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We study the dynamics of magnetic fields in chiral magnetohydrodynamics, which takes into account
the effects of an additional electric current related to the chiral magnetic effect in high-energy plasmas.
We perform direct numerical simulations, considering weak seed magnetic fields and inhomogeneities of
the chiral chemical potential μ5 with a zero mean. We demonstrate that a small-scale chiral dynamo can
occur in such plasmas if fluctuations of μ5 are correlated on length scales that are much larger than the scale
on which the dynamo growth rate reaches its maximum. Magnetic fluctuations grow by many orders of
magnitude due to the small-scale chiral dynamo instability. Once the nonlinear backreaction of the
generated magnetic field on fluctuations of μ5 sets in, the ratio of these scales decreases and the dynamo
saturates. When magnetic fluctuations grow sufficiently to drive turbulence via the Lorentz force before
reaching maximum field strength, an additional mean-field dynamo phase is identified. The mean magnetic
field grows on a scale that is larger than the integral scale of turbulence after the amplification of the
fluctuating component saturates. The growth rate of the mean magnetic field is caused by a magnetic α
effect that is proportional to the current helicity. With the onset of turbulence, the power spectrum of μ5
develops a universal k−1 scaling independently of its initial shape, while the magnetic energy spectrum
approaches a k−3 scaling.

DOI: 10.1103/PhysRevD.105.043507

I. INTRODUCTION

The macroscopic dynamics of magnetized plasmas can be
described by an effective one-fluid model, namely magneto-
hydrodynamics (MHD). The set of variables in MHD
includes the fluid density ρ, the velocityU, and the magnetic
field B, which are evolved by the continuity equation, the
Navier-Stokes equation, and the induction equation, respec-
tively. Together with an equation of state, this constitutes the
basic MHD equations in a dynamical theory. One field of
research within MHD is dynamo theory [1–7] which
describes the amplification of an initiallyweak seedmagnetic
field by conversion of kinetic (mostly turbulent) energy into
magnetic energy. Dynamo theory is used primarily in
planetary physics and astrophysics, to understand the
observed strength and structure of magnetic fields in planets
[8–10], stars [11–13], and galaxies [14–18].

At very high energies, however, MHD necessarily needs
to be extended to include the electric current caused by the
chiral magnetic effect (CME) [19]. This macroscopic
quantum effect describes the coupling between the chiral
chemical potential μ5, i.e., the difference between the
number density of left- and right-handed fermions, and
magnetic helicity H. To account for the CME in the
modeling of high-energy plasma, μ5 has to be included
as an additional dynamical variable in the evolution
equation describing the physics of the CME. The effective
theory of a plasma with nonzero μ5 is referred to as chiral
MHD [20–23], which is an extension of classical MHD.
Due to the CME, magnetic field and magnetic helicity can
be amplified by many orders of magnitude by a chiral
dynamo instability [21,24–26].
A central property of chiral MHD is the conservation of

total chirality (the sum of mean magnetic helicity hHi and
hμ5i multiplied by the inverse chiral nonlinearity param-
eter), whereas in MHD, hHi is conserved in the limit of*jennifer.schober@epfl.ch
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vanishing magnetic resistivity. The conservation law in
chiral MHD has important consequences: the conversion of
hμ5i to hHi leads to a transfer of magnetic energy from
small to large spatial scales, i.e., a chirally induced inverse
cascade [27–29]. Depending on the initial condition, μ5 can
also be generated at the expense of magnetic helicity [30].
The extension from MHD to chiral MHD is required for

all systems where fermions can be considered as being
effectively massless, i.e., where the kinetic energy of the
fermions exceed their rest energy significantly. In this case,
chirality flipping reactions are suppressed [31]. The critical
energy scale where this transition occurs depends on the
exact value of the chirality flipping rate which is still under
debate [32]. Nevertheless, typical examples of such sys-
tems are the high-energy plasma generated in heavy ion
collisions [33–36], and, indeed, signatures of the CME
have been observed at the Relativistic Heavy Ion Collider
[37] and the Large Hadron Collider [38]. However, in
view of a number of background effects, there is ambiguity
in the interpretation of the experimental results [34].
Furthermore, there is also the chiral vortical effect
(CVE) [34]. It may be important in the nonlinear stage
of the magnetic field evolution, especially when strong
chiral turbulence is produced. However, since chiral tur-
bulence is usually magnetically dominated, the CVE is
likely to be subdominant.
Chiral MHD has also been applied to high-energy

astrophysical plasmas like the early Universe [24–26,39]
and proto-neutron stars [40–44] where, in particular, the
evolution of the magnetic field has been studied. Beyond
that, chiral MHD can be used to describe the dynamics of
new materials, like Weyl and Dirac semimetals [45]. Here,
the chirality of the massless quasiparticles allows for the
occurrence of the CME and an effective description of the
system by chiral MHD.
In the framework of chiral MHD, the effects of coupling

between magnetic and velocity fields were analyzed by
means of a mean-field theory [21]. This way, a new
turbulent αμ effect was identified that is based on fluctua-
tions of μ5 and, contrary to the classical kinetic αK effect, is
not sourced by kinetic helicity. The αμ effect causes a
mean-field dynamo instability resulting in the generation of
a mean magnetic field at a length scale that is larger than the
integral scale of turbulence. The mean-field dynamo was
observed in direct numerical simulations (DNS) [26,46,47]
and the existence of the αμ effect was confirmed. The mean-
field dynamo leads to an even more efficient transfer of
magnetic energy to larger spatial scales.
The initial conditions of the previously mentioned

studies of chiral dynamos included a mean chiral chemical
potential which was extended over the entire simulation
domain, e.g., there was a nonzero volume average hμ5i or a
constant difference between right- and left-handed fer-
mions. In our accompanying Letter [48], it was first shown
in DNS that locally nonzero fluctuations of μ5 can also

induce a small-scale chiral dynamo, even if the mean chiral
chemical potential hμ5i is vanishing. As a consequence
of this small-scale chiral dynamo instability, magnetically
dominated turbulence is driven, which leads to the pro-
duction of a hμ5i and ultimately generates a mean magnetic
field via a large-scale turbulent dynamo. As argued above,
the CVE [34] is likely to be subdominant in magnetically
dominated turbulence and its detailed investigation will
therefore be postponed to a subsequent study focusing
specifically on this effect.
The present paper serves as a companion to Ref. [48] and

focuses on a technical analysis of the properties of chiral
dynamos that are sourced by an inhomogeneous initial μ5.
To this end, we are extending the study of Ref. [48] by
systematically exploring simulations with different initial
inhomogeneities of μ5, starting with a two-dimensional toy
model in Sec. III. With this model we explore the con-
ditions under which a small-scale chiral dynamo can
operate. In particular we test how the growth rate of the
chiral dynamo depends on the separation of scales in the
system. The value of the maximum possible growth rate of
the small-scale chiral dynamo is determined. In Sec. IV, we
present high-resolution simulations in which turbulence is
generated in a self-consistent way, i.e., via the Lorentz force
of the magnetic field produced by the small-scale chiral
dynamo. We analyze the different contributions to the
large-scale dynamo growth rate and the evolution of the
power spectra in chiral MHD with initially vanishing hμ5i.
Conclusions are drawn in Sec. V.

II. PHYSICAL BACKGROUND AND METHODS

A. Evolution equations of a chiral plasma

In spatial regions, where the chemical potentials of left-
handed ðμLÞ and right-handed ðμRÞ fermions differ from
one another, i.e., where the chiral chemical potential μ5 ≡
μL − μR is nonzero, an additional electric current arises due
to the chiral magnetic effect. This current exists in addition
to the Ohmic current and leads to an extension of the
induction equation to the case of high-energy plasma and,
therefore, the classical MHD equations.
In chiral MHD, the set of equations is given by

∂B
∂t ¼ ∇ × ½U × Bþ ηðμ5B − ∇ × BÞ�; ð1Þ

ρ
DU
Dt

¼ð∇ × BÞ × B − ∇pþ ∇·τ; ð2Þ

Dρ

Dt
¼ −ρ∇ · U; ð3Þ

together with the evolution equation of μ5:

Dμ5
Dt

¼ D5ðμ5Þ þ λη½B·ð∇ × BÞ − μ5B2� − μ5∇ · U: ð4Þ
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In this set of equations, the magnetic field B is normal-
ized such that the magnetic energy density is B2=2, U is
the velocity field, and ρ is the mass density. The advec-
tive derivative is written as D=Dt ¼ ∂=∂tþ U · ∇. Further,
η is the microscopic magnetic diffusivity, p is the fluid
pressure, τ ¼ 2νρS is the stress tensor, S is the trace-free
strain tensor with components Sij ¼ ðUi;j þ Uj;iÞ=2 −
δijð∇·UÞ=3 (commas denote partial spatial derivatives),
and ν is the kinematic viscosity. In Eq. (4) for the chiral
chemical potential μ5, a diffusion term characterized by
the diffusion operator D5ðμ5Þ has been introduced for
numerical stability; see Sec. II F for details. Further, λ is
the chiral nonlinearity parameter which quantifies the
coupling between magnetic helicity and μ5. The system
of Eqs. (1)–(4) implies that total chirality χtot ≡ hHi þ
2hμ5i=λ is conserved [33,34], where angle brackets denote
volume averaging and hHi ¼ hA · Bi is the magnetic
helicity, B ¼ ∇ × A is the magnetic field strength with
the vector potential A. The addition of the term −μ5∇ · U in
Eq. (4) relative to Ref. [21] does not make a noticeable
difference; see the appendix of Ref. [49]. This conservation
law would need to be extended if the CVE were to be
included.
In the system of Eqs. (1)–(4), we do not include the

evolution equation for the chemical potential μ≡ μL þ μR.
The inclusion of this equation allows to describe the chiral
magnetic waves [50]. The existence of the chiral magnetic
waves requires the presence of a significant equilibrium
magnetic field. In particular, the frequency of the chiral
magnetic waves is proportional to the equilibrium magnetic
field. However, since we consider a dynamo excited from a
very small seed magnetic field, the chiral magnetic waves
do not exist in our system unless the generated mean
magnetic field reaches a high enough strength.

