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We apply the formalism of dynamical system analysis to investigate the evolution of interacting dark
energy scenarios at the background and perturbation levels in a unified way. Since the resulting dynamical
system contains the extra perturbation variable related to the matter overdensity, the critical points of the
background analysis split, corresponding to different behavior of matter perturbations and hence to stability
properties. From the combined analysis, we find critical points that describe the nonaccelerating matter-
dominated epoch with the correct growth of matter structure, and the fact that they are saddle provides the
natural exit from this phase. Furthermore, we find stable attractors at late times corresponding to a dark
energy–dominated accelerated solution with constant matter perturbations, as required by observations.
Thus, interacting cosmology can describe the matter and dark energy epochs correctly, both at the
background and perturbation levels, which reveals the capabilities of the interaction.
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I. INTRODUCTION

According to cumulative observations of different origins,
the Universe is currently at a phase of accelerating expan-
sion. Although the cosmological constant might be the
simplest explanation, the corresponding problem and the
possibility of a dynamical nature led to two main directions
of modification. The first is to construct extended theories of
gravity, which recover general relativity at low energies but
which in general lead to richer cosmological evolution [1–3].
The second avenue is to introduce a new sector, collectively
known as dark energy (DE) [4,5], with suitable properties
that can trigger acceleration. The dynamical form of DE is
usually based on scalar fields, with the simplest choice being
the quintessence one. Scalar-field models usually appear in
the low-energy limit of various high-energy theories, such as

the string theory [6]. However, the inability to explain
various observational issues has led to a plethora of scalar
field constructions.
Usually, the DE component is assumed to evolve

independently, coupled only to gravity and without inter-
actions with the matter components. Nevertheless, in
principle, one cannot neglect possible interactions between
the DE and the dark matter (DM) component. Interacting
DE-DM scenarios are capable of alleviating the cosmic
coincidence problem, leading to late-time accelerated
scaling attractors [7]. Additionally, more recently, it was
shown that interacting models offer possible solutions to
theH0 and σ8 tensions, and moreover they can alleviate the
tension between cosmic microwave background and cos-
mic shear measurements [8–14]. As a result, there have
appeared many interacting models which exhibit interest-
ing cosmological phenomenology [15–43] (for reviews, see
Refs. [44,45]) and have been confronted with detailed
observational data, such as the Supernovae Type Ia, baryon
acoustic oscillations, cosmic microwave background, dark
energy survey, galaxy clusters, Hubble function measure-
ments, etc., [46–55].
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To examine the viability of a cosmological model, one
has first to investigate its evolution at the background level.
The next necessary step is the detailed analysis of the
cosmological perturbations since these provide information
on the stability of the model; they allow for a direct
confrontation with growth data, and moreover, they offer
a way to distinguish between different scenarios that
may lead to the same background evolution [56–59].
Concerning interacting scenarios, the effect of DE-DM
interaction on the growth of structures has been analyzed
numerically in Ref. [60], and it was found that it affects the
matter clustering [61,62]. Hence, one may observe the
imprint of the interaction on structure formation, compared
to the noninteracting scenario.
In general, cosmological models are determined by

complicated equations, and the order of complexity
increases as we shift from the background to the perturba-
tion level. Therefore, it is required to use suitable math-
ematical techniques to extract analytical information and be
independent of the initial conditions and the specific
Universe evolution. One such powerful mathematical tool
is the theory of dynamical systems analysis. In particular,
the phase-space analysis allows us to bypass the complexity
of the equations and extract information on the global
behavior of the system by examining the corresponding
critical points since the asymptotic behavior of the model is
determined by its form and nature.
The dynamical system approach has been applied in the

cosmological context at the background level in numerous
works [63–79], including interacting cosmology [80–82].
However, at the perturbation level, it has been applied only
partially in very few works [83–89]. Only recently, a
dynamical system analysis of the background as well as
the perturbed system was performed systematically for the
Lambda Cold Dark Matter (ΛCDM) paradigm and quintes-
sence scenario with exponential potential [90–92].
Because of the significant effects of DE-DM interaction

on both the background evolution and the growth of
structure, it is interesting and necessary to perform detailed
dynamical system analysis on interacting cosmology at
both the background and perturbation levels. In this way,
we can determine the growing mode solution/trajectory
determining the structure formation independent of the
specific initial conditions. Additionally, we can study how
the matter perturbations affect the nature of the background
solutions and how perturbations evolve during the cosmo-
logical epochs described by each critical point. Finally, we
can examine the sensitivity of the structure’s growth rate on
the strength of the interaction term.
With this motivation, in the present work, we will

perform a complete dynamical system analysis of various
interacting scalar field models, by combining the back-
ground and perturbation field equations. The manuscript
is structured as follows. In Sec. II, we present the field
equations of a general interacting scalar-field scenario,

providing the equations of the background evolution as
well as the ones determining the linear matter perturbations.
Then, in Sec. III, we perform a detailed phase-space
analysis of the full system for two interacting models.
Finally, in Sec. IV, we summarize the obtained results.

