, by solving Eq. (2.9) for the scalar density
and using simultaneously Eq. (2.10), we find the effective
potential

5 :
Vig) z%(l +G) +ﬁ (1 +%Q>G. (2.19)

At the low energy limit, Eq. (2.19) recovers the expres-
sion of standard warm inflation [83].

III. INTERMEDIATE INFLATION

In order to illustrate our purpose, we will focus on the
intermediate scenario of inflation [30,55-59] in which an
exact solution can be obtained. Nevertheless, exact sol-
utions can also be found for power law expansion of the
Universe [85] and in the de Sitter inflationary scenario [5].
In the intermediate scenario of inflation, the scale factor
obeys the following expression [30,55-59]

a(t) = a;exp(At)), (3.1)
where the two constants f and A satisfy the conditions
0 < f < 1and 0 < A, respectively. The intermediate infla-
tion model may be derived from an effective theory at low
dimensions of a fundamental string theory. Therefore, the
study of the intermediate inflationary model is motivated
by string/M theory. In this scenario, the cosmic expan-
sion evolves slower than the standard de Sitter model,
a(t) x exp(H;t) and faster than power law inflation
(axtP,p>1).

The intermediate scenario of inflation is still an exact
solution in our holographic setup. Indeed, an appropriate
choice of the equation of state of the form

o E ()

for A > 1 and y > O reproduces this intermediate paradigm.
For A = 1 and p < p.., we recover the standard Friedmann
equation and the barotropic equation of state p = (y — 1)p.
The equation of state (3.2) implies that while the weak
energy conditions [86] are satisfied, the strong energy
condition (p + 3p > 0) is violated for a sufficiently small
energy density and for 4 > 1. The violation of the strong
energy condition assure that the acceleration of the
Universe takes place.

With the help of Eq. (2.1) and the conservation of the
total energy density
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FIG. 1. Plot of the potential (left curve) and the slow roll parameter (right curve) in the weak dissipative regime for (A = 0.01,

f=045), (A=0.08, f =0.27), and (A = 0.1, f = 0.13). The horizontal dashed line (right curve) corresponds to € = 1.

p+3H(p+p)=0, (3.3)
where p = p,, + p, and p = p,, + p, are the energy density
and the pressure, respectively, a straightforward calculus
leads to the intermediate inflation given by Eq. (3.1).

On the other hand, the dimensionless slow-roll param-
eters are given by

H 1-
_‘EZFJ’ (3.4)
__H 2-f
1= =i = AR (3.5)

In order to estimate the scale where the perturbations
cross the Hubble radius, we need to define the end of
inflation, i.e., € = 1. According to the behavior of the
potential [see Eq. (2.19)], a description of how inflation

2.0

ends in our model requires a deeper analysis which is out of
the scope of this paper. However, to illustrate our purpose,
we have plotted, in Figs. | and 2, the potential V and the
first slow roll parameter ¢ for the couple of parameters
(A, f). The weak dissipative regime is illustrated in Fig. 1
for (A=0.01, f=045), (A=0.08, f=0.27), and
(A=0.1, f =0.13), and the strong dissipative regime is
illustrated in Fig. 2 for (A =0.1, f =0.2), (A=0.1,
f=0.12), and (A=0.1, f=0.06). We notice from
Fig. 1 that the slow roll parameter is always less than 1
and its violation cannot stop inflation, in the decreasing
branch of the potential, in the cases (A = 0.01, f = 0.45)
and (A =0.1, f =0.2) for weak and strong dissipative
regime, respectively. In this case, a modification of the
model by adding a new a parameter ¢.,q may trigger the
stop of the intermediate inflation [87]. In the case of
(A=0.1, f=0.13) and (A =0.1, f =0.06), the slow
roll parameter is always higher than 1 and the intermediate
inflation may occur between values of the scalar field where