B. Initial conditions

We study the generation of the magnetic field by
fluctuations μ05 of the chiral chemical potential with a zero
mean value hμ5iðt0Þ ¼ 0 at the initial time t0. Initially,
velocity fluctuations vanish and there is a weak seed
magnetic field B.
The focus of this study lies on cases in which μ5 is

inhomogeneous, but we will also discuss the comparison to
runs with an initially homogeneous μ5. In particular, the
following different cases are considered:
(a) Systems with an initial μ5 in the form of a sine spatial

profile along the x axis, i.e., μ5ðt0; xÞ ¼ μ5ðt0; xÞ ¼
μ5;0 sinðkxxÞ. The wave number of the sine function kx
will be varied.

(ii) Random distributions of μ5 at different wave numbers
that are initialized such that the spectrum of the chiral
chemical potential, E5, takes the form of a power-law
function in k space, i.e., E5ðt0Þ ∝ k−n. The power law
exponent n will be varied. Further, we will consider

cases where this initial condition includes a nonzero
initial hμ5i and cases where hμ5iðt0Þ ¼ 0.

(iii) Systems with a uniform distribution of the chiral
chemical potential, μ5ðt0; xÞ ¼ const, that serve as
comparison with previous results.

C. Small-scale chiral dynamo

The initial condition (iii) with the homogeneous distri-
bution of μ5 has been used in previous studies and is well
understood. For a spatially constant μ5, a plane-wave ansatz
for the linearized induction equation (1) with the CME term
and a vanishing velocity field yields a dynamo instability
that is characterized by the growth rate [24]

γðkÞ ¼ jv5kj − ηk2; ð5Þ

with k being the wave number and v5 ≡ ημ5. The maxi-
mum growth rate of this instability is

γ5 ¼
v25
4η

; ð6Þ

and it is attained at the wave number

k5 ¼
jμ5j
2

: ð7Þ

The chiral dynamo instability is associated with the
∇ × ðv5BÞ term in the induction equation (1) of chiral
MHD. We note that, while this term is formally similar to
the kinetic α effect, αK (that is related to the kinetic
helicity), i.e., it is similar to the ∇ × ðαKB̄Þ term in the
induction equation in the classical mean-field MHD, the
effect described by the v5 term is not caused by turbulence,
but rather by a quantum effect related to the handedness of
fermions. By analogy with the classical dynamo caused by
the αK effect, the small-scale chiral dynamo is referred to as
the v5 dynamo. In the presence of shear, its growth rate is
modified in ways that are similar to those of the classical
αΩ dynamo [21], except that, again, this chiral dynamo is
not related to a turbulent flow.

D. Production of the mean chiral chemical potential

Fluctuations of the chiral chemical potential μ05 cause an
exponential growth of the magnetic field by the v5 dynamo.
During the v5 dynamo phase, magnetic fluctuations pro-
duce velocity fluctuations by the Lorentz force, i.e., the
term ð∇ × BÞ × B on the right-hand side of Eq. (2).
Since the initial mean chiral chemical potential is zero,

and the magnetic helicity ha·bi of the seed magnetic field
vanishes, the total initial chirality vanishes as well,
χtotðt0Þ ¼ 0. Here a and b are fluctuations of the vector
potential and the magnetic field. Due to the conservation of
total chirality, it is zero at all times: χtotðtÞ ¼ 0. Initial
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fluctuations of a chiral chemical potential μ05 with a wide
range of scales, however, produce magnetic fluctuations b
by the v5 dynamo. In particular, for a wide spectrum in k
space, fluctuations of the chiral chemical potential at larger
scales then serve as a mean field for fluctuations on smaller
scales, so that the chiral dynamo instability excites mag-
netic fluctuations at small scales, and produces small-scale
magnetic helicity ha·bi during the dynamo action. Due to
the conservation of total chirality, the production of the
small-scale magnetic helicity ha·bi causes the buildup of
the mean chiral chemical potential:

hμ5i ¼ −λha·bi=2: ð8Þ

The small-scale chiral dynamo produces magnetically
driven turbulence and enhances turbulent kinetic energy.
The latter increases the fluid and magnetic Reynolds num-
bers, Re≡ Urms=ðνkintÞ and ReM ≡Urms=ðηkintÞ, where

k−1int ≡
R kmax
1 EMðkÞk−1dkR kmax
1 EMðkÞdk

; ð9Þ

is the integral scale of magnetically driven turbulence [51].
When ReM is large enough, the mean chiral dynamo
instability is excited, which can result in the generation of
the mean magnetic field.

E. Contributions to the mean-field dynamo

The mean induction equation is given by

∂B
∂t ¼ ∇ × ½Ū × Bþ ðv̄5 þ αÞB − ðηþ ηTÞ∇ × B�; ð10Þ

where ῡμ ¼ η μ̄5 and the overbars indicate averages. In
comparison to Eq. (1), there are two additional contribu-
tions in Eq. (10): α that increases the growth rate if it has
the same sign as v̄5 or if jαj ≫ jv̄5j and the turbulent
diffusion ηT ≈ Urms=ð3kintÞ.
The α effect itself also has different contributions.

In particular, for chiral MHD with a homogeneous μ5,
the αμ effect has been derived in Ref. [21] and confirmed
by DNS in Ref. [26]. It is related to an interaction between
fluctuations of the magnetic field b and the chiral chemical
potential μ05. For very small mean magnetic energy
(in comparison to the turbulent kinetic energy), αμ has
the form [21]

αμ ¼ −
2

3
v̄5 lnðReMÞ: ð11Þ

When the turbulent magnetic energy b2 is much larger

than the turbulent kinetic energy u2 (so called magnetically
driven turbulence), the magnetic α effect,

αM ¼ CMτcχc; ð12Þ

plays a key role in the mean-field dynamo, where χc ¼
b·ð∇ × bÞ is the current helicity. For weakly inhomo-
geneous turbulence, the current helicity is estimated as
χc ≈ ha·biintk2int, i.e., it is proportional to the small-scale
magnetic helicity a·b≡ ha·biint (see Ref. [52]), where
h…iint implies averaging over the integral scale of turbu-
lence. The correlation time of the magnetically driven
turbulence is the Alfvén time τc ¼ ðuAkintÞ−1, based on
the integral scale given k−1int and the Alfvén speed

uA ¼ ðb2Þ1=2 ≈Brms. The mean fluid density entering in
the Alfvén speed uA and αM is unity and for large magnetic
Reynolds numbers the coefficient CM ¼ 2ðq − 1Þ=ðqþ 1Þ
depends on the exponent q of the magnetic energy
spectrum k−q. Finally, there can be a contribution of the
kinetic α effect that is caused by kinetic helicity:

αK ¼ −
1

3
τcχK: ð13Þ

However, kinetic helicity χK ¼ hu·ωiint is not produced
efficiently in magnetically driven turbulence and therefore
αK is a subdominant effect in the system considered in
this work. Here ω are vorticity fluctuations. This will be
demonstrated later.
During the dynamo action, the small-scale magnetic

helicity a·b and the current helicity χc are evolving. The
budget equation for χc follows from the dynamic equation
for the magnetic helicity a·b. In the presence of a nonzero
mean magnetic field, this equation reads [21]

∂
∂t a·bþ divF ¼ 2v̄5b2 − 2E · B − 2ηbð∇ × bÞ; ð14Þ

where E ≡ u×b ¼ αMB − ηTð∇ × BÞ is the turbulent
electromotive force and F is the flux of a·b. Here we
consider the case when the kinetic α effect caused by the
kinetic helicity and the αμ effect [21,26] are much smaller
than the magnetic α effect. This is a typical situation for
the chiral mean-field dynamo in a nonuniform μ5 (see
below). Near maximum field strength, two leading terms,

2v̄5b2 − 2αMB2, in Eq. (14) compensate each other, so that
the magnetic α effect reaches the value

αsatM ¼ ημ̄5
b2

B2
; ð15Þ

where we took into account that for large magnetic
Reynolds numbers the last term on the right-hand side
of Eq. (14) vanishes. This term describes the dissipation
rate of the magnetic helicity with the dissipation time scale
which is ReM times larger than the correlation time in the
integral scale of turbulence, where ReM is the magnetic
Reynolds number. We also take into account that the term
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−ηTð∇ × BÞ in the turbulent electromotive force is respon-
sible for the dissipation of the mean magnetic field.
Overall, the growth rate of the mean magnetic field in the

mean-field dynamo phase is given by

γðkÞ ¼ ðv̄5 þ αÞk − ðηþ ηTÞk2; ð16Þ

where α represents the maximum of the different contri-
butions. In the limit of large ReM, jαj ≫ jv̄5j and ηT ≫ η, so
that the maximum growth rate is

γα ¼
α2

4ηT
; ð17Þ

and it is attained at the characteristic wave number

kα ¼
α

2ηT
; ð18Þ

which is less than the minimum wave number in the
system. In this study, we show that the mean v̄5 effect,

where v̄5 ¼ ημ̄5, another mechanism of mean-field dynamo
generation, is inefficient and that α ¼ αM.

F. Numerical setup

We use the Pencil Code [53] to solve equations (1)–(4) in
a three-dimensional periodic domain of size L3 ¼ ð2πÞ3
with a resolution of up to 6723. This code employs a third-
order accurate time-stepping method [54] and sixth-order
explicit finite differences in space [55,56]. An overview of
all runs presented in this paper is given in Table I. We note
that runs R − 2, R − 1, and Rþ 1 have also been discussed
in the companion Letter [48]. A list of notations is given in
Table II.
The smallest wave number covered in the numerical

domain is k1 ¼ 2π=L ¼ 1 which we use for the normali-
zation of length scales. All velocities are normalized to the
sound speed cs ¼ 1 and further the mean fluid density is
unity, ρ̄ ¼ 1. Further, the magnetic Prandtl number is 1, i.e.,
the magnetic diffusivity equals the viscosity. Time is
normalized by the diffusion time tη ¼ ðηk21Þ−1.