II. INTERACTING DARK ENERGY

In this section, we briefly review cosmology with dark
energy–dark matter interaction, using a scalar field to
describe the former. The total action of a minimally coupled
scalar field in the framework of general relativity is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ Lϕ þ Lm

�
; ð1Þ

where κ2 is the gravitational constant; g is the determinant
of the metric gμν; R is the Ricci scalar; Lm and Lϕ are,
respectively, the matter and scalar-field Lagrangian. In
particular, Lϕ is given by

Lϕ ¼ −
1

2
gμν∂μϕ∂νϕ − VðϕÞ; ðμ; ν ¼ 0; 1; 2; 3Þ; ð2Þ

where VðϕÞ is the potential for the scalar field ϕ and Lm is
considered to correspond to a perfect fluid.
Variation of the action with respect to the metric leads to

the field equations

Rμν −
1

2
gμνR ¼ κ2ðTðϕÞ

μν þ TðmÞ
μν Þ; ð3Þ

where the scalar-field energy-momentum tensor TðϕÞ
μν is

given by

TðϕÞ
μν ¼ ∂μϕ∂νϕ − gμν

�
−
1

2
gαβ∂αϕ∂βϕþ VðϕÞ

�
; ð4Þ

and the matter energy-momentum tensor TðmÞ
μν is given by

TðmÞ
μν ¼ pmgμν þ ðρm þ pmÞuμuν; ð5Þ

with ρm and pm the energy density and pressure of the DM
component, respectively.
To quantitatively describe the interaction between the

DM and DE component, the total conservation equation is
split as

∇νT
μν
m ¼ Qμ

m; ∇νT
μν
ϕ ¼ Qμ

ϕ; ð6Þ

whereQ0
ϕ ¼ −Q0

m ≡Q is the phenomenological descriptor
of the interaction, denoting the rate of energy transfer
between the interacting components.
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A. Cosmological equations: Background level

To proceed to cosmological applications, we consider a
homogeneous and isotropic spatially flat Friedmann-
Lemaître-Robertson-Walker metric of the form

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð7Þ

in Cartesian coordinates. Under the above metric, the
Einstein field equations (3) provide the two Friedmann
equations,

3H2 ¼ κ2ðρm þ ρϕÞ; ð8Þ

2 _H þ 3H2 ¼ −κ2ðpm þ pϕÞ; ð9Þ

where ρϕ ¼ 1
2
_ϕ2 þ V and pϕ ¼ 1

2
_ϕ2 − V are the scalar-

field energy density and pressure, respectively, with the
upper dot denoting derivative with respect to t.
Additionally, under the metric (7), the conservation equa-
tions (6) become

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ Q; ð10Þ

_ρm þ 3Hð1þ wÞρm ¼ −Q; ð11Þ

where w≡ pm=ρm is the equation of state of DM. Hence,
one can see that Q > 0 corresponds to energy flow from
dark matter to dark energy, while Q < 0 corresponds to
energy transfer in the opposite direction.
We can introduce the density parameters for the two

sectors as

Ωϕ ≡ κ2ρϕ
3H2

¼ κ2 _ϕ2

6H2
þ κ2V
3H2

; ð12Þ

Ωm ≡ κ2ρm
3H2

; ð13Þ

and thus the Friedmann equation (8) becomes

Ωm þΩϕ ¼ 1: ð14Þ

Finally, it proves convenient to define the total, effective,
equation-of-state parameter weff as

weff ¼
pϕ þ pm

ρϕ þ ρm
¼

1
2
_ϕ2 − V þ wρm

1
2
_ϕ2 þ V þ ρm

; ð15Þ

which is related to the deceleration parameter q as
weff ¼ 2q−1

3
. As usual, to have acceleration, one requires

the condition weff < − 1
3
.

B. Cosmological equations: Linear perturbation level

We can now examine the behavior of the cosmological
system at the linear perturbation level. We consider scalar
perturbations in the Newtonian gauge, namely,

ds2¼−ð1þ2ΦÞdt2þa2ð1−2ΦÞðdx2þdy2þdz2Þ; ð16Þ

and since we are interested in the late-time behavior, we
have ignored the anisotropic stress. We decompose the
matter energy density ρ̄m, the matter 4-velocity ūμ, the
scalar field ϕ̄, and the energy transfer rate Q̄A into back-
ground values and perturbations as

ρ̄m ¼ ρm þ δρm;

ūμ ¼ uμ þ δuμ;

ϕ̄ ¼ ϕþ δϕ;

Q̄ ¼ Qþ δQ: ð17Þ

In this work, we focus on the observationally interesting
matter perturbations, and thus we will not consider the DE
ones, since the latter can be assumed to have a high sound
speed and thus does not cluster. Therefore, the evolution
equations for the DM energy density perturbation δ ¼
δρm=ρm and the divergence of velocity perturbations θ in
the Fourier space are [93–96]

_δþ
�
3Hðc2s −wÞ−Q

ρ

�
δþð1þwÞðθ−3 _ΦÞ¼−

δQ
ρ
; ð18Þ

_θþ
�
Hð1−3wÞ−Q

ρ
þ _w
1þw

�
θ−k2Φ−

c2s
1þw

k2δ¼0; ð19Þ

where c2s is the sound speed of the fluid, θ ¼ a−1ikjδuj is
the divergence of the velocity perturbation, and kj the wave
vector component. Finally, to analyze the behavior of DM
perturbations, one has to combine Eqs. (18) and (19), with
the help of the Poisson equation [90]. Since structures grow
in scales much smaller than the Hubble radius H−1 (i.e.,
k ≫ aH), the Poisson equation becomes

k2Φ ¼ −
3

2
H2Ωmδ: ð20Þ

III. DYNAMICAL SYSTEM ANALYSIS

In this section, we shall perform a full dynamical system
analysis in order to investigate interacting cosmology.
Without loss of generality, we will focus on two well-
studied simple interacting models, namely, Q ¼ αHρm and
Q ¼ Γρm. Moreover, concerning the matter sector, as
usual, we assume it to be dust, i.e., with w ¼ 0, while
for the scalar field potential, we focus on the usual
exponential potential VðϕÞ ¼ V0e−λϕ, with V0 > 0 and
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where λ is a dimensionless parameter. The dynamical
system analysis at the background level is performed in
Refs. [80,82]; however, in the present work, we extend the
analysis by taking into account the effect of perturbations.