15 — A=0.1, f=0.12

— A=0.1, f=0.12
— A=0.1, f=0.20 — A=0.1, f=0.20
1.5 — A=0.1, f=0.06 — A=0.1, f=0.06
1.0
>
0.5
0.0
-0.5 0.0 . .
0 10 20 30 40 50 60 0 10 20
L2
Mp

FIG. 2. Plot of the potential (left curve) and the slow roll parameter (right curve) in the strong dissipative regime for (A = 0.1,
f=02),(A=0.1, f =0.12), and (A = 0.1, f = 0.06). The horizontal dashed line (right curve) corresponds to ¢ = 1.
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the scalar field reaches the maximum of the potential and
the scalar field value at which ¢ = 1 (first solution) for
weak and strong dissipative regimes, respectively. In the
last case, the intermediate inflation may also occur between
values of the scalar field at which ¢ =1 (the second
solution) and infinite values of the scalar field.
Furthermore, the number e-folds N is given by

(3.6)

end

N:/tendet:A(tf — ),

where ¢, and 7,4 are the cosmic time at the horizon crossing
and at the end of inflation, respectively By equating

Eq. (3.4) to unity, we obtain 7., = (—) and Eq. (3.6)
gives us the cosmic time at the horlzon crossing

1—f(N+ 1))%‘

A7 (3.7)

t=I(N) = <

IV. PERTURBATIONS AND WARM INFLATION

Warm inflation not only affects the background param-
eters but can also modify those at the perturbative level as
the scalar perturbations; though, the tensor perturbations
remain unchanged. The general idea for the perturbations
in warm inflation being of thermal origin were given in
[23-27]. However, the most relevant works with the
modern notation in which the fluctuations in the scalar
field are mainly originated from thermal fluctuation rather
than quantum fluctuations during warm inflation can be
found in [63,88-90].

In order to study the cosmological perturbations, we
consider the scalar perturbations of a Friedmann-Lemaitre-
Robertson-Walker background in the longitudinal gauge.
Therefore, the perturbed metric reads

ds* = —(142®)dr* + a*(1)(1 — 2®)5;;dx'dx/, (4.1)
where a(z) is the scale factor, ®(z,x) is the scalar
perturbation. Furthermore, the dissipative coefficient
depends explicitly, in general, on the temperature and on
the inflaton field as given in Eq. (2.5). This dependence
modifies the set of the perturbative equations. In fact, the
amplitude of the scalar perturbation of the inflaton field will
be enhanced by a correction factor. These modifications
appear not only because of the scalar perturbations of the
background metric but also due to the existence of a
dissipative coefficient in the conservation of the energy
momentum tensor through

|

PR:

Atf [ZAf(l—f) -
4z | k(14 Q)

] 11(N)3f—2(1 = S(I(N))*>=2)7! (1 +2n+

SY —a—Y§T+—¢5¢

As we will notice in the next paragraph, this modification
will affect strongly the amplitude of the scalar spectrum.
This treatment has been already studied in literatures, e.g.,
[67,88,89,91,92]. In the next paragraph, we introduce the
amplitude of the scalar perturbation of the inflaton field as
evaluated at the horizon crossing. Like we did previously,
we assume that the perturbations will not be highly affected
by the holographic approach effect. Therefore, we assume
that the amplitude of the scalar perturbation is given by

[82,88,91-93]
2\2
e (22 (1 2ns 20T
2n¢h V3+4rQH
where the coefficient n denotes the statistical distribution
for the inflaton field. By assuming that the inflaton is in
thermal equilibrium with the radiation bath, n behaves like
a Bose-Einstein distribution. The function F(Q) describes
the coupling between the inflaton field and radiation. Its
expression is obtained numerically by resolving the sys-
tems of perturbations equations for warm inflation
[67,72,88,90]. We will specify its numerical fit in the
strong dissipative regime for each value of the dissipative
coefficient. From Egs. (2.10), (2.11), and (2.16), Eq. (4.3)
can be rewritten as

(4.2)

Jr@. @

P _LH4[_L]_1
R 4n2 k(14 Q)
1 2370 Z)
x G (1+2n+73+47zQH F(Q), (44)
where
LA IS V: A Ly
H [ 2K‘C},H(1+Q):| oG (45)

and the combination of Egs. (2.7) and (2.18) give

m e
] gl { H ] 4—mG m
—m | —— 4—m .