TABLE I. Summary of all runs presented in this paper.

Setup Parameters Initial conditions Output

Dimension Resolution η ¼ ν μ5 diffusion λ5 μ5;max μ5;rms hμ5i μ5 structure maxðBrmsÞ maxðhμ5iÞ maxðReMÞ
Series H
H1 3D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 102 10 10 10 const 0.44 10 65
H2 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 42 42 42 const 0.41 42 4.2 × 102

Series S
S1 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 10 7.1 −7.2 × 10−15 sinð1xÞ 0.036 0.31 14
S1L 2D 1282 0.001 D5;L ¼ 0.001 1 × 104 9.9 7.0 9.1 × 10−15 sinð1xÞ 1.9 × 10−6 4.5 × 10−9 9.5 × 10−8

S1H3 2D 1282 0.001 D5;H3 ¼ 6.0 × 10−11 1 × 104 10 7.1 −8.2 × 10−15 sinð1xÞ 0.037 0.31 14
S2 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 10 7.1 2.5 × 10−16 sinð2xÞ 0.04 0.14 6.1
S2λ2 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 102 10 7.1 2.5 × 10−16 sinð2xÞ 0.11 0.05 24
S2λ6 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 106 10 7.1 2.5 × 10−16 sinð2xÞ 0.0045 0.17 0.35
S2L 2D 1282 0.001 D5;L ¼ 0.001 1 × 104 10 7.1 2.5 × 10−16 sinð2xÞ 1.8 × 10−7 1.9 × 10−14 1.6 × 10−12

S2H3 2D 1282 0.001 D5;H3 ¼ 6.0 × 10−11 1 × 104 10 7.1 2.5 × 10−16 sinð2xÞ 0.04 0.14 6.4
S3 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 10 7.1 −1.2 × 10−14 sinð3xÞ 0.029 0.039 3.6
S4 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 9.9 7.1 −1.3 × 10−14 sinð4xÞ 0.015 0.091 2.3
S5 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 10 7.1 −2.3 × 10−16 sinð5xÞ 4.1 × 10−7 5.4 × 10−11 3.1 × 10−9

S6 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 9.9 7 −1.1 × 10−14 sinð6xÞ 5.7 × 10−9 1.1 × 10−14 1.4 × 10−12

S8 2D 1282 0.001 D5 ¼ 2.4 × 10−7 1 × 104 9.8 7 −1.2 × 10−14 sinð8xÞ 9 × 10−9 1.4 × 10−14 1.7 × 10−12

S8L 2D 1282 0.001 D5;L ¼ 0.001 1 × 104 5.8 4.2 −1.3 × 10−14 sinð8xÞ 5.9 × 10−9 1.3 × 10−14 1.9 × 10−12

S8H3 2D 1282 0.001 D5;H3 ¼ 6.0 × 10−11 1 × 104 9.8 7.1 −1.2 × 10−14 sinð8xÞ 9 × 10−9 1.4 × 10−14 1.7 × 10−12

S23D 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 50 35 −7.1 × 10−17 sinð2xÞ 0.4 0.2 3.3 × 102

S23Dλ4 3D 6723 0.0002 1.8 × 10−9 4 × 104 50 35 −1.6 × 10−15 sinð2xÞ 0.068 0.027 45
S23Dλ8 3D 6723 0.0002 1.8 × 10−9 4 × 108 50 35 −1.6 × 10−15 sinð2xÞ 0.0011 0.029 0.016
S23DL 3D 6723 0.0002 D5;L ¼ 0.0002 4 × 102 50 35 −7.1 × 10−17 sinð2xÞ 0.32 0.16 4 × 102

S203D 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 50 35 −1.6 × 10−15 sin ð20xÞ 0.02 2.4 × 10−5 2.1

Series R
R − 2m 3D 6722 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 46 15 −4.5 E5ðkÞ ∝ k−2 0.19 4.5 2.1 × 102

R − 2 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 50 14 0 E5ðkÞ ∝ k−2 0.18 0.18 2.7 × 102

R − 2CMW1 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 51 14 −9.8 × 10−16 E5ðkÞ ∝ k−2 0.18 0.28 2.1 × 102

R − 2CMW2 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 51 14 −9.8 × 10−16 E5ðkÞ ∝ k−2 0.19 0.26 2.2 × 102

R − 1 3D 6722 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 86 16 0 E5ðkÞ ∝ k−1 0.095 0.052 1.3 × 102

Rþ 1 3D 6723 0.0002 D5 ¼ 1.8 × 10−9 4 × 102 54 13 −2.1 × 10−15 E5ðkÞ ∝ kþ1 0.068 0.055 16
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For numerical stability, the diffusion of μ5 is required and
has been introduced by the diffusion operator in Eq. (4). In
our previous work with a uniform initial μ5, we have always
used Laplacian diffusion, i.e., D5ðμ5Þ ¼ D5;LΔμ5 where
D5;L is a constant and was usually set to the same value as η.
In the present case, this would lead to an excessive loss
of μ5 fluctuations. For this work, we focus the diffusion
to the very smallest length scales such that μ5 on inter-
mediate scales is not affected significantly. Therefore
we use second-order hyperdiffusion which is given by
D5ðμ5Þ ¼ −D5∇4μ5. The hyperdiffusion coefficient D5 is
set to a value that produces the same diffusion rate on the
Nyquist wave number as the one of the magnetic field for
the corresponding value of η. In the Appendix A, we

present the results of simulations that have been repeated
with Laplacian diffusion and third-order hyperdiffusion
(with the diffusion constant D5;H3) for comparison.

III. 2D DNS WITH A SPATIALLY
INHOMOGENEOUS INITIAL μ5

In this section we analyze series S which includes 2D
simulations with a μ5 that is set up as a sine spatial profile of
μ5 with different wave numbers. This serves as a simple toy
model for an inhomogeneous initial μ5 and allows us to
understand the main differences from previously studied
simulations which were set up with a constant initial value
of μ5 throughout the numerical domain.

TABLE II. Different characteristic wave numbers and averages.

Name Definition Description

Wave numbers:
k1 2π

L ¼ 1 Minimum wave number in the domain with length L ¼ 2π

k5
μ5;max

2
Wave number on which the small-scale chiral instability has its maximum

kp … Wave number on which EM attains its maximum
kμ5;eff

�R
E5ðkÞk−1dkR
E5ðkÞdk

�
−1 Effective wave number on which μ5 is correlated

kint
�R

EMðkÞk−1dkR
EMðkÞdk

�
−1 Effective wave number on which B is correlated ¼ integral scale of turbulence

Magnetic field:
Brms ð2 R EMðkÞdkÞ1=2 Rms magnetic field strength
b ð2 R kmax

k5
EMðkÞdkÞ1=2 Field strength of small-scale magnetic fluctuations

hBiint
�R

EMðkÞ2dkR
EMðkÞdk

�
1=2 Magnetic field strength on the integral scale of turbulence

Growth rate of magnetic field:
γrms

d lnðBrmsÞ
dt

Measured growth rate of Brms

γb d lnðbÞ
dt

Measured growth rate of b

γint d ln ðhBiintÞ
dt

Measured growth rate of hBiint
γ5 ημ2

5;max

4
Theoretically predicted growth rate of the small-scale chiral dynamo

γα ðmaxðv5;αμ;αMÞÞ2
4ðηþηMÞ

Theoretically predicted growth rate of the mean-field dynamo

Magnetic helicity:
hHi R

HðxÞdV
V

Volume average of the magnetic helicity

hHiint
R

HMðkÞEMðkÞdkR
EMðkÞdk

magnetic helicity on the integral scale of turbulence

Chiral chemical potential:
μ5;rms ðR E5ðkÞdkÞ1=2 Rms value of the chiral chemical potential
μ5;max maxðμ5ðxÞÞ Maximum of the chiral chemical potential
hμ5i

R
μ5ðxÞdV
V

Volume average of the chiral chemical potential

hμ5iint
�R

EMðkÞE5ðkÞdkR
EMðkÞdk

�
1=2 Chiral chemical potential on the integral scale of turbulence

Velocity field:
u ð2 R kmax

k5
EKðkÞdkÞ1=2 Field strength of small-scale velocity fluctuations
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A. Onset of the small-scale chiral dynamo