A. Interacting model I: Q=αHρm
The simple interacting model with Q ¼ αHρm, where α

is the dimensionless model parameter, has been mathemati-
cally designed to provide accelerated scaling attractors,
which can alleviate the coincidence problem [80,82].
The sign of α determines the energy transfer direction,
i.e., α > 0 corresponds to energy flow from matter to DE,
and vice versa.
Inserting Q ¼ αHρm into (18) leads to δQ ¼ αρmδHþ

αHδρm, and δH is then expressed in terms of Φ.
Nevertheless, as it was found in Refs. [19,22,94,97–99],
the consideration of δH terms does not have a significant
quantitative difference in matter overdensity evolution
(which is the observable that we are interested in the
present work), in comparison to the case where δH terms
are neglected. Hence, in the following, we do not consider
these terms. Therefore, the evolution of DM perturbations
obtained from Eqs. (18), (19), and (20) can be approxi-
mated by

δ̈þ ð2þ 3αÞH _δ −
3

2
ΩmH2δ ¼ 0: ð21Þ

We now proceed to the investigation of perturbations by
considering the above perturbed equation along with the
background equations (8)–(11). Since we are interested in
the qualitative behavior of δ, we recast the equations into a
first-order autonomous system by considering the follow-
ing auxiliary variables [90]:

x ¼ κ _ϕffiffiffi
6

p
H
; y ¼ κ

ffiffiffiffi
V

p
ffiffiffi
3

p
H
; U ¼ dðln δÞ

dðln aÞ : ð22Þ

Note that the variables x, y correspond to the background
behavior of the Universe, while variable U is the usual
growth rate which quantifies the perturbation growth. A
positive U indicates that inhomogeneities grow, while
negative U indicates inhomogeneities decay whenever
perturbation δ is positive. In terms of the above variables,
the background cosmological quantities Ωϕ, Ωm, and weff

can be written as

Ωϕ ¼ x2 þ y2;

Ωm ¼ 1 − ðx2 þ y2Þ;
weff ¼ x2 − y2: ð23Þ

Hence, under the variables (22), the cosmological
equations of the present scenario can be expressed in the
form of the dynamical system

x0 ¼ −3xþ
ffiffiffi
6

p

2
λy2 þ 3

2
xð1þ x2 − y2Þ þ α

ð1 − x2 − y2Þ
2x

;

ð24Þ

y0 ¼ −
ffiffiffi
6

p

2
λxyþ 3

2
yð1þ x2 − y2Þ; ð25Þ

U0 ¼−UðUþ2þ3αÞþ3

2
ð1−x2−y2Þþ3

2
ð1þx2−y2ÞU;

ð26Þ

where primes denote derivatives with respect to ln a (note
that in this notation we have simply that U ¼ δ0

δ).
Since we study the expanding universe and since the

system (24)–(26) is invariant under a transformation
y → −y, we focus only on the phase-space region y ≥ 0.
Additionally, from the physical condition 0 ≤ Ωm ≤ 1, the
background variables x and y are restricted within the circle
x2 þ y2 ¼ 1. In summary, the background phase space B
consists of the variables x, y, while the perturbation phase
space P consists of U, and hence the phase space of the
system (24)–(26) is the product space B × P given by

B × P ¼ fðx; y; UÞ ∈ R2 ×R∶0 ≤ x2 þ y2 ≤ 1;

− 1 ≤ x ≤ 1; 0 ≤ y ≤ 1g: ð27Þ

We mention here that the background equations (24)–(25)
on the background space B are decoupled from the pertur-
bation equation (26) on P, and as usual, the projection of an
orbit in the product space B × P on the background space
reduces to the corresponding orbit on B.
We proceed to an extraction of critical points of the

system (24)–(26), by equating the right-hand side of the
equations to zero. Then, to determine the stability of these
points, we calculate the eigenvalues of the Jacobian matrix
associated with them [63,64]. On the physical grounds, a
stable background point with U > 0 implies that the matter
perturbations grow indefinitely, indicating the instability of
the system with respect to matter perturbations. On the
contrary, a stable background point withU < 0 implies that
the matter perturbations will eventually decay, indicating
the asymptotical stability of the system with respect to
matter perturbations. Finally, when U ¼ 0 for a stable
background point, it implies that the matter perturbations of
the system asymptotically tend to a fixed value.
In Table I, we summarize the physical critical points of

the scenario, alongside their existence and stability con-
ditions, as well as the values for the observable quantities
Ωm and weff , while in Table II, we give the associated
eigenvalues. As expected, the inclusion of scalar perturba-
tions leads to the split of each critical point of the back-
ground analysis into two distinct points, i.e., points that
have the same background coordinates x and y but different
perturbation coordinate U. Hence, the dynamical system
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analysis can offer us information on the behavior of matter
perturbations at these critical points, namely, whether they
are growing, decaying, or remaining constant. In particular:

(i) Points A� correspond to DE-dominated solutions,
with a stiff total equation of state, and thus are not
favored by observations, and with a constant matter
perturbation U ¼ 0. Point Aþ is unstable node when
α < 1 and λ <

ffiffiffi
6

p
and stable when α > 3 and

λ >
ffiffiffi
6

p
; otherwise, it is saddle. Point A− is unstable

node when α < 1 and λ > −
ffiffiffi
6

p
, stable when α > 3

and λ < −
ffiffiffi
6

p
, and saddle otherwise.

(ii) Points B� also correspond to stiff DE-dominated
solutions, and thus are not favored by observations,
with the evolution of matter perturbations depending
on the coupling parameter α. For α < 1, we have a
growing mode of evolution; α > 1 corresponds to a
decaying mode of solution; and α ¼ 1 corresponds
to a constant matter perturbation case. Point Bþ is an
unstable node when 1 < α < 3 and λ <

ffiffiffi
6

p
; other-

wise, it is saddle. Similarly, point B− is an unstable
node when 1 < α < 3 and λ > −

ffiffiffi
6

p
and saddle

otherwise.
(iii) Point C corresponds to a DE-dominated epoch and

exists only for λ2 < 6. Its effective equation of state
becomes less than −1=3 for λ2 < 2, giving rise to an
accelerating universe. The point is stable when α >
λ2 − 3 and α > λ2

2
− 2. Additionally, it has a constant

matter perturbation, i.e., U ¼ 0. Hence, this point
can describe the late-time Universe.