(4.6)

m | B R |
1 T — — (4 m
Ol + 0P =37 G {2Kcy

which can be rewritten in term of the parameters of the
intermediate inflation, Eq. (3.1), as

2370 T
\/TTQE> F(Q),

043513-5
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T _ 1 [BAf(1-f) Q i |
—=— IIN)=+ (-5 22y 4.
57 (1= )]s
)" 1- f 1-m 2m—4 - m
_ ¢ 4l=m fAduhry 2211
-m —= mI 1 N m, 4
o[l + QJ 3A¢~{2Kcy} CGHEI(N) L - SN (49)
|
where the quantities S = 3A%f%/2kp,. and I(N) are given  for m =3, m = 1, m = —1 and m = 0, respectively. We

by Eq. (3.7).

In the next section, we will examine separately the
weak dissipative regime and the strong one. In the weak
dissipative case, we will approximate the function F(Q) to
be equal to one while for the strong dissipative regime
we will fix this function according to the values of the
parameters m found in [92,93]

F(Q) ~1+4.9810"94 4 0.127043%, (4.10)
F(Q) ~1+0.3350"3% 1.0.01850235,  (4.11)
14040077
F(Q)~1, (4.13)
|
8 [Af(1-f
e { K(1+0

V. WEAK DISSIPATIVE REGIME

Considering that the system evolves according to the
weak dissipative regime (Y < 3H). Performing the inte-
gration of Eq. (2.10), the evolution of the scalar field is
given by

8A(1 —
%lgHA.f,c(’),

= [plqaH .z (1),

b — o=
(5.1)
where the integration constant, ¢, will be set to zero in the

rest of the paper and H, s .(f), a correction term as com-
pared to standard warm inflation [83], can be expressed as

1 f 5f—4
Hy (1) =,F | —=, ; :SPUD ),
el =P (3 st
(5.2)
where ,F(a,b;c;d) is the hypergeometric function
34212
and S = ZKP{

) —f(1 — 22 n
>]I(N) (1= S(I(N))* )(1+2 +

can notice, from Egs. (4.10)—(4.13), that in the strong
dissipative regime, the scalar perturbations of the inflaton
field will be enhanced for the case m # 0 as compared with
the weak dissipative regime.

To complete the set of parameters required to constrain
our model by the observational data, we introduce the
amplitude of the tensor perturbation, Pr. As mentioned
above, while the amplitude of the scalar perturbation in
warm inflation is given by Eq. (4.3), the amplitude of the
tensor perturbation remain unchanged and is given by [93]

H\ 2
PT_2K(_> 5
T

and from Eq. (4.3), we can express the tensor-to-scalar
ratio, r = Py /Py, in terms of the number of e-folds N as

(4.14)

2y370 T>_ F(Q)™". (4.15)

V3 +4rQ0H

I

From Egs. (3.1) and (2.18), as Q = Y/3H <« 1, the
dissipation coefficient Y can be rewritten in terms of the
scalar field as

1 - f:|4 m 4(1-m) (5 3)

4 e
Y = ;}—m |:2KC}/ ¢ 4—m 4— m(l —_ S[zf—z)A—zn_

The evolution of the scalar field and of the dissipation
coefficient are given, respectively, at the horizon crossing
Iy, by

by — %%i%meﬂw> (5.4)
and
e e IR
x (1 = S(I(N))¥=2). (5.5)

If we compare the scalar field and the dissipation
coefficient of our model at the horizon crossing with that