We first consider run S2 as a representative example. Its
initial rms value is μ5;rms ≈ 7.07 and the maximum value of
the sine function in the domain is μ5;max ¼ 10. In Fig. 1(a)
the time series of several characteristic quantities is
presented. The existence of fluctuations of μ5 causes an
instability in the magnetic field Brms, which increases by 7
orders of magnitude. Along with the exponential increase
of magnetic energy, a mean value of μ5 is generated,
reaching a maximum of jhμ5ij ≈ 0.1 at the time t ≈ 1.0. We
have repeated run S2 with 322, 642, and 2562 grid cells,
respectively, and found that this maximum value of jhμ5ij is
independent of the resolution. Initially, hμ5i is generated
with a negative sign and is roughly compensated by the
positive λhHi=2 during the v5 dynamo phase. Both, hHi
and hμ5i flip signs at t ≈ 1.1, shortly after the end of the
kinematic dynamo amplification.
The measured growth rate γ of Brms, γrms is compared to

the theoretically predicted maximum rate of the v5 dynamo,
Eq. (6), in Fig. 1(b). Therefore we test two different values
of μ5 in Eq. (6): the rms and the maximum value. Using
μ5;rms tends to underestimate the observed γ by approx-
imately 50% while μ5;max predicts a slightly larger growth
rate than that observed (the ratio γ=ðημ25;max=4Þ reaches up
to ≈0.75). Theoretically it can be expected that the growth
rate of the magnetic field is highest in the region of the
numerical domain where μ5 reaches it maximum, i.e.,
where the amplitude of the sine spatial profile is highest.
The evolution of the observed Brms should then be
dominated by these local instabilities. Therefore, we would
expect that μ5;max should determine γ.
However, it could be the case that the instability cannot

develop sufficiently, especially if the spatial maximum of
μ5 is localized in a small region. This is, in particular,
critical if the characteristic instability length scale of the v5
dynamo, given by Eq. (7), is larger than the region in which
μ5 is correlated. For a direct comparison between the two
different scales, we introduce the correlation length of μ5 as

k−1μ5;eff ≡
R
E5ðkÞk−1dkR
E5ðkÞdk

; ð19Þ

where E5ðkÞ is the power spectrum of μ5. In the case
of a sine function spatial profile, kμ5;eff corresponds,
initially, roughly to the wave number of the sine function.
A chiral dynamo instability can only develop properly if
kμ5;eff ≪ k5. The evolution of different characteristic wave
numbers in the simulation S2 is presented in Fig. 1(c).
In the beginning, the k5 is larger than kμ5;eff by a factor of
2.5 and the peak of the magnetic energy spectrum, kp
occurs in μ5;max=2. At later times, kμ5;eff changes through
the backreaction of the magnetic field on the E5 spectrum,
ultimately becoming larger than μ5;max=2 for times larger

than ≈1. This coincides roughly with the magnetic energy
maximum of the chiral dynamo.
The change of kμ5;eff from 2 to larger values can be

directly seen in the evolution of the power spectra E5 in

(a)

(b)

(c)

FIG. 1. Analysis for run S2: (a) Time series of the rms values of
B, U, and μ5. For μ5, the evolution of the volume average (hμ5i)
and the maximum value are also shown (μ5;max). Finally, the
volume average of magnetic helicity (hHi) and the conserved
quantity (hHi þ 2hμ5i=λ) are plotted. Solid line styles indicate
positive sign and negative values are shown as dashed lines.
(b) The measured growth rate of Brms normalized by ημ25;rms=4
(gray line) and γ5 ¼ ημ25;max=4 (red line). (c) Different character-
istic wave numbers in the simulation: μ5;rms=2, k5 ¼ μ5;max=2, the
wave number kp on which EM reaches its maximum, and the
effective correlation wave number of μ5, kμ5;eff . For times larger
than tk1 , i.e., when the peak of the magnetic energy spectrum has
reached the wave number k1, the plots are shaded in gray.
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Fig. 2(a). With the amplification of magnetic energy, shown
in Fig. 2(b), the E5 spectrum also grows for wave numbers
both larger and smaller than k ¼ 2. In fact, the evolution of
E5 seems to follow the one of EM. Here, the wave number
for which the instability develops most quickly is clearly
k ¼ 5 which corresponds to k5 ¼ μ5;max=2. This is another
indication that the growth rate of the v5 dynamo is indeed
given by the maximum of μ5 in the spatial domain.
However, the instability scale, k5 ¼ μ5;max=2 ¼ 5 (indi-
cated by the dotted vertical line), is close to the effective
scale of μ5, kμ5;eff ¼ 2 which could compromise the actual
growth rate of Brms. We will test that statement by varying
the wave number of the sine function in series S.

B. The role of the effective correlation length of μ5
The run S2 is now compared to run H1 with an initially

constant μ5 that has the same value as the amplitude of
the sine spatial profile in S2, i.e., μ5;max in S2, and with the
remaining runs of series S. In the latter, all runs are
initialized with the same amplitude of μ5 but different
wave numbers; see Table I for details.

The time evolution of Brms, μ5;rms, and μ5;max for all runs
from series S and run H1 is presented in Fig. 3(a). The
largest growth rate is observed for run H1, but run S1 has
only a slightly smaller growth rate. S1 has the lowest
effective correlation length of μ5 (kμ5;eff ≈ 1). With increas-
ing values of kμ5;eff , the amplification of Brms becomes
slower. In runs S6 and S8, Brms decays. In Fig. 3(b), the
ratio of μ5;max=2 to kμ5;eff is presented for all runs.
Interestingly, an increase of Brms by a factor of 10 is
observed for S5, despite μ5;max=ð2kμ5;effÞ being less than 1
from the initial time.
In particular, for runs with spatial sine profiles with high

wave numbers, the growth rate of the v5 dynamo instability
decreases due to a dissipation of μ5. Hyperdiffusion is
applied in most runs of series S. Nevertheless, for runs that
are set up with an inhomogeneity in μ5 at high wave
numbers, in particular for runs S4–S8, significant dissipa-
tion of μ5 leads to a constantly decreasing γrms. The
dissipation of μ5 can also be seen in Fig. 4(a), where the
value of μ5;max=2 is shown at different times as a function of
kμ5;eff (at t0) for all runs of series S and run H1. As long as
μ5;max=2 ≪ kμ5;eff , the observed dynamo growth rate should
be close to the maximum theoretical value, ημ25;max=4.
Indeed, it can be seen in Fig. 4(b) that the observed growth
rate (maximum value across the entire simulation time)

(a)

(b)

FIG. 2. Evolution of the power spectra in run S2. Lines with
different colors correspond to different times as indicated by the
color bars. The solid vertical line shows the position of the initial
wave number of μ5, k ¼ 2, and the dotted vertical line shows the
initial instability scale related to the v5 dynamo, μ5;maxðt0Þ=2.
(a) Power spectrum of μ5, E5ðk; tÞ. (b) Magnetic energy
spectrum EMðk; tÞ.

(a)

(b)

FIG. 3. Analysis for 2D runs from series S (and comparison run
H1): (a) Time series of Brms, μrms, and μmax. (b) Ratio of μ5;max=2
over kμ5;eff.
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becomes smaller than ημ25;max=4 with increasing kμ5;eff .
Once μ5;max drops below kμ5;eff, no dynamo instability can
occur, which is the case for runs S6 and S8. In all cases
where a dynamo instability occurs, analysis of the magnetic
energy spectra shows that the maximum growth rate is
attained for the scale μ5;max=2; see Fig. 4(c). Even run S6,
where the rms magnetic field never increases, shows a peak
at μ5;max=2 at the time when γrms is maximum.

C. Termination of growth caused by alternation
of the spatial distribution of μ5

In this section we analyze the mechanism that limits the
growth of the v5 dynamo. It differs from that where there is
an initially nonvanishing hμ5i. For an initial μ5 with zero
mean value and simultaneously vanishing hHi, the total
chirality, hHi þ 2hμ5i=λ, which is the conserved quantity
in the system, is zero and stays zero, except for noise
related to numerical precision; see Fig. 1(a) where
hHi þ 2hμ5i=λ grows initially but never reaches values
above 10−8. Hence, the termination of further growth
cannot be caused by hHi reaching a value comparable
to 2hμ5i=λ which is the case for simulations with constant
initial μ5, like for example H1.
Direct comparison of run H1 with series S in Fig. 3(a),

shows that the v5 dynamo is much less efficient for runs
with hμ5iðt0Þ ¼ 0. The maximum of Brms is smaller in all
runs S than in run H1 by at least a factor of 10. Looking at
Fig. 3(b), it appears that, in series S, the v5 dynamo reaches
its maximum when the ratio of μ5;max=2 to kμ5;eff drops to
the order of 1, quenching the dynamo instability. The
decrease of the ratio of μ5;max=2 to kμ5;eff is largely caused
by a change of the spatial structure of μ5 which happens
when the magnetic field grows and the λ term in Eq. (4)
becomes important. By that time the spectrum E5 has
changed significantly, leading to an increase of kμ5;eff ; see
Fig. 2(a) for an example.
The restructuring of the spectrum E5 and the accom-

panying increase of kμ5;eff depends on the strength of the
coupling between the magnetic field and the chiral chemi-
cal potential μ5. This strength of the coupling is controlled
by the parameter λ. To test this hypothesis, we run two more
simulations with the same initial conditions and the same
parameters as in run S2, expect for the parameter λ which is
decreased by a factor of 102 in run S2λ2 and increased by
the same factor in run S2λ6. The results for these runs are
presented in Fig. 5. Indeed, the run with the smallest λ
(S2λ2) reaches the highest Brms while run S2λ6 saturates at
a value that is 10 times less. Figure 5(b) shows that the ratio
μ5;max=2 over kμ5;eff drops earlier for runs with larger λ. We
note that, even though run S2λ2 has a parameter λ that is
102 larger than the one for run H1, the dynamo with
initially vanishing hμ5i is still not as efficient as for a
uniform distribution of μ5.
In Fig. 6, the time at which the dynamo reaches

maximum energy is compared to the time at which
μ5;max=2 becomes smaller than kμ5;eff for all 2D runs from
series S and H1. Here, dynamo limitation is defined as the
time when γrms drops below 10−4 which is more than 2
orders of magnitude below the maximum possible growth
rate in the system, ημ25=4 ¼ 2.5 × 10−2. All runs except for
the ones which have initial small-scale μ5 fields, S5, S6,
and S7, and S2λ2, lie on the linear correlation in Fig. 6.
Regarding S2λ2, kμ5;eff never drops below μ5;max=2;

(a)

(b)

(c)

FIG. 4. Analysis for 2D runs from series S (and comparison run
H1): Measured quantities vs the initial effective correlation length
of μ5, kμ5;effðt0Þ. (a) The value of μ5;max=2 measured in DNS. The
size of the symbols indicates time. For comparison the critical
lines μ5;max=2 ¼ kμ5;eff and μ5;max ¼ kμ5;eff are presented. (b) The
maximum (over the entire simulation time) of the measured
growth rate γrms, normalized by γ5. (c) The ratio of the peak of the
magnetic energy spectrum, kp, and μ5;max=2 at the time when the
maximum growth rate is reached.