(iv) At the background level, point D coincides with
C. It corresponds to a DE-dominated epoch which is
accelerating for λ2 < 2. However, when perturba-
tions are considered, point D presents a different
behavior. In particular, it can have either
growing matter perturbations (U > 0), decaying
(U < 0), or constant ones (U ¼ 0 which happens
for α ¼ λ2

2
− 2), even when it corresponds to a stable

late-time DE-dominated universe. This makes it the

TABLE I. The critical points of the system (24)–(26), for the interacting model I, namely, with Q ¼ αHρm, alongside their existence
and stability conditions, and the values of the matter density parameter Ωm and the total, effective, equation-of-state parameter weff.

Point x y U Existence Stability Ωm weff

A� �1 0 0 Always Unstable node for α < 1;�λ <
ffiffiffi
6

p
0 1

Stable node for α > 3;�λ >
ffiffiffi
6

p
Saddle otherwise

B� �1 0 1 − α Always Unstable node for 1 < α < 3,
�λ <

ffiffiffi
6

p 0 1

Saddle otherwise
C λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0 λ2 ≤ 6 Stable node for α > λ2 − 3,

α > λ2

2
− 2

0 λ2

3
− 1

Saddle otherwise
D λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
λ2

2
− α − 2 λ2 ≤ 6 Stable node for α > λ2 − 3

or α < λ2

2
− 2

0 λ2

3
− 1

Saddle otherwise
E� αþ3ffiffi

6
p

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþ3Þ2−2αλ2

p
ffiffi
6

p
λ

−1
4
ðαþ1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðαþ5Þ2−8ðαþ3Þ2

p
4λ

2α≤ ðαþ3Þ2
λ2

≤ ðαþ5Þ2
8

See Fig. 1 ðαþ3Þðλ2−α−3Þ
3λ2

α
3

F�
ffiffi
α

pffiffi
3

p 0 −1
4
ðαþ1Þ� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα−3Þ2þ16

p
α ≥ 0 Fþ stable for λ

ffiffiffiffiffi
2α

p
> αþ 3 1 − α

3
α
3

Saddle otherwise
F− saddle always

G� −
ffiffi
α

pffiffi
3

p 0 − 1
4
ðαþ 1Þ � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 3Þ2 þ 16

p
α ≥ 0 Gþ stable for λ

ffiffiffiffiffi
2α

p
< −αþ 3 1 − α

3
α
3

Saddle otherwise
G− saddle always

TABLE II. The eigenvalues associated with the critical points
of the system (24)–(26), for the interacting model I, namely, with

Q ¼ αHρm. We have defined Δ� ¼ λð−2αλ2þ3α2þ6α−9Þ� ffiffi
S

p
4ðαþ3Þλ , and

S¼4α2λ6þ4α3λ4−15α4λ2þ72α2λ4þ8α5−204α3λ2þ180αλ4þ
120α4−882α2λ2þ720α3−1404αλ2þ2160α2−567λ2þ3240αþ
1944.

Point E1 E2 E3

A� 3 − α 3 ∓ ffiffi
6

p
2
λ 1 − α

B� 3 − α 3 ∓ ffiffi
6

p
2
λ α − 1

C λ2

2
− 3 λ2 − α − 3 λ2

2
− α − 2

D λ2

2
− 3 λ2 − α − 3 − λ2

2
þ αþ 2

E� Δþ Δ− ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðαþ5Þ2−8ðαþ3Þ2

p
2λ

F� α − 3 1
2
ðαþ 3 − λ

ffiffiffiffiffi
2α

p Þ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 3Þ2 þ 16

p
G� α − 3 1

2
ðαþ 3þ λ

ffiffiffiffiffi
2α

p Þ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 3Þ2 þ 16

p
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candidate for the description of the late-time Uni-
verse both at background and perturbation levels.

(v) Since the eigenvalues corresponding to points E�
are complicated, we need to examine their behavior
numerically in order to conclude on the stability of
E�. In Fig. 1, we depict the regions in the parameter
space that correspond to stable behavior. Note that
for λ > 0 only point Eþ and for λ < 0 only point
E− correspond to stable solutions, and within these
stable regions, both points correspond to accelerated
solutions if α < −1. Concerning the evolution of
matter perturbations, in both points, U can lie
between 0 and 1, corresponding to growth, for
particular parameter regions.

(vi) Points F� and G� are physical for 0 ≤ α ≤ 3, and
they correspond to decelerated scaling solutions.
Point Fþ is stable when λ

ffiffiffiffiffiffi
2α

p
> αþ 3; otherwise, it

is saddle. Point Gþ is stable when λ
ffiffiffiffiffiffi
2α

p
< −αþ 3;

otherwise, it is saddle. It is worth noting that for
small α all four points correspond to matter-
dominated solutions at the background level. Both
points F− and G− are saddle within their physical
regions, with decaying matter perturbations. How-
ever, points Fþ and Gþ for α < 3 correspond to
growth of matter perturbations, with δ ∼ a. As α
increases, the growth rate is smaller than the usual
rate during matter domination, and this reveals the
effect of the coupling toward the structure formation.
In summary, taking into account both the back-
ground and perturbation levels, points Fþ and Gþ
are the ones that describe the structure formation.

As we observe, our analysis allows us to view different
modes of matter perturbations in terms of critical points.
Points that are the same at the background level analysis
correspond to different behavior of matter perturbations.