043513-6
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FIG. 3. Evolution of the correction term [Y]" versus the conformal anomaly coefficient ¢ in the weak dissipative regime for f = 0.125
and for three different values of the parameter A, for the case m = 0 (upper left panel), m = 1 (upper right panel), m = —1 (lower left

panel), and m = 3 (lower right panel). We have used k =1, N =

obtained in the case of standard warm inflation [83] we
find, respectively,

¢tk = [¢tk]sthA,f',c(N)’ (56)

and
Y = [Y]std[Y}c’ (57)

with

e b =

i = G5 [t " 100 # (59

and
Y], = (Hap o ()5 (1 = SUN)P 2. (5.9)

Here H, ;.(N) and Y], represent corrections term to the
scalar field and to the dissipation coefficient in the weak
dissipation regime, respectively. We can show that the
|

_ A4f4

Pr 47>

[2Af(1 - f)} N

K

=P (14 20+ 200 ).

60, and C, = 70.

correction term H , . .(N) does not deviate too much from
1; i.e., the variation of the scalar field is not strongly
affected by the AdS/CFT correspondence.

The dissipation term introduced previously in Eq. (2.5)
describes the thermal radiation bath and its evolution versus
the conformal anomaly coefficient tell us about the effect of
AdS/CFT correspondence on the thermal process. From
Fig. 3, we notice that the effect of the AdS/CFT corre-
spondence is more significative and increases with the
conformal anomaly coefficient for ¢ > 107. This effect
increases the thermal process. However, we can see from
Eq. (5.5) that for specific values of A and f there must be a
limiting value S(I(N)) = 1 beyond which the dissipation
coefficient no longer makes sense.

To incorporate the observed parameters in warm infla-
tion at the perturbative level, we rewrite the amplitude of
the scalar perturbation Eqgs. (4.7)—-(4.9) and the tensor-to-
scalar ratio Eq. (4.15) in the weak dissipative regime [(i.e.,
F(Q) ~ 1] as follows:

(5.10)
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FIG. 4. The plots show the variation of the dissipative parameter Q (a) and the variation of the tensor-to-scalar ratio r (b) versus the
spectral index n, for different values of the e-fold number, the conformal anomaly coefficient ¢ = 107 and the parameter m = —1. These
plots are obtained for the following choice of parameters C, = 1073, 0.1 < A <2, and f = 0.125.

%Z A; [MJ;(;C;JC)Q]Z’(N)¥(1 — S(I(N))¥2)s, (5.11)
cer ] = -4 m
0 = [ T wrimrras - suovyp 512
. 8k [2Af(1 - f) “f(1 - 262 N2 !
s A=y - sty (14 20+ 2007 (5.13)

where at the crossing horizon time, the inflaton field is given by Eqgs. (5.1) and (6.2). Furthermore, by combining Eqs. (5.11)
and (5.12), the above equations read

A 2AF(1 = F)]! T
P = L PATUZ DN vy = sy 2y (14204 200 L), (5.14)
4r K H
(@) (b)
0.20 0.20
B TT,TE,EE+LowE+lensing
W TT,TE,EE+LowE+lensing+BK14
0.15 0.15
W N=50 W N=50
[71 N=51 [ N=51
g 0.10 B N=52 = 0.10 | N=52
0.05 0.05
0.00 0.00
0.94 0.95 0.96 0.97 0.98 0.94 0.95 0.96 0.97 0.98
Ng Ns