DYNAMO INSTABILITIES IN PLASMAS WITH … PHYS. REV. D 105, 043507 (2022)

043507-9



however at the time when the magnetic field reaches its
maximum, the ratio ðμ5;max=2Þ=kμ5;eff drops to ≈1.1,
possibly reducing the scale separation sufficiently to
quench the v5 dynamo.

IV. MEAN-FIELD DYNAMOS DRIVEN BY AN
INHOMOGENEOUS μ5

For a homogeneous initial μ5, the magnetic field gen-
erated by the v5 dynamo drives turbulence, which eventually
causes mean-field dynamo action [21,26] if the plasma
parameters are supercritical. Specifically, the criteria for
the occurrence of a mean-field dynamo are as follows:

(i) The Reynolds numbers have to be much larger
than 1.

(ii) The λ parameter should be small enough, so that
hA · Bi is still less than 2hμ5i=λ at the time when
turbulence sets in.

The objective of this section is to determine whether
conditions (i) and (ii) can be satisfied in a plasma with an
initially inhomogeneous μ5 with zero mean and a mean-
field dynamo can be excited. In particular the role of
condition (ii), which regulates the dynamo limitation, is
unclear for systems with an initial spatial profile of μ5 as a
sine function (3D runs from series S) or with fluctuations of
μ5 over an extended range of spatial scales (run series R).
As before, the simulations with nonuniform initial μ5 will
be compared to a run in which the initial μ5 is constant in
space (run H2).

A. DNS of an initial μ5 with sine spatial profile

Run S23D is set up in a way that should allow the
development of turbulence for an initial spatial profile
of μ5 in the form of a sine function with wave number 2.
In comparison to the runs S1–S8, this run is performed in
3D space instead of 2D, it has higher resolution, and the
magnetic resistivity and viscosity values are 5 times lower
than in the 2D runs. To reach higher magnetic field
strengths, and therefore higher fluid velocities in the
simulation, the initial amplitude of the sine function is
set to a value which is 5 times higher than in the 2D runs.
In S23D, we have μ5;max ¼ 50, implying a characteristic
wave number of the v5 dynamo instability of k5 ¼ 25.
Furthermore, in comparison to the 2D runs in series S, the
chiral feedback parameter λ is reduced to delay the back-
reaction of B on μ5. Both, the higher initial amplitude of μ5
and the lower value of λ lead to an extended period of
dynamo action and thereby higher magnetic field strengths.
To test the importance of scale separation in the develop-
ment of turbulence from an inhomogeneous chiral chemical
potential, we perform a second high-resolution run with an
initial μ5 spatial profile in the form of a sine function with
wave number k ¼ 20 (run S203D).
The time evolution of Brms and other relevant quantities

of run S23D are presented in Fig. 7(a). The high initial
value of μ5;max leads to the v5 dynamo instability that
amplifies Brms by approximately 8 orders of magnitude.
Simultaneously, Urms grows with twice the growth rate as
the one of Brms and the two fields become comparable at
t ≈ 0.03. At that time, the magnetic Reynolds number has

(a)

(b)

FIG. 5. Analysis for 2D runs from series S with an initial sine
spatial profile with k ¼ 2 and different values of λ (and the
comparison run H1). (a) Time series of Brms, μrms, and μmax.
(b) Ratio of μ5;max=2 to kμ5;eff .

FIG. 6. Comparison between the time at which Brms saturates
and the time at which the chiral dynamo instability scale,
μ5;max=2, becomes smaller than kμ5;eff for all 2D runs from series
S and H1.
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become larger than unity, leading to the onset of turbulent
effects. In run S23D, we have initially hμ5i ¼ 0, and the
mean magnetic field is not generated at the initial time.
However, hμ5i is produced at approximately twice the rate
of Brms; see Fig. 7(b). Until the time t ¼ 0.027, the signs of
both hμ5i and hA · Bi are negative, but with the onset of
turbulence, the signs of hμ5i and hA · Bi are always
opposite. Eventually, hμ5i reaches a value of þ0.2, and
hence a significant mean chiral chemical potential is
produced. Due to numerical precision, hHi þ 2hμ5i=λ
grows to a value of ≈10−5, despite the opposite signs of
hμ5i and hA · Bi. We stress that hHi þ 2hμ5i=λ only
reaches values that are below the numerical precision
and that this does not indicate a violation of the con-
servation law.
The evolution of the spatial structures of μ5, A · B, and

Bx on the surface of the numerical domain, can be seen in
Fig. 8. In the v5 dynamo phase (left column of Fig. 8), it can
be seen that in regions where μ5 < 0, a negative A · B is
generated, and in regions where μ5 > 0 also A · B > 0. The
magnetic field is generated on small spatial scales (k ≈ 25)
which is consistent with the initial amplitude of the μ5 sine
function; μ5;maxðt0Þ ¼ 50. The fastest amplification of A · B

and Bx occurs in the regions where the amplitude of μ5 has
maxima. The spatial correlation between the signs of μ5 and
A · B can still be seen in the nonlinear phase; see the middle
column of Fig. 8 which shows the snapshots at t ¼ 0.04.
At this time, the characteristic scale of Bx has already
increased significantly (k ≈ 5). The right-hand column of
Fig. 8 shows the simulation at the time when the inverse
cascade reaches the domain size, i.e., the first time when
kp ¼ k1. By this time, fluctuations in μ5 have increased
strongly and both, A · B and Bx, exhibit a large-scale
structure.
The evolution of the spatial structure in run S23D

can also be seen in the power spectra at different times.
Figure 9(a) shows the evolution of E5ðk; tÞ and Fig. 9(b) the
one of EMðk; tÞ. The magnetic energy peaks initially at
k ≈ 25, as expected from the v5 dynamo theory for an
amplitude of μ5;max ¼ 50. However, the magnetic energy
grows also at smaller wave numbers and obeys a k4

spectrum. After t ≈ 0.03, the peak of EM shifts towards
larger spatial scales, i.e., smaller k. During that phase, the
amplitude of EM still increases and a magnetic spectrum
EM ∝ k−3 is established, together with a spectrum of the
chiral chemical potential E5 ∝ k−1; see Fig. 9. This is
different from the case of a uniform μ5 field, where the
magnetic spectrum is EM ∝ k−2. The amplitude of EM
decreases only after the inverse cascade has reached the
initial scale of μ5, k ¼ 2. By the time when the inverse
cascade arrives at the minimum wave number of the
numerical domain, k ¼ k1 ¼ 1, the EM spectrum becomes
less steep and is closer to k−2. We note that, already at early
times t < 0.03, the spectrum of the chiral chemical poten-
tial, E5, also grows at k ≈ 25; see Fig. 9(a). At late times, E5

has been strongly modified by the magnetic field: the peak
at k ¼ 2 has vanished and an almost flat spectrum towards
large k has developed. The final scaling is approxi-
mately E5 ∝ k−1.
We now analyze the amplification of the magnetic field

on different scales in more detail. In particular, we compare
the evolution of the magnetic field strength associated with
the energy of magnetic fluctuations b at the wave number
of the maximum growth rate of the v5 dynamo instability
[57] with the one at the time-dependent integral scale of
turbulence, kintðtÞ:

hBiint ≡
�R kmax

0 EMðkÞ2dkR kmax
0 EMðkÞdk

�1=2
: ð20Þ

The time evolution of b≡ ½2 R kmax
k5

EMðkÞ dk�1=2 and Bint is
presented in Fig. 10(a). With the integral scale being
k ¼ 25 during the v5 dynamo phase, b and Bint are identical
for t≲ 0.03. At t≳ 0.03, b saturates while Bint continues
to grow at a lower rate until t ≈ 0.045. To understand
the measured growth rates, we calculate the different
contributions to the mean-field dynamo; see Fig. 10(b).

(a)

(b)

FIG. 7. Time evolution of run S23D. (a) The rms values of B,
U, and μ5 as well as the maximum value of μ5. (b) The volume
averages of μ5 and A · B and the conserved quantity in chiral
MHD, hA · Bi þ 2hμ5i=λ. Here, a positive sign is indicated by
solid line style and a negative sign by dashed line style.
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Further, positive and negative contributions to the mean-
field dynamo growth rate are presented in Fig. 10(c).
The measured growth rate of the magnetic field strength

on different scales is presented in Fig. 10(d). Note that the
amplification at k ¼ 25 stops at t ≈ 0.03 but before that it is
well described by γ5 as given by Eq. (6) with μ5 ¼ μ5;max.
When the maximum field strength of the v5 dynamo is
reached at k ¼ 25, the amplification on larger scales
becomes more prominent. However, it cannot clearly be
ascribed to a mean-field dynamo since there the chiral
chemical potential is decreasing, which leads to a
decrease of the characteristic instability wave number,
k5ðtÞ ¼ μ5;maxðtÞ=2. To investigate the role of the mean-
field dynamo in the amplification of energy on large spatial
scales, we plot the different contributions in Fig. 10(b): the
mean v5 based on the integral scale of turbulence, αM based
on the correlation time of fluctuations on kint as well as the
steady state value of the magnetic α effect, αsatM . We also
show that αμ, based on Eq. (11), changes sign at t ≈ 0.03.
The dominant contribution to the mean-field dynamo is the
magnetic α effect. We also compare the measured growth
rate after t ≈ 0.03. The theoretical curve, γα, describes

roughly the measured growth rate based on averaging over
the integral scale, γint, for 0.035≲ t≲ 0.045.
Note, that the magnetic Reynolds number increases

throughout both the v5 dynamo phase and also the
mean-field dynamo phase, because (i) the velocity field
continues to grow and (ii) the wave number based on the
integral scale of turbulence decreases. Therefore, the
turbulent diffusion ηT ¼ ReMη=3 increases continuously
and eventually the decay term ðηþ ηTÞk2 dominates over
the source term ðv̄5 þ αÞk in Eq. (16). When this equilib-
rium is reached at the minimum wave number of the
domain, k1 ¼ 1, the mean-field dynamo would operate
only on scales beyond the numerical domain and the
amplification of hBiint comes to an end. Indeed, turbulent
magnetic diffusion for the minimum wave number, ηT,
becomes larger than jαsatM j at t ≈ 0.048 [see Fig. 10(c)], at
which time the measured γint has dropped below zero.
In Fig. 11, a direct comparison between the high-

resolution run with constant initial μ5 (run H2) and
inhomogeneous μ5 (run S23D) is presented. In both cases,
the ratio of hBiint and the magnetic field B5 related to the v5
dynamo, starts increasing at the onset of the mean-field