From the combined analysis of the background and
perturbation equations, we find that points E−, Fþ, and
Gþ are the ones that describe the nonaccelerating matter-
dominated epoch with the correct growth of matter struc-
ture, and the fact that they are saddle provides the natural
exit from this phase. At late times, the physically interesting
points are C and D, since they correspond to dark energy–
dominated accelerated solutions with constant matter per-
turbations (C always while D for α ¼ λ2

2
− 2), as it is

required by observations. Hence, the present scenario of

4 2 0 2 4

4

2

0

2

4

FIG. 1. Stability regions of points Eþ (purple) and E− (gray) in
ðα; λÞ parameter space, for the interacting model I, namely, with
Q ¼ αHρm.
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FIG. 2. The phase portrait of the system (24)–(26) of the
interacting model I, namely, with Q ¼ αHρm. Upper graph:
α ¼ 0.01, λ ¼ 2, and point Eþ is the attractor. Lower graph:
α ¼ 0.01, λ ¼ 0.1, and point C is the attractor.
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interacting cosmology can describe the thermal history of
the Universe correctly, both at the background and pertur-
bation levels.
In summary, the scenario at hand can describe both an

intermediate epoch with the growth of matter perturbations
and a late-time accelerating epoch with constant matter
perturbations, offering the correct thermal history of the
Universe, at both background and perturbation levels. This
is the main result of the present work, and it reveals the
crucial effect of the interaction.
To be more transparent, in Fig. 2, we present the phase-

space evolution of the system (24)–(26), for two cases,
where we have shown only the growing mode solution of
the system. Furthermore, in Fig. 3, we depict the evolution
of the perturbation variable U, i.e., the growth rate, for two
different scenarios: Aþ → Fþ → Eþ (red-solid curve)
describing a transition from stiff matter to matter domina-
tion and eventually toward a decelerated scaling solution,
and a sequence Aþ → Fþ → C (black-dashed curve)
describing a transition from a stiff matter to matter
domination and eventually toward an accelerated dark
energy–dominated solution. Since U ≥ 0 at intermediate
redshifts, we deduce that whenever δ > 0, δ0 is also non-
negative and thus δ is growing throughout the evolution,
while at late times, according to the parameter values, the
growth of perturbation stops, and the Universe enters the
DE-dominated epoch. Note that the precise evolution of
matter growth depends on the interaction parameter α.
Finally, in Fig. 4, we show the evolution of the matter

overdensity in the present interacting model, and we
compare it with the noninteracting case. Imposing the

same final conditions in the current Universe, we find
that for α < 0 at early times the matter perturbation is
smaller compared to the noninteracting case. Therefore, the
growth rate of structures for α < 0 is enhanced in com-
parison to the noninteracting scenario, which was expected
since in this case DE transforms into DM. On the other
hand, the model with α > 0 exhibits a suppressed structure
growth rate.
Lastly, for completeness, we have also examined the

possibility of critical points at infinity. Since, all variables
apart from U are bounded, we consider the transformation
U→U∞ as U∞¼ tan−1U with −π

2
<U∞<π

2
. Nevertheless,

we find that there is not any extra critical point at infinity.

B. Interacting model II: Q=Γρm
In this subsection, we investigate an interacting model

where the energy transfer rate is determined by the local
transfer rate Γ, which is directly associated with the particle
or field interactions. This model was used to describe the
decay of DM to radiation [100,101], the decay of the
curvaton field to radiation [102], and the decay of DM
superheavy particles to quintessence field [103]. The fact
that the interaction rate does not depend on H, like the
model of the previous subsection, as well as similar ones,
which is a global feature of the Universe, might make the
present model more physical since the interaction rate is
expected to be determined by local quantities. The sign of
the constant Γ determines the energy transfer direction,
with the case Γ > 0 corresponding to the decay of matter to
the scalar field, while the case Γ < 0 corresponds to the
energy flow in the opposite direction.
Interestingly enough, due to term cancellation, the

evolution of DM perturbations obtained from Eqs. (18),
(19), and (20) for this model is

δ̈þ 2H _δ −
3

2
ΩmH2δ ¼ 0; ð28Þ

FIG. 3. The evolution of the perturbation quantity U (growth
rate) for the system (24)–(26) of the interacting model I, namely,
with Q ¼ αHρm, with α ¼ 0.01 and for λ ¼ 2 (red solid) and
λ ¼ 0.1 (black dashed). The red-solid curve corresponds to the
transition Aþ → Fþ → Eþ, and the black-dashed curve corre-
sponds to the transition Aþ → Fþ → C.

FIG. 4. The evolution of the matter overdensity δ for the
interacting model I, namely, with Q ¼ αHρm, for λ ¼ 0.2 and
with α ¼ −0.1 (dotted), α ¼ 0 (solid), and α ¼ 0.1 (dashed),
normalized in the same final value.
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and therefore it coincides with that of the noninteracting
case. However, since the interaction does affect the back-
ground evolution, by changing the evolution of H and Ωm
comparing to the noninteracting case, at the end of the day,
the matter density does evolve differently in the interacting
and noninteracting scenarios.
To transform the cosmological equations into an autono-

mous form, apart from the variables (22), we need to
introduce the additional variable ζ ¼ H0

H0þH [82], with H0

the present Hubble constant. Under the variables (22) and ζ,
the equations of the present model can be expressed as the
dynamical system

x0 ¼ −3xþ
ffiffiffi
6

p

2
λy2 þ 3

2
xð1þ x2 − y2Þ

− γ
ð1 − x2 − y2Þζ
2xðζ − 1Þ ; ð29Þ

y0 ¼ −
ffiffiffi
6

p

2
λxyþ 3

2
yð1þ x2 − y2Þ; ð30Þ

ζ0 ¼ 3

2
ζð1 − ζÞð1þ x2 − y2Þ; ð31Þ

U0 ¼ −UðU þ 2Þ þ 3

2
ð1 − x2 − y2Þ

þ 3

2
ð1þ x2 − y2ÞU; ð32Þ

where γ ¼ Γ
H0
. For an expanding Universe (H > 0), the

variable ζ lies between 0 and 1. Therefore, the phase space
of the system (29)–(32) is the product space of the back-
ground phase spaceB consisting of the variables x, y, ζ, and
perturbation phase space P with variable U, given by