FIG. 5. The plots show the variation of the dissipative parameter Q (a) and the variation of the tensor-to-scalar ratio r (b) versus the
spectral index n, for different values of the e-fold number, the conformal anomaly coefficient ¢ = 107 and the parameter m = 3. These
plots are obtained for the following choice of parameters C, = 5.7 X 107, 0.1 <A < 0.5, and f =0.5.
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T 1 [Chl—f)]en _pd 2f-2pL i
= a7 | R = S P, (5.15)
_& C¢(1—f) 0 4l=m —fmetrg 2f—275%
0 =i | e — st e (5.16)
8« [2Af(1-f _ . T\ !
=i { <K )]I(N) T(1=S((N))¥ 2)(1 +2n+2ﬂQﬁ> : (5.17)
and the scalar spectral index n; = 1 — % can be written as
_ 2f-2 T
n— 1= —(3f - z)dh;;gN) L din(1 Z(;}(N)) ) _din(1+ f;j 2ﬂQH)’
~f — -2
=-(3f-2) 1) + 21 = /)SHN) + ng, (5.18)

AfAf(1=S(I(N))¥=2)

where we have used Eq. (3.7) and we have defined n, as

din(1+2n+270%)
dN

ny = . (5 19)
The term n, is obtained numerically. The numerical
analysis is done for different values of the number of
e-folds and the conformal anomaly coefficient is set to be
¢ =10". We have also assumed the warm condition
(L > 1), the weak dissipation case (Q < 1) and we have
constrained the spectral index in the observational range
09 <n, <1.

The results show that the dissipative coefficients Y| =
C,T and Y, = C,¢ are not supported by Planck data [14]
for any set of values of Cy, A, and f. However, for a
convenient choice of those parameters, namely Cy, A, and
f, the dissipative coefficients Y_; = C¢¢2 /T and Y3 =
C,T?/¢?* are well supported by data. Indeed,

(i) For m = —1, we plot the dissipative parameter Q
and the tensor-to-scalar ratio r as parametric func-
tions of n, for the following range of parameters
Cy= 1072°,0.1 < A < 2, and f = 0.125. The para-
metric plot is shown in Fig. 4.

(i) For m = 3, we plot the dissipative parameter Q and
the tensor-to-scalar ratio r as parametric functions

[
of ng for the following range of parameters Cy =
5.7x107, 0.1 <A < 0.5, and f =0.5. The para-
metric plot is shown in Fig. 5.

We notice from the plots of Figs. 4 and 5, that we are,
indeed, in the weak dissipative regime. From the plots of
the same Fig. 4, i.e., m = —1 and m = 3 in the dissipative
coefficient, we notice that the tensor-to-scalar ratio lies in
the 1o contour of Planck data for N = 55 and N = 60. This
means that the weak dissipative regime in warm inflation in
the holographic context under consideration may reproduce
the observational data for the choice of parameters con-
sidered above.

VI. STRONG DISSIPATIVE REGIME Y > 3H

In this section, we analyze the strong dissipative regime,
(Q > 1), by considering exact solutions for the cases m =
3 and m # 3. When integrating Eq. (2.10) by using
Eq. (3.1), the evolution of the scalar field is given by

[7<3_'2"I>(G"’(t)}ﬁ, for m # 3

Henld =5 ("5

b —bho = ) (6-1)
’ exp [GK—(’)} for m =3
with
|
Glt) = Hy y ()15 (6.2)
m—4 8—m)f+2m=2) = B=—m)f+2(m=2)
By ) 0
(B =m)f+2(m—=2)\ [4AfC,\ 2 (3Af(1 - )\'F
- () ) (et 6
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(@) (b)
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= 30000F m N=60 = M N=52 <
4
20000}
10000} 2
ol . s : : 0
0.94 0.95 0.96 0.97 0.98 0.94 0.95 0.96 0.97 0.98
Ng Ns
FIG. 6. The value of T/H versus the spectral index n, for the conformal anomaly coefficient ¢ = 107 for the m = —1, Cy= 1072

curve (a) and for the m =3, C; = 5.7 X 107 curve (b).

where ¢ is an integration constant that will be set to ¢py =
0 in the rest of the paper, H ; m(1), is a correction term to

standard warm inflation, and S = o

Since Q = Y'/3H > 1 and using Egs. (2.18) and (3.1),
the dissipation coefficient Y' can be rewritten in terms of the
scalar field as