FIG. 8. Snapshots of run S23D taken at the different times: during the v5 dynamo phase (t ¼ 0.02, left), the mean-field dynamo phase
(t ¼ 0.04, middle), and at the time when the inverse cascade reaches the scale of the domain (t ¼ 0.06, right).
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dynamo; see Fig. 11(a). For H2, the mean-field dynamo
starts at t ≈ 0.04 and for S23D at t ≈ 0.03. The mean-field
dynamo phase in run S23D begins earlier, since its initial
maximum value of μ5 is larger than the one in H2
[μ5;maxðt0Þ ¼ 42 for H2 and μ5;maxðt0Þ ¼ 50 for S23D;
see Table I]. This leads to a higher growth rate of the
magnetic field, as can be seen in Fig. 11(b), and therefore
to a faster generation of turbulence in the system.
Qualitatively, the growth rates of magnetic energy on
different wave numbers evolve in a similar way in H2
and S23D. The growth rate on the characteristic instability
scale of the v5 dynamo, γ5, and the one on the integral scale
of turbulence, γint, are comparable during the v5 dynamo
phase. With the onset of turbulence, γ5 drops to zero while
γint decreases but remains positive for an extended time.
In S203D, the magnetic field on the integral scale never

becomes larger than the rms value; see the red line in
Fig. 11(a). Here, the growth rate in the v5 dynamo phase is
less than in S23D by a factor of more than 2. This is
consistent with the findings in Sec. III B, where the v5
dynamo could not develop well in setups with effective
correlation wave numbers kμ5;eff that were close to the
dynamo instability scale k5; see also the power spectra for

(a)

(b)

FIG. 9. Evolution of power spectra in Run S23D. (a) Power
spectra of μ5, E5. (b) Magnetic energy spectra, EM. The
horizontal lines indicate the level of EM at the onset of the
inverse cascade (gray dashed line; as discussed in Ref. [25]) and
the maximum energy (gray dashed-dotted line; see Sec. IV E).

(a)

(b)

(c)

FIG. 10. Evolution of run S23D. (a) Time series of hBiint, b, and
u. (b) Different contributions to the mean-field dynamo: the mean
chiral velocity hv5iint and different estimates of the α effect.
A positive sign is indicated by solid line style and a negative sign
by dashed line style. (c) The two terms of the mean-field dynamo
growth rate. (d) The measured growth rate of hBinti and b and
comparison with the theoretical predictions for the nonturbulent
dynamo phase at t≲ 0.028 and the turbulent mean-field dynamo
phase, t≳ 0.032. Note, that γα is based on the largest contribution
to the mean-field dynamo, αM.
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run S203D in Figs. 22(c) and 22(d) shown in Appendix C.
The growth rate in S203D even decreases during the v5
dynamo phase due to diffusion at the high wave number μ5.
At t ≈ 0.06, both γ5 and γint drop to zero in run S203D,
therefore indicating no sign of a mean-field dynamo. In
fact, turbulence never develops in S203D and the maximum
ReM over the entire simulation time is only 2.06; see
Table I.

B. DNS with initial fluctuations of μ5
This section complements Ref. [48], in which we have

analyzed DNS with an initially random distribution of μ5.
The existence of a mean-field dynamo phase in these
scenarios has been reported in Ref. [48] as the first
demonstration of the generation of large-scale magnetic
fields from an μ5 with initially vanishing mean value. In this
section, we analyze the properties of this instability in
greater and more technical details.
As a reference run for a DNS with initial random

distributions of μ5 we use run R − 2 and begin with a
direct comparison to our previous example of a sine
function initial spatial profile of μ5, run S23D.
Snapshots of μ5, A · B, and Bx of run R − 2 at different

times are presented in the Appendix B; see Fig. 21. As
shown in Fig. 12, the magnetic field growth in the v5
dynamo phase in R − 2 is slower than in S23D despite the
initially comparable values of μ5;max. The difference in
growth rates in the two runs cannot be explained by
different separation of scales. The ratio of the scale of
the v5 dynamo instability, μ5;max=2, and the effective
correlation length of μ5, kμ5;eff , is ≈0.1 in both runs.
Therefore, the differences must come from the shape of
the μ5 spectra; see the spectra of R − 2 in Fig. 13 and the
one of S23D in Fig. 9. Note, that the measured growth rate
in R − 2 increases more slowly than in S23D, so for a lower
value of the initial magnetic seed field, the maximum ratio
of γrms=γ5 could get closer to 1. Another interesting
difference between S23D and R − 2 is the fact that the
mean-field dynamo phase starts earlier in the latter run and
also lasts longer. In S23D, ReM > 10 at t ≈ 0.032 and the
maximum magnetic field is reached at t ≈ 0.04. In R − 2,
the turbulent dynamo operates between t ≈ 0.068 and t ≈
0.12 (see below).
The detailed mean-field dynamo analysis for R − 2 is

presented in Fig. 14. At t ≈ 0.052, the magnetic Reynolds

(a)

(b)

FIG. 11. Time evolution of the magnetic field in runs H2,
S23D, and S203D. (a) Ratio of the magnetic field strength on the
integral scale of turbulence, hBiint, and the strength of fluctua-
tions, b. (b) The measured growth rates of hBiint (solid lines) and
b (dashed lines).

(a)

(b)

FIG. 12. Direct comparison between the reference run with an
initial μ5 in the form of a sine spatial profile in the x direction,
S23D, and the reference run with random fluctuations of μ5,
R − 2. (a) Time evolution of hBiint and b. (b) Growth rate of Brms
normalized by γ5 and the ratio of μ5;max=2 and kμ5;eff .
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number becomes larger than unity, which coincides with
the time when the magnetic energy at k ¼ 25 saturates;
see Fig. 14(a). The magnetic field on the integral scale of
turbulence, Bint, continues to grow with the predominantly
positive contribution to the growth rate being the magnetic
α effect; see Fig. 14(b). As in run S23D, the maximum field
strength of the mean-field dynamo occurs once ηTk2

becomes larger than jαsatM jk at k ¼ 1, based on the size
of the numerical domain. This time is indicated by the
vertical dashed lines in Fig. 14. We stress again, that the
mean-field dynamo limitation is here primarily an effect of
the finite size of the numerical domain: with increasing
ReM, the value of ηT and therefore, the characteristic wave
number of the mean-field dynamo eventually become less
than the minimum wave number of the domain. The growth
rate during the mean-field dynamo phase, γα, matches the
measured growth rate of the magnetic field on the integral
scale well between the time when ReM > 10 (vertical solid
line at t ≈ 0.068) and the time when ηT ¼ jαsatM j (vertical
dashed line at t ≈ 0.117).

C. Comparison of mean-field dynamos in DNS
with different initial μ5

Evidence for mean-field dynamos after the onset of
turbulence exists for all DNS presented in this study that
reach sufficiently high Reynolds numbers. A summary of

the measured growth rates in all DNS after the onset of
turbulence, is presented in Fig. 15. There, blue lines show
the growth rate of the characteristic magnetic field strength
on the instability scale of the v5 dynamo, i.e., the growth
rate of magnetic fluctuations γb. Since the time axes start at
the moment when ReM has become larger than unity, γb
quickly drops to zero in all cases, but it keeps fluctuating in

(a)

(b)

FIG. 13. Similar to Fig. 9, but for Run R − 2.

(a)

(b)

(c)

FIG. 14. Same as Fig. 10 but for run R − 2.
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time. The black lines show the measured growth rates on
the integral scale, γint, which decreases more slowly than γb
in all runs. The theoretically expected growth rate of the
mean-field dynamo, γα, is shown as dashed red lines.
In the theoretical curves of γα, we use the maximum

contributions to the dynamo growth rate. In the case of run
H2, the maximum contribution comes from the αμ effect for
which we use Eq. (11) with hv5i ¼ ηhμ5i. Note that here
the volume average hμ5i is larger than the average based on
the integral scale of turbulence hμ5iint. In agreement with
previous findings reported in Ref. [26], the αμ effect
describes the growth rate of the mean-field dynamo in a
system with a constant (homogeneous) initial μ5 well.
The mean-field dynamo in all runs with an inhomo-

geneous initial μ5 is best described by the magnetic α effect,
as given by Eq. (15). This has been discussed in detail for
runs S23D and R − 2 before, and is shown in Fig. 15 for all
other runs with high ReM.
In all runs, except for run H2, we have used hμ5iint in the

analysis of the mean-field dynamo. Like for runs S23D
[Fig. 10(b)] and R − 2 [Fig. 14(b)], αM is the dominant
contribution in all runs with an inhomogeneous initial μ5. In
the postprocessing of those runs, we have used αsatM , taking
averages of μ5 and B on the integral scale of turbulence

[58], to calculate γα. For runs S23D, R − 2m, R − 2, and
R − 1, the theoretically expected γα match the observed
growth rate on the integral scale of turbulence, γint. For run
Rþ 1, γα is much larger than γint, yet they seem to vanish at
the same time t ≈ 0.12. This mismatch in Rþ 1 is probably
due to the low value of the magnetic Reynolds number
which only reaches ReM ≈ 16 at its maximum.