B × P ¼ fðx; y; ζ; UÞ ∈ R3 ×R∶0 ≤ x2 þ y2 ≤ 1;

− 1 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ ζ ≤ 1g: ð33Þ
We extract the critical points of the system (29)–(32),

and we determine their features and stability by examining
the sign of the corresponding eigenvalues. In Table III, we
summarize the physical critical points, alongside the values
for the observable quantities Ωm and weff , and in Table IV,
we provide the associated eigenvalues. In particular:

(i) PointsA� and B� correspond to stiff DE-dominated
solutions. At the background level, these points are
unstable nodes, but including the perturbation level,
the points become saddle. Moreover, by considering
linear perturbations, points A� show a growth of
matter perturbations of the form δ ∼ a even
though Ωm ¼ 0.

TABLE III. The critical points of the system (29)–(32), for the interacting model II, namely, with Q ¼ Γρm, alongside their existence
and stability conditions, and the values of the matter density parameter Ωm and the total, effective, equation-of-state parameter weff.

Point x y ζ U Existence Stability Ωm weff

A� �1 0 0 1 Always Saddle 0 1
B� �1 0 0 0 Always Saddle 0 1
C λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0 0 λ2 ≤ 6 Saddle 0 λ2

3
− 1

D λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0 λ2

2
− 2 λ2 ≤ 6 Saddle 0 λ2

3
− 1

E�
ffiffi
6

p
2λ

ffiffi
6

p
2λ

0 − 1
4
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 72

λ2

q
Þ λ2 ≥ 72

25
Saddle 1 − 3

λ2
0

F� �1 0 1 0 Always Saddle 0 1
G� �1 0 1 1 Always Stable node for �λ >

ffiffiffi
6

p
, γ > 0 0 1

Saddle otherwise
H λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
1 0 λ2 ≤ 6 Stable node for λ2 < 4, γ > 0 0 λ2

3
− 1

Saddle otherwise
I λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
1 λ2

2
− 2 λ2 ≤ 6 Stable node for 4 < λ2 < 6, γ > 0 0 λ2

3
− 1

Saddle otherwise

TABLE IV. The eigenvalues associated with the critical points
of the system (29)–(32), for the interacting model II, namely, with
Q ¼ Γρm.

Point E1 E2 E3 E4

A� 3 3 3 ∓ ffiffi
6

p
λ

2
−1

B� 3 3 3 ∓ ffiffi
6

p
λ

2
−1

C λ2

2
λ2 − 3 λ2

2
− 3 λ2

2
− 2

D λ2

2
λ2 − 3 λ2

2
− 3 − λ2

2
þ 2

E� 3
2 − 3

4λðλþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
Þ − 3

4λðλ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24−7λ2

p
Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffi
25λ2−72

p
2λ

F� −3 3 ∓ ffiffi
6

p
λ

2
−sgnðγÞ∞ 1

G� −3 3 ∓ ffiffi
6

p
λ

2
−sgnðγÞ∞ −1

H − λ2

2
λ2

2
− 3 −sgnðγÞ∞ λ2

2
− 2

I − λ2

2
λ2

2
− 3 −sgnðγÞ∞ − λ2

2
þ 2
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(ii) Points C and D correspond to DE-dominated sol-
utions and are always saddle. Their effective equa-
tion of state becomes less than −1=3 for λ2 < 2,
giving rise to an accelerating universe. Nevertheless,
although the two points coincide at the background
level, at the level of perturbations, they differ, and in
particular, point C has constant matter perturbations
i.e., U ¼ 0, while point D corresponds to either
growth or decay of matter perturbations.

(iii) Points E� correspond to scaling matter-dominated,
nonaccelerating solutions. At the perturbation level,
the growth rate of matter perturbations is smaller
than the standard matter-dominated epoch. Point Eþ
corresponds to decaying matter perturbations. How-
ever, point E− for λ > 3 corresponds to the growth of
matter perturbations, and especially for large values
of λ, it describes a matter-dominated era with matter
overdensity evolving as δ ∼ a.

(iv) Points F� and G� correspond to stiff DE-dominated
solutions. Points F� are always saddle, but points
G� can be either a saddle or stable node depending
on λ and the sign of γ. At the perturbation level,
while points F� correspond to a constant growth
rate of matter perturbations, points G� correspond to
unstable growth. Finally, note that, while in the pure
background analysis points F� can be stable, the
inclusion of perturbations makes them saddle.

(v) Points H and I correspond to DE-dominated sol-
utions, which for λ2 < 2 exhibit acceleration. Point
H is stable at both the background and perturbation
level when γ > 0 and λ2 < 4, and similarly, point I
is stable when γ > 0 and λ2 > 4. Point H has a

constant growth rate of matter perturbations, while
point I corresponds to decay of matter perturbations
in its stability region, while it corresponds to
unstable perturbation growth when it is a saddle.