Y=C, [M] %[%(f—2)¢1—m(1 - 8PU=)E (6.5)

21<Cy

If we compare the amplitude of the scalar inflaton field
Eq. (6.1) and the dissipation coefficient Eq. (6.5) at the
horizon crossing and for m # 3 with that obtained in the
case of standard warm inflation (see Ref. [83]), then we
find, respectively, that

¢zk = [qbrk]std(l'ljx,f,c,m(N))ﬁ (6-6)

and
Y = Y)Y, (6.7)

with
(Y] = (HS o (V)9 (1 = S22 (6.8)

is the correction term of the dissipation coefficient in the
strong dissipation regime.

Figure 6 shows the plot of 7/ H versus the spectral index
in the weak dissipation regime for m = —1 [Fig. 6(a)] and
m = 3 [Fig. 6(b)]. Figures 6(a) and 6(b) are obtained for the
same choice of parameters as in Figs. 5(a) and 5(b),
respectively. These figures show clearly that the results
obtained in Fig. 5 satisfy the warm condition.

Figure 7 shows the evolution of the correction term
[Y]S versus the conformal anomaly coefficient ¢ for
three values of the parameter m and for a fixed value of
the parameter f = 0.25 and for three values of the
parameter A. We notice that the AdS/CFT correspon-
dence has no significant effect and the thermal process
is described by standard warm inflation for ¢ < 107 for
the three chosen values of m parameters. Furthermore,
while for m =0 and m =1 the thermal process
decreases, it increases strongly for m = —1 with the
increasing values of the conformal anomaly coefficient
¢ > 107 for the range of f and A considered. However
this range of the conformal anomaly may change by
changing the value of f and A.

Furthermore, in the strong dissipative regime, 1 < Q,
Eqgs. (4.7)-(4.9) and (4.15) take the following forms:

T 2 21(' -_ zlx 3(3f-2 3.3
Pre= sgf-ff) FAJ;E:Q f)} TN (1= SU(N) Y230 F(0), (6.9)
0 = CyBAfI {(;;qu TN V), (6.11)
T 16(53:5][) FAJ;(IC_ f)] I (1= ST )i F(Q) (6.12)
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FIG. 7. Evolution of the correction term [Y] versus the conformal anomaly coefficient ¢ for f = 0.125 and for different values of the
parameter A for the cases m = 0 (upper left panel), m = 1 (upper right panel), and m = —1 (lower panel), we have used, k = 1, N = 60,
and C, = 70.

r

We notice here that % in Eq. (6.10) is independent of the
parameters Q, m, and C. We notice also that according to
the function F(Q), which characterizes the coupling
between the inflaton field and radiation, Egs. (4.10)—

(4.12), and Egs. (6.9) and (6.11) that a strong effect is
observed on the amplitude of the scalar perturbation in

the strong dissipative regime particularly in the case of
m # 0.

As in the weak dissipation case, a numerical approach to
calculate the scalar spectral index ny, =1 —

din(Pg) -
s
mandatory. To this aim, we set the value of the conformal

anomaly coefficient to ¢ = 107, we consider as well the
@ ®
14}
W TT,TE,EE+LowE+lensing N=[60- 61] [ N=[60- 61]
001 /’/_’_‘ﬁ 62651 | 12 N=[62- 63]
N=[64- 65]
10°°

N=[64- 65]

108

0.94

0.95

0.96 0.97 095 097 098
Ng Ns
FIG. 8. The plots show the variation of the dissipative parameter Q (a) and the variation of the tensor-to-scalar ratio r (b) versus the

spectral index n; for different values of the e-fold number, the conformal anomaly coefficient ¢ = 107 and the parameter m = 1. These
plots are obtained for the following choice of parameters C, = 109, 0.1 < A < 6, and f = 0.0625.
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()

W TT,TE,EE+LowE+lensing N=[60-61]

N=[62- 63]

N=[64- 65]