D. Coevolution of power spectra

During the chiral dynamo phase, the power spectra of
magnetic energy and the chiral chemical potential evolve in
an interdependent way. When the magnetic energy grows
for the wave number k5, E5 is also amplified around that
wave number. This can be seen clearly in Fig. 9, where EM
is initially only concentrated at one wave number k ¼ 2
that coincides with the wave number of the initial sine
profile of μ5. The amplitude of the sine function,
μ5;max ¼ 50, is large enough to cause an instability in
the magnetic energy spectrum at k ¼ 25. Figure 9(a) shows
that also E5 grows on k ¼ 25 but with a broader peak.
With the onset of the inverse cascade a power-law scaling in
EM develops and likewise a power-law slope in E5 is
established first for k > 2 and later also for the lowest wave
numbers in the system. In the example of run S23D, we

FIG. 15. Comparison between the measured growth rate and the theoretical prediction for all runs with turbulence. The blue lines show
the growth rate of the magnetic field on the characteristic scale of the v5 dynamo and the black lines the rate on the integral scale of
turbulence, kint. The red dashed lines show the theoretically predicted growth rate of the mean-field dynamo, γα. In the case of H2,
γα ¼ α2μ=ð4ηTÞ, while for all other runs, γα ¼ ðαsatM Þ2=ð4ηTÞ. The time axes start at the moment when ReM ¼ 1 and the solid vertical lines
indicate the time when ReM ¼ 10. The dashed vertical lines show the time when jαsatM j < ηT (and jαμj < ηT for run H2), i.e., when the
characteristic scale of the mean-field dynamo has increased to a length that is larger than the size of the numerical domain and therefore
growth in DNS comes to an end. For times larger than tk1 , i.e., when the peak of the magnetic energy spectrum has reached the wave
number k1, the plots are shaded in gray.
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observe a coevolution of the slopes of the power spectra EM
and E5. Such a simultaneous change of slopes can also be
seen for run R − 2, the spectra of which are presented
in Fig. 13.
To quantify the evolution of the EM and E5 spectra, we

determine their slope n by fitting to a power law ∝ kn. The
fits are performed for all spectra after the onset of the
inverse cascade at time tIC, i.e., once the peak of EM, kp, has
become less than k5. Since the power law typically extends
to wave numbers larger than k5, we set the fitting range at
time t to kpðtÞ < k < 2kpðtICÞ, where kpðtÞ is the wave
number at which EM has its current maximum and kpðtICÞ is
the wave number at which EM had its maximum at the onset
of the inverse cascade. Note, that kpðtICÞ ≈ k5. To obtain a
typical error, we divide the fitting range into three equi-
distant parts, fit these parts separately to obtain three fitting
results n1, n2 and n3. As the error we use �max ðjn1 − n̄j;
jn2 − n̄j; jn3 − n̄jÞ with n̄ ¼ ðn1 þ n2 þ n3Þ=3.
The time evolution of the power-law slopes in the EM

and E5 spectra after the onset of the chiral inverse cascade
are presented in Fig. 16. Here, the results for all DNS with
sufficiently high Reynolds numbers are shown. We find
that the slopes evolve in an interdependent way for all
cases, expect for run Rþ 1. In this case, the slopes evolve
self-similarly only after the maximum magnetic field
strength has been reached (i.e., after t ≈ 0.1). The reason
for this is probably related to the original positive slope of
the E5 spectrum, which requires a longer time for rear-
rangement to develop a negative slope and to follow the EM

spectrum. The time evolution of the power spectra of run
Rþ 1 is presented in the middle panels of Fig. 22, along
with the spectra of run H2 (left panels) and run S203D
(right panels), see Appendix C.
The setup with a random inhomogeneous μ5 distribution

with zero mean results in a ∝ k−3 magnetic energy scaling,
which is different from the case with a homogeneous μ5
distribution, where the scaling is ∝ k−2. The two setups are
rather different and have very different underlying physics.
The principal difference is the following. In the linear stage
of the chiral dynamo instability, an initially homogeneous
μ5 excites a magnetic field with a wave number whose
value is around the average of μ5=2 [see Fig. 22(b)], while a
random μ5 with zero mean excites a random magnetic field
over a broad range of scales [see e.g. Fig. 13(b)]. In the
nonlinear stage, there is an inverse cascade of the magnetic
field and a magnetic driving of turbulence in both setups.
However, the properties of turbulence in both systems are
distinct from each other, as discussed next.
One of the indications of the difference in these systems

is that there are two different mechanisms of generation of a
mean-field dynamo in the resulting turbulent flows: (i) in
the case of an initial homogeneous μ5, it is the αμ effect
related to the interactions of fluctuations of μ5 and tangling
magnetic fluctuations; (ii) in the case of a random μ5 with
zero mean, it is the magnetic α effect, which is caused by
the current helicity of small-scale magnetic fluctuations.
Both types of α effect are caused by the produced
turbulence with different properties in both systems,

FIG. 16. Fitted slopes of the EM and E5 spectra as a function of time for all runs with turbulence. The time axes start at the moment
when ReM ¼ 1 and the solid vertical lines indicate the time when ReM ¼ 10. For times larger than tk1 , i.e., when the peak of the
magnetic energy spectrum has reached the wave number k1, the plots are greyed out.

DYNAMO INSTABILITIES IN PLASMAS WITH … PHYS. REV. D 105, 043507 (2022)

043507-17



resulting in different magnetic spectra in the final stage of
the magnetic field evolution in these systems.

E. Maximum field strength

The observed k−3 scaling of the magnetic energy spectra
allows to estimate the maximum magnetic field strength.
Assuming that it is controlled by η and μ5;maxðt0Þ, dimen-
sional arguments imply that the magnetic energy spectrum
is given by

EMðkÞ ¼ Cρ̄η2½μ5;maxðt0Þ�4k−3; ð21Þ
where C is a constant, and ρ̄ ¼ 1 in our DNS. We use
C ¼ 1 for an order-of-magnitude estimate. The DNS
indicate that the maximum value of EMðkÞ is typically
reached at the wave number k ≈ kμ5;effðt0Þ and therefore the
maximum possible magnetic field is given by

Bsat;eff ≈
ffiffiffi
2

p
η
½μ5;maxðt0Þ�2
kμ5;effðt0Þ

: ð22Þ

For Eq. (22) it is assumed that kμ5;eff does not change
significantly during the dynamo instability. This is only a
valid assumption if λ, i.e., the coupling between μ5 andB, is
small. For large values of λ, there is a strong backreaction
on the μ5 field and the dynamo limitation occurs through
the same mechanism as observed in the DNS of Ref. [25],
i.e., by means of the conservation law:

Bsat;λ ≈
μ5;maxðt0Þffiffiffi

λ
p : ð23Þ

In Fig. 17 we compare the maximum value of the rms
magnetic field strength in the two phenomenological esti-
mates given in Eqs. (22) and (23). The limitation mechanism
via the conservation law plays a role for runs S23Dλ4 and
S23Dλ8, while in the remaining runs, dynamo limitation is
controlled by the initial correlation length of μ5.

F. Effects of chiral magnetic waves

In this study, we have focused on scenarios where the
dynamics is driven by the CME. However, there is also the
chiral separation effect that describes the coupling between
μ5 and the chemical potential μ ¼ μR þ μL. In the presence
of an equilibrium mean magnetic field B0, a nonzero μ
permits chiral magnetic waves (CMWs) [50] with the
frequency

ωCMW ¼ ðC5CμÞ1=2jk·B0j; ð24Þ

where C5 and Cμ are coupling constants. The behavior of
CMWs for an initial nonuniform random μ5 has not yet
been studied. To test the effects of CMWs on the scenario
of chiral plasma instabilities driven by a nonuniform μ5, we
perform two additional simulations that take the coupling to
μ into account. Therefore, Eq. (4) is replaced by

Dμ5
Dt

¼D5ðμ5Þþ λη½B·ð∇×BÞ−μ5B2�−C5ðB·∇Þμ; ð25Þ

which we solve together with Eqs. (1)–(3) and the evolution
equation for the chemical potential

Dμ
Dt

¼ DμΔμ − CμðB·∇Þμ5: ð26Þ

We repeat run R − 2 with the additional μ dynamics. As an
initial condition for μ we use a uniform value of μ ¼ 51,
which corresponds roughly to the initial maximum value
of μ5. This initial condition implies that in grid cells where
μ5 ¼ 51, all fermions have the same handedness. For
the coupling constants we use C5 ¼ Cμ ¼ 0.1 in run
R-2_CMW1, which implies that the velocity of the
CMW is roughly ten percent of the Alfvén velocity. For
run R-2_CMW2, we use C5 ¼ Cμ ¼ 1, so the velocity
of the CMW is approximately equal to the Alfvén velo-
city. We note that for run R-2_CMW2 we have used
shock viscosity during the nonlinear phase for numerical
stability. This means that we add a bulk viscosity ζ ¼
Cshockδx2hmaxð0;−∇·UÞi to the stress tensor so that
τij ¼ 2νρSij þ ρζδij∇·U. Here, angled brackets denote a
five-point running average. The technique of shock vis-
cosity was developed by von Neumann and Richtmyer
[59]; see Ref. [60] for an application to simulations of
detonations with the Pencil Code.
Our two exemplary simulations with chiral magnetic

waves show that they do not alter the dynamics of the
systems presented in this work (see Figs. 18 and 19). The
main reason is that these systems do not have an external
magnetic field. Therefore, waves can only develop at late
phases of the simulations. However, both runs, R-2_CMW1
and R-2_CMW2, do not show significant differences to run
R-2 without μ. As can be seen in Fig. 18, the maximum value
of μ5 decreases a bit faster when CMWs occur. Yet this does

FIG. 17. Maximum magnetic field strength obtained in DNS
over the Bsat;eff vs maximum magnetic field strength obtained in
DNS over the Bsat;λ.
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not affect the production of the mean magnetic field hBiint
significantly. In all three cases, hBiint grows up to approx-
imately 0.1 by the time the inverse cascade reaches the
minimum wave number of the numerical domain.
Throughout the simulations, the maximum value of μ,
μmax continuously grows in time. In Fig. 19, we demonstrate
that also the magnetic energy spectra and the μ5 spectra,
EM and E5, at the time tk1 are not significantly affected
by the presence of CMWs. For the runs with μ evolution,
the μ spectra, Eμ, are comparable with E5 at high wave

numbers, while they are significantly lower at low wave
numbers. For R-2_CMW2, the E5 spectrum at tk1 has the
same scaling of ∝ k−1 but its amplitude is almost an order
of magnitude less than the ones in runs R-2 and
R-2_CMW1. This may be related to the additional shock
viscosity in R-2_CMW2.