Similarly to the previous interacting model, we see that
the inclusion of perturbations allows us to differentiate
among critical points that are equivalent at the background
level. Additionally, performing an analysis at infinity, we
find that there are no extra critical points. From the
combined analysis of the background and perturbation
level, we find that point E− is physically interesting for the
description of the epoch where matter perturbations are
generated, and the fact that it is saddle gives the natural exit
from this phase. At late times, the physically interesting
point is H, which corresponds to DE-dominated acceler-
ated solution with constant matter perturbations, in agree-
ment with observations. For completeness, in Fig. 5, we
depict the evolution of the growth rate U, which shows that
for a wide range of initial conditions δ increases at
intermediate redshifts and then asymptotically approaches
a constant value (since U goes to zero). Moreover, the
precise evolution of matter growth depends on the inter-
action parameter γ as expected.

IV. CONCLUSIONS

Cosmological scenarios with interactions between DM
and DE sectors are widely studied since they offer
alleviation of the cosmic coincidence problem, and addi-
tionally, they may lead to solutions to the Hubble and σ8
tensions. Hence, in the present work, we applied the
formalism of dynamical system analysis to investigate
the evolution of interacting scenarios both at the back-
ground and perturbation levels in a unified way.
We transformed the background and perturbation equa-

tions into an autonomous system and investigated them for
two interaction forms. Since the resulting dynamical
system contains the extra perturbation variable related to
the matter overdensity, the critical points of the background
analysis split into more points, corresponding to different
behavior of matter perturbations, and hence to stability
properties.
For both models, we obtained critical points describing a

wide range of interesting cosmological solutions, corre-
sponding to DM, scaling, or DE-dominated ones, accel-
erating and nonaccelerating, with decaying, constant, or
growing matter perturbations. In particular, from the
combined analysis of the background and perturbation
equations, we found points that describe the nonaccelerat-
ing matter-dominated epoch with the correct growth of
matter structure. The fact that they are saddle provides the
natural exit from this phase. Furthermore, at late times, we
found stable attractors that correspond to a DE-dominated
accelerated solution with constant matter perturbations, as
observations require it.

FIG. 5. The evolution of the perturbation quantity U (growth
rate) for the system (29)–(32) of the interacting model II, namely,
withQ ¼ Γρm, with λ2 ¼ 3.9, and for γ ¼ 10−5. It corresponds to
the transition B− → A− → E− → H.
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In summary, interacting cosmology, and more efficiently
interacting model I, can correctly describe the matter and
DE epochs at the background and perturbation levels.
Moreover, we have an extra parameter to adjust both the
background and perturbation behavior, namely, the cou-
pling parameter. Hence, for suitable parameter regions, one
can obtain the correct thermal history of the Universe, at
both background and perturbation levels, offering a matter-
dominated phase where matter perturbations grow, which
ends naturally, and then the transition to the DE-dominated
accelerating phase. These features reveal the significant
effect of the interaction.
It would be interesting to investigate the phase space of

both the background and perturbation levels in interacting
scenarios in which dark energy has an effective origin,

namely, instead of quintessence field to arise from modified
gravity. Additionally, one could also apply the dynamical
system analysis in the case of tensor perturbations. These
studies lie beyond the scope of the present work and are left
for future projects.

ACKNOWLEDGMENTS

J. D. was supported by the Core Research Grant of SERB,
Department of Science and Technology India (File
No. CRG/2018/001035) and the Associate program of
Inter-University Centre for Astronomy and Astrophysics.
S. B. and E. N. S. would like to acknowledge
the contribution of the COST Action CA18108 “Quantum
Gravity Phenomenology in the multi-messenger approach.”

[1] E. N. Saridakis et al. (CANTATACollaboration), Modified
gravity and cosmology: An update by the CANTATA
network, arXiv:2105.12582.

[2] S. Capozziello and M. De Laurentis, Extended theories of
gravity, Phys. Rep. 509, 167 (2011).

[3] Y.-F. Cai, S. Capozziello, M. De Laurentis, and E. N.
Saridakis, f(T) teleparallel gravity and cosmology, Rep.
Prog. Phys. 79, 106901 (2016).

[4] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of
dark energy, Int. J. Mod. Phys. D 15, 1753 (2006).

[5] Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia,
Quintom Cosmology: Theoretical implications and obser-
vations, Phys. Rep. 493, 1 (2010).

[6] T. Damour and A. M. Polyakov, The string dilaton and a
least coupling principle, Nucl. Phys. B423, 532 (1994).

[7] L. P. Chimento, A. S. Jakubi, D. Pavon, and W. Zimdahl,
Interacting quintessence solution to the coincidence prob-
lem, Phys. Rev. D 67, 083513 (2003).

[8] A. Pourtsidou and T. Tram, Reconciling CMB and
structure growth measurements with dark energy inter-
actions, Phys. Rev. D 94, 043518 (2016).

[9] R. An, C. Feng, and B. Wang, Relieving the tension
between weak lensing and cosmic microwave background
with interacting dark matter and dark energy models,
J. Cosmol. Astropart. Phys. 02 (2018) 038.

[10] S. Kumar and R. C. Nunes, Echo of interactions in the dark
sector, Phys. Rev. D 96, 103511 (2017).

[11] W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan,
Interacting dark energy with time varying equation of state
and the H0 tension, Phys. Rev. D 98, 123527 (2018).

[12] E. Di Valentino et al., Cosmology intertwined III: fσ8 and
S8, Astropart. Phys. 131, 102604 (2021).

[13] E. Di Valentino et al., Snowmass2021—Letter of interest
cosmology intertwined II: The hubble constant tension,
Astropart. Phys. 131, 102605 (2021).

[14] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.
Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the

realm of the Hubble tension—a review of solutions,
Classical Quantum Gravity 38, 153001 (2021).

[15] J. D. Barrow and T. Clifton, Cosmologies with energy
exchange, Phys. Rev. D 73, 103520 (2006).

[16] L. Amendola, G. Camargo Campos, and R. Rosenfeld,
Consequences of dark matter-dark energy interaction on
cosmological parameters derived from SNIa data, Phys.
Rev. D 75, 083506 (2007).