0.100

094 095 0.96 097 098 099

(b)

30

N=[60- 61]
25 N=[62- 63]

N=[64- 65]
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(=}
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05.94 0.95 0.96 0.97 0.98 0.99
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FIG. 9. The plots show the variation of the dissipative parameter Q (a) and the variation of the tensor-to-scalar ratio r (b) versus the
spectral index n; for different values of the e-fold number, the conformal anomaly coefficient ¢ = 107 and the parameter m = 3. These
plots are obtained for the following choice of parameters Cy; = 1.5 X 10°, 0.1 <A <4, and f = 0.25.

warm condition (4 > 1) and the strong dissipation
case (O > 1).

The results show that, for any range of parameters Cy, A,
and f, the dissipative coefficient Y'; and Y, are excluded by
observational data. We plot the dissipative parameters and
the tensor-to-scalar ratio (Q and r) as parametric functions
of the spectral index ny. For the dissipative parameter Q,
Fig. 8, the range of parameters considered are Cy = 10,
0.1 <A <6, and f = 0.0625. While for the dissipative
parameter Q, Fig. 9, the range of parameters considered are
Cp=15x 10°, 0.1 <A <4, and f = 0.25. We notice
from the plots of Figs. 8 and 9, that we are, indeed, in the
strong dissipative regime. For the plots of the same Figs. 8
and 9, i.e., m = 1 and m = 3 in the dissipative coefficient,
we notice that the tensor-to-scalar ratio and the spectral
index values agrees with the 16 contour of Plank data for a
large values of N e-folds. In Fig. 10 we show the evolution

40,

N=[60- 61]
! N=[62- 63]
35-
! N=[64- 65]

30

TH

25

20 ‘ ‘
0.9 0.95 0.96 0.97 0.98 0.99

Ns

FIG. 10. The strong dissipation regime value of 7/ H versus the
spectral index for the conformal anomaly coefficient ¢ = 107,
0.1 <A <6, and f =0.25.

of T/H versus the spectral index in the strong regime for
c=107,0.1 <A <6, and f = 0.25. The curve confirms
that the result obtained in the strong dissipation regime
satisfy the conditions of warm inflation. This means that the
strong dissipative regime of warm inflation in the holo-
graphic context under consideration is in agreement with
the observational data for the choice of parameters men-
tioned above.

VII. CONCLUSIONS

In this work, we have studied warm inflation with a
scalar field in the context of the AdS/CFT correspondence
and with a general form for the dissipative coefficient.
We have considered that the scale factor evolve with
time during intermediate inflation as a(f) = a;exp At/,
(0O< f<1). In this context, we have provided the
basic equation in the weak and the strong dissipation
regime and we have shown that these equations are
equal to the standard one times some corrections term
which at the low energy limit tends to one. We have
discussed our model in the frame of warm inflation
condition (7/H > 1) by determining the consistent range
of Cy parameter of the dissipative coefficent, A and f
parameters of the intermediate inflation (see Figs. 4, 5, 8,
and 9).

We have examined our theoretical prediction by
plotting the evolution of different inflationary para-
meters versus observational data. In both dissipative
regimes, while our model is well supported by Planck
data for the dissipative coefficient Y5, it is not the case
for the dissipative coefficient Y. However, while the
dissipative coefficient Y_; is well supported by Planck
data in the weak dissipative regime, the dissipative
coefficient Y'; is well supported in the strong dissipative
regime.
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We have shown that for a suitable interval of Cy
parameters of the dissipative coefficient and for A and f
parameters of the intermediate inflation our predicted
inflationary parameters are consistent with the lo con-
fidence level contours derived from Planck data.

Finally, we conclude that scalar warm inflation in the
context of holographic cosmology for the cases m = —1,
m =1 and m =3 may describe the inflationary era and
predicts the appropriate inflationary parameters with
respect to the observational data within a slow roll approxi-
mation for the weak, strong, and both regime, respectively.
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