V. CONCLUSION

In this paper we have analyzed various dynamo insta-
bilities that are sourced by an inhomogeneous chiral
chemical potential. To this end, we performed DNS of
chiral MHD with the Pencil Code. While the existence of
chiral dynamo instabilities has been confirmed with DNS
before, most previous studies have assumed a uniform
distribution of μ5. In this paper we performed a detailed
study of dynamo instabilities caused by an initial inhomo-
geneous distribution of μ5, which clarifies and supports the
findings presented in Ref. [48], in particular the buildup of
a mean μ5 and the occurrence of a mean-field dynamo. To
test the necessary conditions for a small-scale chiral
dynamo, we have used a 2D toy model in which μ5 was
initialized with a sine function along one direction. Its wave
number was varied to explore the effect of the effective
correlation wave number kμ5;eff. We have demonstrated that
the small-scale chiral dynamo can operate if kμ5;eff < k5;
see Fig. 4, where k5 is the wave number based on the scale
of the maximum growth rate of the small-scale chiral
dynamo instability based on the maximum value of μ5.
With larger scale separation, the measured growth rate of
the rms magnetic field approaches the maximum possible
value γ5 ¼ ημ25;max=4 in the system. Saturation of the
dynamo occurs once the fluctuations of the chiral chemical
potential, μ05, experience a backreaction from Brms, leading
to a change of the characteristic scale kμ5;eff . When kμ5;eff
becomes comparable to k5, the growth of the magnetic field
stops; see Fig. 6.
Another main focus of this work was a detailed analysis of

the DNS with initial fluctuations of μ5 with zero mean
described shortly in Ref. [48]. In all of our DNS that develop
turbulence, i.e., which reach sufficiently large ReM, we could
confirm the presence of a mean-field dynamo; see Fig. 15.
Contrary to the previously studied case of homogeneous μ5
where the mean-field dynamo is dominated by the αμ effect
that is related to fluctuations of μ5 itself, for inhomogeneous
μ5 the magnetic α effect, αM, related to the current helicity
plays the central role in the mean-field dynamo phase (see
e.g., Fig. 14). The main reason for this effect is the additional
source of current helicity, 2v̄5b2, caused by magnetic
fluctuations produced by inhomogeneities of μ5. Note that
in this study we had to use the average based on the integral
scale of turbulence which increases during the nonlinear
evolution of the system.
Finally, we reported a tight connection between the

evolution of the power spectra of magnetic energy, EMðkÞ,

FIG. 18. Comparison of the time evolution of runs without (run
R − 2) and with (runs R − 2CMW1 and R − 2CMW2) the
evolution of the chemical potential. The dynamics in all three
runs are very comparable. Small differences can only be seen at
late times, when a large enough hBiint has been produced that
leads to chiral magnetic waves. The thin vertical lines with colors
referring to the different runs indicate the time tk1 .

FIG. 19. Comparison of different energy spectra at time t ¼ tk1
in runs R − 2, R − 2CMW1, and R − 2CMW2. Scaling relations
of EM and E5 seem not to be affected for the produced chiral
magnetic waves. The power spectrum of the chemical potential,
Eμ which is defined in the same way as E5, approaches E5 at high
k. But Eμ ≪ E5 at small k at the time tk1 .
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and that of the chiral chemical potential, E5ðkÞ; see Fig. 16.
With the onset of turbulence, independently of their initial
shape, both power spectra develop a power-law scaling
with a negative index. Specifically, the E5ðkÞ spectra
approach a universal scaling proportional to k−1. For our
reference run with homogeneous μ5, EM approaches a k−2

scaling, which is consistent with the results of Ref. [25]. In
the runs with an inhomogeneous initial μ5, a slightly steeper
scaling of k−3 develops, except for the run with an initial μ5
in the form of a sine spatial profile (S23D), where the
spectrum is closer to E5 ∝ k−2.
Our results can be employed in models of primordial

plasmas. Several models of the early Universe, e.g., specific
scenarios of inflation or cosmological phase transitions,
predict the production of primordial magnetic fields which
should evolve according to the laws of chiral MHD as long
as the temperature is > 10 MeV. Detailed models of the
evolution of the primordial magnetic fields are needed, if it
is to be used to constrain fundamental physics at the time
before recombination.
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APPENDIX A: COMPARISON BETWEEN
−∇4 AND ∇2 DIFFUSION OF μ5

In direct numerical simulations of chiral MHD, large
discretization errors cause phase errors in the advection
of the high wave number contributions to μ5. Therefore,
dissipation of μ5 on small spatial scales is required. In our
previous work (e.g., Refs. [25,26]), where we considered an
initially uniform μ5, the ∇2 diffusion never affected the
evolution of μ5 significantly. In this study, however, we
consider cases where μ5 is concentrated at large wave
numbers and therefore is affected by ∇2 diffusion. A ∇2

diffusion (−k2 in Fourier space) constantly reduces the
value of μ5 at moderately high k and thereby the effects of a
fluctuating chiral chemical potential on the magnetic field.
To prevent this loss of μ5 before it can be converted into
magnetic helicity, we have implemented a −∇4 diffusion
(−k4 in Fourier space) that mostly acts on the highest wave
numbers of the numerical domain where it is needed for
numerical stability. This allows us to study the effects of a
μ5 at moderately high k.

(a) (b)

(c) (d)

FIG. 20. Comparison between runs with the default hyperdiffusion (∝ −∇4μ5, black line color) and Laplacian diffusion (∝ ∇2μ5, blue
line color) and third-order hyperdiffusion (∝ ∇6μ5, red line color). For each run, the time evolution of jμ5;maxj (solid lines), jhμ5ij
(dashed lines), and jhHij (dotted lines) is shown. (a) Runs S1, S1L, and S1H3. (b) Runs S2, S2L, and S2H3. (c) Runs S8, S8L, and
S8H3. (d) Runs S23D and S23DL.
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In Fig. 20, we present the difference between the default
second-order hyperdiffusion, Laplacian diffusion, and
third-order hyperdiffusion for selected runs. Runs S1,
S2, S8, and S23D have been repeated with Laplacian
diffusion (runs S1L, S2L, S8L, and S23DL) and we have
additionally tested third-order hyperdiffusion for runs S1,
S2, S8 (runs S1H3, S2H3, and S8H3). Laplacian diffusion
strongly affects an inhomogeneous μ5, especially if its
initial inverse correlation length is large in comparison to
the Nyquist wave number kNy. In particular, jμ5;maxj
decreases faster the closer the wave number is to kNy;
compare the solid lines in Figs. 20(a)–20(c). With faster
decreasing jμ5;maxj, the chiral dynamo instability phase is
shorter and less efficient or in extreme cases not even
present when hyperdiffusion is replaced by Laplacian
diffusion; see Fig. 20(b). Third-order hyperdiffusion results
in very similar dynamics for the runs with an initial sine
spatial profile for k ¼ 1 and k ¼ 2 (S1 vs S1H3 and S2 vs
S2H3) and there is only a small difference between S8 and
S8H3. For the high-resolution 3D run, S23D, the initial
characteristic wave number of the dynamo instability
(k ≈ 25) is much smaller than the Nyquist wave number

(k ≈ 336). Therefore, the difference between second-order
hyperdiffusion (run S23D) and Laplacian diffusion
(S23DL) is noticeable but not very significant; see
Fig. 20(d).

APPENDIX B: SNAPSHOTS OF RUN R− 2
In Sec. IV B we discuss the time evolution of run R − 2,

starting from the initial small-scale chiral instability to the
amplification of the magnetic field on large scales at late
times. In addition to the quantitative analysis there, we
present in Fig. 21 the snapshots of run R − 2. The values
of μ5, A · B, and Bx on the surfaces of the domain are
shown at different times.

APPENDIX C: TIME EVOLUTION OF POWER
SPECTRA IN RUNS H2, R+ 1, AND S203D

We have mentioned the mean-field chiral dynamo for
the case of a uniform μ5 in different places of the main
text. For such systems the magnetic energy spectra
developed a k−2 scaling. In Figs. 22(a) and 22(b), we

FIG. 21. Snapshots of run R − 2 taken at the different times: during the v5 dynamo phase (t ¼ 0.02, left), the mean-field dynamo phase
(t ¼ 0.1, middle), and at the time when the inverse cascade reaches the scale of the domain (t ¼ 0.135, right).
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present the energy spectra for our comparison run H2
with initially constant μ5 and confirm the EM ∝ k−2

scaling, which is different from the steeper magnetic
energy spectra for runs with initially inhomogeneous μ5
and vanishing hμ5i. The μ5 spectrum, on the other hand,

approaches a k−1 for all cases in which turbulence
becomes sufficiently strong, hence also for H2.
We further present in Fig. 22 the spectra of run Rþ 1,

which are referred to in Sec. IV D, and the spectra of run
S203D that are mentioned in Sec. IV.
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