[17] J.-H. He and B. Wang, Effects of the interaction between
dark energy and dark matter on cosmological parameters,
J. Cosmol. Astropart. Phys. 06 (2008) 010.

[18] S. Basilakos and M. Plionis, Is the interacting dark matter
scenario an alternative to dark energy?, Astron. Astrophys.
507, 47 (2009).

[19] M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena,
and S. Rigolin, Dark coupling, J. Cosmol. Astropart. Phys.
07 (2009) 034; 05 (2010) E01.

[20] X.-M. Chen, Y. Gong, E. N. Saridakis, and Y. Gong, Time-
dependent interacting dark energy and transient acceler-
ation, Int. J. Theor. Phys. 53, 469 (2014).

[21] A. Pourtsidou, C. Skordis, and E. J. Copeland, Models of
dark matter coupled to dark energy, Phys. Rev. D 88,
083505 (2013).

[22] W. Yang and L. Xu, Coupled dark energy with perturbed
Hubble expansion rate, Phys. Rev. D 90, 083532 (2014).

[23] R. C. Nunes and E. M. Barboza, Dark matter-dark energy
interaction for a time-dependent EoS parameter, Gen.
Relativ. Gravit. 46, 1820 (2014).

[24] V. Faraoni, J. B. Dent, and E. N. Saridakis, Covariantizing
the interaction between dark energy and dark matter, Phys.
Rev. D 90, 063510 (2014).

[25] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D.
Wands, Indications of a Late-Time Interaction in the Dark
Sector, Phys. Rev. Lett. 113, 181301 (2014).

[26] S. Pan, S. Bhattacharya, and S. Chakraborty, An analytic
model for interacting dark energy and its observational
constraints, Mon. Not. R. Astron. Soc. 452, 3038 (2015).

KHYLLEP, DUTTA, BASILAKOS, and SARIDAKIS PHYS. REV. D 105, 043511 (2022)

043511-10

https://arXiv.org/abs/2105.12582
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1016/j.physrep.2010.04.001
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1103/PhysRevD.67.083513
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1088/1475-7516/2018/02/038
https://doi.org/10.1103/PhysRevD.96.103511
https://doi.org/10.1103/PhysRevD.98.123527
https://doi.org/10.1016/j.astropartphys.2021.102604
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1103/PhysRevD.73.103520
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1088/1475-7516/2008/06/010
https://doi.org/10.1051/0004-6361/200912661
https://doi.org/10.1051/0004-6361/200912661
https://doi.org/10.1088/1475-7516/2009/07/034
https://doi.org/10.1088/1475-7516/2009/07/034
https://doi.org/10.1088/1475-7516/2010/05/E01
https://doi.org/10.1007/s10773-013-1831-9
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.90.083532
https://doi.org/10.1007/s10714-014-1820-1
https://doi.org/10.1007/s10714-014-1820-1
https://doi.org/10.1103/PhysRevD.90.063510
https://doi.org/10.1103/PhysRevD.90.063510
https://doi.org/10.1103/PhysRevLett.113.181301
https://doi.org/10.1093/mnras/stv1495


[27] C. G. Boehmer, N. Tamanini, and M. Wright, Interacting
quintessence from a variational approach Part I: algebraic
couplings, Phys. Rev. D 91, 123002 (2015).

[28] R. C. Nunes, S. Pan, and E. N. Saridakis, New constraints
on interacting dark energy from cosmic chronometers,
Phys. Rev. D 94, 023508 (2016).

[29] C. G. Boehmer, N. Tamanini, and M. Wright, Interacting
quintessence from a variational approach Part II: derivative
couplings, Phys. Rev. D 91, 123003 (2015).

[30] A. Mukherjee and N. Banerjee, In search of the dark matter
dark energy interaction: A kinematic approach, Classical
Quantum Gravity 34, 035016 (2017).

[31] R.-G. Cai, N. Tamanini, and T. Yang, Reconstructing the
dark sector interaction with LISA, J. Cosmol. Astropart.
Phys. 05 (2017) 031.

[32] W. Yang, S. Pan, and J. D. Barrow, Large-scale stability
and astronomical constraints for coupled dark-energy
models, Phys. Rev. D 97, 043529 (2018).

[33] L. Santos, W. Zhao, E. G. M. Ferreira, and J. Quintin,
Constraining interacting dark energy with CMB and BAO
future surveys, Phys. Rev. D 96, 103529 (2017).

[34] S. Pan, A. Mukherjee, and N. Banerjee, Astronomical
bounds on a cosmological model allowing a general
interaction in the dark sector, Mon. Not. R. Astron. Soc.
477, 1189 (2018).

[35] D. Grandon and V. H. Cardenas, Exploring evidence of
interaction between dark energy and dark matter, arXiv:
1804.03296.

[36] R. von Marttens, L. Casarini, D. F. Mota, and W. Zimdahl,
Cosmological constraints on parametrized interacting dark
energy, Phys. Dark Universe 23, 100248 (2019).

[37] M. Bonici and N. Maggiore, Constraints on interacting
dynamical dark energy and a new test for ΛCDM, Eur.
Phys. J. C 79, 672 (2019).

[38] C. Li, X. Ren, M. Khurshudyan, and Y.-F. Cai, Implica-
tions of the possible 21-cm line excess at cosmic dawn on
dynamics of interacting dark energy, Phys. Lett. B 801,
135141 (2020).

[39] W. Yang, S. Pan, E. Di Valentino, B. Wang, and A. Wang,
Forecasting interacting vacuum-energy models using
gravitational waves, J. Cosmol. Astropart. Phys. 05
(2020) 050.

[40] A. Al Mamon, A. Paliathanasis, and S. Saha, Dynamics of
an interacting barrow holographic dark energy model and
its thermodynamic implications, Eur. Phys. J. Plus 136,
134 (2021).
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